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Let 𝐵
𝑛,𝑞

(𝑓; 𝑥), 𝑞 ∈ (0, ∞) be the 𝑞-Bernstein polynomials of a function 𝑓 ∈ 𝐶[0, 1]. It has been known that, in general, the sequence
(𝐵
𝑛,𝑞
𝑛

(𝑓)) with 𝑞
𝑛

→ 1+ is not an approximating sequence for 𝑓 ∈ 𝐶[0, 1], in contrast to the standard case 𝑞
𝑛

→ 1−. In this
paper, we give the sufficient and necessary condition under which the sequence (𝐵

𝑛,𝑞
𝑛

(𝑓)) approximates 𝑓 for any 𝑓 ∈ 𝐶[0, 1] in
the case 𝑞

𝑛
> 1. Based on this condition, we get that if 1 < 𝑞

𝑛
< 1 + ln 2/𝑛 for sufficiently large 𝑛, then (𝐵

𝑛,𝑞
𝑛

(𝑓)) approximates 𝑓

for any 𝑓 ∈ 𝐶[0, 1]. On the other hand, if (𝐵
𝑛,𝑞
𝑛

(𝑓)) can approximate 𝑓 for any 𝑓 ∈ 𝐶[0, 1] in the case 𝑞
𝑛

> 1, then the sequence
(𝑞
𝑛
) satisfies lim

𝑛→∞
𝑛(𝑞
𝑛

− 1) ≤ ln2.

1. Introduction

Let 𝑞 > 0. For any nonnegative integer 𝑘, the 𝑞-integer [𝑘]
𝑞
is

defined by

[𝑘]
𝑞

:= 1 + 𝑞 + ⋅ ⋅ ⋅ + 𝑞
𝑘−1

, (𝑘 = 1, 2, . . .) , [0]
𝑞

:= 0,

(1)
and the 𝑞-factorial [𝑘]

𝑞
! by

[𝑘]
𝑞
! := [1]

𝑞
[2]
𝑞

⋅ ⋅ ⋅ [𝑘]
𝑞
, (𝑘 = 1, 2, . . .) , [0]

𝑞
! := 1.

(2)
For integers 𝑘, 𝑛 with 0 ≤ 𝑘 ≤ 𝑛, the 𝑞-binomial coefficient is
defined by

[
𝑛

𝑘
]

𝑞

:=

[𝑛]
𝑞
!

[𝑘]
𝑞
![𝑛 − 𝑘]

𝑞
!
. (3)

In [1], Phillips proposed the 𝑞-Bernstein polynomials: for
each positive integer 𝑛 and 𝑓 ∈ 𝐶[0, 1], the 𝑞-Bernstein
polynomial of 𝑓 is

𝐵
𝑛,𝑞

(𝑓; 𝑥) :=

𝑛

∑

𝑘=0

𝑓 (

[𝑘]
𝑞

[𝑛]
𝑞

) 𝑝
𝑛𝑘

(𝑞; 𝑥) , (4)

where

𝑝
𝑛𝑘

(𝑞; 𝑥) = [
𝑛

𝑘
]

𝑞

𝑥
𝑘

𝑛−𝑘−1

∏

𝑠=0

(1 − 𝑞
𝑠

𝑥) . (5)

Note that, for 𝑞 = 1, 𝐵
𝑛,𝑞

(𝑓; 𝑥) is the classical Bernstein
polynomial 𝐵

𝑛
(𝑓; 𝑥):

𝐵
𝑛

(𝑓; 𝑥) :=

𝑛

∑

𝑘=0

𝑓 (
𝑘

𝑛
) (

𝑛

𝑘
) 𝑥
𝑘

(1 − 𝑥)
𝑛−𝑘

. (6)

In recent years, the 𝑞-Bernstein polynomials have been
investigated intensively and a great number of interesting
results related to the 𝑞-Bernstein polynomials have been
obtained. Reviews of the results on 𝑞-Bernstein polynomials
are given in [2, Chapter 7] and [3, 4].

The 𝑞-Bernstein polynomials inherit some of the prop-
erties of the classical Bernstein polynomials, for example,
the end-point interpolation property and the shape-preserving
properties in the case 0 < 𝑞 < 1, representation via
divided differences. We can also define the generalized
Bézier curve and de Casteljau algorithm, which can be
used for evaluating 𝑞-Bernstein polynomials iteratively.These
properties stipulate the importance of 𝑞-Bernstein polyno-
mials for the computer-aided geometric design. Like the
classical Bernstein polynomials, the 𝑞-Bernstein polynomials
reproduce linear functions and are degree reducing on the
set of polynomials. Apart from that, the basic 𝑞-Bernstein
polynomials 𝑝

𝑛𝑘
(𝑞; 𝑥) admit a probabilistic interpretation via

the stochastic process and the 𝑞-binomial distribution in the
case 0 < 𝑞 < 1; see [5].

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 259491, 6 pages
http://dx.doi.org/10.1155/2014/259491

http://dx.doi.org/10.1155/2014/259491


2 Abstract and Applied Analysis

On the other hand, when passing from 𝑞 = 1 to
𝑞 ̸= 1 convergence properties of the 𝑞-Bernstein polynomials
dramatically change. More specially, in the case 0 < 𝑞 <

1, 𝐵
𝑛,𝑞

are positive linear operators on 𝐶[0, 1], and the
convergence properties of the 𝑞-Bernstein polynomials have
been investigated intensively (see, e.g., [6–11]). In the case
𝑞 > 1, 𝐵

𝑛,𝑞
are not positive linear operators on 𝐶[0, 1], and

the lack of positivity makes the investigation of convergence
in the case 𝑞 > 1 essentially more difficult. There are many
unexpected results concerning convergence of 𝑞-Bernstein
polynomials in the case 𝑞 > 1 (see [2, 12–17]). For example,
the rate of approximation by 𝑞-Bernstein polynomials (𝑞 > 1)

in𝐶[0, 1] for functions analytic in {𝑧 : |𝑧| < 𝑞+𝜀} is 𝑞
−𝑛 versus

1/𝑛 for the classical Bernstein polynomials, while, for some
infinitely differentiable functions on [0, 1], their sequences of
𝑞-Bernstein polynomials (𝑞 > 1) may be divergent (see [12]).
In [2, 15], strong asymptotic estimates for the norm ‖𝐵

𝑛,𝑞
‖ as

𝑛 → ∞ for fixed 𝑞 > 1 and as 𝑞 → ∞ are obtained. It was
shown in [2] that ‖𝐵

𝑛,𝑞
‖ → +∞ faster than any geometric

progression 𝑛 → ∞ for fixed 𝑞 > 1. This fact provides
an explanation for the unpredictable behavior of 𝑞-Bernstein
polynomials (𝑞 > 1) with respect to convergence.

This paper is devoted to studying approximation proper-
ties of 𝑞-Bernstein polynomials for 𝑞 taking varying values
that tend to 1. We note that, from the very first papers (see
[1]), there was interest in such approximation properties. In
the case 0 < 𝑞

𝑛
< 1, many interesting results including

the convergence, the rate of convergence, Voronvskaya-type
theorems, and the direct and converse theorem are obtained
(see [1, 6, 8–11]). It was shown in [1, 8] that, in the case
𝑞
𝑛

≤ 1, the condition 𝑞
𝑛

→ 1 is necessary and sufficient
for the sequence (𝐵

𝑛,𝑞
𝑛

(𝑓)) to be approximating for any
𝑓 ∈ 𝐶[0, 1].

Naturally, the question arises as to whether the sequence
(𝐵
𝑛,𝑞
𝑛

(𝑓)) to be approximating for any 𝑓 ∈ 𝐶[0, 1] as 𝑞
𝑛
tends

to 1 from above. It turns out that, in general, the answer is
negative. Indeed, Ostrovska showed in [13] that if 𝑞

𝑛
− 1 ↓ 0

slower than (ln 𝑛)/𝑛, then the sequence (𝐵
𝑛,𝑞
𝑛

(𝑓)) may not
be approximating for some 𝑓 ∈ 𝐶[0, 1] (e.g., 𝑓(𝑥) = √𝑥).
However, in [14] Ostrovska showed that if 𝑞

𝑛
→ 1

+ fast
enough, the sequence (𝐵

𝑛,𝑞
𝑛

(𝑓)) is approximating for any 𝑓 ∈

𝐶[0, 1]: a sufficient condition is 𝑞
𝑛

= 1 + 𝑜(𝑛
−1

3
−𝑛

).
In this paper, we continue to study the convergence of

the sequence (𝐵
𝑛,𝑞
𝑛

) as 𝑞
𝑛
tends to 1 from above. Clearly, the

convergence of the sequence (𝐵
𝑛,𝑞
𝑛

) depends heavily on the
operator norms ‖𝐵

𝑛,𝑞
‖. We remark that for ‖𝐵

𝑛,𝑞
𝑛

‖ = 1 for all
0 < 𝑞

𝑛
< 1. In contrast to this, ‖𝐵

𝑛,𝑞
𝑛

‖ vary with 𝑞
𝑛

> 1.
By the delicate analysis of ‖𝐵

𝑛,𝑞
𝑛

‖, we obtain the sufficient
and necessary condition under which (𝐵

𝑛,𝑞
𝑛

(𝑓; ⋅)) (𝑞
𝑛

> 1)

approximates 𝑓 for any 𝑓 ∈ 𝐶[0, 1]. Based on this condition
we get that if (𝐵

𝑛,𝑞
𝑛

(𝑓; ⋅)) can approximate 𝑓 for any 𝑓 ∈

𝐶[0, 1], then the sequence (𝑞
𝑛
) satisfies lim

𝑛→∞
𝑛(𝑞
𝑛

− 1) ≤

ln 2. On the other hand, if 1 < 𝑞
𝑛

≤ 1 + ln 2/𝑛 for
sufficient large 𝑛, then (𝐵

𝑛,𝑞
𝑛

(𝑓; ⋅)) approximates 𝑓 for any
𝑓 ∈ 𝐶[0, 1].

2. Statement of Results

From here on we assume that 𝑞
𝑛

> 1. The following theorem
gives the sufficient and necessary condition for convergence
of the sequence (𝐵

𝑛,𝑞
𝑛

(𝑓)) for any 𝑓 ∈ 𝐶[0, 1].

Theorem 1. Let 𝑞
𝑛

> 1.Then the sequence (𝐵
𝑛,𝑞
𝑛

(𝑓)) converges
to 𝑓 in 𝐶[0, 1] for any 𝑓 ∈ 𝐶[0, 1] if and only if

sup
𝑛∈N

sup
𝑥∈[𝑞
−1

𝑛
,1]

𝑛

∑

𝑘=2

𝑝𝑛 𝑛−𝑘 (𝑞𝑛; 𝑥)
 < ∞. (7)

Based on Theorem 1, we obtain the following neces-
sary condition for convergence of the sequence (𝐵

𝑛,𝑞
𝑛

(𝑓)).
Indeed, we show that if lim

𝑛→∞
𝑛(𝑞
𝑛

− 1) > ln 2, then
sup
𝑛∈N|𝑝
𝑛 𝑛−[ln 𝑛](𝑞𝑛; 𝑥

0
)| = ∞ with 𝑥

0
= (1 + 𝑞

𝑛
)/2𝑞
𝑛
.

Theorem 2. Let 𝑞
𝑛

> 1. If the sequence (𝐵
𝑛,𝑞
𝑛

(𝑓)) converges to
𝑓 in 𝐶[0, 1], for any 𝑓 ∈ 𝐶[0, 1], then

lim
𝑛→∞

𝑛 (𝑞
𝑛

− 1) ≤ ln 2. (8)

Finally, we give the sufficient condition for convergence
of the sequence (𝐵

𝑛,𝑞
𝑛

(𝑓)).

Theorem 3. Let 𝑞
𝑛

> 1. If the sequence (𝑞
𝑛
) satisfies 𝑞

𝑛
≤

1 + ln 2/𝑛 for sufficiently large 𝑛, then, for any 𝑓 ∈ 𝐶[0, 1],
(𝐵
𝑛,𝑞
𝑛

(𝑓; 𝑥)) converges to 𝑓(𝑥) uniformly on [0, 1].

The following corollary follows immediately forTheorem
3.

Corollary 4. Let 𝑞
𝑛

> 1. If the sequence (𝑞
𝑛
) satisfies

lim
𝑛→∞

𝑛 (𝑞
𝑛

− 1) < ln 2, (9)

then, for any 𝑓 ∈ 𝐶[0, 1], (𝐵
𝑛,𝑞
𝑛

(𝑓; 𝑥)) converges to 𝑓(𝑥) uni-
formly on [0, 1].

Remark 5. Using the same technique as in the proof of
Theorem 3, we can prove a slightly stronger conclusion: if

1 < 𝑞
𝑛

≤ 1 +
ln 2

𝑛
+

𝐶

𝑛2
(10)

for some positive constant 𝐶 and sufficiently large 𝑛, then, for
any 𝑓 ∈ 𝐶[0, 1], (𝐵

𝑛,𝑞
𝑛

(𝑓; 𝑥)) converges to 𝑓(𝑥) uniformly on
[0, 1].

3. Proofs of Theorems 1–3

For 𝑓 ∈ 𝐶[0, 1], we set
𝑓

 := max
𝑥∈[0,1]

𝑓 (𝑥)
 ,

𝑓
𝑠

:=
𝑓

𝐶[𝑞−𝑠−1
𝑛
,𝑞
−𝑠

𝑛
]

:= max
𝑥∈[𝑞
−𝑠−1

𝑛
,𝑞
−𝑠

𝑛 ]

𝑓 (𝑥)
 .

(11)

Let 𝐹
𝑛
(𝑥) := ∑

𝑛

𝑘=0
|𝑝
𝑛𝑘

(𝑞
𝑛
; 𝑥)|, 𝑥 ∈ [0, 1]. Clearly,


𝐵
𝑛,𝑞
𝑛


=

𝐹
𝑛

 = max
𝑥∈[0,1]

(

𝑛

∑

𝑘=0

𝑝𝑛 𝑛−𝑘 (𝑞𝑛; 𝑥)
) . (12)
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Note that ∑
𝑛

𝑘=0
𝑝
𝑛𝑘

(𝑞
𝑛
; 𝑥) = 1 for 𝑥 ∈ [0, 1] and 𝑝

𝑛𝑘
(𝑞
𝑛
; 𝑥) ≥ 0

for 𝑥 ∈ [0, 𝑞
−𝑛+1

𝑛
] and 𝑘 = 0, 1, . . . , 𝑛. This means that

𝐹
𝑛

(𝑥) = 1, 𝑥 ∈ [0, 𝑞
−𝑛+1

𝑛
] ,

𝐹
𝑛

(𝑥) ≥ 1, 𝑥 ∈ [𝑞
−𝑛+1

𝑛
, 1] .

(13)

It follows that

𝐵
𝑛,𝑞
𝑛


=

𝐹
𝑛

 = max
0≤𝑠≤𝑛−2

𝐹
𝑛

𝑠
. (14)

Proof of Theorem 1. From Corollary 7 in [12] we know that,
for any polynomial 𝑃(𝑥), we have

𝐵
𝑛,𝑞
𝑛

(𝑃; 𝑥) → 𝑃 (𝑥) (15)

uniformly in [0, 1] as 𝑛 → ∞. It follows from the well-
known Banach-Steinhaus theorem that (𝐵

𝑛,𝑞
𝑛

(𝑓)) (𝑞
𝑛

> 1)

approximates 𝑓 for any 𝑓 ∈ 𝐶[0, 1] if and only if

sup
𝑛∈N


𝐵
𝑛,𝑞
𝑛


= sup
𝑛∈N

sup
𝑥∈[0,1]

(

𝑛

∑

𝑘=0

𝑝𝑛 𝑛−𝑘 (𝑞𝑛; 𝑥)
) < +∞.

(16)

We set

𝐺
𝑠,𝑛

(𝑥) =

𝑛

∑

𝑘=𝑠+2

𝑝𝑛 𝑛−𝑘 (𝑞𝑛; 𝑥)
 , 𝑠 = 0, 1, . . . , 𝑛 − 2. (17)

Since𝑝
𝑛 𝑛−𝑘

(𝑞
𝑛
; 𝑥) ≥ 0 for𝑥 ∈ [𝑞

−𝑠−1

𝑛
, 𝑞
−𝑠

𝑛
] and 𝑘 = 0, 1, . . . , 𝑠+

1, we get, for 𝑥 ∈ [𝑞
−𝑠−1

𝑛
, 𝑞
−𝑠

𝑛
],

𝑠+1

∑

𝑘=0

𝑝𝑛 𝑛−𝑘 (𝑞𝑛; 𝑥)
 =

𝑠+1

∑

𝑘=0

𝑝
𝑛 𝑛−𝑘

(𝑞
𝑛
; 𝑥)

= 1 −

𝑛

∑

𝑘=𝑠+2

𝑝
𝑛 𝑛−𝑘

(𝑞
𝑛
; 𝑥) ≤ 1 + 𝐺

𝑠,𝑛
(𝑥) ,

(18)

and, therefore,
𝐹
𝑛

𝑠
≤

1 + 2𝐺
𝑠,𝑛

𝑠
= 1 + 2

𝐺
𝑠,𝑛

𝑠
, 𝑠 = 0, 1, . . . , 𝑛 − 2.

(19)

Next we will show that
𝐺
𝑠,𝑛

𝑠
≤

𝐺
𝑠−1,𝑛

𝑠−1
, 𝑠 = 1, 2, . . . , 𝑛 − 2. (20)

Note that, for 𝑥 ∈ [𝑞
−𝑠−1

𝑛
, 𝑞
−𝑠

𝑛
],

𝐺
𝑠,𝑛

(𝑥) =

𝑛

∑

𝑘=𝑠+2

𝑝𝑛 𝑛−𝑘 (𝑞𝑛; 𝑥)
 ,

𝐺
𝑠−1,𝑛

(𝑞
𝑛
𝑥) =

𝑛

∑

𝑘=𝑠+1

𝑝𝑛 𝑛−𝑘 (𝑞𝑛; 𝑞
𝑛
𝑥)

 .

(21)

If we show that, for 𝑥 ∈ [𝑞
−𝑠−1

𝑛
, 𝑞
−𝑠

𝑛
] and 𝑘 = 𝑠 + 1, . . . , 𝑛 − 1,

𝑝𝑛 𝑛−𝑘−1 (𝑞𝑛; 𝑥)
 ≤

𝑝𝑛 𝑛−𝑘 (𝑞𝑛; 𝑞
𝑛
𝑥)

 , (22)

then

𝐺
𝑠,𝑛

(𝑥) ≤ 𝐺
𝑠−1,𝑛

(𝑞
𝑛
𝑥) , 𝑥 ∈ [𝑞

−𝑠−1

𝑛
, 𝑞
−𝑠

𝑛
] , (23)

and (20) follows. Indeed, for 𝑥 ∈ (𝑞
−𝑠−1

𝑛
, 𝑞
−𝑠

𝑛
) and 𝑘 = 𝑠 +

1, . . . , 𝑛 − 1,
𝑝𝑛 𝑛−𝑘 (𝑞𝑛; 𝑞

𝑛
𝑥)


𝑝𝑛 𝑛−𝑘−1 (𝑞𝑛; 𝑥)



=

[
𝑛

𝑘
]
𝑞
𝑛

(𝑞
𝑛
𝑥)
𝑛−𝑘

∏
𝑠−1

𝑗=0
(1 − 𝑞

𝑗+1

𝑛
𝑥) ∏
𝑘−1

𝑗=𝑠
(𝑞
𝑗+1

𝑛
𝑥 + 1)

[
𝑛

𝑘+1
]
𝑞
𝑛

𝑥𝑛−𝑘−1∏
𝑠

𝑗=0
(1 − 𝑞

𝑗

𝑛
𝑥) ∏
𝑘

𝑗=𝑠+1
(𝑞
𝑗

𝑛
𝑥 − 1)

=

[𝑘 + 1]
𝑞
𝑛

𝑞
𝑛−𝑘

𝑛
𝑥

[𝑛 − 𝑘]
𝑞
𝑛

(1 − 𝑥)
.

(24)

Hence, (22) is equivalent to the following inequality:

(𝑞
𝑘+1

𝑛
− 1) 𝑞

𝑛−𝑘

𝑛
𝑥 ≥ (𝑞

𝑛−𝑘

𝑛
− 1) (1 − 𝑥) , (25)

which is also equivalent to the inequality

𝑥 ≥
𝑞
𝑛−𝑘

𝑛
− 1

𝑞𝑛+1
𝑛

− 1
. (26)

For 𝑥 ∈ (𝑞
−𝑠−1

𝑛
, 𝑞
−𝑠

𝑛
) and 𝑘 = 𝑠 + 1, . . . , 𝑛 − 1, we have

𝑥 > 𝑞
−𝑠−1

𝑛
≥

𝑞
−𝑠−1

𝑛
(𝑞
𝑛

𝑛
− 𝑞
𝑠+1

𝑛
)

𝑞𝑛+1
𝑛

− 1
=

𝑞
𝑛−𝑠−1

𝑛
− 1

𝑞𝑛+1
𝑛

− 1
≥

𝑞
𝑛−𝑘

𝑛
− 1

𝑞𝑛+1
𝑛

− 1
.

(27)

This proves (26). On the other hand, 𝑝
𝑛 𝑛−𝑘−1

(𝑞
𝑛
; 𝑥) = 0 =

𝑝
𝑛 𝑛−𝑘

(𝑞
𝑛
; 𝑞
𝑛
𝑥) for 𝑥 ∈ {𝑞

−𝑠−1

𝑛
, 𝑞
−𝑠

𝑛
}, which completes the proof

of (20). From (14), (19), and (20), we get
𝐺
0,𝑛

0
≤

𝐹
𝑛

 =

𝐵
𝑛,𝑞
𝑛


≤ 1 + 2

𝐺
0,𝑛

0
. (28)

This implies that (16) is equivalent to

sup
𝑛∈N

𝐺
0,𝑛

0
= sup
𝑛∈N

sup
𝑥∈[𝑞
−1

𝑛
,1]

𝑛

∑

𝑘=2

𝑝𝑛 𝑛−𝑘 (𝑞𝑛; 𝑥)
 < ∞. (29)

Theorem 1 is proved.

Proof of Theorem 2. First we show that

𝑞
𝑛

− 1 = 𝑂 (
1

𝑛
) . (30)

Otherwise, we may assume that

lim
𝑛→∞

𝑛 (𝑞
𝑛

− 1) = +∞, (31)

which implies

lim
𝑛→∞

𝑞
𝑛−1

𝑛
= lim
𝑛→∞

exp ((𝑛 − 1) ln 𝑞
𝑛
)

≥ lim
𝑛→∞

exp((𝑛 − 1)min{
(𝑞
𝑛

− 1)

2
, ln 2})

= +∞.

(32)
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We have

𝐺
0,𝑛

0
≥

𝑝
𝑛 𝑛−2

(𝑞
𝑛
; ⋅)

0
≥



𝑝
𝑛 𝑛−2

(𝑞
𝑛
;
𝑞
𝑛

+ 1

2𝑞
𝑛

)



=

(𝑞
𝑛

𝑛
− 1) (𝑞

𝑛−1

𝑛
− 1)

(𝑞2
𝑛

− 1) (𝑞
𝑛

− 1)
(

1 + 𝑞
𝑛

2𝑞
𝑛

)

𝑛−2

× (1 −
1 + 𝑞
𝑛

2𝑞
𝑛

) (𝑞
𝑛

1 + 𝑞
𝑛

2𝑞
𝑛

− 1)

=

(1 − 𝑞
−𝑛+1

𝑛
) (𝑞
𝑛

𝑛
− 1)

8
(

1 + 𝑞
𝑛

2
)

𝑛−3

≥

(1 − 𝑞
−𝑛+1

𝑛
) (𝑞
𝑛

𝑛
− 1)

8
→ +∞, (as 𝑛 → ∞) .

(33)

This leads to a contradiction byTheorem 1. Hence, (30) holds.
Next, we show Theorem 2. Assume that lim

𝑛→∞
𝑛(𝑞
𝑛

−

1) > ln 2. Then by (30) we may suppose that, for some 𝐴, 𝐵,
ln 2 < 𝐴 < 𝐵 < +∞,

1 +
𝐴

𝑛
≤ 𝑞
𝑛

≤ 1 +
𝐵

𝑛
. (34)

For 0 < 𝑎 < 𝑏, we set ℎ(𝑥) = (𝑥
𝑎

− 1)/(𝑥
𝑏

− 1), 𝑥 > 1.
Direct computation gives that

ℎ


(𝑥) =

𝑏𝑥
𝑎−1

(𝑥
𝑏−𝑎

− ((𝑏 − 𝑎) /𝑏) 𝑥
𝑏

− 𝑎/𝑏)

(𝑥𝑏 − 1)
2

. (35)

Since the function 𝑔(𝑦) = 𝑥
𝑦 is convex on (−∞, +∞) for a

fixed 𝑥 > 0, we get that

𝑥
𝑏−𝑎

= 𝑥
((𝑏−𝑎)/𝑏)⋅𝑏+(𝑎/𝑏)⋅0

≤
𝑏 − 𝑎

𝑏
𝑥
𝑏

+
𝑎

𝑏
. (36)

This means that ℎ


(𝑥) ≤ 0 and ℎ(𝑥) is nonincreasing on
(1, +∞). Hence, for 𝑥 ∈ (1, 𝜉

0
), 𝜉
0

> 1, we have

ℎ (𝜉
0
) ≤ ℎ (𝑥) ≤ lim

𝑥→1+

ℎ (𝑥) =
𝑎

𝑏
. (37)

Put 𝑥
0

= (1 + 𝑞
𝑛
)/2𝑞
𝑛

∈ (𝑞
−1

𝑛
, 1). Then, for 𝑘

0
= [ln 𝑛], we

have
𝐺
0,𝑛

0
≥


𝑝
𝑛 𝑛−𝑘

0

(𝑞
𝑛
; ⋅)

0
≥


𝑝
𝑛 𝑛−𝑘

0

(𝑞
𝑛
; 𝑥
0
)


=

(𝑞
𝑛

𝑛
− 1) ⋅ ⋅ ⋅ (𝑞

𝑛−𝑘
0
+1

𝑛
− 1)

(𝑞
𝑘
0

𝑛
− 1) ⋅ ⋅ ⋅ (𝑞

𝑛
− 1)

𝑥
𝑛−𝑘
0

0

× (1 − 𝑥
0
)

𝑘
0
−1

∏

𝑠=1

(𝑞
𝑠

𝑛
𝑥
0

− 1)

≥ (𝑞
𝑛−𝑘
0

𝑛
− 1)
𝑘
0

𝑥
𝑛−𝑘
0

0
(1 − 𝑥

0
)

×

(𝑞
𝑘
0
−1

𝑛
𝑥
0

− 1) ⋅ ⋅ ⋅ (𝑞
𝑛
𝑥
0

− 1)

(𝑞
𝑘
0

𝑛
− 1) ⋅ ⋅ ⋅ (𝑞

𝑛
− 1)

.

(38)

Using (34), the inequalities

𝑞
𝑠+1

𝑛
𝑥
0

− 1

𝑞𝑠
𝑛

− 1
≥ 1, 𝑠 = 1, . . . , 𝑘

0
− 2,

𝑥
𝑛−𝑘
0

0
(1 − 𝑥

0
) (𝑞
𝑛
𝑥
0

− 1) ≥ 𝑞
−𝑛+𝑘
0
−1

𝑛

(𝑞
𝑛

− 1)
2

4

≥ (1 +
𝐵

𝑛
)

−𝑛
(𝑞
𝑛

− 1)
2

4

≥ (𝑞
𝑛

− 1)
2 exp (−𝐵)

4
,

(39)

and the nonincreasing property of ℎ(𝑥), we continue to obtain
that
𝐺
0,𝑛

0

≥ ((1 +
𝐴

𝑛
)

𝑛−ln 𝑛
− 1)

𝑘
0 exp (−𝐵)

4

(𝑞
𝑛

− 1)
2

(𝑞
𝑘
0

𝑛
− 1) (𝑞

𝑘
0
−1

𝑛
− 1)

≥ ((1 +
𝐴

𝑛
)

𝑛−ln 𝑛
− 1)

𝑘
0

×
exp (−𝐵)

4

(𝐴/𝑛)
2

((1 + 𝐵/𝑛)
𝑘
0 − 1) ((1 + 𝐵/𝑛)

𝑘
0
−1

− 1)

.

(40)

We observe that

lim
𝑛→∞

(1 +
𝐴

𝑛
)

𝑛−ln 𝑛

= exp( lim
𝑛→∞

(𝑛 − ln 𝑛) ln(1 +
𝐴

𝑛
))

= exp( lim
𝑛→∞

𝐴 (𝑛 − ln 𝑛)

𝑛
) = exp (𝐴) > 2,

(41)

and, for 𝑠 = 𝑘
0
, 𝑘
0

− 1,

lim
𝑛→∞

(1 + 𝐵/𝑛)
𝑠

− 1

𝐵 ln 𝑛/𝑛

= lim
𝑛→∞

exp (𝑠 ln (1 + 𝐵/𝑛)) − 1

𝐵 ln 𝑛/𝑛
= lim
𝑛→∞

𝑠 ln (1 + 𝐵/𝑛)

𝐵 ln 𝑛/𝑛
= 1.

(42)

Thus, for some 𝑎 ∈ (1, 𝑒
𝐴

−1) and sufficiently large 𝑛, we have

𝐺
0,𝑛

0
≥

𝑎
ln 𝑛−1

(ln 𝑛)
2

exp (−𝐵) 𝐴
2

4𝐵2
→ +∞. (43)

By Theorem 1, we know that there exists a function 𝑓 ∈

𝐶[0, 1] such that the sequence (𝐵
𝑛,𝑞
𝑛

(𝑓)) does not con-
verge to 𝑓 in 𝐶[0, 1]. This leads to a contradiction. Hence,
lim
𝑛→∞

𝑛(𝑞
𝑛

− 1) ≤ ln 2. Theorem 2 is proved.
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Proof of Theorem 3. From Theorem 1, we know that it is
sufficient to show that if 𝑞

𝑛
≤ 1 + ln 2/𝑛 for sufficiently large

𝑛, then

sup
𝑛∈N

𝐺
0,𝑛

0
< ∞. (44)

For 𝑥 ∈ (𝑞
−1

𝑛
, 1), we set 𝛼 = −log

𝑞
𝑛

𝑥. Then 𝛼 ∈ (0, 1) and
𝑥 = 𝑞
−𝛼

𝑛
. Since, for 𝑘 = 2, . . . , 𝑛 − 1,

𝑞
𝛼

𝑛
(𝑞
𝑛−𝑘

𝑛
− 1) ≤ 𝑞

𝑛−𝑘+𝛼

𝑛
− 1

≤ 𝑞
𝑛

𝑛
− 1 ≤ (1 +

ln 2

𝑛
)

𝑛

− 1 ≤ 1,

(45)

by (37) we get that
𝑝𝑛 𝑛−𝑘−1 (𝑞𝑛; 𝑥)


𝑝𝑛 𝑛−𝑘 (𝑞𝑛; 𝑥)



=

(𝑞
𝑛−𝑘

𝑛
− 1) (𝑞

𝑘−𝛼

𝑛
− 1)

(𝑞𝑘+1
𝑛

− 1) 𝑞−𝛼
𝑛

≤
𝑞
𝑘−𝛼

𝑛
− 1

𝑞𝑘+1
𝑛

− 1
≤

𝑘 − 𝛼

𝑘 + 1
.

(46)

On the other hand, by (37) we have

𝑝𝑛 𝑛−2 (𝑞𝑛; 𝑥)
 = [

𝑛

2
]

𝑞
𝑛

𝑥
𝑛−1

(
1

𝑥
− 1) (𝑞

𝑛
𝑥 − 1)

≤

(𝑞
𝑛

𝑛
− 1) (𝑞

𝑛−1

𝑛
− 1)

(𝑞2
𝑛

− 1) (𝑞
𝑛

− 1)
(𝑞
𝛼

𝑛
− 1) (𝑞

1−𝛼

𝑛
− 1)

≤

(𝑞
𝛼

𝑛
− 1) (𝑞

1−𝛼

𝑛
− 1)

2(𝑞
𝑛

− 1)
2

≤
𝛼 (1 − 𝛼)

2
.

(47)

It follows from (46) and (47) that

𝑝𝑛 𝑛−𝑘 (𝑞𝑛; 𝑥)
 ≤

𝛼 (1 − 𝛼) ⋅ ⋅ ⋅ (𝑘 − 1 − 𝛼)

𝑘!
. (48)

Hence, for 𝑥 = 𝑞
−𝛼

𝑛
, 𝛼 ∈ (0, 1),

𝐺
0,𝑛

(𝑥) =

𝑛

∑

𝑘=2

𝑝𝑛 𝑛−𝑘 (𝑞𝑛; 𝑥)
 ≤

∞

∑

𝑘=2

𝛼 (1 − 𝛼) ⋅ ⋅ ⋅ (𝑘 − 1 − 𝛼)

𝑘!
.

(49)

Obviously (49) is satisfied for 𝑥 ∈ {0, 1}. We note that, for
𝑥 ∈ [0, 1],

(1 − 𝑥)
𝛼

= 1 − 𝛼𝑥 −

∞

∑

𝑘=2

𝛼 (1 − 𝛼) ⋅ ⋅ ⋅ (𝑘 − 1 − 𝛼)

𝑘!
𝑥
𝑘

. (50)

The above formula with 𝑥 = 1 means that
∞

∑

𝑘=2

𝛼 (1 − 𝛼) ⋅ ⋅ ⋅ (𝑘 − 1 − 𝛼)

𝑘!
= 1 − 𝛼. (51)

Thus, by (49),

𝐺
0,𝑛

0
≤ sup
𝛼∈[0,1]

∞

∑

𝑘=2

𝛼 (1 − 𝛼) ⋅ ⋅ ⋅ (𝑘 − 1 − 𝛼)

𝑘!
= 1. (52)

This completes the proof of Theorem 3.
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