
Research Article
Global Convergence of Schubert’s Method for
Solving Sparse Nonlinear Equations

Huiping Cao

College of Mathematics and Econometrics, Hunan University, Changsha 410082, China

Correspondence should be addressed to Huiping Cao; huiping cao@hnu.edu.cn

Received 7 May 2014; Accepted 28 July 2014; Published 14 October 2014

Academic Editor: Shuangjie Peng

Copyright © 2014 Huiping Cao.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Schubert’smethod is an extension of Broyden’smethod for solving sparse nonlinear equations, which can preserve the zero-nonzero
structure defined by the sparse Jacobian matrix and can retain many good properties of Broyden’s method. In particular, Schubert’s
method has been proved to be locally and q-superlinearly convergent. In this paper, we globalize Schubert’s method by using a
nonmonotone line search.Under appropriate conditions, we show that the proposed algorithmconverges globally and superlinearly.
Some preliminary numerical experiments are presented, which demonstrate that our algorithm is effective for large-scale problems.

1. Introduction

In this paper, we consider the quasi-Newton method [1] for
solving the general nonlinear equation

𝐹 (𝑥) = 0, (1)

where the function 𝐹 : 𝑅
𝑛

→ 𝑅
𝑛 is continuously differ-

entiable. The ordinary quasi-Newton method for solving (1)
generates a sequence {𝑥

𝑘
} by the following iterative scheme:

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝑑
𝑘
, (2)

where the quasi-Newton direction 𝑑
𝑘
is obtained by solving

the system of linear equations

𝐵
𝑘
𝑑 + 𝐹 (𝑥

𝑘
) = 0. (3)

Here thematrix𝐵
𝑘
is an approximation to the Jacobianmatrix

of 𝐹 at 𝑥
𝑘
which usually satisfies the quasi-Newton condition

(i.e., the secant condition):

𝐵
𝑘+1

𝑠
𝑘
= 𝑦
𝑘
, (4)

where 𝑠
𝑘
= 𝑥
𝑘+1

−𝑥
𝑘
and 𝑦
𝑘
= 𝐹(𝑥

𝑘+1
)−𝐹(𝑥

𝑘
).Thematrix 𝐵

𝑘

can be updated by different quasi-Newton update formulae.
However, quasi-Newton method is not applicable for solving
large-scale problems due to the density of 𝐵

𝑘
. Fortunately,

a large-scale problem usually has the property of sparsity,
and then it is natural to extend some known quasi-Newton
methods based on this property. Early in 1970, Schubert [2]
modified Broyden’s method and proposed a sparse Broyden’s
method, that is, the Schubert’s method [3] with 𝐵

𝑘
defined in

the following way:

𝐵
𝑘+1

= 𝐵
𝑘
+

𝑛

∑

𝑖=1,𝑠(𝑖)𝑘 ̸=0

𝑒
𝑖
𝑒
𝑇

𝑖

(𝑦
𝑘
− 𝐵
𝑘
𝑠
𝑘
) 𝑠 (𝑖)
𝑇

𝑘

𝑠 (𝑖)
𝑇

𝑘
𝑠 (𝑖)
𝑘

, (5)

where

𝑠 (𝑖)
𝑘
(𝑗) = {

0, if (𝑖, 𝑗) ∈ 𝐸,

𝑠
𝑘
(𝑗) , if (𝑖, 𝑗) ∈ 𝐽,

(6)

where 𝐸 and 𝐽 are the sparsity patterns of the Jacobian matrix
𝐹
󸀠

(𝑥) and 𝑒
𝑖
denotes the 𝑖th column of the 𝑛 × 𝑛 identity

matrix. It has been proved by Broyden [4] that the Schubert’s
method is locally convergent when the Jacobian satisfies a
Lipschitz condition. Lam [5] further showed the local and
superlinear convergence of Schubert’s method in the special
case when 𝑠(𝑖)

𝑘
̸= 0, 𝑖 = 1, 2, . . . , 𝑛 at each iteration. As an

improvement, Marwil considered the following updated for-
mula:

𝐵
𝑘+1

= 𝐵
𝑘
+

𝑛

∑

𝑖=1

(𝑠 (𝑖)
𝑇

𝑘
𝑠 (𝑖)
𝑘
)
+

𝑒
𝑇

𝑖
(𝑦
𝑘
− 𝐵
𝑘
𝑠
𝑘
) 𝑒
𝑖
𝑠 (𝑖)
𝑇

𝑘
, (7)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 251587, 12 pages
http://dx.doi.org/10.1155/2014/251587

http://dx.doi.org/10.1155/2014/251587

2 Abstract and Applied Analysis

where, for a scalar 𝛼 ∈ 𝑅,

𝛼
+

= {
𝛼
−1

, if 𝛼 ̸= 0,

0, if 𝛼 = 0.
(8)

Marwil established stronger local and superlinear conver-
gence, which contains the results in [5] as a special case.

Note that the updated formula (7) is not symmetric;
therefore, its use is restricted to problems where the symme-
try of the updated matrix is not important. The sparse and
symmetric quasi-Newton update has attracted much atten-
tion [6–8]. Toint [6] and Fletcher [8] previously proposed
symmetric updates which met the sparsity and secant con-
ditions simultaneously. Yamashita [9] proposed a new sparse
quasi-Newton update, called Matrix Completion Quasi-
Newton (MCQN) [10], which exploited the sparsity of the
Hessian and guaranteed positive definiteness.

So far, most studies in the convergence of sparse quasi-
Newton methods have focused on their local behaviors.
Seldom studies are concerned with the global convergence of
those methods. It is a relatively more difficult research topic
than optimization. To the author’s knowledge, the main work
related to the general global convergence of sparse quasi-
Newtonmethods is based on thework [10–12].Thepurpose of
this paper is to study the global and superlinear convergence
of the Schubert’s method.

The remainder of this paper is organized as follows. In
Section 2, we review some properties of Schubert’s method.
In Section 3, by using a nonmonotone line search [13], we
globalize the Schubert’s method and prove its global and
superlinear convergence under appropriate conditions. In
particular, we will show that after finitely many iterations,
the unit step length will be accepted. In Section 4, some
preliminary numerical results are presented. Finally, we
provide some remarks in Section 5.

2. Schubert’s Update

In this section, we present some useful properties of the
Schubert’s update. For the sake of convenience, we introduce
some notations.

(1) The subspace 𝑍
𝑖

⊂ 𝑅
𝑛 that identifies the sparsity

structure of the 𝑖th row of Jacobian matrix 𝐹
󸀠

(𝑥) is
defined as 𝑍

𝑖
= {V ∈ 𝑅

𝑛

| V𝑇𝐹󸀠(𝑥)𝑒
𝑖
= 0, ∀𝑥 ∈ 𝐷};

(2) 𝑍 ⊂ 𝑅
𝑛

× 𝑅
𝑛 denotes the sparsity structure of the

Jacobian matrix 𝐹
󸀠

(𝑥) and it is defined as 𝑍 = {𝐴 ∈

𝑅
𝑛×𝑛

| 𝐴
𝑇

𝑒
𝑖
∈ 𝑍
𝑖
, 𝑖 = 1, 2, . . . , 𝑛};

(3) the projection operators 𝑆
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 project

vectors onto the subspaces 𝑍
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, which

particularly makes 𝑆
𝑖
𝑠
𝑘
= 𝑠(𝑖)
𝑘
;

(4) 𝑄(𝑦, 𝑠) = {𝐵 ∈ 𝑅
𝑛×𝑛

| 𝐵𝑠 = 𝑦}.

Schubert’s update (7) is the unique solution to the follow-
ing minimization problem [3]:

min {
󵄩󵄩󵄩󵄩󵄩
𝐵 − 𝐵

󵄩󵄩󵄩󵄩󵄩𝐹
: 𝐵 ∈ 𝑄 (𝑦, 𝑠) ∩ 𝑍} . (9)

Specifically, the following inequality [3] holds for any 𝐽 ∈ 𝑍,
𝑦, 𝑠 ∈ 𝑅

𝑛 with 𝑠 ̸= 0:
󵄩󵄩󵄩󵄩𝐵𝑘+1 − 𝐽

󵄩󵄩󵄩󵄩

2

𝐹

≤
󵄩󵄩󵄩󵄩𝐵𝑘 − 𝐽

󵄩󵄩󵄩󵄩

2

𝐹
−

󵄩󵄩󵄩󵄩(𝐵𝑘 − 𝐽) 𝑠
𝑘

󵄩󵄩󵄩󵄩

2

2

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩

2

2

+

𝑛

∑

𝑖=1

(𝑠 (𝑖)
𝑇

𝑘
𝑠 (𝑖)
𝑘
)
+

(𝑒
𝑇

𝑖
(𝑦
𝑘
− 𝐽𝑠
𝑘
))
2

.

(10)

The following theorem states the local and superlinear
convergence of Schubert’s method, which has been proved by
Marwil [3].

Theorem 1. Suppose that 𝐹 : 𝑅
𝑛

→ 𝑅
𝑛 satisfies the following

conditions.

(1) 𝐹 is continuously differentiable in an open convex set
𝐷
0
.

(2) There exists an 𝑥
∗

∈ 𝐷
0
such that 𝐹(𝑥∗) = 0 and

𝐹
󸀠

(𝑥
∗

) is nonsingular.
(3) There exists 𝐾 = (𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑛
)
𝑇

∈ 𝑅
𝑛 with 𝑘

𝑖
≥ 0 for

𝑖 = 1, 2, . . . , 𝑛, such that
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇

𝑖
(𝐹
󸀠

(𝑥) − 𝐹
󸀠

(𝑦))
󵄩󵄩󵄩󵄩󵄩2

≤ 𝑘
𝑖

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩2
, ∀𝑥, 𝑦 ∈ 𝐷

0
. (11)

Then there exist constants 𝜖, 𝛿 > 0 and a nonsingular matrix
𝐵
0
such that if 𝑥

0
∈ 𝐷
0
satisfies ‖𝑥

0
− 𝑥
∗

‖
2

< 𝜖 and ‖𝐵
0
−

𝐹
󸀠

(𝑥
∗

)‖
𝐹
< 𝛿, then

(i) Schubert’s method generates {𝐵
𝑘
} with 𝐵

𝑘
nonsingular

for all 𝑘 ≥ 0;
(ii) the sequence {𝑥

𝑘
} converges to 𝑥

∗;
(iii) the convergence is superlinear.

It is noticed that the matrix 𝐵
𝑘+1

determined by (7) may
be singular even if 𝐵

𝑘
is nonsingular. To overcome such a dif-

ficulty, Marwil [3] proposed a nonsingular schubert’s method
by using

𝐵 = 𝐵 +

𝑛

∑

𝑖=1

𝜃
𝑖

(𝑠 (𝑖)
𝑇

𝑠 (𝑖))
+

𝑒
𝑇

𝑖
(𝑦 − 𝐵𝑠) 𝑒

𝑖
𝑠 (𝑖)
𝑇

. (12)

Here, we have omitted the subscript 𝑘 and used𝐵 to represent
𝐵
𝑘+1

and 𝐵 to represent 𝐵
𝑘
. The parameters 𝜃𝑖 are chosen so

that 𝐵 is nonsingular when 𝐵 is nonsingular and the details
are given below.

Set 𝐶
0
= 𝐵 and define for 𝑖 = 1, 2, . . . , 𝑛 as follows:

𝐶
𝑖
= 𝐶
0
+

𝑖

∑

𝑗=1

𝜃
𝑗

(𝑠 (𝑗)
𝑇

𝑠 (𝑗))
+

𝑒
𝑇

𝑗
(𝑦 − 𝐵𝑠) 𝑒

𝑗
𝑠 (𝑗)
𝑇

= 𝐶
𝑖−1

+ 𝜃
𝑖

(𝑠 (𝑖)
𝑇

𝑠 (𝑖))
+

𝑒
𝑇

𝑖
(𝑦 − 𝐵𝑠) 𝑒

𝑖
𝑠 (𝑖)
𝑇

.

(13)

Note that 𝑒𝑇
𝑖
𝐶
0
= 𝑒
𝑇

𝑖
𝐶
1
= ⋅ ⋅ ⋅ = 𝑒

𝑇

𝑖
𝐶
𝑖−1

, and then

𝐶
𝑖
= 𝐶
𝑖−1

+ 𝜃
𝑖

(𝑠 (𝑖)
𝑇

𝑠 (𝑖))
+

𝑒
𝑇

𝑖
(𝑦 − 𝐶

𝑖−1
𝑠) 𝑒
𝑖
𝑠 (𝑖)
𝑇

. (14)

Abstract and Applied Analysis 3

For a scalar 𝛼 ∈ (0, 1), 𝜃𝑖 can be chosen to satisfy

󵄨󵄨󵄨󵄨det𝐶𝑖
󵄨󵄨󵄨󵄨 ≥

𝑛
√𝛼

󵄨󵄨󵄨󵄨det𝐶𝑖−1
󵄨󵄨󵄨󵄨 , 𝜃

𝑖

∈ [
1 −

𝑛
√𝛼

1 +
𝑛
√𝛼

, 1] . (15)

Therefore, |det(𝐵)| ≥ 𝛼|det𝐵|, and 𝜃
𝑖 can be chosen so that

𝐵 is nonsigular, 󵄨󵄨󵄨󵄨󵄨
𝜃
𝑖

− 1
󵄨󵄨󵄨󵄨󵄨
≤ 𝜃 < 1. (16)

The dependence of 𝜃𝑖 on the iteration 𝑘 is suppressed, but
𝜃 is independent of 𝑘 [3].

3. The Algorithm

In this section, we will globalize Schubert’s method. To this
end, we introduce a derivative-free line search proposed by
Li and Fukushima [13] to determine a step length 𝛼

𝑘
.

Algorithm 2. Given constants 𝜎
1
> 0 and 𝛽 ∈ (0, 1). Let 𝛼

𝑘
=

𝛽
𝑖𝑘 , where 𝑖

𝑘
is the smallest nonnegative integer such that

󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑥
𝑘
+ 𝛽
𝑖𝑘𝑑
𝑘
)
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 − 𝜎
1

󵄩󵄩󵄩󵄩󵄩
𝛽
𝑖𝑘𝑑
𝑘

󵄩󵄩󵄩󵄩󵄩

2

+ 𝜀
𝑘

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 ,

(17)

and {𝜀
𝑘
} is a given positive sequence satisfying

∞

∑

𝑘=0

𝜀
𝑘
≤ 𝜀 < ∞. (18)

It is not difficult to see that Algorithm 2 is well defined.
Moreover, for each 𝑘, we have

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
󵄩󵄩󵄩󵄩 ≤ (1 + 𝜀

𝑘
)
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 . (19)

By using Algorithm 2, we give our algorithm as follows.

Algorithm 3. Consider the following.

Step 0. Given constants 𝜌, 𝛽, 𝜃 ∈ (0, 1), 𝜎
1
, 𝜎
2

> 0, select a
positive sequence {𝜀

𝑘
} satisfying (18). Then choose an initial

point 𝑥
0
∈ 𝑅
𝑛 and a nonsingular matrix 𝐵

0
∈ 𝑅
𝑛×𝑛. Let 𝑘 := 0.

Step 1. Stop if 𝐹(𝑥
𝑘
) = 0. Otherwise, solve the following

system of linear equations

𝐵
𝑘
𝑑 + 𝐹 (𝑥

𝑘
) = 0 (20)

to get 𝑑
𝑘
.

Step 2. If
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
+ 𝑑
𝑘
)
󵄩󵄩󵄩󵄩 ≤ 𝜌

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 − 𝜎
2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

, (21)

then let 𝛼
𝑘
:= 1 and go to Step 4. Else, go to Step 3.

Step 3. Let 𝛼
𝑘
be determined by Algorithm 2.

Step 4. Set 𝑥
𝑘+1

:= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
.

Step 5. Compute 𝐵
𝑘+1

by (12).

Step 6. Set 𝑘 := 𝑘 + 1. Go to Step 1.
We then show some useful properties of Algorithm 3.

Lemma4. Let the level setΩ = {𝑥 ∈ 𝑅
𝑛

| ‖𝐹(𝑥)‖ ≤ 𝑒
𝜀

‖𝐹(𝑥
0
)‖}

be bounded and let {𝑥
𝑘
} be generated by Algorithm 3.Then {𝑥

𝑘
}

is contained in Ω. Moreover, it holds that
∞

∑

𝑘=0

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩

2

< ∞. (22)

Proof. By the line search (17), we have for any 𝑘

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘+1

)
󵄩󵄩󵄩󵄩 ≤ (1 + 𝜀

𝑘
)
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩

...

≤
󵄩󵄩󵄩󵄩𝐹 (𝑥
0
)
󵄩󵄩󵄩󵄩
[

[

𝑘

∏

𝑗=0

(1 + 𝜀
𝑗
)]

]

≤
󵄩󵄩󵄩󵄩𝐹 (𝑥
0
)
󵄩󵄩󵄩󵄩
[

[

1

𝑘 + 1

𝑘

∑

𝑗=0

(1 + 𝜀
𝑗
)]

]

𝑘+1

=
󵄩󵄩󵄩󵄩𝐹 (𝑥
0
)
󵄩󵄩󵄩󵄩
[

[

1 +
1

𝑘 + 1

𝑘

∑

𝑗=0

𝜀
𝑗

]

]

𝑘+1

≤
󵄩󵄩󵄩󵄩𝐹 (𝑥
0
)
󵄩󵄩󵄩󵄩 [(1 +

𝜀

𝑘 + 1
)

(𝑘+1)/𝜀

]

𝜀

≤ 𝑒
𝜀 󵄩󵄩󵄩󵄩𝐹 (𝑥

0
)
󵄩󵄩󵄩󵄩 .

(23)

This implies that the sequence {𝑥
𝑘
} generated by Algorithm 3

is contained in Ω and the sequence {‖𝐹(𝑥
𝑘
)‖} is bounded.

Moreover, combined with (17) and (21), we can get for each
𝑘

𝜎
0

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩

2

= 𝜎
0

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
𝑘

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘+1

)
󵄩󵄩󵄩󵄩 + 𝜀
𝑘

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩 ,

(24)

where𝜎
0
= min{𝜎

1
, 𝜎
2
}.Making summation on both sides for

𝑘 from 0 to∞, we obtain (22).

Similar to Lemma 2.4 in [13], we have the following result.

Lemma 5. Let the level set Ω be bounded and let {𝑥
𝑘
} be

generated by Algorithm 3. Then the sequence {‖𝐹(𝑥
𝑘
)‖} is

convergent.

In order to establish the global convergence of Algo-
rithm 3, we need the following assumptions.

Assumption 6. (i) The level set Ω defined in Lemma 4 is
bounded.

(ii) 𝐹(𝑥) is continuously differentiable in an open set𝐷 ⊆

Ω, and there exists an 𝑥
∗

∈ Ω such that 𝐹(𝑥∗) = 0 and 𝐹
󸀠

(𝑥
∗

)

is nonsingular.
(iii) 𝐹

󸀠

(𝑥) is Lipschitz continuous on Ω; that is, there
exists an 𝐿 > 0 such that

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥) − 𝐹
󸀠

(𝑦)
󵄩󵄩󵄩󵄩󵄩
≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ Ω. (25)

(iv) 𝐹󸀠(𝑥) is nonsingular for any 𝑥 ∈ Ω.

4 Abstract and Applied Analysis

Assumption 6 (iv) is the same as that in [13], which is
not as strong as the assumption adopted in [14], where the
uniform nonsingularity of 𝐹󸀠(𝑥) is assumed.

We first introduce some notations. Define

𝐴
𝑘+1

= ∫

1

0

𝐹
󸀠

(𝑥
𝑘
+ 𝑡𝑠
𝑘
) 𝑑𝑡, (26)

and then we have 𝑦
𝑘
= 𝐴
𝑘+1

𝑠
𝑘
. Let

𝜂
𝑘
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

(𝑠 (𝑖)
𝑇

𝑘
𝑠 (𝑖)
𝑘
)
+

𝑒
𝑇

𝑖
(𝑦
𝑘
− 𝐵
𝑘
𝑠
𝑘
) 𝑒
𝑖
𝑠 (𝑖)
𝑇

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

,

𝛿
𝑘
=

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝐵
𝑘
𝑠
𝑘

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑠𝑘

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩(𝐴𝑘+1 − 𝐵
𝑘
) 𝑠
𝑘

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑠𝑘

󵄩󵄩󵄩󵄩

=
1

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

(𝑠 (𝑖)
𝑇

𝑘
𝑠 (𝑖)
𝑘
)
+

𝑒
𝑇

𝑖
(𝑦
𝑘
− 𝐵
𝑘
𝑠
𝑘
) 𝑒
𝑖
𝑠 (𝑖)
𝑇

𝑘
𝑠
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(27)

The following lemma is an extension of Lemma 2.5 in [13].

Lemma 7. Let the sequence {𝑥
𝑘
} be generated by Algorithm 3.

Suppose that the conditions (i)–(iii) in Assumption 6 hold. If
∞

∑

𝑘=0

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩

2

< ∞, (28)

then one has

lim
𝑙→∞

1

𝑙

𝑙−1

∑

𝑘=0

𝛿
2

𝑘
= 0. (29)

In particular, there is a subsequence of {𝛿
𝑘
} tending to zero. If

∞

∑

𝑘=0

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩 < ∞, (30)

then one has
∞

∑

𝑘=0

𝛿
2

𝑘
< ∞. (31)

In particular, the whole sequence {𝛿
𝑘
} converges to zero.

Proof. By the Lipschitz continuity of 𝐹󸀠, we have
󵄩󵄩󵄩󵄩𝐴𝑘+1 − 𝐴

𝑘

󵄩󵄩󵄩󵄩 ≤
1

2
𝐿 (

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩) .

(32)

Denote
𝑎
𝑘
=
󵄩󵄩󵄩󵄩𝐵𝑘 − 𝐴

𝑘

󵄩󵄩󵄩󵄩𝐹
, 𝑏

𝑘
=
󵄩󵄩󵄩󵄩𝐴𝑘+1 − 𝐴

𝑘

󵄩󵄩󵄩󵄩𝐹
. (33)

According to the updated (12), we have

𝑒
𝑇

𝑖
𝐵
𝑘+1

= 𝑒
𝑇

𝑖
𝐵
𝑘
+ (𝑠 (𝑖)

𝑇

𝑘
𝑠 (𝑖)
𝑘
)
+

𝜃
𝑖

𝑘
𝑒
𝑇

𝑖
(𝑦
𝑘
− 𝐵
𝑘
𝑠
𝑘
) 𝑠 (𝑖)
𝑇

𝑘
. (34)

Subtracting 𝑒
𝑇

𝑖
𝐴
𝑘+1

from both sides of the above equality
gives

𝑒
𝑇

𝑖
(𝐵
𝑘+1

− 𝐴
𝑘+1

)

= 𝑒
𝑇

𝑖
(𝐵
𝑘
− 𝐴
𝑘+1

) + 𝜃
𝑖

𝑘
𝑒
𝑇

𝑖
(𝑠 (𝑖)
𝑇

𝑘
𝑠 (𝑖)
𝑘
)
+

(𝑦
𝑘
− 𝐵
𝑘
𝑠
𝑘
) 𝑠 (𝑖)
𝑇

𝑘

= 𝑒
𝑇

𝑖
(𝐵
𝑘
− 𝐴
𝑘+1

) (𝐼 − 𝜃
𝑖

𝑘
(𝑠 (𝑖)
𝑇

𝑘
𝑠 (𝑖)
𝑘
)
+

𝑠 (𝑖)
𝑘
𝑠 (𝑖)
𝑇

𝑘
) .

(35)

Taking norms yields

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇

𝑖
(𝐵
𝑘+1

− 𝐴
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇

𝑖
(𝐵
𝑘
− 𝐴
𝑘+1

) (𝐼 − 𝜃
𝑖

𝑘
(𝑠 (𝑖)
𝑇

𝑘
𝑠 (𝑖)
𝑘
)
+

𝑠 (𝑖)
𝑘
𝑠 (𝑖)
𝑇

𝑘
)
󵄩󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇

𝑖
(𝐵
𝑘
− 𝐴
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

− 𝜃
𝑖

𝑘
(2 − 𝜃

𝑖

𝑘
) (𝑠 (𝑖)

𝑇

𝑘
𝑠 (𝑖)
𝑘
)
+󵄩󵄩󵄩󵄩󵄩

𝑒
𝑇

𝑖
(𝐵
𝑘
− 𝐴
𝑘+1

) 𝑠 (𝑖)
𝑘
𝑠 (𝑖)
𝑇

𝑘

󵄩󵄩󵄩󵄩󵄩

2

.

(36)

Making summation on both sides, 𝑖 = 1, . . . , 𝑛, yields

󵄩󵄩󵄩󵄩𝐵𝑘+1 − 𝐴
𝑘+1

󵄩󵄩󵄩󵄩

2

𝐹
=

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇

𝑖
(𝐵
𝑘+1

− 𝐴
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

=

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇

𝑖
(𝐵
𝑘
− 𝐴
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

−

𝑛

∑

𝑖=1

𝜃
𝑖

𝑘
(2 − 𝜃

𝑖

𝑘
) (𝑠 (𝑖)

𝑇

𝑘
𝑠 (𝑖)
𝑘
)
+

×
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇

𝑖
(𝐵
𝑘
− 𝐴
𝑘+1

) 𝑠 (𝑖)
𝑘
𝑠 (𝑖)
𝑇

𝑘

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝐵𝑘 − 𝐴

𝑘+1
)
󵄩󵄩󵄩󵄩

2

𝐹

−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

𝜃
𝑖

𝑘
(2 − 𝜃

𝑖

𝑘
) 𝑒
𝑖
𝑒
𝑇

𝑖
(𝑠 (𝑖)
𝑇

𝑘
𝑠 (𝑖)
𝑘
)
+

× (𝑦
𝑘
− 𝐵
𝑘
𝑠
𝑘
) 𝑠 (𝑖)
𝑇

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝐵𝑘 − 𝐴

𝑘+1
)
󵄩󵄩󵄩󵄩

2

𝐹
− (1 − 𝜃

2

)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

𝑒
𝑖
𝑒
𝑇

𝑖
(𝑠 (𝑖)
𝑇

𝑘
𝑠 (𝑖)
𝑘
)
+

(𝑦
𝑘
− 𝐵
𝑘
𝑠
𝑘
) 𝑠 (𝑖)
𝑇

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝐵𝑘 − 𝐴

𝑘+1
)
󵄩󵄩󵄩󵄩

2

𝐹
− (1 − 𝜃

2

) 𝜂
2

𝑘
.

(37)

Then it follows that

(1 − 𝜃
2

) 𝜂
2

𝑘
≤

󵄩󵄩󵄩󵄩𝐵𝑘 − 𝐴
𝑘+1

󵄩󵄩󵄩󵄩

2

𝐹
− 𝑎
2

𝑘+1

≤ (𝑎
𝑘
+ 𝑏
𝑘
)
2

− 𝑎
2

𝑘+1

= 𝑎
2

𝑘
− 𝑎
2

𝑘+1
+ 2𝑎
𝑘
𝑏
𝑘
+ 𝑏
2

𝑘
,

𝑎
2

𝑘+1
≤ (𝑎
𝑘
+ 𝑏
𝑘
)
2

− (1 − 𝜃
2

) 𝜂
2

𝑘
.

(38)

According to Lemma 2.5 of [13], we get

lim
𝑙→∞

1

𝑙

𝑙−1

∑

𝑘=0

𝜂
2

𝑘
= 0,

∞

∑

𝑘=0

𝜂
2

𝑘
< ∞.

(39)

Abstract and Applied Analysis 5

Moreover, for each 𝑘 we have

𝛿
𝑘
=

1

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

(𝑠 (𝑖)
𝑇

𝑘
𝑠 (𝑖)
𝑘
)
+

𝑒
𝑇

𝑖
(𝑦
𝑘
− 𝐵
𝑘
𝑠
𝑘
) 𝑒
𝑖
𝑠 (𝑖)
𝑇

𝑘
𝑠
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

(𝑠 (𝑖)
𝑇

𝑘
𝑠 (𝑖)
𝑘
)
+

𝑒
𝑇

𝑖
(𝑦
𝑘
− 𝐵
𝑘
𝑠
𝑘
) 𝑒
𝑖
𝑠 (𝑖)
𝑇

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 𝜂
𝑘
.

(40)

This completes the proof.

According to Algorithm 3, we have the following lemma.

Lemma 8. Let {𝑥
𝑘
} be generated by Algorithm 3. If there are

finitely many 𝑘 for which 𝛼
𝑘
is determined by (21), then one has

lim
𝑡→∞

1

𝑡

𝑡

∑

𝑘=0

𝑚

∑

𝑖=1

𝛿
2

𝑘
= 0. (41)

In particular, there is an infinity index set𝐾 such that, for each
𝑖 = 1, 2, . . . , 𝑚, the subsequence {𝛿

𝑘
}
𝑘∈𝐾

converges to zero.

Proof. Since there are finitely many 𝑘 for which 𝛼
𝑘
is deter-

mined by (21), we can know that there exists an index 𝑘̂ such
that, for 𝑘 > 𝑘̂,

󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑥
𝑘
+ 𝜌
𝑖

𝑑
𝑘
)
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 − 𝜎
1

󵄩󵄩󵄩󵄩󵄩
𝜌
𝑖

𝑑
𝑘

󵄩󵄩󵄩󵄩󵄩

2

+ 𝜖
𝑘

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 .

(42)

This implies
∞

∑

𝑘=
̂
𝑘

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩

2

=

∞

∑

𝑘=
̂
𝑘

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
𝑘

󵄩󵄩󵄩󵄩

2

=

∞

∑

𝑘=
̂
𝑘

󵄩󵄩󵄩󵄩𝛼𝑘𝑑𝑘
󵄩󵄩󵄩󵄩

2

< ∞. (43)

According to Lemma 7, we can easily prove the result.

Lemma 9. Suppose that ∑
∞

𝑘=1
‖𝑠
𝑘
‖
2

< ∞ and that there
is an accumulation point 𝑥

∗ of {𝑥
𝑘
}
𝑘∈𝐾

at which 𝐹
󸀠

(𝑥
∗

) is
nonsingular. Then there exists a constant 𝑀

1
> 0 such that

the following inequality holds for all 𝑘 ∈ 𝐾 sufficiently large:
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩 ≤ 𝑀
1

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 . (44)

Proof. Without loss of generality, we suppose {𝑥
𝑘
}
𝐾

→ 𝑥
∗.

Since ∑
∞

𝑘=1
‖𝑠
𝑘
‖
2

< ∞, it is clear that when 𝑘 ∈ 𝐾 is
sufficiently large, 𝐴

𝑘+1
is nonsingular. Moreover, there is a

constant 𝐶
1
> 0 such that the inequality ‖𝐴

−1

𝑘+1
‖ ≤ 𝐶

1
holds

for all 𝑘 ∈ 𝐾 sufficiently large. It then follows from Lemma 8
that {𝛿

𝑘
}
𝐾

→ 0. Therefore, there exists an index𝑁 > 0 such
that the inequality 𝛿

𝑘
≤ 1/(2𝐶

1
) holds for all 𝑘 ∈ 𝐾 with 𝑘 ≥

𝑁. Consequently, we get from the definition of 𝛿
𝑘
that for all

𝑘 ∈ 𝐾 with 𝑘 > 𝑁 sufficiently large
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
𝐴
−1

𝑘+1

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩𝐴𝑘+1𝑑𝑘 + 𝑔 (𝑥

𝑘
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑔 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩)

≤ 𝐶
1
(
󵄩󵄩󵄩󵄩𝑔 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 + 𝛿
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩) ≤ 𝐶

1
(
󵄩󵄩󵄩󵄩𝑔 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 +

1

2𝐶
1

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩)

≤ 𝐶
1

󵄩󵄩󵄩󵄩𝑔 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 +

1

2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 .

(45)

The last inequality implies (44) with𝑀
1
= 2𝐶
1
.

We show the global convergence of Algorithm 3 in the
following section.

Theorem 10. Let Assumption 6 hold and let index set 𝐾 be
specified by Lemma 8. Then the sequence {𝑥

𝑘
} converges to the

unique solution 𝑥
∗ of (1).

Proof. We first verify

lim
𝑘→∞

inf 󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 = 0. (46)

If there are infinitely many 𝑘 for which 𝛼
𝑘
is determined by

(21), then ‖𝐹(𝑥
𝑘+1

)‖ ≤ 𝜌‖𝐹(𝑥
𝑘
)‖ holds for infinitely many 𝑘.

Let 𝐼 be the index set for which (21) holds and let 𝑖
𝑘
be the

number of index 𝑗, where 𝑗 ≤ 𝑘 and 𝑗 ∈ 𝐼. Then we can
know that 𝑖

𝑘
→ ∞, when 𝑘 → ∞. For each 𝑘 ∉ 𝐼, we have

‖𝐹(𝑥
𝑘+1

)‖ ≤ (1+ 𝜖
𝑘
)‖𝐹(𝑥

𝑘
)‖, and then for all sufficiently large

𝑘 we have

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘+1

)
󵄩󵄩󵄩󵄩 ≤ (𝜌)

𝑖𝑘+1

𝑘

∏

𝑖=0

(1 + 𝜖
𝑖
)
󵄩󵄩󵄩󵄩𝐹 (𝑥
0
)
󵄩󵄩󵄩󵄩 ≤ 𝜌
𝑖𝑘+1𝑒
𝜖 󵄩󵄩󵄩󵄩𝐹 (𝑥

0
)
󵄩󵄩󵄩󵄩 ,

(47)

where 𝜌 ∈ (0, 1). This implies lim inf
𝑘→∞

‖𝐹(𝑥
𝑘
)‖ = 0, and

hence the conclusion is true.
If there are finitely many 𝑘 for which 𝛼

𝑘
is determined

by (21), by Lemma 8, there exists a subsequence {𝛿
𝑘
}
𝑘∈𝐾

that
converges to zero. Similar to the proof of Lemma 9, it is not
difficult to show that (44) holds for all 𝑘 ∈ 𝐾 sufficiently large,
where 𝐾 denotes the index set of 𝑘 > 𝑘̂, 𝑘 ∈ 𝐾. In particular,
the subsequence {𝑑

𝑘
}
𝐾
is bounded.Without loss of generality,

we suppose that {𝑑
𝑘
}
𝐾
converges to some 𝑑∗.

Denote 𝛼 = lim sup
𝑘→∞

𝛼
𝑘
. It is clear that 𝛼 ≥ 0. If 𝛼 > 0,

then 𝑑
∗

= 0, and hence it follows from (20) that 𝐹(𝑥∗) = 0.
Suppose 𝛼 = 0, or equivalently lim

𝑘→∞
𝛼
𝑘
= 0. By the line

search rule, when 𝑘 ∈ 𝐾 is sufficiently large, 𝛼
𝑘
< 1 and hence

󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑥
𝑘
+ 𝜌
−1

𝛼
𝑘
𝑑
𝑘
)
󵄩󵄩󵄩󵄩󵄩
−
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 > −𝜎

1

󵄩󵄩󵄩󵄩󵄩
𝜌
−1

𝛼
𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩󵄩

2

. (48)

Multiplying both sides by (‖𝐹(𝑥
𝑘

+ 𝜌
−1

𝛼
𝑘
𝑑
𝑘
)‖ +

‖𝐹(𝑥
𝑘
)‖)/(𝜌

−1

𝛼
𝑘
) and then taking limit as 𝑘 → ∞

with 𝑘 ∈ 𝐾, we obtain

𝐹(𝑥
∗

)
𝑇

𝐹
󸀠

(𝑥
∗

) 𝑑
∗

≥ 0. (49)

On the other hand, taking the limit in (20) as 𝑘 → ∞ with
𝑘 ∈ 𝐾 yields

𝐹
󸀠

(𝑥
∗

) 𝑑
∗

+ 𝐹 (𝑥
∗

) = 0. (50)

This together with (49) implies 𝐹(𝑥∗) = 0.

In the latter part of this section, we give the superlinear
convergence of Algorithm 3.

Theorem 11. Let the conditions inTheorem 10 hold.Then there
exist a constant 𝛿 > 0 and an index 𝑘 such that 𝛼

𝑘
= 1

whenever 𝛿
𝑘
≤ 𝛿 and 𝑘 ≥ 𝑘, the inequality

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
+ 𝑑
𝑘
)
󵄩󵄩󵄩󵄩 ≤ 𝜌

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 − 𝜎
1

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

< 𝜌
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩

(51)

holds for all 𝑘 ≥ 𝑘 and 𝛿
𝑘
≤ 𝛿.

6 Abstract and Applied Analysis

Proof. By Theorem 10, {𝑥
𝑘
} converges to the solution of (1),

say, 𝑥∗, and there exists a constant 𝐶
2
> 0 such that ‖𝐴−1

𝑘+1
‖ ≤

𝐶
2
for all 𝑘 sufficiently large. Similar to the proof of Lemma 9,

when 𝑘 is large enough we can show that

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≤ 𝑀

2

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 . (52)

And from (20) we have

𝐴
𝑘+1

(𝑥
𝑘
+ 𝑑
𝑘
− 𝑥
∗

)

= 𝐴
𝑘+1

(𝑥
𝑘
− 𝑥
∗

) + (𝐴
𝑘+1

− 𝐵
𝑘
) 𝑑
𝑘
− 𝐹 (𝑥

𝑘
)

= (𝐴
𝑘+1

− 𝐹
󸀠

(𝑥
∗

)) (𝑥
𝑘
− 𝑥
∗

) + (𝐴
𝑘+1

− 𝐵
𝑘
) 𝑑
𝑘

− 𝐹 (𝑥
𝑘
) + 𝐹 (𝑥

∗

) + 𝐹
󸀠

(𝑥
∗

) (𝑥
𝑘
− 𝑥
∗

) ,

(53)

and this implies

󵄩󵄩󵄩󵄩𝑥𝑘 + 𝑑
𝑘
− 𝑥
∗󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

𝑘+1

󵄩󵄩󵄩󵄩󵄩

× (
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑘+1

− 𝐹
󸀠

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝐴𝑘+1 − 𝐵

𝑘
) 𝑑
𝑘

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑥
𝑘
) − 𝐹 (𝑥

∗

)

+ 𝐹
󸀠

(𝑥
∗

) (𝑥
𝑘
− 𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩
)

≤ 𝐶
2
(𝑜

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩)

≤ 𝐶
2
(𝑜

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩

+𝑀
2
𝛿
𝑘

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
) − 𝐹 (𝑥

∗

)
󵄩󵄩󵄩󵄩)

≤ 𝐶
2
(𝑜

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝑀

2
𝑀𝛿
𝑘

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩) ,

(54)

where 𝑀 is an upper bound of 𝐹󸀠(𝑥) in Ω. The second and
third inequalities follow from the definition of 𝛿

𝑘
and (52),

respectively. It then follows that

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
+ 𝑑
𝑘
)
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
+ 𝑑
𝑘
) − 𝐹 (𝑥

∗

)
󵄩󵄩󵄩󵄩

≤ 𝑀
󵄩󵄩󵄩󵄩𝑥𝑘 + 𝑑

𝑘
− 𝑥
∗󵄩󵄩󵄩󵄩

≤ 𝑀𝐶
2
(𝑜

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝑀

2
𝑀𝛿
𝑘

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩) .

(55)

On the other hand, by the nonsingularity of 𝐹󸀠(𝑥∗) and the
fact that 𝑥

𝑘
→ 𝑥
∗, there is a constant𝑚 > 0 such that

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
) − 𝐹 (𝑥

∗

)
󵄩󵄩󵄩󵄩 ≥ 𝑚

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩 (56)

holds for all 𝑘 sufficiently large. Therefore, we deduce from
(52) and (56) that when 𝛿

𝑘
≤ 𝛿
󸀠

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘+1

)
󵄩󵄩󵄩󵄩 − 𝜌

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 + 𝜎
2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

≤ 𝑀𝐶
2
(𝑜

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝑀

2
𝑀𝛿
𝑘

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩)

− 𝜌𝑚
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝜎
2
𝑀
2

2

󵄩󵄩󵄩󵄩𝐹(𝑥𝑘)
󵄩󵄩󵄩󵄩

2

≤ (𝑀
2
𝐶
2
𝑀
2

𝛿
𝑘
− 𝜌𝑚)

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝑜 (
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩) + 𝜎
2
𝑀
2

2
𝑀
2󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤ − (𝜌𝑚 − 𝑀
2
𝐶
2
𝑀
2

𝛿
𝑘
)
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝑜 (
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩) .

(57)

Let 𝛿 = min{𝛿󸀠, (1/2)𝜌𝑚(𝑀
2
𝐶
2
𝑀
2

)
−1

}. Then we know
that when 𝛿

𝑘
< 𝛿, (51) holds for all 𝑘 sufficient large.

The following theorem establishes the superlinear conver-
gence of Algorithm 3.

Theorem 12. Let the conditions in Theorem 10 hold. Then the
sequence {𝑥

𝑘
} generated by Algorithm 3 converges to the unique

solution 𝑥
∗ of (1) superlinearly.

Proof. By Theorem 11, it suffices to show {𝛿
𝑘
} → 0 as 𝑘 →

∞.
Let 𝛿 and 𝑘 be as specified byTheorem 11. It follows from

Lemma 8 that there is an index 𝑘̃ such that the following
inequality holds for all 𝑘 ≥ 𝑘̃:

1

𝑘

𝑘−1

∑

𝑗=0

𝛿
2

𝑗
≤

1

2
𝛿
2

. (58)

This shows that, for any 𝑘 ≥ 𝑘̃, there are at least ⌈𝑘/2⌉ many
indices 𝑗 ≤ 𝑘 such that 𝛿

𝑗
≤ 𝛿. Let 𝑘

󸀠

= max{𝑘, 𝑘̃}. By
Theorem 11, for any 𝑘 ≥ 2𝑘

󸀠, there are at least ⌈𝑘/2⌉−𝑘
󸀠 many

indices 𝑗 ≤ 𝑘 such that 𝛼
𝑗
= 1 and

󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑥
𝑗+1

)
󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑥
𝑗
+ 𝑑
𝑘
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝜌

󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑥
𝑗
)
󵄩󵄩󵄩󵄩󵄩
. (59)

Let 𝐽
𝑘
be the set of indices for which (21) holds and let 𝑗

𝑘
be

the number of elements in 𝐽
𝑘
. Then 𝑗

𝑘
≥ (𝑘/2) − 𝑘

󸀠

− 1. On
the other hand, for each 𝑗 �∈ 𝐽

𝑘
, we have

󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑥
𝑗+1

)
󵄩󵄩󵄩󵄩󵄩
≤ (1 + 𝜀

𝑘
)
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑥
𝑗
)
󵄩󵄩󵄩󵄩󵄩
. (60)

Multiplying inequalities (21) with 𝑗 ∈ 𝐽
𝑘
and (60) with 𝑗 ∉ 𝐽

𝑘
,

we can obtain for any 𝑘 > 2𝑘
󸀠

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘+1

)
󵄩󵄩󵄩󵄩 ≤ (𝜌)

𝑗𝑘 󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
󸀠)
󵄩󵄩󵄩󵄩
[

[

𝑘

∏

𝑗=𝑘
󸀠

(1 + 𝜀
𝑗
)]

]

≤
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
󸀠)
󵄩󵄩󵄩󵄩 𝜌
(1/2)𝑘−𝑘

󸀠
−1

𝑒
𝜀

,

(61)

Abstract and Applied Analysis 7

or equivalently

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘+1

)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
󸀠)
󵄩󵄩󵄩󵄩 𝜌
(1/2)𝑘−𝑘

󸀠
−1

𝑒
𝜀

. (62)

So, we have

∞

∑

𝑘=0

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 < ∞. (63)

This together with (56) implies

∞

∑

𝑘=0

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩 < ∞. (64)

It then follows from Lemma 7 that {𝛿
𝑘
} → 0 as 𝑘 → ∞. The

proof is completed.

4. Numerical Experiments

In this section, we will present some numerical results to
show the efficiency of Algorithm 3 for a class of sparse
nonlinear equations.

In each experiment, we employ the following termination
criterion:

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩2

≤ 10
−5

. (65)

The parameters in Algorithm 3 are specified as follows:

𝜌 = 0.9, 𝜎
1
= 𝜎
2
= 0.001, 𝛽 = 0.45,

𝜂
𝑘
=

1

(𝑘 + 1)
2
,

(66)

see [13].
The numerical experiments are done by using MATLAB

version 7.10 on a Core (TM) 2 PC with Windows XP. The
details of the problems are given as follows, where 𝑥

0
denotes

the initial point.

Problem 1 (Broyden tridiagonal function [15]). The elements
of 𝐹(𝑥) are

𝐹
1
(𝑥) = − (3 − 0.5𝑥

1
) 𝑥
1
+ 2𝑥
2
− 1,

𝐹
𝑖
(𝑥) = 𝑥

𝑖−1
− (3 − 0.5𝑥

𝑖
) 𝑥
𝑖
+ 2𝑥
𝑖+1

− 1,

𝑖 = 2, 3, . . . , 𝑛 − 1,

𝐹
𝑛
(𝑥) = 𝑥

𝑛−1
− (3 − 0.5𝑥

𝑛
) 𝑥
𝑛
− 1,

𝑥
0
= (−3, −3, . . . , −3)

𝑇

.

(67)

Problem 2 (Trigexp function [16]). The elements of 𝐹(𝑥) are

𝐹
1
(𝑥) = 3𝑥

2

1
+ 2𝑥
2
− 5 + sin (𝑥

1
− 𝑥
2
) sin (𝑥

1
+ 𝑥
2
) ,

𝐹
𝑖
(𝑥) = 3𝑥

2

𝑖
+ 2𝑥
𝑖+1

− 5 + sin (𝑥
𝑖
− 𝑥
𝑖+1

)

× sin (𝑥
𝑖
+ 𝑥
𝑖+1

) + 4𝑥
𝑖

− 𝑥
𝑖−1

exp (𝑥
𝑖
− 1) − 𝑥

𝑖
− 3,

𝑖 = 2, 3, . . . , 𝑛 − 1,

𝐹
𝑛
(𝑥) = 4𝑥

𝑛
− 𝑥
𝑛−1

exp (𝑥
𝑛−1

− 𝑥
𝑛
) − 3,

𝑥
0
= (−2, −2, . . . , −2)

𝑇

.

(68)

Problem 3 (tridiagonal exponential problem [17]). The ele-
ments of 𝐹(𝑥) are

𝐹
1
(𝑥) = 𝑥

1
− exp (cos (ℎ (𝑥

1
+ 𝑥
2
))) ,

𝐹
𝑖
(𝑥) = 𝑥

𝑖
− exp (cos (ℎ (𝑥

𝑖−1
+ 𝑥
𝑖
+ 𝑥
𝑖+1

))) ,

𝑖 = 2, 3, . . . , 𝑛 − 1,

𝐹
𝑛
(𝑥) = 𝑥

𝑛
− exp (cos (ℎ (𝑥

𝑛−1
+ 𝑥
𝑛
))) ,

ℎ =
1

(𝑛 + 1)
,

𝑥
0
= (1.5, 1.5, . . . , 1.5)

𝑇

.

(69)

Problem 4 (discrete boundary value problem [18]). The ele-
ments of 𝐹(𝑥) are

𝐹
1
(𝑥) = 2𝑥

1
+ 0.5ℎ

2

(𝑥
1
+ ℎ)
3

− 𝑥
2
,

𝐹
𝑖
(𝑥) = 2𝑥

𝑖
+ 0.5ℎ

2

(𝑥
𝑖
+ ℎ𝑖)
3

− 𝑥
𝑖−1

+ 𝑥
𝑖+1

,

𝑖 = 2, 3, . . . , 𝑛 − 1,

𝐹
𝑛
(𝑥) = 2𝑥

𝑛
+ 0.5ℎ

2

(𝑥
𝑛
+ ℎ𝑛)
3

− 𝑥
𝑛−1

,

ℎ =
1

𝑛 + 1
,

𝑥
0
= (ℎ (ℎ − 1) , ℎ (2ℎ − 1) , . . . , ℎ (𝑛ℎ − 1))

𝑇

.

(70)

Problem 5 (exponentional problem 1 [19]). The elements of
𝐹(𝑥) are

𝐹
1
(𝑥) = exp (𝑥

1
− 1) − 1,

𝐹
𝑖
(𝑥) = 𝑖 (exp (𝑥

𝑖
− 1) − 𝑥

𝑖
) , 𝑖 = 2, 3, . . . , 𝑛,

𝑥
0
= (

𝑛

𝑛 − 1
, . . . ,

𝑛

𝑛 − 1
)

𝑇

.

(71)

8 Abstract and Applied Analysis

Table 1: Results of Algorithm 3 for Problems 1–7.

Pro 𝑛 ‖𝐹(𝑥
0
)‖

𝐵
0
= 𝐼 𝐵

0
= 𝐹
󸀠

(𝑥
0
)

‖𝐹(𝑥
𝑘
)‖ Iter Time (s) ‖𝐹(𝑥

𝑘
)‖ Iter Time (s)

1

50 26.8421 4.2686𝑒 − 06 17 0.0000 3.0281𝑒 − 06 12 0.0000
100 36.5103 6.6863𝑒 − 06 17 0.0000 3.0284𝑒 − 06 12 0.0000
200 50.5767 3.4126𝑒 − 06 19 0.0313 3.0284𝑒 − 06 12 0.0313
500 78.9494 3.5829𝑒 − 06 19 0.0313 3.0284𝑒 − 06 12 0.0313
1000 111.1665 6.7616𝑒 − 06 20 0.0938 3.0284𝑒 − 06 12 0.0625
3000 156.8247 4.6028𝑒 − 06 21 0.1780 3.0284𝑒 − 06 12 0.1563
5000 247.7055 5.0272𝑒 − 06 22 0.2063 3.0284𝑒 − 06 12 0.2031
10000 256.8910 5.6234𝑒 − 06 25 0.2028 3.0284𝑒 − 06 12 0.3125
20000 289.2351 5.4512𝑒 − 06 25 0.3276 3.0284𝑒 − 06 12 0.6563

2

50 6.9282 1.3431𝑒 − 06 10 0.0000 1.0235𝑒 − 06 4 0.0000
100 9.8995 1.8437𝑒 − 06 11 0.0000 1.0235𝑒 − 06 4 0.0000
200 14.0712 6.2185𝑒 − 06 11 0.0313 1.0235𝑒 − 06 4 0.0000
500 22.3159 2.6805𝑒 − 06 12 0.0313 1.0235𝑒 − 06 4 0.0000
1000 31.5911 7.8148𝑒 − 06 11 0.0625 1.0235𝑒 − 06 4 0.0313
3000 54.7540 8.5561𝑒 − 06 18 0.7188 1.0235𝑒 − 06 4 0.0625
5000 70.6965 8.3005𝑒 − 06 12 0.2500 1.0235𝑒 − 06 4 0.0938
10000 75.0126 8.2145𝑒 − 06 14 0.2808 1.0235𝑒 − 06 4 0.1406
20000 81.2659 8.5179𝑒 − 06 14 0.5304 1.0235𝑒 − 06 4 0.2500

3

50 8.5416 8.7650𝑒 − 08 3 0.0000 1.1795𝑒 − 07 5 0.0000
100 12.1562 6.8406𝑒 − 10 3 0.0000 5.3904𝑒 − 06 4 0.0000
200 17.2195 8.0105𝑒 − 06 2 0.0000 3.6741𝑒 − 07 3 0.0000
500 27.2392 3.3130𝑒 − 07 2 0.0000 1.2337𝑒 − 06 3 0.0000
1000 38.5246 2.9461𝑒 − 08 2 0.0000 1.5498𝑒 − 07 3 0.0313
3000 66.7279 6.3233𝑒 − 10 3 0.0313 3.0014𝑒 − 06 2 0.0313
5000 86.1455 1.0586𝑒 − 10 2 0.0313 1.0804𝑒 − 06 2 0.0625
10000 121.8282 9.3691𝑒 − 12 2 0.0938 2.7008𝑒 − 07 2 0.0938
20000 172.2911 8.7919𝑒 − 13 2 0.1563 6.7517𝑒 − 08 2 0.1719

4

50 0.1511 8.7479𝑒 − 06 19 0.0000 2.4065𝑒 − 06 13 0.0000
100 0.1111 8.4206𝑒 − 06 16 0.0000 5.7592𝑒 − 06 12 0.0000
200 0.0801 9.4752𝑒 − 06 18 0.0313 9.6492𝑒 − 06 10 0.0313
500 0.0512 8.2454𝑒 − 06 14 0.0313 9.0492𝑒 − 06 10 0.0313
1000 0.0364 7.7380𝑒 − 06 13 0.0625 4.0496𝑒 − 06 10 0.0625
3000 0.0211 7.6951𝑒 − 06 13 0.1719 9.7135𝑒 − 06 8 0.1250
5000 0.0163 9.8163𝑒 − 06 10 0.1875 8.4494𝑒 − 06 7 0.1563
10000 0.0115 8.4212𝑒 − 06 10 0.3125 4.1718𝑒 − 06 7 0.2344
20000 0.0082 6.9072𝑒 − 06 4 0.2656 2.0897𝑒 − 06 7 0.3906

5

50 0.0481 7.6492𝑒 − 06 9 0.0000 5.5212𝑒 − 06 9 0.0000
100 0.0315 5.3122𝑒 − 06 9 0.0000 9.8754𝑒 − 06 8 0.0000
200 0.0213 9.7441𝑒 − 06 8 0.0000 6.8642𝑒 − 06 8 0.0000
500 0.0131 6.1289𝑒 − 06 8 0.0000 4.2970𝑒 − 06 8 0.0000
1000 0.0092 4.3258𝑒 − 06 8 0.0000 7.9238𝑒 − 06 7 0.0000
3000 0.0053 6.5316𝑒 − 06 7 0.0000 4.5644𝑒 − 06 7 0.0000
5000 0.0041 5.0582𝑒 − 06 7 0.0000 9.2636𝑒 − 06 6 0.0000
10000 0.0029 9.3577𝑒 − 06 6 0.0000 6.5482𝑒 − 06 6 0.0313
20000 0.0020 6.6163𝑒 − 06 6 0.0313 4.6295𝑒 − 06 6 0.0313

Abstract and Applied Analysis 9

Table 1: Continued.

Pro 𝑛 ‖𝐹(𝑥
0
)‖

𝐵
0
= 𝐼 𝐵

0
= 𝐹
󸀠

(𝑥
0
)

‖𝐹(𝑥
𝑘
)‖ Iter Time (s) ‖𝐹(𝑥

𝑘
)‖ Iter Time (s)

6

50 0.0166 6.6166𝑒 − 06 7 0.0000 6.5364𝑒 − 06 5 0.0000
100 0.0116 7.5062𝑒 − 06 6 0.0000 8.5483𝑒 − 06 2 0.0000
200 0.0082 9.4436𝑒 − 06 4 0.0000 2.1372𝑒 − 06 2 0.0000
500 0.0052 9.8417𝑒 − 06 18 0.0406 5.2204𝑒 − 06 1 0.0000
1000 0.0037 9.6163𝑒 − 06 24 0.0313 3.6586𝑒 − 06 3 0.0313
3000 0.0021 8.3375𝑒 − 06 17 0.0625 2.1088𝑒 − 06 3 0.0313
5000 0.0016 9.7458𝑒 − 06 15 0.0938 1.6333𝑒 − 06 3 0.0313
10000 0.0012 9.9565𝑒 − 06 11 0.1563 1.1548𝑒 − 06 3 0.0313
20000 0.0082 8.8706𝑒 − 06 9 0.2031 8.1653𝑒 − 06 2 0.0625

7

50 0.2271 1.4914𝑒 − 14 2 0.0000 5.9494𝑒 − 06 53 0.1250
100 0.2319 1.4792𝑒 − 14 2 0.0000 5.6147𝑒 − 06 58 0.0938
200 0.2413 1.4960𝑒 − 14 2 0.0000 6.6486𝑒 − 06 77 0.2031
500 0.2675 1.5760𝑒 − 14 2 0.0000 7.4199𝑒 − 06 70 0.7500
1000 0.3062 0 2 0.0313 8.2082𝑒 − 06 35 0.3906
3000 0.4274 0 4 0.0625 5.7188𝑒 − 06 53 10.5469
5000 0.5211 0 7 2.5000 6.7092𝑒 − 06 41 19.0625
10000 0.7027 0 9 10.3125 6.8420𝑒 − 06 45 25.0156
20000 0.9686 0 11 43.7500 7.1086𝑒 − 06 51 30.0156

Problem 6 (exponentional problem 2 [19]). The elements of
𝐹(𝑥) are

𝐹
1
(𝑥) = exp (𝑥

1
) − 1,

𝐹
𝑖
(𝑥) =

𝑖

10
(exp (𝑥

𝑖
) + 𝑥
𝑖−1

− 1) , 𝑖 = 2, 3, . . . , 𝑛,

𝑥
0
= (

1

𝑛2
, . . . ,

1

𝑛2
)

𝑇

.

(72)

Problem 7 (penalty I function [19]). The elements of 𝐹(𝑥) are

𝐹
𝑖
(𝑥) = √10−5 (𝑥

𝑖
− 1) , 𝑖 = 1, . . . , 𝑛 − 1,

𝐹
𝑛
(𝑥) =

1

4𝑛

𝑛

∑

𝑗=1

𝑥
2

𝑗
−

1

4
,

𝑥
0
= (

1

3
, . . . ,

1

3
)

𝑇

.

(73)

Problem 8 (exponential function [19]). The elements of 𝐹(𝑥)
are

𝐹
𝑖
(𝑥) =

𝑖

10
(1 − 𝑥

2

𝑖
− exp (−𝑥

2

𝑖
)) , 𝑖 = 1, 2, . . . , 𝑛 − 1,

𝐹
𝑛
(𝑥) =

𝑛

10
(1 − exp (−𝑥

2

𝑛
)) ,

𝑥
0
= (

1

4𝑛2
,

2

4𝑛2
, . . . ,

𝑛

4𝑛2
)

𝑇

.

(74)

Problem 9 (minimal function [19]). The elements of 𝐹(𝑥) are

𝐹
𝑖
(𝑥) =

(ln𝑥
𝑖
− exp (𝑥

𝑖
)) − √(ln𝑥

𝑖
− exp (𝑥

𝑖
))
2

+ 10−10

2
,

𝑖 = 1, . . . , 𝑛,

𝑥
0
= (1, 1, . . . , 1)

𝑇

.

(75)

Problem 10 (extended Rosenbrock function (𝑛 is even) [20]).
The elements of 𝐹(𝑥) are

𝐹
2𝑖−1

(𝑥) = 10 (𝑥
2𝑖
− 𝑥
2

2𝑖−1
) ,

𝐹
2𝑖
(𝑥) = 1 − 𝑥

2𝑖−1
, 𝑖 = 1, 2, . . . ,

𝑛

2
,

𝑥
0
= (5, 1, 5, 1, . . . , 5, 1)

𝑇

.

(76)

Problem 11 (logarithmic function [19]). The elements of 𝐹(𝑥)
are

𝐹
𝑖
(𝑥) = ln (𝑥

𝑖
+ 1) −

𝑥
𝑖

𝑛
, 𝑖 = 1, 2, . . . , 𝑛,

𝑥
0
= (1, 1, . . . , 1)

𝑇

.

(77)

Problem 12 (strictly convex function 1 [21]). 𝐹(𝑥) is the
gradient of 𝑓(𝑥) = ∑

𝑛

𝑖=1
(exp(𝑥

1
) − 𝑥
𝑖
). The elements of 𝐹(𝑥)

are
𝐹
𝑖
(𝑥) = exp (𝑥

𝑖
) − 1, 𝑖 = 1, 2, . . . , 𝑛.

𝑥
0
= (

1

𝑛
,
2

𝑛
, . . . , 1)

𝑇

.

(78)

10 Abstract and Applied Analysis

Table 2: Results of Algorithm 3 for Problems 8–14.

Pro 𝑛 ‖𝐹(𝑥
0
)‖

𝐵
0
= 𝐼 𝐵

0
= 𝐹
󸀠

(𝑥
0
)

‖𝐹(𝑥
𝑘
)‖ Iter Time (s) ‖𝐹(𝑥

𝑘
)‖ Iter Time (s)

8

52 1.2019𝑒 − 04 4.7426𝑒 − 06 4 0.0000 4.8145𝑒 − 06 6 0.0000
100 6.2500𝑒 − 05 6.8402𝑒 − 06 3 0.0000 6.9537𝑒 − 06 4 0.0000
200 3.1250𝑒 − 05 7.7243𝑒 − 06 2 0.0000 7.8200𝑒 − 06 2 0.0000
500 1.2500𝑒 − 05 9.8751𝑒 − 06 11 0.0000 3.1279𝑒 − 06 2 0.0000
1000 6.2500𝑒 − 06 6.2500𝑒 − 06 0 0.0000 6.2500𝑒 − 06 0 0.0000
3000 2.0833𝑒 − 06 2.0833𝑒 − 06 0 0.0000 2.0833𝑒 − 06 0 0.0000
5000 1.2500𝑒 − 06 1.2500𝑒 − 06 0 0.0000 1.2500𝑒 − 06 0 0.0000
10000 6.2500𝑒 − 07 6.2500𝑒 − 07 0 0.0000 6.2500𝑒 − 07 0 0.0000
20000 3.1250𝑒 − 07 3.1250𝑒 − 07 0 0.0000 3.1250𝑒 − 07 0 0.0000

9

50 19.2212 4.7930𝑒 − 11 4 0.0000 4.3678𝑒 − 11 2 0.0000
100 27.1828 6.7783𝑒 − 11 4 0.0000 6.1770𝑒 − 11 2 0.0000
200 38.4423 9.5860𝑒 − 11 4 0.0000 9.8689𝑒 − 11 2 0.0000
500 60.7826 1.5157𝑒 − 10 4 0.0000 1.5604𝑒 − 10 2 0.0000
1000 85.9596 2.1435𝑒 − 10 4 0.0313 2.2068𝑒 − 10 2 0.0000
3000 148.8864 4.1536𝑒 − 10 4 0.0313 3.8222𝑒 − 10 2 0.0313
5000 192.2116 5.3623𝑒 − 10 4 0.0625 4.9345𝑒 − 10 2 0.0625
10000 271.8282 7.5834𝑒 − 10 4 0.1250 7.7298𝑒 − 10 2 0.0938
20000 384.4231 1.0725𝑒 − 09 4 0.2500 1.0932𝑒 − 09 2 0.1563

10

50 1200 8.3426𝑒 − 06 33 0.0000 4.2841𝑒 − 09 19 0.0000
100 1697.1 2.2053𝑒 − 07 34 0.0000 6.0586𝑒 − 09 19 0.0000
200 2400 2.4538𝑒 − 07 34 0.0000 3.5281𝑒 − 06 23 0.0000
500 3794.7 1.3524𝑒 − 06 35 0.0313 5.5783𝑒 − 06 23 0.0000
1000 5366.6 1.0785𝑒 − 06 33 0.0313 7.8890𝑒 − 06 23 0.0000
3000 9295.2 2.3859𝑒 − 07 33 0.0625 1.1640𝑒 − 07 24 0.0313
5000 12000 3.0801𝑒 − 07 33 0.0938 1.5028𝑒 − 07 24 0.0625
10000 16971 4.1301𝑒 − 06 29 0.1563 2.1252𝑒 − 07 24 0.1250
20000 24000 5.3904𝑒 − 06 25 0.2813 1.4378𝑒 − 07 24 0.2500

11

50 4.7599 1.2153𝑒 − 07 6 0.0000 1.4006𝑒 − 06 6 0.0000
100 6.8315 1.1647𝑒 − 07 6 0.0000 1.4743𝑒 − 06 6 0.0000
200 9.7319 1.3534𝑒 − 07 6 0.0000 1.8019𝑒 − 06 6 0.0000
500 15.4545 1.9008𝑒 − 07 6 0.0000 2.6117𝑒 − 06 6 0.0000
1000 21.8876 2.5837𝑒 − 07 6 0.0000 3.5883𝑒 − 06 6 0.0000
3000 37.9470 4.3584𝑒 − 07 6 0.0000 6.0967𝑒 − 06 6 0.0000
5000 48.9988 5.5970𝑒 − 07 6 0.0000 2.6853𝑒 − 06 6 0.0000
10000 69.3047 7.8840𝑒 − 07 6 0.0313 3.7947𝑒 − 06 6 0.0313
20000 98.0187 1.1128𝑒 − 06 6 0.0313 5.3645𝑒 − 06 6 0.0469

12

50 6.2761 1.5871𝑒 − 08 7 0.0000 2.7576𝑒 − 08 6 0.0000
100 8.7909 1.9036𝑒 − 08 7 0.0000 3.6023𝑒 − 08 6 0.0000
200 12.3723 2.4543𝑒 − 08 7 0.0000 4.8866𝑒 − 08 6 0.0000
500 19.5054 3.6586𝑒 − 08 7 0.0000 7.5309𝑒 − 08 6 0.0000
1000 27.5580 5.0705𝑒 − 08 7 0.0000 1.0559𝑒 − 07 6 0.0000
3000 47.7008 8.6635𝑒 − 08 7 0.0000 1.8182𝑒 − 07 6 0.0000
5000 61.5735 1.1154𝑒 − 07 7 0.0000 2.3446𝑒 − 07 6 0.0000
10000 87.0696 1.5742𝑒 − 07 7 0.0000 3.3129𝑒 − 07 6 0.0000
20000 123.1291 2.2239𝑒 − 07 7 0.0313 4.6831𝑒 − 07 6 0.0313

Abstract and Applied Analysis 11

Table 2: Continued.

Pro 𝑛 ‖𝐹(𝑥
0
)‖

𝐵
0
= 𝐼 𝐵

0
= 𝐹
󸀠

(𝑥
0
)

‖𝐹(𝑥
𝑘
)‖ Iter Time (s) ‖𝐹(𝑥

𝑘
)‖ Iter Time (s)

13

51 771.2349 8.4607𝑒 − 09 10 0.0000 1.6413𝑒 − 08 9 0.0000
99 1089.8 1.1644𝑒 − 08 10 0.0000 2.3210𝑒 − 08 9 0.0000
201 1564.5 1.6479𝑒 − 08 10 0.0000 3.3331𝑒 − 08 9 0.0000
501 2480.5 2.5914𝑒 − 08 10 0.0000 5.2860𝑒 − 08 9 0.0000
999 3507.7 3.6544𝑒 − 08 10 0.0000 7.4754𝑒 − 08 9 0.0000
3000 6087.3 6.3242𝑒 − 08 10 0.0313 1.2974𝑒 − 07 9 0.0000
5001 7857.2 8.1675𝑒 − 08 10 0.0625 1.6746𝑒 − 07 9 0.0313
9999 11112 1.1547𝑒 − 07 10 0.0938 2.3682𝑒 − 07 9 0.0625
20001 15717 1.6330𝑒 − 07 10 0.1563 3.3496𝑒 − 07 9 0.1563

14

50 147.1394 2.8039𝑒 − 06 7 0.0000 1.4943𝑒 − 06 8 0.0000
100 208.0865 3.9654𝑒 − 06 7 0.0000 2.1133𝑒 − 06 8 0.0000
200 294.2788 5.6079𝑒 − 06 7 0.0000 2.9887𝑒 − 06 8 0.0313
500 465.2956 8.8669𝑒 − 06 7 0.0313 4.7255𝑒 − 06 8 0.0625
1000 658.0274 3.5104𝑒 − 07 8 0.0625 6.6829𝑒 − 06 8 0.1250
3000 1139.7 6.0803𝑒 − 07 8 0.1250 3.1348𝑒 − 08 9 0.3438
5000 1471.4 7.8496𝑒 − 07 8 0.2969 4.0470𝑒 − 08 9 0.4219
10000 2080.9 1.1101𝑒 − 06 8 0.3594 5.7234𝑒 − 08 9 0.8438
20000 2942.8 1.5699𝑒 − 06 8 0.7656 8.0941𝑒 − 08 9 1.5000

Problem 13 (tridimensional valley function (𝑛 is a multiple of
3) [22]). The elements of 𝐹(𝑥) are

𝐹
3𝑖−2

(𝑥) = (𝑐
2
𝑥
3

3𝑖−2
+ 𝑐
1
𝑥
3𝑖−2

) exp(
−𝑥
2

3𝑖−2

100
) − 1,

𝐹
3𝑖−1

(𝑥) = 10 (sin (𝑥
3𝑖−2

− 𝑥
3𝑖−1

)) ,

𝐹
3𝑖
(𝑥) = 10 (cos (𝑥

3𝑖−2
− 𝑥
3𝑖
)) , 𝑖 = 1, 2, . . . ,

𝑛

3
,

(79)

and then denote

𝑐
1
= 1.003344481605351,

𝑐
2
= − 3.344481605351171 × 10

−3

,

𝑥
0
= (2, 1, 2, 1, 2, . . . , 1)

𝑇

.

(80)

Problem 14 (extended Freudenstein and Roth function (𝑛 is
even) [17]). The elements of 𝐹(𝑥) are

𝐹
2𝑖−1

(𝑥) = 𝑥
2𝑖−1

+ ((5 − 𝑥
2𝑖
) 𝑥
2𝑖
− 2) 𝑥

2𝑖
− 13,

𝐹
2𝑖
(𝑥) = 𝑥

2𝑖−1
+ ((𝑥
2𝑖
+ 1) 𝑥

2𝑖
− 14) 𝑥

2𝑖
− 29,

𝑖 = 1, 2, . . . ,
𝑛

2
,

𝑥
0
= (6, 3, 6, 3, . . . , 6, 3)

𝑇

.

(81)

The sparsity patterns of most of the problems are tridiag-
onal and the dimension of problems varies from 50 to 20000.
The results are given in Tables 1 and 2, and each column is
specified as follows:

Pro: the problem;
𝑛: the dimension of the problem;
‖𝐹(𝑥
0
)‖: the initial Euclidean norms of 𝐹(𝑥);

‖𝐹(𝑥
𝑘
)‖: the final Euclidean norms of 𝐹(𝑥);

Iter: the total number of iterations;
Times: the CPU time in second.

It can be seen from the tables that, for all tested problems,
Algorithm 3 terminated successfully. The numerical results
show that Algorithm 3 becomes increasingly desirable as 𝑛

increases.
In Tables 1 and 2, we list the results of Algorithm 3

for solving Problems 1 to 14 with 𝐵
0

= 𝐼. Because 𝐵
0
is

very important for the performance of Broyden’s method,
we also present the results with 𝐵

0
= 𝐹
󸀠

(𝑥
0
). We can see

that Algorithm 3 can be applied to solve a class of nonlinear
equations, where the dimension of which can be up to 20000.
Since the Schubert’s update formula (7) can maintain the
sparsity pattern of Jacobian matrix exactly, so Algorithm 3 is
especially effective for solving large-scale nonlinear equations
with sparse Jacobian matrix, such as tridiagonal or block
diagonal Jacobian matrix.

5. Remarks

In this paper, based on the work of Schubert, Broyden, and
Marwil, we have globalized Schubert’s method and proposed
a global algorithm by using a nonmonotone line search.
We have established the global and superlinear convergence.
Numerical results showed that the algorithm is especially
effective for large-scale problems.

12 Abstract and Applied Analysis

Conflict of Interests

The author declares that there is no conflict of interests
regarding to the publication of this paper.

Acknowledgment

Thework is supported by the National Science Foundation of
China through Grant 11371154.

References

[1] Y. Yuan, “Recent advances in numerical methods for nonlinear
equations and nonlinear least squares,” Numerical Algebra,
Control and Optimization, vol. 1, no. 1, pp. 15–34, 2011.

[2] L. K. Schubert, “Modification of a quasi-Newton method for
nonlinear equations with a sparse Jacobian,” Mathematics of
Computation, vol. 24, pp. 27–30, 1970.

[3] E. Marwil, “Convergence results for Schubert’s method for
solving sparse nonlinear equations,” SIAM Journal onNumerical
Analysis, vol. 16, no. 4, pp. 588–604, 1979.

[4] C. G. Broyden, “The convergence of an algorithm for solving
sparse nonlinear systems,”Mathematics of Computation, vol. 25,
no. 114, pp. 285–294, 1971.

[5] B. Lam, “On the convergence of a quasi-Newton method for
sparse nonlinear systems,”Mathematics of Computation, vol. 32,
no. 142, pp. 447–451, 1978.

[6] P. L. Toint, “On sparse and symmetric matrix updating subject
to a linear equation,” Mathematics of Computation, vol. 31, no.
no 140, pp. 954–961, 1977.

[7] D. F. Shanno, “On variable-metricmethods for sparseHessians,”
Mathematics of Computation, vol. 34, no. 150, pp. 499–514, 1980.

[8] R. Fletcher, “An optimal positive definite update for sparse Hes-
sian matrices,” SIAM Journal on Optimization, vol. 5, no. 1, pp.
192–218, 1995.

[9] N. Yamashita, “Sparse quasi-Newton updates with positive def-
inite matrix completion,” Mathematical Programming, vol. 115,
no. 1, pp. 1–30, 2008.

[10] Y. H. Dai and N. Yamashita, “Analysis of sparse quasi-Newton
updates with positive definite matrix completion,” Journal of the
Operations Research Society of China, vol. 2, no. 1, pp. 39–56,
2014.

[11] P. L. Toint, “Global convergence of the partitioned BFGS
algorithm for convex partially separable optimization,” Math-
ematical Programming, vol. 36, no. 3, pp. 290–306, 1986.

[12] A. Griewank, “The global convergence of partitioned BFGS on
problems with convex decompositions and Lipschitzian gradi-
ents,” Mathematical Programming, vol. 50, no. 1–3, pp. 141–175,
1991.

[13] D. Li and M. Fukushima, “A derivative-free line search and
global convergence of Broyden-likemethod for nonlinear equa-
tions,” Optimization Methods and Software, vol. 13, no. 3, pp.
181–201, 2000.

[14] A. Griewank, “The “global” convergence of Broyden-like meth-
odswith a suitable line search,”AustralianMathematical Society.
Journal. Series B. Applied Mathematics, vol. 28, no. 1, pp. 75–92,
1986.

[15] C. G. Broyden, “A class of methods for solving nonlinear
simultaneous equations,” Mathematics of Computation, vol. 19,
no. 92, pp. 577–593, 1965.

[16] M. A. Gomes-Ruggiero, J. M. Mart́ınez, and A. C. Moretti,
“Comparing algorithms for solving sparse nonlinear systems of
equations,” SIAM Journal on Scientific and Statistical Comput-
ing, vol. 13, no. 2, pp. 459–483, 1992.

[17] B. Yang and L. Gao, “An efficient implementation of Merrill’s
method for sparse or partially separable systems of nonlinear
equations,” SIAM Journal on Optimization, vol. 1, no. 2, pp. 206–
221, 1991.

[18] J. J. Moré, B. S. Garbow, and K. E. Hillström, “Testing uncon-
strained optimization software,” ACM Transactions on Math-
ematical Software (TOMS), vol. 7, no. 1, pp. 17–41, 1981.

[19] W. La Cruz, J. M. Martnez, and M. Raydan, “Spectral residual
method without gradient information for solving large-scale
nonlinear systems of equations,” Mathematics of Computation,
vol. 75, no. 255, pp. 1429–1448, 2006.

[20] M. G. Gasparo, “A nonmonotone hybrid method for nonlinear
systems,” Optimization Methods and Software, vol. 13, no. 2, pp.
79–94, 2000.

[21] M. Raydan, “The Barzilai and Borwein gradient method for
the large scale unconstrained minimization problem,” SIAM
Journal on Optimization, vol. 7, no. 1, pp. 26–33, 1997.

[22] A. Friedlander, M. A. Gomes-Ruggiero, D. N. Kozakevich, J.
M. Mart́ınez, and S. A. Santosa, “Solving nonlinear systems of
equations bymeans of quasi-newtonmethodswith a nonmono-
tone strategy,” Optimization Methods and Software, vol. 8, no. 1,
pp. 25–51, 1997.

