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Some new integral inequalities with weakly singular kernel for discontinuous functions are established using the method of
successive iteration and properties of Mittag-Leffler function, which can be used in the qualitative analysis of the solutions to
certain impulsive fractional differential systems.

1. Introduction

Differential equations of fractional order have recently
proved to be valuable tools in the modeling of many
phenomena in various fields of engineering, physics, and
economics. There has been a significant development in the
study of fractional differential equations in recent years; see
themonographs ofKilbas et al. [1], Lakshmikanthamet al. [2],
and Podlubny [3] and the survey by Diethelm [4]. Integral
inequalities with weakly singular kernels play an important
role in the qualitative analysis of the solutions to fractional
differential equations.With the development of fractional dif-
ferential equations, integral inequalities with weakly singular
kernels have drawnmore andmore researchers’ attention and
lead to inspiring results; see, for example, [5–8].

Impulsive differential equations, that is, differential equa-
tions involving impulse effect, appear as a natural description
of observed evolution phenomena of several real world
problems. Many processes studied in applied sciences are
represented by impulsive differential equations. However, the
situation is quite different in many physical phenomena that
have a sudden change in their states such as mechanical
systems with impact, biological systems such as heart beats,
blood flow, population dynamics theoretical physics, phar-
macokinetics, mathematical economy, chemical technology,

electric technology, metallurgy, ecology, industrial robotics,
and biotechnology processes (see the monographs [9–12] for
details).

The theory of impulsive differential equations is an
important branch of differential equations. In spite of its
importance, the development of the theory has been quite
slow due to special features possessed by impulsive differen-
tial equations in general, such as pulse phenomena, conflu-
ence, and loss of autonomy. Among these results, integrosum
inequalities for discontinuous functions play increasingly
important roles in the study of quantitative properties of solu-
tions of impulsive differential systems. In 2005, Borysenko et
al. [13] considered some integrosum inequalities and devoted
them to investigate the properties of motion represented
by essential nonlinear system of differential equations with
impulsive effect. In 2007 and 2009, Gallo and Piccirillo [14,
15] presented some new nonlinear integral inequalities like
Gronwall-Bellman-Bihari type with delay for discontinuous
functions and applied them to investigate the properties of
solutions of impulsive differential systems.

The theory of impulsive fractional differential equations
is a new topic of research which involve both the fractional
order integral (or differentiation) and the impulsive effect;
most of the results related to this topic are the existence of
solutions (see [16–19] and the references therein). To our best
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knowledge, there is no result on other qualitative properties
(such as boundedness and stability), and impulsive fractional
differential equations involving the Caputo fractional deriva-
tive have not been studied very perfectly, so we set up a new
kind of integral inequalities with weakly singular kernel for
discontinuous functions and use the new inequalities to study
the qualitative properties of the solutions to certain impulsive
fractional differential systems.

On the basis of previous studies, in this paper, we consider
the following integral inequalities withweakly singular kernel
for discontinuous functions:

𝑢 (𝑡) ≤ 𝑎 + 𝑏∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠 + ∑

𝑡0<𝑡𝑖<𝑡

𝛾
𝑖
𝑢 (𝑡
−

𝑖
) , (1)

where 𝑎, 𝑏, and 𝛾
𝑖
are constants, 𝑎 ≥ 0, 𝑏 ≥ 0, 𝛾

𝑖
≥ 0, and 𝑢(𝑡)

is a nonnegative piecewise-continuous function with the 1st
kind of discontinuous points: 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ , lim

𝑖→∞
𝑡
𝑖
= ∞,

𝑢(𝑡
−

𝑖
) = lim

𝑡→ 𝑡𝑖−0
𝑢(𝑡). In general, due to the existence of weak

singular integral kernel, the methods of these inequalities
for discontinuous functions are quite different to that of
classical Gronwall-Bellman-Bihari inequalities. We use the
properties of the Mittag-Leffler function 𝐸

𝛽
(⋅) defined by

𝐸
𝛽
(𝑧) = ∑

∞

𝑘=0
(𝑧
𝑘
/Γ(𝑘𝛽 + 1)) and the successive iterative

technique to establish the new type of integral inequalities
for discontinuous functions.These inequalities are applied to
investigate the qualitative analysis of the solutions to certain
impulsive fractional differential systems.

2. Preliminary Knowledge

In this section, we give some definitions, symbols, and known
inequalities, whichwill be used in the remainder of this paper.

Definition 1. Given an interval [𝑎, 𝑏] of R, the fractional
(arbitrary) order integral of the function ℎ ∈ 𝐿1([𝑎, 𝑏],R) of
order 𝛼 ∈ R

+
is defined by

𝐼
𝛼

𝑎
ℎ (𝑡) = ∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)

ℎ (𝑠) 𝑑𝑠, (2)

where Γ(⋅) is the gamma function. When 𝑎 = 0, we write
𝐼
𝛼
ℎ(𝑡) = [ℎ ∗ 𝜑

𝛼
](𝑡), where 𝜑

𝛼
(𝑡) = 𝑡

𝛼−1
/Γ(𝛼) for 𝑡 > 0,

𝜑
𝛼
(𝑡) = 0 for 𝑡 ≤ 0, and 𝜑

𝛼
→ 𝛿(𝑡) as 𝛼 → 0, where 𝛿

is the delta function.

Definition 2. For a given function ℎ on the interval [𝑎, 𝑏], the
𝛼-order Caputo fractional order derivative of ℎ is defined by

(
𝑐
𝐷
𝛼

𝑎+
ℎ) (𝑡) =

1

Γ (𝑚 − 𝛼)

∫

𝑡

𝑎

(𝑡 − 𝑠)
𝑚−𝛼−1

ℎ
(𝑚)
(𝑠) 𝑑𝑠, (3)

where𝑚 = [𝛼] + 1.

For calculation simplification, the symbols are defined as
follows:

𝑆 (𝑡, 𝑡
𝑖
) = 𝐸
𝛽
(𝑏Γ (𝛽) (𝑡 − 𝑡

𝑖
)
𝛽

) , for 𝑡 > 𝑡
𝑖
,

𝑆
𝑖,𝑗
= 𝑆 (𝑡

𝑖
, 𝑡
𝑗
) = 𝐸
𝛽
(𝑏Γ (𝛽) (𝑡

𝑖
− 𝑡
𝑗
)

𝛽

) , for 𝑡
𝑖
> 𝑡
𝑗
,

(4)

where 𝐸
𝛽
(⋅) is the Mittag-Leffler function.

Lemma 3 (see [6]). Suppose that 𝛽 > 0, 𝑎(𝑡) is a nonnegative
and nondecreasing function which is locally integrable on 0 ≤
𝑡 < 𝑇 (for some 𝑇 ≤ +∞), and 𝑔(𝑡) is a nonnegative,
nondecreasing continuous function defined on 0 ≤ 𝑡 < 𝑇,
𝑔(𝑡) ≤ 𝑀 (constant), and suppose that 𝑢(𝑡) is a nonnegative
and locally integrable function on 0 ≤ 𝑡 < 𝑇 which satisfies

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑔 (𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠, (5)

and then

𝑢 (𝑡) ≤ 𝑎 (𝑡) 𝐸
𝛽
(𝑔 (𝑡) Γ (𝛽) 𝑡

𝛽
) . (6)

Using Lemma 3, we can easily get the following corollary.

Corollary 4. Let 𝑎, 𝑏 be constants, 𝑎 ≥ 0 and 𝑏 ≥ 0. And
suppose 𝑢(𝑡) is a nonnegative and locally integrable function
on 𝑡
0
≤ 𝑡 < 𝑇 with

𝑢 (𝑡) ≤ 𝑎 + 𝑏∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠, (7)

and then

𝑢 (𝑡) ≤ 𝑎𝑆 (𝑡, 𝑡
0
) . (8)

Lemma 5. Let 𝛼 ≥ 0 and 𝛽 ≥ 0. Then

∫

𝑡1

𝑡0

(𝑡 − 𝑠)
𝛼−1
(𝑠 − 𝑡
0
)
𝛽−1

𝑑𝑠 ≤ 𝐵 (𝛼, 𝛽) (𝑡 − 𝑡
0
)
𝛼+𝛽−1

,

𝑡 ≥ 𝑡
1
> 𝑡
0
,

(9)

where 𝐵(⋅, ⋅) is the Beta function.

Proof. Let 𝑠 = 𝑡
0
+ 𝜉(𝑡 − 𝑡

0
); we obtain for 𝑡 ≥ 𝑡

1

∫

𝑡1

𝑡0

(𝑡 − 𝑠)
𝛼−1
(𝑠 − 𝑡
0
)
𝛽−1

𝑑𝑠

= ∫

(𝑡1−𝑡0)/(𝑡−𝑡0)

0

(1 − 𝜉)
𝛼−1
(𝑡 − 𝑡
0
)
𝛼−1

(𝑡 − 𝑡
0
)
𝛽−1

𝜉
𝛽−1
𝑑𝜉

≤ (𝑡 − 𝑡
0
)
𝛼+𝛽−1

∫

1

0

(1 − 𝜉)
𝛼−1
𝜉
𝛽−1
𝑑𝜉

≤ 𝐵 (𝛼, 𝛽) (𝑡 − 𝑡
0
)
𝛼+𝛽−1

,

(10)

which is the desired result.

Remark 6. If we replace the integration interval [𝑡
0
, 𝑡
1
] by

[𝑡
𝑖
, 𝑡
𝑖+1
] for 𝑖 = 0, 1, 2, . . ., we can get the following equality:

∫

𝑡𝑖+1

𝑡𝑖

(𝑡 − 𝑠)
𝛼−1
(𝑠 − 𝑡
𝑖
)
𝛽−1

𝑑𝑠 ≤ 𝐵 (𝛼, 𝛽) (𝑡 − 𝑡
𝑖
)
𝛼+𝛽−1

,

𝑡 ≥ 𝑡
𝑖+1
> 𝑡
𝑖
, 𝑖 = 0, 1, 2, . . . .

(11)

Corollary 7. Let 𝛽 ≥ 0. Then

𝑏∫

𝑡1

𝑡0

(𝑡 − 𝑠)
𝛽−1
𝑆 (𝑠, 𝑡
0
) 𝑑𝑠 ≤ 𝑆 (𝑡, 𝑡

0
) − 1, 𝑡 ≥ 𝑡

1
> 𝑡
0
.

(12)
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Proof. By the definition of 𝑆(𝑠, 𝑡
0
), we have

𝑏∫

𝑡1

𝑡0

(𝑡 − 𝑠)
𝛽−1
𝑆 (𝑠, 𝑡
0
) 𝑑𝑠

= 𝑏∫

𝑡1

𝑡0

(𝑡 − 𝑠)
𝛽−1

∞

∑

𝑘=0

𝑏
𝑘
Γ
𝑘
(𝛽) (𝑠 − 𝑡

0
)
𝑘𝛽

Γ (𝑘𝛽 + 1)

𝑑𝑠.

(13)

Since the series of function is the Mittag-Leffler function
𝐸
𝛽
(𝑏Γ(𝛽)(𝑠 − 𝑡

0
)
𝛽
), which is convergent uniformly on 𝑠 ∈

[𝑡
0
, 𝑡
1
], we permute the sum and the integral to obtain

𝑏∫

𝑡1

𝑡0

(𝑡 − 𝑠)
𝛽−1
𝑆 (𝑠, 𝑡
0
) 𝑑𝑠

=

∞

∑

𝑘=0

𝑏
𝑘+1
Γ
𝑘
(𝛽)

Γ (𝑘𝛽 + 1)

∫

𝑡1

𝑡0

(𝑡 − 𝑠)
𝛽−1
(𝑠 − 𝑡
0
)
𝑘𝛽

𝑑𝑠.

(14)

Using Lemma 5, we get

𝑏∫

𝑡1

𝑡0

(𝑡 − 𝑠)
𝛽−1
𝑆 (𝑠, 𝑡
0
) 𝑑𝑠

≤

∞

∑

𝑘=0

𝑏
𝑘+1
Γ
𝑘
(𝛽)

Γ (𝑘𝛽 + 1)

(𝑡 − 𝑡
0
)
(𝑘+1)𝛽

𝐵 (𝛽, 𝑘𝛽 + 1)

=

∞

∑

𝑘=0

𝑏
𝑘+1
Γ
𝑘+1
(𝛽) (𝑡 − 𝑡

0
)
(𝑘+1)𝛽

Γ ((𝑘 + 1) 𝛽 + 1)

=

∞

∑

𝑘=1

𝑏
𝑘
Γ
𝑘
(𝛽) (𝑡 − 𝑡

0
)
𝑘𝛽

Γ (𝑘𝛽 + 1)

≤

∞

∑

𝑘=0

𝑏
𝑘
Γ
𝑘
(𝛽) (𝑡 − 𝑡

0
)
𝑘𝛽

Γ (𝑘𝛽 + 1)

− 1 = 𝑆 (𝑡, 𝑡
0
) − 1.

(15)

Remark 8. If we replace the integration interval [𝑡
0
, 𝑡
1
] by

[𝑡
𝑖
, 𝑡
𝑖+1
], we can get the similar conclusion

𝑏∫

𝑡𝑖+1

𝑡𝑖

(𝑡 − 𝑠)
𝛽−1
𝑆 (𝑠, 𝑡
0
) 𝑑𝑠 ≤ 𝑆 (𝑡, 𝑡

𝑖
) − 1,

𝑡 ≥ 𝑡
𝑖+1
> 𝑡
𝑖
, 𝑖 = 0, 1, 2, . . . .

(16)

3. Main Results

Theorem 9. Let 𝑎, 𝑏 be constants: 𝑎 ≥ 0, 𝑏 ≥ 0, and 𝑢(𝑡) is a
nonnegative piecewise-continuous function with the 1st kind of
discontinuous points: 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ and lim

𝑖→∞
𝑡
𝑖
= ∞. If

𝑢 (𝑡) ≤ 𝑎 + 𝑏∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠 + ∑

𝑡0<𝑡𝑖<𝑡

𝛾
𝑖
𝑢 (𝑡
−

𝑖
) , 𝑡 ∈ 𝐼,

(17)

where 𝛽 > 0, then the following assertions hold:

𝑢 (𝑡) ≤ 𝑎 (1 + 𝛾
1
) ⋅ ⋅ ⋅ (1 + 𝛾

𝑖
) 𝑆
𝑖+1,0
𝑆
𝑖+1,1

⋅ ⋅ ⋅ 𝑆
𝑖+1,𝑖−1

𝑆 (𝑡, 𝑡
𝑖
) ,

𝑡 ∈ (𝑡
𝑖
, 𝑡
𝑖+1
] ,

𝑢 (𝑡) ≤ 𝑎𝑆 (𝑡, 𝑡
0
) , 𝑡 ∈ [𝑡

0
, 𝑡
1
] .

(18)

Proof. If 𝑡 ∈ [𝑡
0
, 𝑡
1
], the inequality (17) is reduced to the

following form:

𝑢 (𝑡) ≤ 𝑎 + 𝑏∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠. (19)

Using Lemma 3, we get

𝑢 (𝑡) ≤ 𝑎𝑆 (𝑡, 𝑡
0
) ,

𝑢 (𝑡
−

1
) ≤ 𝑎𝑆 (𝑡

1
, 𝑡
0
) = 𝑎𝑆

1,0
.

(20)

If 𝑡 ∈ (𝑡
1
, 𝑡
2
], then

𝑢 (𝑡) ≤ 𝑎 + 𝛾
1
𝑢 (𝑡
−

1
) + 𝑏∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠

≤ 𝑎 + 𝛾
1
𝑢 (𝑡
−

1
) + 𝑏∫

𝑡1

𝑡0

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠

+ 𝑏∫

𝑡

𝑡1

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠

≤ 𝑎 + 𝑎𝛾
1
𝑆
1,0
+ 𝑎𝑏∫

𝑡1

𝑡0

(𝑡 − 𝑠)
𝛽−1
𝑆 (𝑠, 𝑡
0
) 𝑑𝑠

+ 𝑏∫

𝑡

𝑡1

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠.

(21)

Using Corollary 7, we get

𝑢 (𝑡) ≤ 𝑎 + 𝑎𝛾
1
𝑆
1,0
+ 𝑎𝑆 (𝑡, 𝑡

0
) − 𝑎 + 𝑏∫

𝑡

𝑡1

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠

≤ 𝑎 (𝛾
1
𝑆
1,0
+ 𝑆
2,0
) + 𝑏∫

𝑡

𝑡1

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠.

(22)

Applying Lemma 3, we obtain that

𝑢 (𝑡) ≤ 𝑎 (𝛾
1
𝑆
1,0
+ 𝑆
2,0
) 𝑆 (𝑡, 𝑡

1
) ≤ 𝑎 (1 + 𝛾

1
) 𝑆
2,0
𝑆 (𝑡, 𝑡
1
) ,

𝑢 (𝑡
−

2
) ≤ 𝑎 (1 + 𝛾

1
) 𝑆
2,0
𝑆
2,1
.

(23)

Similarly, for 𝑡 ∈ (𝑡
2
, 𝑡
3
], using Remark 8, we have

𝑢 (𝑡) ≤ 𝑎 + 𝛾
1
𝑢 (𝑡
−

1
) + 𝛾
2
𝑢 (𝑡
−

2
) + 𝑏∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠

≤ 𝑎 + 𝑎𝛾
1
𝑆
1,0
+ 𝑎𝛾
2
(1 + 𝛾

1
) 𝑆
2,0
𝑆
2,1

+ 𝑏∫

𝑡1

𝑡0

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠

+ 𝑏∫

𝑡2

𝑡1

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠 + 𝑏∫

𝑡

𝑡2

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠

≤ 𝑎 (1 + 𝛾
1
𝑆
1,0
+ 𝛾
2
(1 + 𝛾

1
) 𝑆
2,0
𝑆
2,1
+ (𝑆
3,0
− 1)

+ (1 + 𝛾
1
) 𝑆
2,0
(𝑆
3,1
− 1)) + 𝑏∫

𝑡

𝑡2

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠
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≤ 𝑎 (1 + 𝛾
1
𝑆
3,0
+ 𝛾
2
(1 + 𝛾

1
) 𝑆
3,0
𝑆
3,1
+ (𝑆
3,0
− 1)

+ (1 + 𝛾
1
) 𝑆
3,0
(𝑆
3,1
− 1)) + 𝑏∫

𝑡

𝑡2

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠

= 𝑎 (1 + 𝛾
1
) (1 + 𝛾

2
) 𝑆
3,0
𝑆
3,1
+ 𝑏∫

𝑡

𝑡2

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠.

(24)

Again, Lemma 3 implies that

𝑢 (𝑡) ≤ 𝑎 (1 + 𝛾
1
) (1 + 𝛾

2
) 𝑆
3,0
𝑆
3,1
𝑆 (𝑡, 𝑡
2
) , 𝑡 ∈ (𝑡

2
, 𝑡
3
] .

(25)

Using the inductivemethod, suppose that, for 𝑡 ∈ (𝑡
𝑖−1
, 𝑡
𝑖
], 𝑖 =

1, 2, 3, . . .,

𝑢 (𝑡) ≤ 𝑎 (1 + 𝛾
1
) (1 + 𝛾

2
) ⋅ ⋅ ⋅ (1 + 𝛾

𝑖−1
) 𝑆
𝑖,0
𝑆
𝑖,1
𝑆
𝑖,2

⋅ ⋅ ⋅ 𝑆
𝑖,𝑖−2
𝑆 (𝑡, 𝑡
𝑖−1
) ,

(26)

and then for each 𝑡 ∈ (𝑡
𝑖
, 𝑡
𝑖+1
] and from (26), we have

𝑢 (𝑡)

≤ 𝑎 + 𝛾
1
𝑢 (𝑡
−

1
) + 𝛾
2
𝑢 (𝑡
−

2
) + ⋅ ⋅ ⋅ + 𝛾

𝑖
𝑢 (𝑡
−

𝑖−1
)

+ 𝑏∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠

= 𝑎 + 𝑎𝛾
1
𝑆
1,0
+ 𝑎𝛾
2
(1 + 𝛾

1
) 𝑆
2,0
𝑆
2,1
+ ⋅ ⋅ ⋅

+ 𝑎𝛾
𝑖
(1 + 𝛾

1
) ⋅ ⋅ ⋅ (1 + 𝛾

𝑖−1
) 𝑆
𝑖,0
𝑆
𝑖,1
⋅ ⋅ ⋅ 𝑆
𝑖,𝑖−1

+

𝑖−1

∑

𝑗=0

𝑏∫

𝑡𝑗+1

𝑡𝑗

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡𝑖

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠

≤ 𝑎 + 𝑎𝛾
1
𝑆
1,0
+ 𝑎𝛾
2
(1 + 𝛾

1
) 𝑆
2,0
𝑆
2,1
+ ⋅ ⋅ ⋅

+ 𝑎𝛾
𝑖
(1 + 𝛾

1
) ⋅ ⋅ ⋅ (1 + 𝛾

𝑖−1
) 𝑆
𝑖,0
𝑆
𝑖,1
⋅ ⋅ ⋅ 𝑆
𝑖,𝑖−1

+ 𝑎 (𝑆
𝑖+1,0

− 1) + 𝑎 (1 + 𝛾
1
) 𝑆
2,0
(𝑆
𝑖+1,1

− 1) + ⋅ ⋅ ⋅

+ 𝑎 (1 + 𝛾
1
) ⋅ ⋅ ⋅ (1 + 𝛾

𝑖−1
) 𝑆
𝑖,0
𝑆
𝑖,1
⋅ ⋅ ⋅ 𝑆
𝑖,𝑖−2

(𝑆
𝑖+1,𝑖−1

− 1)

+ ∫

𝑡

𝑡𝑖

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠

≤ 𝑎 (1 + 𝛾
1
𝑆
𝑖+1,0

+ 𝛾
2
(1 + 𝛾

1
) 𝑆
𝑖+1,0
𝑆
𝑖+1,1

+ ⋅ ⋅ ⋅

+ 𝛾
𝑖
(1 + 𝛾

1
) ⋅ ⋅ ⋅ (1 + 𝛾

𝑖−1
) 𝑆
𝑖+1,0
𝑆
𝑖+1,1

⋅ ⋅ ⋅ 𝑆
𝑖+1,𝑖−1

+ 𝑆
𝑖+1,0

− 1 + (1 + 𝛾
1
) 𝑆
𝑖+1,0

(𝑆
𝑖+1,1

− 1) + ⋅ ⋅ ⋅

+ (1 + 𝛾
1
) ⋅ ⋅ ⋅ (1 + 𝛾

𝑖−1
) 𝑆
𝑖,0
𝑆
𝑖,1
⋅ ⋅ ⋅ 𝑆
𝑖,𝑖−2

(𝑆
𝑖+1,𝑖−1

− 1))

+ ∫

𝑡

𝑡𝑖

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠

≤ 𝑎 (1 + 𝛾
1
) (1 + 𝛾

2
) ⋅ ⋅ ⋅ (1 + 𝛾

𝑖−1
) 𝑆
𝑖,0
𝑆
𝑖,1
⋅ ⋅ ⋅ 𝑆
𝑖,𝑖−2

+ ∫

𝑡

𝑡𝑖

(𝑡 − 𝑠)
𝛽−1
𝑢 (𝑠) 𝑑𝑠.

(27)

Then applying Lemma 3, we obtain the inequality (17). This
completes the proof of Theorem 9.

Remark 10. The results of Theorem 9 are valid when the
function has only finite number of discontinuities points
𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑖
.

4. Application to Impulsive Fractional
Differential Systems

Let us consider the following system of Caputo fractional
differential equations:

𝐶
𝐷
𝛽

0
+𝑥 (𝑡) := 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐽 : [0, 𝑇] \ {𝑡

1
, . . . , 𝑡

𝑘
} ,

Δ𝑥 (𝑡
𝑖
) := 𝑥 (𝑡

+

𝑖
) − 𝑥 (𝑡

−

𝑖
) = 𝐼
𝑖
(𝑥 (𝑡
−

𝑖
)) , 𝑖 = 1, 2, . . . , 𝑘,

𝑥 (0) = 𝜒
0
,

(28)

where 𝐶𝐷𝛽
0
+ is the Caputo fractional derivatives, 0 = 𝑡

0
<

𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< 𝑡
𝑘+1

= 𝑇, 𝑓 : [0, 𝑇] × R𝑛 → R𝑛 is
Lebesgue measurable with respect to 𝑡 on [0, 𝑇], and 𝑓(𝑡, 𝑥)
is continuous with respect to 𝑥 on R𝑛. 𝐼

𝑖
: R𝑛 → R𝑛 are

continuous for 𝑖 = 1, 2, . . . , 𝑘. 𝑥(𝑡+
𝑖
) = lim

𝜀→0
+𝑥(𝑡
𝑖
+ 𝜀) and

𝑥(𝑡
−

𝑖
) = lim

𝜀→0
−𝑥(𝑡
𝑖
− 𝜀) represent the right and left limits of

𝑥(𝑡) at 𝑡 = 𝑡
𝑖
, and 𝜒

0
∈ R𝑛 is a constant-valued vector.

Using Lemma 6.2 in [3], 𝑥(𝑡) is a solution of Cauchy
problem for system (28) if only if 𝑥(𝑡) satisfies

𝑥 (𝑡) = 𝜒
0
+ ∑

𝑡0<𝑡𝑖<𝑡

𝐼
𝑖
(𝑥 (𝑡
−

𝑖
))

+

1

Γ (𝛽)

∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1
𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(29)

Theorem 11. Suppose that ‖𝑓(𝑡, 𝑥)‖ ≤ 𝑏‖𝑥‖ and ‖𝐼
𝑖
(𝑥(𝑡
−

𝑖
))‖ ≤

𝛾
𝑖
‖𝑥(𝑡
−

𝑖
)‖, where 𝑏, 𝛾

𝑖
are constants, 𝑏 ≥ 0 and 𝛾

𝑖
≥ 0. If 𝑥(𝑡) is

any solution of the initial value problem (28), then the following
estimations hold:

‖𝑥 (𝑡)‖

≤

{
{

{
{

{

󵄩
󵄩
󵄩
󵄩
𝜒
0

󵄩
󵄩
󵄩
󵄩
𝑆
∗
(𝑡, 𝑡
0
) , 𝑡 ∈ [𝑡

0
, 𝑡
1
] ,

󵄩
󵄩
󵄩
󵄩
𝜒
0

󵄩
󵄩
󵄩
󵄩
(1 + 𝛾

1
) ⋅ ⋅ ⋅ (1 + 𝛾

𝑖
) 𝑆
∗

𝑖+1,0
𝑆
∗

𝑖+1,1

⋅ ⋅ ⋅ 𝑆
∗

𝑖+1,𝑖−1
𝑆
∗
(𝑡, 𝑡
𝑖
) , 𝑡 ∈ [𝑡

𝑖−1
, 𝑡
𝑖
] ,

(30)

where 𝑆∗(𝑡, 𝑡
𝑖
) = 𝐸
𝛽
(𝑏(𝑡−𝑡

𝑗
)
𝛽
), 𝑆∗(𝑡

𝑖
, 𝑡
𝑗
) = 𝐸
𝛽
(𝑏(𝑡
𝑖
−𝑡
𝑗
)
𝛽
), and

‖ ⋅ ‖ is a suitable complete norm in R.
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Proof. From (29), it is easy to obtain that

‖𝑥 (𝑡)‖ ≤
󵄩
󵄩
󵄩
󵄩
𝜒
0

󵄩
󵄩
󵄩
󵄩
+ ∑

𝑡0<𝑡𝑖<𝑡

𝛾
𝑖

󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡
−

𝑖
)
󵄩
󵄩
󵄩
󵄩

+ ∫

𝑡

0

𝑏

Γ (𝛽)

(𝑡 − 𝑠)
𝛽−1
‖𝑥 (𝑠)‖ 𝑑𝑠, 𝑡 ≥ 0.

(31)

UsingTheorem 9, we get the desired conclusion.

Remark 12. In [13, 15], during considering the qualitative
properties of the impulsive differential equations, the func-
tions 𝑓(𝑡, 𝑥) and 𝐼

𝑖
(𝑥) are defined in the domain

𝐷 = {(𝑡, 𝑥) : 𝑡 ∈ [𝑡
0
, 𝑇] , 𝑇 ≤ ∞, ‖𝑥‖ ≤ ℎ} (32)

for some ℎ > 0. However, we do not add such a restriction
since our conclusion inTheorem 11 does not involve ‖𝑥‖.

Corollary 13. Let the right-hand side of the initial value
problem (28) satisfy the following conditions:

(i) ‖𝑓(𝑡, 𝑥)‖ ≤ 𝑏‖𝑥‖, 𝑏 is a constant and 𝑏 ≥ 0;
(ii) ‖𝐼

𝑖
(𝑥(𝑡
−

𝑖
))‖ ≤ 𝛾

𝑖
‖𝑥(𝑡
−

𝑖
)‖, 𝛾
𝑖
are constants and 𝛾

𝑖
≥ 0;

(iii) there exists a constant 𝜉 such that 𝑆∗(𝑡, 𝑡
𝑖
) ≤ 𝜉 < ∞,

𝑡 > 𝑡
𝑖
, 𝑖 = 0, 1, 2, . . . , 𝑘. Then all solutions of the

problem (28) are bounded, and the trivial solution of
the problem (28) is stable in the sense of Lyapunov
stability.

Corollary 14. Suppose that

(i) ‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑥)‖ ≤ 𝑏‖𝑥 − 𝑦‖𝑙, 0 < 𝑙 < 1, for all 𝑥, 𝑦 ∈
𝑃𝐶
1;

(ii) ‖𝐼
𝑖
(𝑥) − 𝐼

𝑖
(𝑦)‖ ≤ 𝛾

𝑖
‖𝑥 − 𝑦‖, where 𝑏, 𝛾

𝑖
are constants,

𝑏 ≥ 0, 𝛾
𝑖
≥ 0, 1 ≤ 𝑖 ≤ 𝑘;

(iii) there exists a constant 𝜉 such that 𝑆∗(𝑡, 𝑡
𝑖
) ≤ 𝜉 < ∞, 𝑡 >

𝑡
𝑖
, 𝑖 = 0, 1, 2, . . . , 𝑘. Then all solutions of the problem

(28) are bounded.
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Systems, Academia Română, Bucharest, Romania, 1968.

[10] A. M. Samoilenko and N. Perestyuk,Differential Equations with
Impulse Effect, Visha Shkola, Kyiv, Ukraine, 1987.

[11] V. Lakshmikantham, D. D. Baı̆nov, and P. S. Simeonov, Theory
of Impulsive Differential Equations, vol. 6 of Series in Modern
Applied Mathematics, World Scientific Publishing, Teaneck, NJ,
USA, 1989.

[12] D. Xu, Y. Hueng, and L. Ling, “Existence of positive solutions
of an impulsive delay fishing model,” Bulletin of Mathematical
Analysis and Applications, vol. 3, no. 2, pp. 89–94, 2011.

[13] S. D. Borysenko, M. Ciarletta, and G. Iovane, “Integro-sum
inequalities and motion stability of systems with impulse per-
turbations,”NonlinearAnalysis:Theory,Methods&Applications,
vol. 62, no. 3, pp. 417–428, 2005.

[14] A.Gallo andA.M. Piccirillo, “About new analogies ofGronwall-
Bellman-Bihari type inequalities for discontinuous functions
and estimated solutions for impulsive differential systems,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 67, no.
5, pp. 1550–1559, 2007.

[15] A. Gallo and A. M. Piccirillo, “On some generalizations
Bellman-Bihari result for integro-functional inequalities for
discontinuous functions and their applications,” Boundary
Value Problems, vol. 2009, Article ID 808124, 14 pages, 2009.

[16] K. Balachandran, S. Kiruthika, and J. J. Trujillo, “On fractional
impulsive equations of Sobolev type with nonlocal condition
in Banach spaces,”Computers &Mathematics with Applications,
vol. 62, no. 3, pp. 1157–1165, 2011.

[17] H. Jiang, “Existence results for fractional order functional
differential equations with impulse,” Computers &Mathematics
with Applications, vol. 64, no. 10, pp. 3477–3483, 2012.

[18] X. Li, F. Chen, and X. Li, “Generalized anti-periodic boundary
value problems of impulsive fractional differential equations,”
Communications in Nonlinear Science and Numerical Simula-
tion, vol. 18, no. 1, pp. 28–41, 2013.

[19] L.Mahto, S. Abbas, andA. Favini, “Analysis of Caputo impulsive
fractional order differential equations with applications,” Inter-
national Journal of Differential Equations, vol. 2013, Article ID
704547, 11 pages, 2013.


