
Research Article
Periodic Solutions for Second Order Hamiltonian Systems with
Impulses via the Local Linking Theorem

Longsheng Bao and Binxiang Dai

School of Mathematics and Statistics, Central South University, Changsha, Hunan 410075, China

Correspondence should be addressed to Binxiang Dai; bxdai@csu.edu.cn

Received 19 April 2014; Accepted 29 June 2014; Published 10 July 2014

Academic Editor: Leszek Gasinski

Copyright © 2014 L. Bao and B. Dai. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A class of second order impulsive Hamiltonian systems are considered. By applying a local linking theorem, we establish the
new criterion to guarantee that this impulsive Hamiltonian system has at least one nontrivial T-periodic solution under local
superquadratic condition. This result generalizes and improves some existing results in the known literature.

1. Introduction and Main Results

Consider the second order Hamiltonian systems with impul-
sive effects

𝑢̈ (𝑡) − 𝐴𝑢 (𝑡) + ∇𝐹 (𝑡, 𝑢 (𝑡)) = 0, a.e. 𝑡 ∈ [0, 𝑇] ,

Δ (𝑢̇

𝑖
(𝑡

𝑗
)) = 𝐼

𝑖𝑗
(𝑢

𝑖
(𝑡

𝑗
)) , 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑙,

𝑢 (0) − 𝑢 (𝑇) = 𝑢̇ (0) − 𝑢̇ (𝑇) = 0,

(1)

where 𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡), . . . , 𝑢𝑁(𝑡)), 𝑡
0
= 0 < 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ <

𝑡

𝑙
< 𝑡

𝑙+1
= 𝑇, 𝑇 > 0, Δ(𝑢̇𝑖(𝑡

𝑗
)) = 𝑢̇

𝑖
(𝑡

+

𝑗
) − 𝑢̇

𝑖
(𝑡

−

𝑗
), where 𝑢̇𝑖(𝑡+

𝑗
)

and 𝑢̇𝑖(𝑡−
𝑗
) denote the right and left limits of 𝑢̇𝑖(𝑡) at 𝑡 = 𝑡

𝑗
,

respectively, 𝐼
𝑖𝑗
: R → R (𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑙)

are continuous, and 𝐹 ∈ 𝐶

1
([0, 𝑇] × R𝑁,R), ∇𝐹(𝑡, 𝑢) =

𝜕𝐹(𝑡, 𝑢)/𝜕𝑢. 𝐴 = [𝑎

𝑖𝑗
] is a symmetric constant matrix.

Impulsive differential equations serve as basic models to
study the dynamics of processes that are subject to sudden
changes in their states. The theory of impulsive differential
systems has been developed by numerous mathematicians
(see [1–4]). These kinds of processes naturally occur in
control theory, biology, optimization theory, medicine, and
so on (see [5–9]).

In recent years, many existence results are obtained for
impulsive differential systems by critical point theory, such
as [10–23] and their references. In most superquadratic cases,

there is so-called Ambrosetti-Rabinowitz condition (see [18–
23]):

0 < 𝜇𝐹 (𝑡, 𝑢) ≤ (∇𝐹 (𝑡, 𝑢) , 𝑢) , ∀𝑡 ∈ R, 𝑢 ∈ R
𝑁
\ {0} ,

(2)

where 𝜇 > 2 is a constant, which implies that 𝐹(𝑡, 𝑢) is of
superquadratic growth as |𝑢| → ∞; that is,

lim
|𝑢|→∞

𝐹 (𝑡, 𝑢)

|𝑢|

2
= +∞, uniformly for all 𝑡. (3)

Moreover, Wu and Zhang [24] study the homoclinic
solutions without any periodicity assumption under the local
Ambrosetti-Rabinowitz type condition. Two key conditions
of the main results of [24] are listed as follows.

(A1) There exist 𝜇 > 2 and 𝐿
1
> 0 such that

𝜇𝐹 (𝑡, 𝑢) ≤ (∇𝐹 (𝑡, 𝑢) , 𝑢) , ∀𝑡 ∈ R, |𝑢| ≥ 𝐿1. (4)

(A2) There exists 2 < 𝛼 < +∞ such that lim inf
|𝑢|→+∞

(𝐹(𝑡,

𝑢)/|𝑢|

𝛼
) > 0, uniformly in 𝑡 ∈ R.

In recent paper [25], Zhang and Tang had obtained some
results of the nontrivial T-periodic solutions under much
weaker assumptions instead of (A1) and (A2).
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(B1) There exist constants 𝜇 > 2, 0 < 𝛽

0
< 2, and 𝐿

2
> 0

and a function 𝑎
0
(𝑡) ∈ 𝐿

1
(0, 𝑇;R+) such that

𝜇𝐹 (𝑡, 𝑢) ≤ ∇ (𝐹 (𝑡, 𝑢) , 𝑢) + 𝑎0 (
𝑡) |𝑢|

𝛽0
,

∀ |𝑢| ≥ 𝐿2
, a.e. 𝑡 ∈ [0, 𝑇] .

(5)

(B2) There exists a subset 𝐸
0
of [0, 𝑇] with meas(𝐸

0
) > 0

such that

lim inf
|𝑢|→∞

𝐹 (𝑡, 𝑢)

|𝑢|

2
> 0, a.e. 𝑡 ∈ 𝐸

0
. (6)

Remark 1. Condition (B2) is weaker than (A2) because
condition (A2) implies lim

|𝑢|→∞
(𝐹(𝑡, 𝑢)/|𝑢|

2
) = +∞.

Recently, applying the local linking theorem (see [26]),
the works in [27–30] obtained the existence of periodic
solutions or homoclinic solutions with (3) superquadratic
condition under different systems. As shown in [25], condi-
tion (B2) is a local superquadratic condition; this situation
has been considered only by a few authors.

Motivated by papers [24, 25, 31], in this paper, we aim to
consider problem (1) under local superquadratic condition
via a version of the local linking theorem (see [26]). In
particular, the impulsive function 𝐼

𝑖𝑗
satisfies a kind of new

superquadratic condition which is different from that in
the known literature. Our main results are the following
theorems.

Theorem 2. Suppose that 𝐹 ∈ 𝐶

1
([0, 𝑇] × R𝑁,R) and 𝐼

𝑖𝑗
∈

𝐶(R,R), 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑙, satisfies (B2) and
consider the following.

(H1) There exists a positive constant 𝜃 such that

(𝐴𝑢, 𝑢) ≥ 𝜃|𝑢|

2
, ∀𝑢 ∈ R

𝑁
. (7)

(H2) lim sup
|𝑢|→0

(|∇𝐹(𝑡, 𝑢)|/|𝑢|) = 0 uniformly for 𝑡 ∈

[0, 𝑇].
(H3) There exist constants 𝑑 > 1, 𝑐

1
> 0, and 𝐿

3
> 0 such

that, for every 𝑡 ∈ [0, 𝑇] and 𝑢 ∈ R𝑁 with |𝑢| ≥ 𝐿
3
,

|∇𝐹 (𝑡, 𝑢)| ≤ 𝑐1
(|𝑢|

𝑑
+ 1) . (8)

(H4) There exist constants 𝜇 > 2, 𝐿

4
> 0, and 𝑏

1
∈

(0, (𝜇/2 − 1)𝜃) such that, for every 𝑡 ∈ [0, 𝑇] and
𝑢 ∈ R𝑁 with |𝑢| ≥ 𝐿

4
,

𝜇𝐹 (𝑡, 𝑢) ≤ (∇𝐹 (𝑡, 𝑢) , 𝑢) + 𝑏1|
𝑢|

2
. (9)

(I1) There exist constants 𝑏
𝑖𝑗
> 0 and 𝑟

𝑖𝑗
∈ (1, +∞) such

that
󵄨

󵄨

󵄨

󵄨

󵄨

𝐼

𝑖𝑗 (
𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝑏

𝑖𝑗|
𝑢|

𝑟𝑖𝑗
, ∀𝑢 ∈ R. (10)

(I2) There are two constants 𝑏
2
> 0 and 𝛾 ∈ [0, 2) such that

𝐼

𝑖𝑗 (
𝑢) 𝑢 ≤ 𝜇∫

𝑢

0

𝐼

𝑖𝑗 (
𝑠) 𝑑𝑠 + 𝑏2|

𝑢|

𝛾
, ∀𝑢 ∈ R. (11)

(I3) 𝐼
𝑖𝑗
satisfies ∫𝑢

0
𝐼

𝑖𝑗
(𝑠)𝑑𝑠 ≤ 0, for all 𝑢 ∈ R.

Then problem (1) has at least one nontrivial T-periodic solution.

Remark 3. Noting (3), obviously, conditions (B2) and (H4)
are weaker than those of (2). From (B2), we only need
lim
|𝑢|→∞

(𝐹(𝑡, 𝑢)/|𝑢|

2
) > 0 to hold in a subset 𝐸

0
of [0, 𝑇].

What is more, 𝐹 in (2) is asked to be positive globally. Here
𝐹 need not be nonnegative globally; we also generalized
Theorems 1.3 and 1.4 in [25]. For example, let

𝐹 (𝑡, 𝑢) =

1

8

𝑔 (𝑡) |𝑢|

4
− 1, ∀ (𝑡, 𝑢) ∈ [0, 𝑇] ×R

𝑁
, (12)

where

𝑔 (𝑡) =

{

{

{

{

{

sin 2𝜋𝑡
𝑇

, 𝑡 ∈ [0,

𝑇

2

] ,

0, 𝑡 ∈ [

𝑇

2

, 𝑇] .

(13)

Let 𝐸
0
= [𝑇/8, 𝑇/4]; then 𝐹 satisfies our Theorem 2 but does

not satisfy (2) and (3) and does not satisfy the corresponding
conditions in [25].

Theorem 4. Suppose that 𝐹 ∈ 𝐶

1
([0, 𝑇] × R𝑁,R) and 𝐼

𝑖𝑗
∈

𝐶(R,R), 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑙, satisfies (H1), (H2),
(H3), (I1), (I2), and (I3) and the following condition holds.

(H5) There exist constants 𝜇 > 2 and 𝑏
3
∈ (0,min{𝑚

1
(𝜇 −

2), (𝜇/2 − 1)𝜃}) such that

𝜇𝐹 (𝑡, 𝑢) ≤ (∇𝐹 (𝑡, 𝑢) , 𝑢) + 𝑏3|
𝑢|

2
, ∀ (𝑡, 𝑢) ∈ [0, 𝑇] ×R

𝑁
,

(14)

where

𝑚

1
= min {𝐹 (𝑡, 𝑢) | 𝑡 ∈ [0, 𝑇] , 𝑢 ∈ R

𝑁
, |𝑢| = 1} . (15)

Thenproblem (1) has at least one nontrivial T-periodic solution.

Theorem 5. Suppose that 𝐹 ∈ 𝐶

1
([0, 𝑇] × R𝑁,R) and 𝐼

𝑖𝑗
∈

𝐶(R,R), 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑙, satisfies (B2), (H1),
(H2), (H3), (I1), (I2), and (I3) and the following condition
holds.

(H6) There exist constants 𝜇 > 2, 𝛽 ∈ [0, 2), and 𝐿
5
> 0 and

a function 𝑎(𝑡) ∈ 𝐿1(0, 𝑇) and 𝑎(𝑡) ≥ 0 such that, for
every 𝑡 ∈ [0, 𝑇] and 𝑢 ∈ R𝑁 with |𝑢| ≥ 𝐿

5
,

𝜇𝐹 (𝑡, 𝑢) ≤ ∇ (𝐹 (𝑡, 𝑢) , 𝑢) + 𝑎 (𝑡) |𝑢|

𝛽
.

(16)

Thenproblem (1) has at least one nontrivial T-periodic solution.

The remaining of this paper is organized as follows. In
Section 2, some fundamental facts are given. In Section 3, the
main results of this paper are presented.
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2. Preliminaries

Let𝑋 be a real Banach space with direct sum decomposition
𝑋 = 𝑋

1
⊕ 𝑋

2. Consider two sequences of subspaces 𝑋1
0
⊂

𝑋

1

1
⊂ ⋅ ⋅ ⋅ ⊂ 𝑋

1, 𝑋2
0
⊂ 𝑋

2

1
⊂ ⋅ ⋅ ⋅ ⊂ 𝑋

2 such that 𝑋𝑗 =
⋃

𝑛∈𝑁
𝑋

𝑗

𝑛, 𝑗 = 1, 2. For every multi-index 𝛼 = (𝛼
1
, 𝛼

2
) ∈ 𝑁

2,
let 𝑋
𝛼
= 𝑋

𝛼1
⊕ 𝑋

𝛼2
; we define 𝛼 ≤ 𝛽 ⇔ 𝛼

1
≤ 𝛽

1
, 𝛼

2
≤ 𝛽

2
. A

sequence {𝛼
𝑛
} ⊂ 𝑁

2 is admissible if for every 𝛼 ∈ 𝑁2 there is
𝑚 ∈ 𝑁 such that 𝑛 ≥ 𝑚 ⇒ 𝛼

𝑛
≥ 𝛼. For every 𝜑 : 𝑋 → R, we

define by 𝜑
𝛼
the function 𝜑 restricted to𝑋

𝛼
.

Definition 6 (see [26]). Let 𝜑 ∈ 𝐶

1
(𝑋,R). The function 𝜑

satisfies the (𝑃𝑆)∗ condition if every sequence {𝑢
𝛼𝑛
}, such that

{𝛼

𝑛
} is admissible and

𝑢

𝛼𝑛
∈ 𝑋

𝛼𝑛
, sup

𝑛

𝜑 (𝑢

𝛼𝑛
) < ∞, 𝜑

󸀠

𝛼𝑛
(𝑢

𝛼𝑛
) 󳨀→ 0,

as 𝑛 󳨀→ ∞,

(17)

possesses a subsequence which converges to a critical point
of 𝜑.

Definition 7 (see [26]). Let 𝑋 be a Banach space with direct
sum decomposition𝑋 = 𝑋

1
⊕𝑋

2.The function 𝜑 ∈ 𝐶1(𝑋,R)
has local linking at 0 with respect to (𝑋1, 𝑋2), if there exists
𝑟 > 0 such that

𝜑 (𝑢) ≥ 0, ∀𝑢 ∈ 𝑋

1 with ‖𝑢‖ ≤ 𝑟,

𝜑 (𝑢) ≤ 0, ∀𝑢 ∈ 𝑋

2 with ‖𝑢‖ ≥ 𝑟.

(18)

Theorem 8 (see [26]). Suppose that 𝜑 ∈ 𝐶1(𝑋,R) satisfies the
following assumptions:

(A1) 𝜑 has local linking at 0 and 𝑋1 ̸= {0},
(A2) 𝜑 satisfies (𝑃𝑆)∗ condition,
(A3) 𝜑maps bounded sets into bounded sets,
(A4) for every 𝑚 ∈ 𝑁 and 𝑢 ∈ 𝑋1

𝑚
⊕ 𝑋

2, 𝜑(𝑢) → −∞ as
‖𝑢‖ → ∞.

Then 𝜑 has at least three critical points.

Let us recall some basic notation. In the Sobolev space
𝑋 := 𝐻

1

0
(0, 𝑇), consider the inner product

(𝑢, V) = ∫
𝑇

0

(𝑢 (𝑡) , V (𝑡)) 𝑑𝑡 + ∫
𝑇

0

(𝑢̇ (𝑡) , V̇ (𝑡)) 𝑑𝑡, (19)

for any 𝑢, V ∈ 𝑋. The corresponding norm is defined by

‖𝑢‖ = (∫

𝑇

0

|𝑢 (𝑡)|

2
𝑑𝑡 + ∫

𝑇

0

|𝑢̇ (𝑡)|

2
𝑑𝑡)

1/2

,

(20)

for any 𝑢 ∈ 𝑋. Moreover, it is well known that𝑋 is compactly
embedded in 𝐶[0, 𝑇], which implies that

‖𝑢‖∞
≤ 𝐶 ‖𝑢‖ , (21)

for some constant 𝐶 > 0, where ‖𝑢‖
∞
= max

𝑡∈[0,𝑇]
|𝑢(𝑡)|.

Define the corresponding functional 𝜑 on𝑋 by

𝜑 (𝑢) =

1

2

∫

𝑇

0

|𝑢̇ (𝑡)|

2
𝑑𝑡 +

1

2

∫

𝑇

0

(𝐴𝑢 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡

+

𝑙

∑

𝑗=1

𝑁

∑

𝑖=1

∫

𝑢
𝑖
(𝑡𝑗)

0

𝐼

𝑖𝑗 (
𝑠) 𝑑𝑠 − ∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡.

(22)

By the conditions of 𝐹 and 𝐼

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑁, 𝑗 =

1, 2, . . . , 𝑙, we get that functional 𝜑 is a continuously Gáteaux
differential functional whose Gáteaux derivative is the func-
tional 𝜑󸀠(𝑢), given by

(𝜑

󸀠
(𝑢) , V) = ∫

𝑇

0

(𝑢̇ (𝑡) , V̇ (𝑡)) 𝑑𝑡 + ∫
𝑇

0

(𝐴𝑢 (𝑡) , V (𝑡)) 𝑑𝑡

+

𝑙

∑

𝑗=1

𝑁

∑

𝑖=1

𝐼

𝑖𝑗
(𝑢

𝑖
(𝑡

𝑗
)) V𝑖 (𝑡

𝑗
)

− ∫

𝑇

0

(∇𝐹 (𝑡, 𝑢 (𝑡)) , V (𝑡)) 𝑑𝑡.

(23)

If 𝑢 ∈ 𝐻1
0
(0, 𝑇), then 𝑢 is absolutely continuous and 𝑢̇ ∈

𝐿

2
(0, 𝑇). In this case, Δ𝑢̇(𝑡) = 𝑢̇(𝑡+) − 𝑢̇(𝑡−) = 0may not hold

for some 𝑡 ∈ (0, 𝑇); this leads to impulsive effects.
Following the ideas of [11, 12], we can prove that the

critical points of 𝜑 are the weak solutions of problem (1).
To prove ourmain results, we have the following facts (see

[32]).
Letting

𝜙 (𝑢) = ∫

𝑇

0

1

2

[|𝑢̇ (𝑡)|

2
+ (𝐴𝑢 (𝑡) , 𝑢 (𝑡))] 𝑑𝑡,

(24)

we see that

𝜙 (𝑢) =

1

2

‖𝑢‖

2
−

1

2

∫

𝑇

0

((𝐼 − 𝐴) 𝑢 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡

=

1

2

((𝐼 − 𝐾) 𝑢, 𝑢) ,

(25)

where 𝐾 : 𝐻

1

𝑇
→ 𝐻

1

𝑇
is the liner self-adjoint operator

defined and 𝐼 is the 𝑁 × 𝑁 identity matrix. By the Riesz
representation theorem, we have

∫

𝑇

0

((𝐼 − 𝐴) 𝑢 (𝑡) , V (𝑡)) 𝑑𝑡 = (𝐾𝑢, V) . (26)

The compact imbedding of𝐻1
𝑇
into 𝐶([0, 𝑇], 𝑅𝑁) implies

that 𝐾 is compact. Summing up the above discussion, 𝜑(𝑢)
can be rewritten as

𝜑 (𝑢) =

1

2

((𝐼 − 𝐾) 𝑢, 𝑢) +

𝑙

∑

𝑗=1

𝑁

∑

𝑖=1

∫

𝑢
𝑖
(𝑡𝑗)

0

𝐼

𝑖𝑗 (
𝑠) 𝑑𝑠

+ ∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡.

(27)
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By classical spectral theory, we can decompose𝑋 into the
orthogonal sum of invariant subspace for 𝐼 − 𝐾

𝑋 = 𝐻

−
⊕ 𝐻

0
⊕ 𝐻

+
, (28)

where 𝐻0 = ker(𝐼 − 𝐾) and 𝐻− and 𝐻+ are such that, for
some 𝛿 > 0,

((𝐼 − 𝐾) 𝑢, 𝑢) ≤ −𝛿‖𝑢‖

2
, if 𝑢 ∈ 𝐻−,

((𝐼 − 𝐾) 𝑢, 𝑢) ≥ 𝛿‖𝑢‖

2
, if 𝑢 ∈ 𝐻+.

(29)

Notice that𝐻− is finite dimensional.
In this paper, we set 𝑎 := max

1≤𝑖,𝑗≤𝑁
|𝑎

𝑖𝑗
|.

3. Proof of Main Results

3.1. The Proof ofTheorem 2. Let𝑋1 = 𝐻+ and𝑋2 = 𝐻0 ⊕𝐻−;
then 𝑋 = 𝑋

1
⊕ 𝑋

2. Suppose {𝑒
𝑛
}

𝑛≥1
is an orthogonal basis of

𝐻

+. Correspondingly, let

𝑋

1

𝑛
= span {𝑒

1
, 𝑒

2
, . . . , 𝑒

𝑛
} , 𝑋

2

𝑛
= 𝑋

2
, 𝑛 ∈ 𝑁; (30)

then 𝑋𝑗 = ⋃

𝑛∈𝑁
𝑋

𝑗

𝑛, 𝑗 = 1, 2. We divide our proof into four
steps.

Step 1. 𝜑 has local linking at 0.
In view of (I1), we obtain

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝑢

0

𝐼

𝑖𝑗 (
𝑠) 𝑑𝑠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

𝑏

𝑖𝑗

𝑟

𝑖𝑗
+ 1

|𝑢|

𝑟𝑖𝑗+1
. (31)

Combining this inequality, we have

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝑢

0
𝐼

𝑖𝑗 (
𝑠) 𝑑𝑠

󵄨

󵄨

󵄨

󵄨

󵄨

|𝑢|

2
≤

𝑏

𝑖𝑗

𝑟

𝑖𝑗
+ 1

|𝑢|

𝑟𝑖𝑗−1
󳨀→ 0, as 𝑢 󳨀→ 0.

(32)

Since 𝑟
𝑖𝑗
> 1, this implies

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝑢

0
𝐼

𝑖𝑗 (
𝑠) 𝑑𝑠

󵄨

󵄨

󵄨

󵄨

󵄨

|𝑢|

2
󳨀→ 0, as 𝑢 󳨀→ 0.

(33)

Applying (H2) and (33), for any 𝜀 > 0, there exists 𝑟
1
> 0 such

that

|∇𝐹 (𝑡, 𝑢)| ≤ 2𝜀 |𝑢| ,

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝑢

0

𝐼

𝑖𝑗 (
𝑠) 𝑑𝑠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝜀|𝑢|

2
,

∀ |𝑢| ≤ 𝑟1
, 𝑡 ∈ [0, 𝑇] ,

(34)

which implies that

|𝐹 (𝑡, 𝑢)| =

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

1

0

(∇𝐹 (𝑡, 𝑠𝑢) , 𝑢) 𝑑𝑠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ ∫

1

0

|∇𝐹 (𝑡, 𝑠𝑢)| |𝑢| 𝑑𝑠

≤ ∫

1

0

2𝑠𝜀|𝑢|

2
𝑑𝑠 = 𝜀|𝑢|

2
.

(35)

On one hand, by (34) and (35), for all 𝑢 ∈ 𝑋1 = 𝐻+ with
‖𝑢‖ ≤ 𝑟

2
:= 𝑟

1
/𝐶. Choose 𝜀 = 𝛿/4(𝑙𝑁 + 𝑇)𝐶

2; then one has

𝜑 (𝑢) =

1

2

((𝐼 − 𝐾) 𝑢, 𝑢) +

𝑙

∑

𝑗=1

𝑁

∑

𝑖=1

∫

𝑢
𝑖
(𝑡𝑗)

0

𝐼

𝑖𝑗 (
𝑠) 𝑑𝑠

− ∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

≥

𝛿

2

‖𝑢‖

2
−

𝑙

∑

𝑗=1

𝑁

∑

𝑖=1

(𝜀

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

𝑖
(𝑡

𝑗
)

󵄨

󵄨

󵄨

󵄨

󵄨

2

) − 𝜀∫

𝑇

0

|𝑢|

2
𝑑𝑡

≥

𝛿

2

‖𝑢‖

2
− 𝑙𝑁𝐶

2
𝜀‖𝑢‖

2
− 𝑇𝐶

2
𝜀‖𝑢‖

2

=

𝛿

4

‖𝑢‖

2
≥ 0.

(36)

On the other hand, since dim𝑋

2 is finite, there exists a
constant𝐾

1
> 0 such that

‖𝑢‖ ≤ 𝐾1

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

, ∀𝑢 ∈ 𝑋

2
. (37)

For all 𝑢 ∈ 𝑋

2
= 𝐻

−
⊕ 𝐻

0 with ‖𝑢‖ ≤ 𝑟

3
:= 𝑟

1
/𝐶. Choose

𝜀 = 𝛿/4(𝑙𝑁 + 𝑇)𝐶

2
𝐾

2

1
; by (34), (35), and (37), we obtain

𝜑 (𝑢) =

1

2

((𝐼 − 𝐾) 𝑢

−
, 𝑢

−
) +

𝑙

∑

𝑗=1

𝑁

∑

𝑖=1

∫

𝑢
𝑖
(𝑡𝑗)

0

𝐼

𝑖𝑗 (
𝑠) 𝑑𝑠

− ∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

≤ −

𝛿

2

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

+

𝑙

∑

𝑗=1

𝑁

∑

𝑖=1

(𝜀

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

𝑖
(𝑡

𝑗
)

󵄨

󵄨

󵄨

󵄨

󵄨

2

) + 𝜀∫

𝑇

0

|𝑢|

2
𝑑𝑡

≤ −

𝛿

2

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

+ (𝑙𝑁 + 𝑇)𝐶

2
𝜀‖𝑢‖

2

≤ −

𝛿

2

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

+ (𝑙𝑁 + 𝑇)𝐶

2
𝐾

2

1
𝜀

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

= −

𝛿

4

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

≤ 0.

(38)

Let 𝑟 = min{𝑟
2
, 𝑟

3
}; one has

𝜑 (𝑢) ≥ 0, 𝑢 ∈ 𝑋

1
, ‖𝑢‖ ≤ 𝑟,

𝜑 (𝑢) ≤ 0, 𝑢 ∈ 𝑋

2
, ‖𝑢‖ ≥ 𝑟.

(39)

Step 2. 𝜑maps bounded sets into bounded sets.
By (H3) and 𝐹 ∈ 𝐶

1
([0, 𝑇] × R𝑁,R), there exists 𝑐

2
> 0

such that

|∇𝐹 (𝑡, 𝑢)| ≤ 𝑐2
+ 𝑐

1|
𝑢|

𝑑
, ∀ (𝑡, 𝑢) ∈ [0, 𝑇] ×R

𝑁
,

(40)

which implies that

|𝐹 (𝑡, 𝑢)| ≤ ∫

1

0

|∇𝐹 (𝑡, 𝑠𝑢)| |𝑢| 𝑑𝑠 ≤ ∫

1

0

(𝑐

2 |
𝑢| + 𝑐1|

𝑢|

𝑑+1
) 𝑑𝑠

= 𝑐

2 |
𝑢| + 𝑐1|

𝑢|

𝑑+1
, ∀ (𝑡, 𝑢) ∈ [0, 𝑇] ×R

𝑁
.

(41)



Abstract and Applied Analysis 5

Note that

󵄨

󵄨

󵄨

󵄨

𝜑 (𝑢)

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

1

2

∫

𝑇

0

|𝑢̇ (𝑡)|

2
𝑑𝑡 +

1

2

∫

𝑇

0

(𝐴𝑢 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡

+

𝑙

∑

𝑗=1

𝑁

∑

𝑖=1

∫

𝑢
𝑖
(𝑡𝑗)

0

𝐼

𝑖𝑗 (
𝑠) 𝑑𝑠 − ∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

1

2

∫

𝑇

0

|𝑢̇ (𝑡)|

2
𝑑𝑡 +

1

2

𝑁𝑎∫

𝑇

0

|𝑢 (𝑡)|

2
𝑑𝑡

+

𝑙

∑

𝑗=1

𝑁

∑

𝑖=1

(

𝑏

𝑖𝑗

𝑟

𝑖𝑗
+ 1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

𝑖
(𝑡

𝑗
)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑟𝑖𝑗+1

)

+ 𝑐

2
∫

𝑇

0

|𝑢| 𝑑𝑡 + 𝑐1
∫

𝑇

0

|𝑢|

𝑑+1
𝑑𝑡

≤ (

1

2

+

1

2

𝑁𝑎) ‖𝑢‖

2
+

𝑙

∑

𝑗=1

𝑁

∑

𝑖=1

(

𝑏

𝑖𝑗

𝑟

𝑖𝑗
+ 1

𝐶

𝑟𝑖𝑗+1
‖𝑢‖

𝑟𝑖𝑗+1
)

+ 𝑐

2
𝐶𝑇 ‖𝑢‖ + 𝑐1

𝐶

𝑑1+1
𝑇‖𝑢‖

𝑑+1
.

(42)

It implies that 𝜑maps bounded sets into bounded sets.

Step 3. 𝜑 satisfies the (𝑃𝑆)∗ condition.
Consider a (𝑃𝑆)∗ sequence {𝑢

𝛼𝑛
} such that {𝛼

𝑛
} is admis-

sible. Then there exists a constant𝑀
1
> 0 such that

󵄨

󵄨

󵄨

󵄨

󵄨

𝜑 (𝑢

𝛼𝑛
)

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝑀

1
,

󵄩

󵄩

󵄩

󵄩

󵄩

𝜑

󸀠

𝛼𝑛
(𝑢

𝛼𝑛
)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝑀

1
. (43)

By (41), for |𝑢| ≤ 𝐿
4
, one has

|𝐹 (𝑡, 𝑢)| ≤ 𝑐2 |
𝑢| + 𝑐1|

𝑢|

𝑑+1
≤ 𝑐

2
𝐿

4
+ 𝑐

1
𝐿

4

𝑑+1
;

(44)

together with (H4), one has

𝜇𝐹 (𝑡, 𝑢) ≤ (∇𝐹 (𝑡, 𝑢) , 𝑢) + 𝑏1|
𝑢|

2
+ 𝜇 (𝑐

2
𝐿

4
+ 𝑐

1
𝐿

4

𝑑+1
) ,

(45)

for all (𝑡, 𝑢) ∈ [0, 𝑇] ×R𝑁.
It follows from (21), (43), (45), (H1), and (I2) that

𝑀

1
+

𝑀

1

𝜇

󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

𝛼𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

≥ 𝜑 (𝑢

𝛼𝑛
) −

1

𝜇

(𝜑

󸀠
(𝑢

𝛼𝑛
) , 𝑢

𝛼𝑛
)

= (

1

2

−

1

𝜇

)∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢̇

𝛼𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑡 + (

1

2

−

1

𝜇

)∫

𝑇

0

(𝐴𝑢

𝛼𝑛
, 𝑢

𝛼𝑛
) 𝑑𝑡

+

1

𝜇

∫

𝑇

0

((∇𝐹 (𝑡, 𝑢

𝛼𝑛
) , 𝑢

𝛼𝑛
) − 𝜇𝐹 (𝑡, 𝑢

𝛼𝑛
)) 𝑑𝑡

+

1

𝜇

𝑙

∑

𝑗=1

𝑁

∑

𝑖=1

(𝜇∫

𝑢
𝑖

𝛼𝑛
(𝑡𝑗)

0

𝐼

𝑖𝑗 (
𝑠) 𝑑𝑠 − 𝐼𝑖𝑗

(𝑢

𝑖

𝛼𝑛
(𝑡

𝑗
)) 𝑢

𝑖

𝛼𝑛
(𝑡

𝑗
))

≥ (

1

2

−

1

𝜇

)∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢̇

𝛼𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑡 + (

𝜃

2

−

𝜃

𝜇

−

𝑏

1

𝜇

)∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

𝛼𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑡

− 𝜇𝑇 (𝑐

2
𝐿

4
+ 𝑐

1
𝐿

4

𝑑+1
) −

𝑏

2

𝜇

𝑙

∑

𝑗=1

𝑁

∑

𝑖=1

󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

𝛼𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

𝛾

∞

≥ min{(1
2

−

1

𝜇

) , (

1

2

−

1

𝜇

) 𝜃 −

𝑏

1

𝜇

}

󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

𝛼𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

2

−

𝑏

2
𝑙𝑁

𝜇

𝐶

𝛾󵄩
󵄩

󵄩

󵄩

󵄩

𝑢

𝛼𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

𝛾

− 𝜇𝑇 (𝑐

2
𝐿

4
+ 𝑐

1
𝐿

4

𝑑+1
) .

(46)

Since 𝜇 > 2, 𝛾 ∈ [0, 2), and 𝑏
1
∈ (0, (𝜇/2−1)𝜃), (46) shows

that {𝑢
𝛼𝑛
} is bounded in 𝐻1

𝑇
. By a method similar to that of

[10], we can prove that {𝑢
𝛼𝑛
} has a convergent subsequence.

Thus 𝜑 satisfies (𝑃𝑆)∗ condition.

Step 4. For every 𝑚 ∈ 𝑁 and 𝑢 ∈ 𝑋1
𝑚
⊕ 𝑋

2, 𝜑(𝑢) → −∞ as
‖𝑢‖ → ∞.

Since dim(𝑋1
𝑚
⊕ 𝑋

2
) is finite, there exists 𝑀

2
> 0 such

that

‖𝑢‖ ≤ 𝑀2
(∫

𝐸0

|𝑢|

2
𝑑𝑡)

1/2

, ∀𝑢 ∈ 𝑋

1

𝑚
⊕ 𝑋

2
.

(47)

In fact, for𝑀
3
= 𝑀

2

2
(max{1/2, (1/2)𝑁𝑎} + 𝛿/2) > 0, by (B2),

there exists𝑀
4
> 0 such that

𝐹 (𝑡, 𝑢) ≥ 𝑀3|
𝑢|

2
−𝑀

4
, ∀𝑢 ∈ R

𝑁
, a.e. 𝑡 ∈ 𝐸

0
. (48)

Hence, it follows from (47), (48), and (I3) that

𝜑 (𝑢) =

1

2

((𝐼 − 𝐾) 𝑢, 𝑢) +

𝑙

∑

𝑗=1

𝑁

∑

𝑖=1

∫

𝑢
𝑖
(𝑡𝑗)

0

𝐼

𝑖𝑗 (
𝑠) 𝑑𝑠

− ∫

𝑇

0

𝐹 (𝑡, 𝑢) 𝑑𝑡

=

1

2

((𝐼 − 𝐾) 𝑢

−
, 𝑢

−
) +

1

2

((𝐼 − 𝐾) 𝑢

+
, 𝑢

+
)

+

𝑙

∑

𝑗=1

𝑁

∑

𝑖=1

∫

𝑢
𝑖
(𝑡𝑗)

0

𝐼

𝑖𝑗 (
𝑠) 𝑑𝑠 − ∫

𝑇

0

𝐹 (𝑡, 𝑢) 𝑑𝑡

≤ −

𝛿

2

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

+

1

2

∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

𝑢̇

+󵄨
󵄨

󵄨

󵄨

2

𝑑𝑡 +

1

2

∫

𝑇

0

(𝐴𝑢

+
, 𝑢

+
) 𝑑𝑡

− ∫

𝐸0

𝐹 (𝑡, 𝑢) 𝑑𝑡

≤ −

𝛿

2

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

+max {1
2

,

1

2

𝑁𝑎}

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

−𝑀

3
∫

𝐸0

|𝑢|

2
𝑑𝑡 +𝑀

4
𝑇
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≤ −

𝛿

2

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

+max {1
2

,

1

2

𝑁𝑎}

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

− (max {1
2

,

1

2

𝑁𝑎} +

𝛿

2

) ‖𝑢‖

2
+𝑀

4
𝑇

≤ −

𝛿

2

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

+max {1
2

,

1

2

𝑁𝑎}

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

− (max {1
2

,

1

2

𝑁𝑎} +

𝛿

2

) (

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

+

󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

0󵄩
󵄩

󵄩

󵄩

󵄩

2

) +𝑀

4
𝑇

≤ −

𝛿

2

‖𝑢‖

2
+𝑀

4
𝑇,

(49)

for 𝑢 ∈ 𝑋1
𝑚
⊕ 𝑋

2 and a.e. 𝑡 ∈ 𝐸
0
, which implies that

𝜑 (𝑢) 󳨀→ −∞, as ‖𝑢‖ 󳨀→ ∞ on 𝑢 ∈ 𝑋

1

𝑚
⊕ 𝑋

2
. (50)

Therefore, all the assumptions of Theorem 8 are verified.
Then, the proof of Theorem 2 is completed.

3.2. The Proof of Theorem 4. Following the same procedures
in the proof of Theorem 2, we can prove that 𝜑 satisfies (A1),
(A2), and (A3) inTheorem 8.

To prove (A4), set 𝜙(𝜉) = 𝐹(𝑡, 𝜉𝑢)𝜉

−𝜇
+ (𝑏

3
/(𝜇 − 2))(1 −

𝜉

2−𝜇
)|𝑢|

2, 𝜉 ∈ (0, +∞); then by (H5), we have

𝜙

󸀠
(𝜉) = (∇𝐹 (𝑡, 𝜉𝑢) , 𝑢) 𝜉

−𝜇
− 𝜇𝜉

−𝜇−1
𝐹 (𝑡, 𝜉𝑢) + 𝑏3

𝜉

1−𝜇
|𝑢|

2

= ((∇𝐹 (𝑡, 𝜉𝑢) , 𝜉𝑢) − 𝜇𝐹 (𝑡, 𝜉𝑢)) 𝜉

−𝜇−1
+ 𝑏

3
𝜉

1−𝜇
|𝑢|

2

≥ 0.

(51)

When 0 < 𝜉 ≤ 1, it follows from (51) that

𝜙 (1) = 𝐹 (𝑡, 𝑢) ≥ 𝜙 (𝜉) = 𝐹 (𝑡, 𝜉𝑢) 𝜉

−𝜇

+

𝑏

3

𝜇 − 2

(1 − 𝜉

2−𝜇
) |𝑢|

2
;

(52)

this implies

𝐹 (𝑡, 𝑢) ≥ (𝐹(𝑡,

𝑢

|𝑢|

) −

𝑏

3

𝜇 − 2

) |𝑢|

𝜇
+

𝑏

3

𝜇 − 2

|𝑢|

2
,

if |𝑢| ≥ 1.
(53)

Set 𝑚
2
= max{𝐹(𝑡, 𝑢) | 𝑡 ∈ [0, 𝑇], 𝑢 ∈ R𝑁, |𝑢| ≤ 1}; then by

(53), we have

𝐹 (𝑡, 𝑢) ≥ (𝑚1
−

𝑏

3

𝜇 − 2

) |𝑢|

𝜇
+

𝑏

3

𝜇 − 2

|𝑢|

2
− 𝑚

2
, (54)

∀(𝑡, 𝑢) ∈ [0, 𝑇]×R𝑁; since dim(𝑋1
𝑚
⊕𝑋

2
) is finite, there exists

𝑀

5
> 0 such that

‖𝑢‖

𝜇
≤ 𝑀

5
∫

𝑇

0

|𝑢|

𝜇
𝑑𝑡, ∀𝑢 ∈ 𝑋

1

𝑚
⊕ 𝑋

2
.

(55)

By (54), (55), and (I3), we have

𝜑 (𝑢) =

1

2

∫

𝑇

0

|𝑢̇|

2
𝑑𝑡 +

1

2

∫

𝑇

0

(𝐴𝑢, 𝑢) 𝑑𝑡

+

𝑙

∑

𝑗=1

𝑁

∑

𝑖=1

∫

𝑢
𝑖
(𝑡𝑗)

0

𝐼

𝑖𝑗 (
𝑠) 𝑑𝑠 − ∫

𝑇

0

𝐹 (𝑡, 𝑢) 𝑑𝑡

≤

1

2

∫

𝑇

0

|𝑢̇|

2
𝑑𝑡 +

1

2

𝑁𝑎∫

𝑇

0

|𝑢|

2
𝑑𝑡

− (𝑚

1
−

𝑏

3

𝜇 − 2

)∫

𝑇

0

|𝑢|

𝜇
𝑑𝑡 +

𝑏

3

𝜇 − 2

∫

𝑇

0

|𝑢|

2
𝑑𝑡 − 𝑚

2
𝑇

≤ max {1
2

,

1

2

𝑁𝑎} ‖𝑢‖

2
−

1

𝑀

5

(𝑚

1
−

𝑏

3

𝜇 − 2

) ‖𝑢‖

𝜇

+

𝑏

3

𝑀

5
(𝜇 − 2)

‖𝑢‖

2
− 𝑚

2
𝑇.

(56)

Since 𝜇 > 2 and𝑚
1
− (𝑏

3
/(𝜇 − 2)) > 0, (56) implies

𝜑 (𝑢) 󳨀→ −∞, as ‖𝑢‖ 󳨀→ ∞ on 𝑢 ∈ 𝑋

1

𝑚
⊕ 𝑋

2
. (57)

Consequently, the conclusion follows from Theorem 8. This
completes the proof.

3.3. The Proof of Theorem 5. Similar to the proof of Theo-
rem 2, 𝜑 satisfies all conditions of Theorem 8. Thus, problem
(1) has at least one nontrivial T-periodic solution.
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