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This paper deals with a Neumann boundary value problem for a volume-filling chemotaxis model with logistic growth in a 𝑑-
dimensional box T𝑑 = (0, 𝜋)

𝑑
(𝑑 = 1, 2, 3). It is proved that given any general perturbation of magnitude 𝛿, its nonlinear evolution

is dominated by the corresponding linear dynamics along a finite number of fixed fastest growing modes, over a time period of the
order ln(1/𝛿). Each initial perturbation certainly can behave drastically different from another, which gives rise to the richness of
patterns.

1. Introduction

An important variant of the chemotaxis model was initially
proposed by Painter and Hillen in [1] to model the volume-
filling effect. In the volume-filling effect, it is assumed that
cells have a certain finite (nonzero) volume and that the
occupation of an area limits other cells from penetrating it. A
simple version of the volume-filling chemotaxis model (VF)
is the following:

𝑈𝑡 = ∇ (𝑑1∇𝑈 − 𝜒𝑈 (1 − 𝑈)∇𝑉) ,

𝑉𝑡 = 𝑑2∇
2
𝑉 + 𝛼𝑈 − 𝛽𝑉,

(1)

where 𝑑1, 𝑑2, 𝜒, 𝛼, and 𝛽 are given positive constants. 𝑈(𝑥, 𝑡)
is the cell density and 𝑉(𝑥, 𝑡) denotes the density of the
external chemical substance which is secreted by the cells
themselves. 𝑑1 and 𝑑2 denote the cell and chemical diffusion
coefficients, respectively. 𝜒 is called chemosensitivity. The
term 𝑈(1 − 𝑈)∇𝑉 denotes the chemotactic flux under a vol-
ume constraint 1 (called crowding capacity), meaning that the
chemotactic movement will be inhibited at the‘aggregation
location where the cell density reaches 1.

In recent years, the chemotaxis models with volume-fill-
ing effect have been studied extensively.Hillen andPainter [2]

firstly proved the global existence of solutions. Numerical
simulations in one and two dimensions show interesting
phenomena of pattern formation and formation of stable
aggregates. Wrzosek [3] showed the existence of a compact
global attractor in the space 𝑊1,𝑝(Ω,R2), 𝑝 > 𝑛, Ω ⊂ R𝑛

for some cases. In [4], the structure of the attractor can be
understood using Lyapunov functions. Stationary solutions
which are inhomogeneous in space were investigated for a
given range of parameters. In [1], a numerical explorationwas
conducted to determine the longtime patterning behaviour,
revealing formation of multiple plateau type patterns which
undergo a coarsening processwith increasingly long transient
times. Potapov and Hillen [5] investigated the metastability
of steady states. The underlying bifurcation diagram was
identified, revealing that the unstable eigenvalues are expo-
nentially small. The plateau interactions were studied using
asymptotic methods. In [6], it was obtained that a priori
estimates for the classical chemotaxis model of Patlak, Keller,
and Segel when a nonlinear diffusion or a nonlinear che-
mosensitivity was considered accounting for the finite size
of the cells and how entropy estimates give natural condi-
tions on the nonlinearities implying the absence of blow-up
for the solutions were showed. Burger et al. [7] discussed
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the effects of linear and nonlinear diffusion in the large time
asymptotic behavior of the Keller-Segel model of chemotaxis
with volume-filling effect. Moreover, the global existence
of solutions and nontrivial steady states were also studied.
Wang and Hillen [8] established the global existence of
classical solutions to a generalized chemotaxis model, which
includes the volume-filling effect expressed through a nonlin-
ear squeezing probability. Necessary and sufficient conditions
for spatial pattern formation were given and the underlying
bifurcations were analyzed. In [9], the stationary solutions of
the volume-filling chemotaxis model without a growth term
were obtained by Jiang and Zhang.

Moreover, Wrzosek [10] considered various assumptions
on nonlinear diffusion and chemotactic sensitivity function
which lead to the existence of global in time solutions,
thus preventing blow-up. In [11], Winkler proved that if
certain conditions were fulfilled, then there were solutions
that blow up in either finite or infinite time. In particular,
in the framework of chemotaxis models incorporating a
volume-filling effect in the sense of Painter and Hillen [1],
his results indicated how strongly the cellular movement
must be inhibited at large cell densities in order to rule
out chemotactic collapse. Winkler and Djie [12] discussed
boundedness and finite-time collapse for a chemotaxis sys-
tem with volume-filling effect. Wang et al. [13] proved that
for a wide range of nonlinear diffusion operators, including
singular and degenerate ones, if the taxis force was strong
enough with respect to diffusion and the initial data were
chosen properly, then there was a classical solution which
reaches the threshold at the maximal time of its existence;
no matter whether the latter was finite or infinite. Zhang
and Zheng [14] obtained the crucial uniform boundedness of
the solution for a quasilinear nonuniform parabolic system
modelling chemotaxis with volume-filling effect and the
results on convergence to equilibrium and the decay rate
using a suitable nonsmooth Simon-Łojasiewicz approach. In
[15], the uniform boundedness, global in time existence and
uniqueness of classical solution, were proved. With the help
of a suitable nonsmooth Simon-Łojasiewicz approach, the
results on convergence of the solution to equilibrium and the
convergence rate were obtained. Li and Zhang [16] classified
the existence or nonexistence of steady state solutions of a 1-
D chemotaxis model with volume-filling effect. Their results
provided insights on how the biological parameters affect
pattern formation.

The chemotaxis models with logistic growth but without
a volume-filling effect were studied (see [17–22]). The global
attractor and traveling wave solutions of a volume-filling
chemotaxis model with logistic growth were obtained in [3]
and [23], respectively. Ma et al. [24] studied the existence
of stationary solutions of a volume-filling chemotaxis model
with logistic cell growth. Moreover, based on an explicit
formula for the stationary solutions, which is derived by
asymptotic bifurcation analysis, the stability criteria were
established and a selection mechanism of the principal
wave modes for the stable stationary solution by estimating
the leading term of the principal eigenvalue was found.
Quite recently, Ma et al. in [25] studied the nonexistence
of nonconstant steady state (i.e., stationary pattern) for

a chemotaxismodel with the volume-filling effect and logistic
cell growth and established the critical value of the chemotac-
tic coefficient between the existence and the nonexistence of
stationary pattern.

Guo and Hwang [26] investigated nonlinear dynamics
near an unstable constant equilibrium in the classical Keller-
Segel model. Their results can be interpreted as a rigorous
mathematical characterization for the early-stage pattern
formation in theKeller-Segelmodel. Very recently, Fu andLiu
in [22] and [27] studied instability in the Keller-Segel model
with a logistic source and cubic source term, respectively.
Their results indicated that chemotaxis-driven nonlinear
instability occurs in these models.

In this paper, wemainly consider the nonlinear instability
for the following chemotaxis model:

𝑈𝑡 = ∇ (𝑑1∇𝑈 − 𝜒𝑈 (1 − 𝑈)∇𝑉) + 𝜇𝑈(1 −
𝑈

𝑈𝑐

) ,

𝑥 ∈ T
𝑑
, 𝑡 > 0,

𝑉𝑡 = 𝑑2∇
2
𝑉 + 𝛼𝑈 − 𝛽𝑉, 𝑥 ∈ T

𝑑
, 𝑡 > 0

(2)

which is subject to the Neumann boundary conditions

𝜕𝑈

𝜕𝑥𝑖

=
𝜕𝑉

𝜕𝑥𝑖

= 0, at 𝑥𝑖 = 0, 𝜋, 1 < 𝑖 < 𝑑 (3)

and the nonnegative initial data

𝑈 (𝑥, 0) = 𝑈0 (𝑥) ≥ 0, 𝑉 (𝑥, 0) = 𝑉0 (𝑥) ≥ 0,

𝑥 ∈ T
𝑑
,

(4)

where T𝑑 = (0, 𝜋)
𝑑
(𝑑 = 1, 2, 3) is a 𝑑-dimensional box.

The term 𝜇𝑈(1 − 𝑈/𝑈𝑐) describes the logistic growth of cells
with growth rate 𝜇 > 0 and carrying capacity 𝑈𝑐 fulfilling
0 < 𝑈𝑐 ≤ 1. Our main result (see Theorem 6) indicates
that the nonlinear dynamics near an unstable constant equi-
librium points in the classical Keller-Segel model, the Keller-
Segel model with a logistic source and cubic source term,
respectively, and a volume-filling chemotaxis model with
logistic source term are almost similar.

The organization of this paper is as follows: in Section 2,
we show that the unique positive equilibrium point of (2)
without chemotaxis is globally asymptotically stable and
cross diffusion cannot induce the instability of the positive
equilibrium. In Section 3, we consider the growing modes
of (2). In Section 4, we present and prove the Bootstrap
lemma, which was first introduced in [28]. In Section 5, for
any given general perturbation of magnitude 𝛿, we prove that
its nonlinear evolution is dominated by the corresponding
linear dynamics along a fixed finite number of fastest growing
modes, over a time period of the order ln(1/𝛿). Each initial
perturbation certainly can behave drastically different from
another, which gives rise to the richness of patterns.
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2. Stability of Positive Equilibrium Point of
(2) without Chemotaxis

We first discuss the following corresponding kinetic equa-
tions of (2):

𝑈𝑡 = 𝜇𝑈(1 −
𝑈

𝑈𝑐

) , 𝑡 > 0,

𝑉𝑡 = 𝛼𝑈 − 𝛽𝑉, 𝑡 > 0.

(5)

We use [⋅, ⋅] to denote a column vector. Evidently, (5) has
the unique positive equilibrium point W = [𝑈,𝑉] = [𝑈𝑐,

(𝛼/𝛽)𝑈𝑐]. For simplicity, we denote F(W) = [𝜇𝑈(1 − 𝑈/𝑈𝑐),

𝛼𝑈 − 𝛽𝑉], and a direct calculation yields

FW (W) = (
−𝜇 0

𝛼 −𝛽
) . (6)

The characteristic polynomial of FW(W) is 𝜑(𝜆) = (𝜆 +

𝜇)(𝜆 + 𝛽); −𝜇 and −𝛽 are the two roots of 𝜑(𝜆) = 0. Hence
[𝑈𝑐, (𝛼/𝛽)𝑈𝑐] is locally stable. Define 𝐸(𝑡) = 𝑝(𝑈 − 𝑈𝑐 −

𝑈𝑐 ln(𝑈/𝑈𝑐)) + (𝑉 − (𝛼/𝛽)𝑈𝑐)
2, where 𝑝 = 2𝛼

2
𝑈𝑐/𝛽𝜇. By the

Lyapunov-LaSalle invariance principle [29], [𝑈𝑐, (𝛼/𝛽)𝑈𝑐] is
globally asymptotically stable.

We now consider system (2) without chemotaxis in the
following form:

𝑈𝑡 = 𝑑1Δ𝑈 + 𝜇𝑈(1 −
𝑈

𝑈𝑐

) , 𝑥 ∈ T
𝑑
(𝑑 = 1, 2, 3) ,

𝑡 > 0,

𝑉𝑡 = 𝑑2Δ𝑉 + 𝛼𝑈 − 𝛽𝑉, 𝑥 ∈ T
𝑑
(𝑑 = 1, 2, 3) ,

𝑡 > 0,

𝜕𝑈

𝜕𝑥𝑖

=
𝜕𝑉

𝜕𝑥𝑖

= 0, at 𝑥𝑖 = 0, 𝜋, for 1 ≤ 𝑖 ≤ 𝑑.

(7)

Let 0 = 𝜇1 < 𝜇2 < 𝜇3 < ⋅ ⋅ ⋅ be the eigenvalues of the oper-
ator −Δ on T𝑑 (𝑑 = 1, 2, 3) with the homogeneous Neumann
boundary condition and 𝐸(𝜇𝑖) the eigenspace corresponding
to 𝜇𝑖 in 𝐿

2
(T𝑑). Let𝑋 = [𝐿

2
(T𝑑)]
2, {𝜙𝑖𝑗 : 𝑗 = 1, . . . , dim𝐸(𝜇𝑖)}

be an orthonormal basis of 𝐸(𝜇𝑖), and𝑋𝑖𝑗 = {c ⋅ 𝜙𝑖𝑗 | c ∈ R2}.
Then𝑋 = ⊕

∞

𝑖=1
𝑋𝑖,𝑋𝑖 = ⊕

dim𝐸(𝜇𝑖)
𝑗=1

𝑋𝑖𝑗.
LetD = diag(𝑑1, 𝑑2) and L = DΔ + FW(W). The lineari-

zation of (7) at [𝑈, 𝑉] can be expressed byW𝑡 = L(W −W).
For each 𝑖 ≥ 1, 𝑋𝑖 is invariant under the operator L, and 𝜆 is
an eigenvalue of L on 𝑋𝑖 if and only if it is an eigenvalue of
the matrix

−𝜇𝑖D + FW (W) = (
−𝜇𝑖𝑑1 − 𝜇 0

𝛼 −𝜇𝑖𝑑2 − 𝛽
) . (8)

Thus, −𝜇𝑖D + FW(W) has two negative eigenvalues −𝜇𝑖𝑑1 −
𝜇 and −𝜇𝑖𝑑2 − 𝛽. It follows from Theorem 5.1.1 in [30] that
[𝑈𝑐, (𝛼/𝛽)𝑈𝑐] is locally asymptotically stable.

Let W = [𝑈,𝑉] be the unique nonnegative global solu-
tion. The maximum principle gives

0 ≤ 𝑈 (𝑥, 𝑡) ≤ max{𝑈𝑐, sup
T𝑑

𝑈0 (𝑥)} ,

0 ≤ 𝑉 (𝑥, 𝑡) ≤ max{𝛼
𝛽
𝑈𝑐,

𝛼

𝛽
sup
T𝑑

𝑈0 (𝑥) , sup
T𝑑

𝑉0 (𝑥)} .

(9)

Moreover, by the strong maximum principle [31], we know
that if 𝑈0, 𝑉0 ≥ ( ̸≡ )0, then 𝑈(𝑥, 𝑡) > 0, 𝑉(𝑥, 𝑡) > 0 on T

𝑑 for
all 𝑡 > 0.

We define the Lyapunov function

𝐸 (𝑡) = ∫
T𝑑
[𝑝(𝑈 − 𝑈𝑐 − 𝑈𝑐 ln

𝑈

𝑈𝑐

) + (𝑉 −
𝛼

𝛽
𝑈𝑐)

2

]𝑑𝑥,

(10)

where 𝑝 = 2𝛼
2
𝑈𝑐/𝛽𝜇. Then 𝐸(𝑡) ≥ 0 for all 𝑡 ≥ 0. Applying

(7) and integration by parts, we have

𝐸
󸀠
(𝑡) = −∫

T𝑑
{
𝑝𝑑1𝑈𝑐

𝑈2
|∇𝑈|
2
+ 2𝑑2|∇𝑉|

2
}𝑑𝑥

− ∫
T𝑑
{
𝑝𝜇

𝑈𝑐

(𝑈 − 𝑈𝑐)
2
− 2𝛼 (𝑈 − 𝑈𝑐) (𝑉 −

𝛼

𝛽
𝑈𝑐)

+ 2𝛽(𝑉 −
𝛼

𝛽
𝑈𝑐)

2

}𝑑𝑥.

≤ −
𝛼
2

𝛽
∫
T𝑑
(𝑈 − 𝑈𝑐)

2
𝑑𝑥

− 𝛽∫
T𝑑
(𝑉 −

𝛼

𝛽
𝑈𝑐)

2

𝑑𝑥.

(11)

By (9), (11), the basic estimates for parabolic equations [31],
and Lemma 2.1 in [22] (which is given in [32] in Chinese), we
can conclude that

lim
𝑡→∞

󵄩󵄩󵄩󵄩𝑈(⋅, 𝑡) − 𝑈𝑐
󵄩󵄩󵄩󵄩𝐿2(T𝑑) = 0,

lim
𝑡→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑉(⋅, 𝑡) −

𝛼

𝛽
𝑈𝑐

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑑)

= 0.

(12)

The global asymptotic stability of [𝑈𝑐, (𝛼/𝛽)𝑈𝑐] follows from
(12) together with the local stability of [𝑈𝑐, (𝛼/𝛽)𝑈𝑐].

Next, we consider that the cross diffusion model

𝑈𝑡 = 𝑑1Δ (𝑈 + 𝑑3𝑈𝑉) + 𝜇𝑈(1 −
𝑈

𝑈𝑐

) ,

𝑥 ∈ T
𝑑
, 𝑡 > 0,

𝑉𝑡 = 𝑑2Δ𝑉 + 𝛼𝑈 − 𝛽𝑉, 𝑥 ∈ T
𝑑
, 𝑡 > 0,
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𝜕𝑈

𝜕𝑥𝑖

=
𝜕𝑉

𝜕𝑥𝑖

= 0, at 𝑥𝑖 = 0, 𝜋, for 1 ≤ 𝑖 ≤ 𝑑,

𝑈 (𝑥, 0) = 𝑈0 (𝑥) ≥ 0, 𝑉 (𝑥, 0) = 𝑉0 (𝑥) ≥ 0,

𝑥 ∈ T
𝑑
.

(13)

Let Φ(W) = [𝑑1(𝑈 + 𝑑3𝑈𝑉), 𝑑2𝑉]. Then the linearizing
system (13) atW can be written as

W𝑡 = (ΦWΔ + FW (W))W, (14)

where

ΦW (W) = ΦW = (
𝑑1 (1 + 𝑑3𝑉) 𝑑1𝑑3𝑈

0 𝑑2

) . (15)

Then, for each 𝑖 ∈ {1, 2, . . .},𝑋𝑖 is invariant under the operator
ΦWΔ + FW(W), and 𝜉 is an eigenvalue of ΦWΔ + FW(W) on
𝑋𝑖 if and only if 𝜉 is an eigenvalue of the matrix

A𝑖 = (
−𝑑1 (1 + 𝑑3𝑉)𝜇𝑖 − 𝜇 −𝑑1𝑑3𝑈𝜇𝑖

𝛼 −𝑑2𝜇𝑖 − 𝛽
) . (16)

Notice that

detA𝑖 = 𝑑1𝑑2 (1 + 𝑑3𝑉)𝜇
2

𝑖

+ (𝑑2𝜇 + 𝛽𝑑1 (1 + 𝑑3𝑉) + 𝑑1𝑑3𝛼𝑈) 𝜇𝑖

+ 𝜇𝛽 > 0,

TrA𝑖 = − ((𝑑1 + 𝑑2 + 𝑑1𝑑3𝑉)𝜇𝑖 + 𝜇 + 𝛽) < 0.

(17)

Thus, the two eigenvalues 𝜉+
𝑖
and 𝜉−
𝑖
ofA𝑖 have negative real

parts.
From this, we see that adding the cross diffusion to the

system (7), the positive constant solution is also locally stable,
whichmeans that Turing instability does not occur.The infor-
mation above indicates that the aggregation of individuals
does not occur in the absence of chemotactic effect. It is
the purpose of the present paper to clarify the effect of the
chemotaxis and nonlinear patterns created by chemotaxis for
a volume-filling chemotaxis model with logistic growth.

3. Growing Modes in the System (2)
The nonlinear evolution of a perturbation 𝑢(x, 𝑡) = 𝑈(x, 𝑡) −
𝑈, V(x, 𝑡) = 𝑉(x, 𝑡) − 𝑉 around [𝑈, 𝑉] satisfies

𝑢𝑡 = 𝑑1∇
2
𝑢 − 𝜒𝑈𝑐 (1 − 𝑈𝑐) ∇

2V − 𝜇𝑢

− 𝜒∇ [𝑢 (1 − 𝑢 − 2𝑈𝑐) ∇V] −
𝜇𝑢
2

𝑈𝑐

,

V𝑡 = 𝑑2∇
2V + 𝛼𝑢 − 𝛽V.

(18)

The corresponding linearized system is as follows:

𝑢𝑡 = 𝑑1∇
2
𝑢 − 𝜒𝑈𝑐 (1 − 𝑈𝑐) ∇

2V − 𝜇𝑢,

V𝑡 = 𝑑2∇
2V + 𝛼𝑢 − 𝛽V.

(19)

Let w(x, 𝑡) ≡ [𝑢(x, 𝑡), V(x, 𝑡)], q = (𝑞1, . . . , 𝑞𝑑) ∈ Ω =

(N ∪ {0})
𝑑, and 𝑒q(x) = ∏

𝑑

𝑖=1
cos(𝑞𝑖𝑥𝑖).Then {𝑒q(x)}q∈Ω forms

a basis of the space of functions in T𝑑 that satisfies Neumann
boundary conditions. We try to find a normal mode to the
linear system (19) of the following form:

w (x, 𝑡) = rq𝑒
𝜆q𝑡𝑒q (x) , (20)

where rq is a vector depending on q. Substituting (20) into
(19) yields

𝜆qrq = (
−𝑑1𝑞
2
− 𝜇 𝜒𝑈𝑐 (1 − 𝑈𝑐) 𝑞

2

𝛼 −𝑑2𝑞
2
− 𝛽

) rq, (21)

where 𝑞2 = ∑
𝑑

𝑖=1
𝑞
2

𝑖
. We can obtain the following dispersion

formula for 𝜆q:

𝜆
2

q + ((𝑑1 + 𝑑2) 𝑞
2
+ 𝛽 + 𝜇) 𝜆q

+ 𝑞
2
[𝑑1𝑑2𝑞

2
+ (𝑑1𝛽 + 𝑑2𝜇 − 𝛼𝜒𝑈𝑐 (1 − 𝑈𝑐))]

+ 𝜇𝛽 = 0.

(22)

Thus, we deduce the following linear instability criterion by
requiring that there exist a q such that

𝑞
2
[𝑑1𝑑2𝑞

2
+ (𝑑1𝛽 + 𝑑2𝜇 − 𝛼𝜒𝑈𝑐 (1 − 𝑈𝑐))] + 𝜇𝛽 < 0

(23)

to ensure that (22) has at least one positive root 𝜆q. This
means that

(𝑞
2
(𝑑1 − 𝑑2) − 𝛽 + 𝜇)

2

+ 4𝛼𝜒𝑈𝑐 (1 − 𝑈𝑐) 𝑞
2
> 0. (24)

There exist two distinct real roots:

𝜆
±

q

= ( − (𝑞
2
(𝑑1 + 𝑑2) + 𝛽 + 𝜇)

±√(𝑞2 (𝑑1 − 𝑑2) − 𝛽 + 𝜇)
2
+ 4𝛼𝜒𝑈𝑐 (1 − 𝑈𝑐) 𝑞

2)

× (2)
−1

(25)

for all q ̸= 0 to the quadratic equation (22), which are
denoted by 𝜆−q < 𝜆

+

q. We denote the corresponding (linearly
independent) eigenvectors by r−(q) and r+(q), such that

r± (q) = [
𝜆
±

q + 𝑑2𝑞
2
+ 𝛽

𝛼
, 1] . (26)

Clearly, for 𝑞 large,

𝑞
2
[𝑑1𝑑2𝑞

2
+ (𝑑1𝛽 + 𝑑2𝜇 − 𝛼𝜒𝑈𝑐 (1 − 𝑈𝑐))] + 𝜇𝛽 > 0. (27)

Thus, there are only finitely many q such that 𝜆+q > 0.
We denote the largest eigenvalue by 𝜆max > 0 and define
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Ωmax ≡ {q ∈ Ω | 𝜆
+

q = 𝜆max}. From (25) we can regard 𝜆+q as a
function of 𝑞2.Therefore, there is one 𝑞2 (possibly two) having
𝜆
+
(𝑞
2
) = 𝜆max. We also denote 𝜌 > 0 to be the gap between

the 𝜆max and the rest; that is, 𝜌 = minq∈Ω\Ωmax
|𝜆max − 𝜆q|.

Given any initial perturbation w(x, 0), we can expand it
as

w (x, 0) = ∑

q∈Ω
wq𝑒q (x) = ∑

q∈Ω
{𝑤
−

q r− (q) + 𝑤
+

q r+ (q)} 𝑒q (x) ,

(28)

wq = 𝑤
−

q r− (q) + 𝑤
+

q r+ (q) . (29)

In the sequel, denote by ⟨⋅, ⋅⟩ and (⋅, ⋅) the inner product
of [𝐿2(T𝑑)]

2

and the scalar product of R2, respectively. For
any g(⋅, 𝑡) ∈ [𝐿

2
(T𝑑)]
2

, we denote ‖g(⋅, 𝑡)‖ ≡ ‖g(⋅, 𝑡)‖
𝐿2
.

Throughout this paper, we always denote universal constants
by 𝐶𝑖 (𝑖 = 1, 2, . . .).

Clearly,

‖w (x, 0)‖2 = (
𝜋

2
)

𝑑

∑

q∈Ω

󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨

2

. (30)

The unique solution w(x, 𝑡) = [𝑢(x, 𝑡), V(x, 𝑡)] of (19) is
given by

w (x, 𝑡) = ∑

q∈Ω
{𝑤
−

q r− (q) 𝑒
𝜆
−

q𝑡 + 𝑤
+

q r+ (q) 𝑒
𝜆
+

q𝑡} 𝑒q (x)

≡ 𝑒
L𝑡w (x, 0) .

(31)

Our main result in this section is the following lemma.

Lemma 1. Suppose that the instability criterion (23) holds. Let
w(x, 𝑡) ≡ 𝑒

L𝑡w(x, 0) be a solution to the linearized system (19)
with initial conditionw(x, 0).Then there exists a constant𝐶1 ≥
1 depending on 𝑑1, 𝑑2, 𝑈𝑐, 𝜒, 𝜇, 𝛼, and 𝛽, such that

‖w (⋅, 𝑡)‖ ≤ 𝐶1𝑒
𝜆max𝑡 ‖w (⋅, 0)‖ , ∀𝑡 ≥ 0. (32)

Proof. We divide the proof into the following two cases.

(1) 𝑡 ≥ 1. It follows from (25) that

lim
q→∞

𝜆
±

q

𝑞2
= −𝑑1, −𝑑2, (33)

respectively. Thus, 𝜆±q ≤ −min{𝑑1, 𝑑2}𝑞
2 and there exists a

positive constant 𝐶1 for all q > 0, such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆
±

q

𝑞2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶1. (34)

By the quadratic formula of (22), one can obtain

󵄨󵄨󵄨󵄨󵄨
𝜆
+

q − 𝜆
−

q
󵄨󵄨󵄨󵄨󵄨
≥ 2𝑞√𝛼𝜒𝑈𝑐 (1 − 𝑈𝑐).

(35)

It follows from (29) that

󵄨󵄨󵄨󵄨󵄨
𝑤
±

q
󵄨󵄨󵄨󵄨󵄨
≤

󵄨󵄨󵄨󵄨r± (q)
󵄨󵄨󵄨󵄨 ×

󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨det [r− (q) , r+ (q)]

󵄨󵄨󵄨󵄨

. (36)

From (26) and (34), we can conclude that there exists a
positive constant 𝐶2 such that

󵄨󵄨󵄨󵄨r± (q)
󵄨󵄨󵄨󵄨 =

√[(
𝜆
±

q

𝛼𝑞2
+
𝑑2

𝛼
)𝑞2 +

𝛽

𝛼
]

2

+ 1 ≤ 𝐶2𝑞
2 (37)

for all 𝑞 > 0, where 𝐶2 = 2max{𝐶1 + 𝑑2/𝛼, 1 + 𝛽/𝛼}. By (34),
one can deduce

1
󵄨󵄨󵄨󵄨det [r− (q) , r+ (q)]

󵄨󵄨󵄨󵄨

≤
1

2𝑞
√

𝛼

𝜒𝑈𝑐 (1 − 𝑈𝑐)
. (38)

Combining (37) and (38), we find that

󵄨󵄨󵄨󵄨󵄨
𝑤
±

q
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶3𝑞

󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨
, (39)

where 𝐶3 = (𝐶2/2)√𝛼/𝜒𝑈𝑐(1 − 𝑈𝑐). For 𝑡 ≥ 1 and 𝑞 large, it
is not difficult to verify by (33), (37), and (39) that

󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
±

q r± (q) 𝑒
𝜆
±

q𝑡
󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶2𝐶3𝑞

3 󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨
𝑒
𝜆
±

q𝑡

≤ 𝐶4
󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨

𝑞
3

exp (min {𝑑1, 𝑑2} 𝑞2)
≤ 𝐶5

󵄨󵄨󵄨󵄨󵄨
wq

󵄨󵄨󵄨󵄨󵄨
.

(40)

In view of (30) and (40), we observe that

‖w (x, 𝑡)‖ ≤ 2𝐶5𝑒
𝜆max𝑡 ‖w (x, 0)‖ , for 𝑡 ≥ 1. (41)

(2) 𝑡 ≤ 1. Multiplying the first equation of (19) by 𝑢

and the second by 𝐾V, adding them together, and
integrating the result in T𝑑, we have

1

2

𝑑

𝑑𝑡
∫
T𝑑
{|𝑢|
2
+ 𝐾|V|2} dx

+ ∫
T𝑑
{𝑑1|∇𝑢|

2
+ 𝐾𝑑2|∇V|

2

−𝜒𝑈𝑐 (1 − 𝑈𝑐) ∇𝑢∇V} dx

= −𝜇∫
T𝑑
𝑢
2dx − 𝐾𝛽∫

T𝑑
V2dx

+ 𝛼𝐾∫
T𝑑
𝑢V dx.

(42)

Let

𝐾 =
[𝜒𝑈𝑐 (1 − 𝑈𝑐)]

2

𝑑1𝑑2

. (43)
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Then the integrand of the second integral can be estimated as
follows:

𝑑1|∇𝑢|
2
+ 𝐾𝑑2|∇V|

2
− 𝜒𝑈𝑐 (1 − 𝑈𝑐) ∇𝑢∇V

≥
𝑑1

2
|∇𝑢|
2
+
[𝜒𝑈𝑐 (1 − 𝑈𝑐)]

2

2𝑑1

|∇V|2 ≥ 0.

(44)

Using Young inequality, we deduce that

1

2

𝑑

𝑑𝑡
∫
T𝑑
{|𝑢|
2
+ 𝐾

󵄨󵄨󵄨󵄨󵄨
V2
󵄨󵄨󵄨󵄨󵄨
} dx ≤ 𝛼√𝐾

2
∫
T𝑑
{|𝑢|
2
+ 𝐾|V|2} dx.

(45)

It follows from Gronwall inequality that

∫
T𝑑
{|𝑢 (x, 𝑡)|2 + 𝐾|V (x, 𝑡)|2} dx

≤ 𝑒
𝛼√𝐾𝑡

∫
T𝑑
{|𝑢 (x, 𝑡)|2 + 𝐾|V (x, 𝑡)|2} dx.

(46)

If 𝐾 ≥ 1 and 𝑡 ≤ 1, then it is clear from (46) that

‖w (x, 𝑡)‖ ≤ √𝐾𝑒𝛼
√𝐾𝑒
𝜆max𝑡 ‖w (x, 0)‖ . (47)

Similarly, if 0 < 𝐾 < 1, 𝑡 ≤ 1, then from (46), one has

‖w (x, 𝑡)‖ ≤ √𝑒𝛼/𝐾𝑒
𝜆max𝑡 ‖w (x, 0)‖ . (48)

Let 𝐶1 = max{2𝐶5, √𝑒𝛼/𝐾} ≥ 1 if 0 < 𝐾 < 1, and let 𝐶1 =
max{2𝐶5, √𝐾𝑒𝛼√𝐾} ≥ 1 if𝐾 ≥ 1. Then

‖w (x, 𝑡)‖ ≤ 𝐶1𝑒
𝜆max𝑡 ‖w (x, 0)‖ . (49)

This completes the proof of Lemma 1.

4. Bootstrap Lemma

By a standard PDE theory [31], we can establish the existence
of local solutions for (18).

Lemma 2 (Local existence). For 𝑠 ≥ 1 (𝑑 = 1) and 𝑠 ≥ 2 (𝑑 =

2, 3), there exists a 𝑇0 > 0 such that (18) with 𝑢(⋅, 0), V(⋅, 0) ∈
𝐻
𝑠 has a unique solution w(⋅, 𝑡) on (0, 𝑇0) which satisfies

‖w(𝑡)‖𝐻𝑠 ≤ 𝐶‖w(0)‖𝐻𝑠 , 0 < 𝑡 < 𝑇0, (50)

where 𝐶 is a positive constant depending on 𝑑1, 𝑑2, 𝑈𝑐, 𝛼, 𝛽,
and 𝜒.

It is not difficult to verify the following result.

Lemma 3. Let w(x, 𝑡) be a solution of (18). Then the even
extension of w(x, 𝑡) on 2T𝑑 = (−𝜋, 𝜋)

𝑑
(𝑑 = 1, 2, 3) is also

the solution of (18) which satisfies homogeneous Neumann
boundary conditions and periodical boundary conditions on
2T𝑑 = (−𝜋, 𝜋)

𝑑
(𝑑 = 1, 2, 3).

Lemma 4. Let [𝑢(x, 𝑡), V(x, 𝑡)] be a solution of (18). Then

1

2

𝑑

𝑑𝑡
∑

|𝛼|=2

∫
T𝑑
{
󵄨󵄨󵄨󵄨𝐷
𝛼
𝑢
󵄨󵄨󵄨󵄨
2
+
[𝜒𝑈𝑐 (1 − 𝑈𝑐)]

2

𝑑1𝑑2

󵄨󵄨󵄨󵄨𝐷
𝛼V󵄨󵄨󵄨󵄨
2
} dx

+ ∑

|𝛼|=2

∫
T𝑑
{
𝑑1

4

󵄨󵄨󵄨󵄨∇𝐷
𝛼
𝑢
󵄨󵄨󵄨󵄨
2
+
[𝜒𝑈𝑐 (1 − 𝑈𝑐)]

2

2𝑑1

󵄨󵄨󵄨󵄨∇𝐷
𝛼V󵄨󵄨󵄨󵄨
2
} dx

+ 𝜇 ∑

|𝛼|=2

∫
T𝑑

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑢
󵄨󵄨󵄨󵄨
2dx +

𝛽[𝜒𝑈𝑐 (1 − 𝑈𝑐)]
2

2𝑑1𝑑2

× ∑

|𝛼|=2

∫
T𝑑

󵄨󵄨󵄨󵄨𝐷
𝛼V󵄨󵄨󵄨󵄨
2dx

≤ 𝐶2 (‖w‖𝐻2 + ‖w‖
2

𝐻2
)
󵄩󵄩󵄩󵄩󵄩
∇
3w󵄩󵄩󵄩󵄩󵄩
2

+ 𝐶3‖𝑢‖
2
,

(51)

where 𝐶3 = 𝐶
3

0
𝛼
3
[𝜒𝑈𝑐(1 − 𝑈𝑐)]

6
/2𝛽
3
𝑑
5

1
𝑑
3

2
.

Proof. It is known by Lemma 3 that

𝑢̃𝑡 = 𝑑1∇
2
𝑢̃ − 𝜒𝑈𝑐 (1 − 𝑈𝑐) ∇

2Ṽ − 𝜇𝑢̃

− 𝜒∇ [𝑢̃ (1 − 𝑢̃ − 2𝑈𝑐) ∇Ṽ] −
𝜇𝑢̃
2

𝑈𝑐

,

𝑥 ∈ 2T
𝑑
, 𝑡 > 0,

Ṽ𝑡 = 𝑑2∇
2Ṽ + 𝛼𝑢̃ − 𝛽Ṽ, 𝑥 ∈ 2T

𝑑
, 𝑡 > 0,

(52)

𝜕𝑢̃

𝜕𝑥𝑖

=
𝜕Ṽ
𝜕𝑥𝑖

= 0, at 𝑥𝑖 = −𝜋, 0, 𝜋, for 1 ≤ 𝑖 ≤ 𝑑, (53)

where [𝑢̃(x, 𝑡), Ṽ(x, 𝑡)] is the even extension of [𝑢(x, 𝑡), V(x, 𝑡)]
on 2T𝑑. Taking the second-order derivative of (52) for
𝑥𝑖, 𝑥𝑗 and making inner product with 𝜕𝑥𝑖𝑥𝑗

𝑢̃ and 𝐾𝜕𝑥𝑖𝑥𝑗
Ṽ,

respectively, and adding them together, we deduce that
1

2

𝑑

𝑑𝑡
∫
2T𝑑

{
󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝑥𝑖𝑥𝑗

𝑢̃
󵄨󵄨󵄨󵄨󵄨󵄨

2

+ 𝐾
󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝑥𝑖𝑥𝑗

Ṽ
󵄨󵄨󵄨󵄨󵄨󵄨

2

} dx

+ ∫
2T𝑑

{𝑑1

󵄨󵄨󵄨󵄨󵄨󵄨
∇𝜕𝑥𝑖𝑥𝑗

𝑢̃
󵄨󵄨󵄨󵄨󵄨󵄨

2

+ 𝐾𝑑2

󵄨󵄨󵄨󵄨󵄨󵄨
∇𝜕𝑥𝑖𝑥𝑗

Ṽ
󵄨󵄨󵄨󵄨󵄨󵄨

2

−𝜒𝑈𝑐 (1 − 𝑈𝑐) ∇𝜕𝑥𝑖𝑥𝑗
𝑢̃ ⋅ ∇𝜕𝑥𝑖𝑥𝑗

Ṽ} dx

+ 𝜇∫
2T𝑑

󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝑥𝑖𝑥𝑗

𝑢̃
󵄨󵄨󵄨󵄨󵄨󵄨

2

dx + 𝛽𝐾∫
2T𝑑

󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝑥𝑖𝑥𝑗

Ṽ
󵄨󵄨󵄨󵄨󵄨󵄨

2

dx

= 𝜒 (1 − 2𝑈𝑐) ∫
2T𝑑

∇𝜕𝑥𝑖𝑥𝑗
𝑢̃ ⋅ 𝜕𝑥𝑖𝑥𝑗

(𝑢̃ ⋅ ∇Ṽ) dx

− 𝜒∫
2T𝑑

∇𝜕𝑥𝑖𝑥𝑗
𝑢̃ ⋅ 𝜕𝑥𝑖𝑥𝑗

(𝑢̃
2
∇Ṽ) dx

+ 𝐾𝛼∫
2T𝑑

𝜕𝑥𝑖𝑥𝑗
𝑢̃ ⋅ 𝜕𝑥𝑖𝑥𝑗

Ṽ dx

−
2𝜇

𝑈𝑐

∫
2T𝑑

[𝑢̃(𝜕𝑥𝑖𝑥𝑗
𝑢̃)
2

+ 𝜕𝑥𝑖
𝑢̃ ⋅ 𝜕𝑥𝑗

𝑢̃ ⋅ 𝜕𝑥𝑖𝑥𝑗
𝑢̃] dx

≡ 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4.

(54)
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We can apply Young inequality and (43) to get

𝑑1

󵄨󵄨󵄨󵄨󵄨󵄨
∇𝜕𝑥𝑖𝑥𝑗

𝑢̃
󵄨󵄨󵄨󵄨󵄨󵄨

2

+ 𝐾𝑑2

󵄨󵄨󵄨󵄨󵄨󵄨
∇𝜕𝑥𝑖𝑥𝑗

Ṽ
󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝜒𝑈𝑐 (1 − 𝑈𝑐) ∇𝜕𝑥𝑖𝑥𝑗
𝑢̃ ⋅ ∇𝜕𝑥𝑖𝑥𝑗

Ṽ

≥
𝑑1

2

󵄨󵄨󵄨󵄨󵄨󵄨
∇𝜕𝑥𝑖𝑥𝑗

𝑢̃
󵄨󵄨󵄨󵄨󵄨󵄨

2

+
[𝜒𝑈𝑐 (1 − 𝑈𝑐)]

2

2𝑑1

󵄨󵄨󵄨󵄨󵄨󵄨
∇𝜕𝑥𝑖𝑥𝑗

Ṽ
󵄨󵄨󵄨󵄨󵄨󵄨

2

.

(55)

Now we estimate each term on the right-hand sides of
(54). By using Hölder inequality,

𝐼1 ≤ 𝜒
󵄨󵄨󵄨󵄨1 − 2𝑈𝑐

󵄨󵄨󵄨󵄨

× {‖∇Ṽ‖𝐿∞
󵄩󵄩󵄩󵄩󵄩󵄩
∇𝜕𝑥𝑖𝑥𝑗

𝑢̃
󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕𝑥𝑖𝑥𝑗

𝑢̃
󵄩󵄩󵄩󵄩󵄩󵄩

+ 2

𝑑

∑

𝑖=1

‖∇𝑢̃‖𝐿∞
󵄩󵄩󵄩󵄩󵄩󵄩
𝜕𝑥𝑖𝑥𝑗

Ṽ
󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
∇𝜕𝑥𝑖𝑥𝑗

𝑢̃
󵄩󵄩󵄩󵄩󵄩󵄩

+ ‖𝑢̃‖𝐿∞
󵄩󵄩󵄩󵄩󵄩󵄩
∇𝜕𝑥𝑖𝑥𝑗

𝑢̃
󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
∇𝜕𝑥𝑖𝑥𝑗

Ṽ
󵄩󵄩󵄩󵄩󵄩󵄩
} .

(56)

Notice that
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿∞(2T𝑑) ≤ 𝐶6

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻2(2T𝑑),

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿4(2T𝑑) ≤ 𝐶7

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻2(2T𝑑),

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿6(2T𝑑) ≤ 𝐶8

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻2(2T𝑑),

(57)

for 𝑑 ≤ 3. Clearly,

∫
2T𝑑

∇𝑢̃ 𝑑x = ∫
2T𝑑

∇Ṽ 𝑑x = 0,

∫
2T𝑑

𝜕𝑥𝑖𝑥𝑗
𝑢̃ 𝑑x = ∫

2T𝑑
𝜕𝑥𝑖𝑥𝑗

Ṽ 𝑑x = 0.

(58)

Using the Poincaré inequality, we have
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩 ≤ 𝐶9

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿4(2T𝑑) ≤ 𝐶10

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿6(2T𝑑)

≤ 𝐶11
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻1 ≤ 𝐶12

󵄩󵄩󵄩󵄩∇𝑔
󵄩󵄩󵄩󵄩 , 𝑑 ≤ 3.

(59)

It follows from (58) and (59) that
󵄩󵄩󵄩󵄩󵄩
𝜕𝑥𝑖
𝑔
󵄩󵄩󵄩󵄩󵄩
≤ 𝐶12

󵄩󵄩󵄩󵄩󵄩
∇𝜕𝑥𝑖

𝑔
󵄩󵄩󵄩󵄩󵄩
,

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕𝑥𝑖𝑥𝑗

𝑔
󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝐶12

󵄩󵄩󵄩󵄩󵄩󵄩
∇𝜕𝑥𝑖𝑥𝑗

𝑔
󵄩󵄩󵄩󵄩󵄩󵄩
,

(60)

󵄩󵄩󵄩󵄩∇𝑔
󵄩󵄩󵄩󵄩 ≤ 𝐶12( ∑

|𝛼|=2

󵄩󵄩󵄩󵄩𝐷
𝛼
𝑔
󵄩󵄩󵄩󵄩
2
)

1/2

≤ 𝐶
2

12
( ∑

|𝛼|=2

󵄩󵄩󵄩󵄩∇𝐷
𝛼
𝑔
󵄩󵄩󵄩󵄩
2
)

1/2

.

(61)

Furthermore,

󵄩󵄩󵄩󵄩∇𝑔
󵄩󵄩󵄩󵄩𝐻2 ≤ 𝐶13( ∑

|𝛼|=2

󵄩󵄩󵄩󵄩∇𝐷
𝛼
𝑔
󵄩󵄩󵄩󵄩
2
)

1/2

,

𝐶13 = (𝐶
4

12
+ 𝐶
2

12
+ 1)
1/2

.

(62)

Combining (56), (57), and (62), we observe that

∑

|𝛼|=2

𝐼1 ≤ 𝜒
󵄨󵄨󵄨󵄨1 − 2𝑈𝑐

󵄨󵄨󵄨󵄨 𝐶14‖w̃‖𝐻2
󵄩󵄩󵄩󵄩󵄩
∇
3w̃󵄩󵄩󵄩󵄩󵄩
2

, (63)

where 𝐶14 = 𝐶6[(1 + 2𝑑)𝐶13 + 1].
By Hölder inequality, it follows from (57) and (62) that

∑

|𝛼|=2

𝐼2 ≤ 𝜒𝐶15‖w̃‖
2

𝐻2

󵄩󵄩󵄩󵄩󵄩
∇
3w̃󵄩󵄩󵄩󵄩󵄩
2

, (64)

where 𝐶15 = 𝐶6(2𝐶
−2

9
𝐶
2

12
𝐶13 + 6𝐶6𝐶13 + 𝐶6).

Now we estimate 𝐼3. By interpolation for all 𝑎 > 0, it can
be proved that

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕𝑥𝑖𝑥𝑗

𝑢̃
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐶0 (𝑎
󵄩󵄩󵄩󵄩󵄩󵄩
∇𝜕𝑥𝑖𝑥𝑗

𝑢̃
󵄩󵄩󵄩󵄩󵄩󵄩

2

+
‖𝑢̃‖
2

4𝑎2
) . (65)

Then it is easy to see that

∑

|𝛼|=2

𝐼3 ≤
𝐾𝛽

2
∑

|𝛼|=2

∫
2T𝑑

󵄨󵄨󵄨󵄨𝐷
𝛼Ṽ󵄨󵄨󵄨󵄨
2dx

+
𝑑1

4
∑

|𝛼|=2

∫
2T𝑑

󵄨󵄨󵄨󵄨∇𝐷
𝛼
𝑢̃
󵄨󵄨󵄨󵄨
2dx + 𝐶3‖𝑢̃‖

2
,

(66)

where 𝐶3 = 𝐶
3

0
𝛼
3
[𝜒𝑈𝑐(1 − 𝑈𝑐)]

6
/2𝛽
3
𝑑
5

1
𝑑
3

2
and 𝑎 = 𝑑

2

1
𝑑2𝛽/

2[𝜒𝑈𝑐(1 − 𝑈𝑐)]
2
𝐶0𝛼.

Finally, from (57) and (61), 𝐼4 is bounded by

∑

|𝛼|=2

𝐼4 ≤
4𝜇

𝑈𝑐

𝐶16‖w̃‖𝐻2
󵄩󵄩󵄩󵄩󵄩
∇
3w̃󵄩󵄩󵄩󵄩󵄩
2

. (67)

Combining (54), (55), and (63)–(67), one can obtain

1

2

𝑑

𝑑𝑡
∑

|𝛼|=2

∫
T𝑑
{
󵄨󵄨󵄨󵄨𝐷
𝛼
𝑢
󵄨󵄨󵄨󵄨
2
+ 𝐾

󵄨󵄨󵄨󵄨𝐷
𝛼V󵄨󵄨󵄨󵄨
2
} dx

+ ∑

|𝛼|=2

∫
T𝑑
{
𝑑1

4

󵄨󵄨󵄨󵄨∇𝐷
𝛼
𝑢
󵄨󵄨󵄨󵄨
2
+
𝐾𝑑2

2

󵄨󵄨󵄨󵄨∇𝐷
𝛼V󵄨󵄨󵄨󵄨
2
} dx

+ 𝜇 ∑

|𝛼|=2

∫
T𝑑

󵄨󵄨󵄨󵄨𝐷
𝛼
𝑢
󵄨󵄨󵄨󵄨
2dx + 𝛽𝐾

2
∑

|𝛼|=2

∫
T𝑑

󵄨󵄨󵄨󵄨𝐷
𝛼V󵄨󵄨󵄨󵄨
2dx

≤ 𝐶2 (‖w‖𝐻2 + ‖w‖
2

𝐻2
)
󵄩󵄩󵄩󵄩󵄩
∇
3w󵄩󵄩󵄩󵄩󵄩
2

+ 𝐶3‖𝑢‖
2
,

(68)

where𝐶2 = (𝜒|1−2𝑈𝑐| +𝜒+(4𝜇/𝑈𝑐))max{𝐶14, 𝐶15, 𝐶16} and
the proof is completed.

Lemma 5. Let w(x, 𝑡) be a solution of (18) such that for 0 ≤

𝑡 ≤ 𝑇 < 𝑇0,

‖w(⋅, 𝑡)‖𝐻2 + ‖w(⋅, 𝑡)‖
2

𝐻2
≤

1

𝐶2

min{𝑑1

4
,
[𝜒𝑈𝑐 (1 − 𝑈𝑐)]

2

2𝑑1

} ,

(69)

‖w (⋅, 𝑡)‖ ≤ 2𝐶1𝑒
𝜆max𝑡 ‖w (⋅, 0)‖ . (70)
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Then
‖w(⋅, 𝑡)‖2

𝐻2
≤ 𝐶4 {‖w(⋅, 0)‖

2

𝐻2
+ 𝑒
2𝜆max𝑡‖w(⋅, 0)‖2} ,

0 ≤ 𝑡 ≤ 𝑇,

(71)

where 𝐶4 = max{(1 + 𝐶
2

12
)[𝜒𝑈𝑐(1 − 𝑈𝑐)]

2
/𝑑1𝑑2, 4𝐶

2

1
[1 +

𝐶3(1 + 𝐶
2

12
)/𝜆max]} if [𝜒𝑈𝑐(1 − 𝑈𝑐)]

2
/𝑑1𝑑2 ≥ 1 and 𝐶4 =

max{(1+𝐶2
12
)𝑑1𝑑2/[𝜒𝑈𝑐(1 − 𝑈𝑐)]

2
, 4𝐶
2

1
[1+𝐶3(1+𝐶

2

12
)𝑑1𝑑2/

𝜆max[𝜒𝑈𝑐(1 − 𝑈𝑐)]
2
]} if [𝜒𝑈𝑐(1 − 𝑈𝑐)]

2
/𝑑1𝑑2 < 1.

Proof. It follows from (61) that

‖∇w(⋅, 𝑡)‖2 ≤ 𝐶
2

12
∑

|𝛼|=2

󵄩󵄩󵄩󵄩𝐷
𝛼w(⋅, 𝑡)󵄩󵄩󵄩󵄩

2
. (72)

Thus,

‖w(⋅, 𝑡)‖2
𝐻2

≤ ‖w (⋅, 𝑡)‖
2
+ (𝐶
2

12
+ 1) ∑

|𝛼|=2

󵄩󵄩󵄩󵄩𝐷
𝛼w(⋅, 𝑡)󵄩󵄩󵄩󵄩

2
.

(73)

Now we estimate the second-order derivatives of w(⋅, 𝑡).
From Lemma 4 and (69), we can obtain

1

2

𝑑

𝑑𝑡
∑

|𝛼|=2

∫
T𝑑
{
󵄨󵄨󵄨󵄨𝐷
𝛼
𝑢
󵄨󵄨󵄨󵄨
2
+
[𝜒𝑈𝑐 (1 − 𝑈𝑐)]

2

𝑑1𝑑2

󵄨󵄨󵄨󵄨𝐷
𝛼V󵄨󵄨󵄨󵄨
2
} dx

≤ 𝐶3‖𝑢‖
2
≤ 𝐶3‖w(⋅, 𝑡)‖

2
.

(74)

Integrating this from 0 to 𝑡, we deduce from (70) that

∑

|𝛼|=2

∫
T𝑑
{
󵄨󵄨󵄨󵄨𝐷
𝛼
𝑢 (⋅, 𝑡)

󵄨󵄨󵄨󵄨
2
+
[𝜒𝑈𝑐 (1 − 𝑈𝑐)]

2

𝑑1𝑑2

󵄨󵄨󵄨󵄨𝐷
𝛼V (⋅, 𝑡)󵄨󵄨󵄨󵄨

2
} dx

≤ ∑

|𝛼|=2

∫
T𝑑
{
󵄨󵄨󵄨󵄨𝐷
𝛼
𝑢 (⋅, 0)

󵄨󵄨󵄨󵄨
2

+
[𝜒𝑈𝑐 (1 − 𝑈𝑐)]

2

𝑑1𝑑2

󵄨󵄨󵄨󵄨𝐷
𝛼V (⋅, 0)󵄨󵄨󵄨󵄨

2
} dx

+
4𝐶
2

1
𝐶3

𝜆max
𝑒
2𝜆max𝑡‖w(⋅, 0)‖2.

(75)

We will proceed in the following two cases: [𝜒𝑈𝑐(1 −

𝑈𝑐)]
2
/𝑑1𝑑2 ≥ 1, [𝜒𝑈𝑐(1 − 𝑈𝑐)]

2
/𝑑1𝑑2 < 1.

(1) If [𝜒𝑈𝑐(1 − 𝑈𝑐)]
2
/𝑑1𝑑2 ≥ 1, then it is clear from (75)

that

∑

|𝛼|=2

󵄩󵄩󵄩󵄩𝐷
𝛼w(⋅, 𝑡)󵄩󵄩󵄩󵄩

2
≤
[𝜒𝑈𝑐 (1 − 𝑈𝑐)]

2

𝑑1𝑑2

∑

|𝛼|=2

󵄩󵄩󵄩󵄩𝐷
𝛼w(⋅, 0)󵄩󵄩󵄩󵄩

2

+
4𝐶
2

1
𝐶3

𝜆max
𝑒
2𝜆max𝑡‖w(⋅, 0)‖2.

(76)

Using (73) and (76), we know that

‖w(⋅, 𝑡)‖2
𝐻2

≤ 𝐶4 {‖w(⋅, 0)‖
2

𝐻2
+ ‖w(⋅, 0)‖2𝑒2𝜆max𝑡} , (77)

where𝐶4 = max{(1+𝐶2
12
)[𝜒𝑈𝑐(1 − 𝑈𝑐)]

2
/𝑑1𝑑2, 4𝐶

2

1
[1+𝐶3(1+

𝐶
2

12
)/𝜆max]}.

(2) If [𝜒𝑈𝑐(1−𝑈𝑐)]
2
/𝑑1𝑑2 < 1, then it is not hard to verify

by (70), (73), and (75) that

‖w(⋅, 𝑡)‖2
𝐻2

≤ 𝐶4 {‖w(⋅, 0)‖
2

𝐻2
+ ‖w(⋅, 0)‖2𝑒2𝜆max𝑡} , (78)

where 𝐶4 = max{(1 + 𝐶
2

12
)(𝑑1𝑑2/[𝜒𝑈𝑐(1 − 𝑈𝑐)]

2
), 4𝐶
2

1
[1 +

𝐶3(1 + 𝐶
2

12
)𝑑1𝑑2/𝜆max[𝜒𝑈𝑐(1 − 𝑈𝑐)]

2
]} and thereby complet-

ing the proof.

5. Main Result

Let 𝜃 > 0 be a small fixed constant, and 𝜆max the dominant
eigenvalue which is the maximal growth rate. For 𝛿 > 0

arbitrary small we define the escape time 𝑇𝛿 by

𝜃 = 𝛿𝑒
𝜆max𝑇

𝛿 (79)

or equivalently

𝑇
𝛿
=

1

𝜆max
ln 𝜃

𝛿
. (80)

Our main result in this paper reads as follows.

Theorem 6. Assume that the set of 𝑞2 = ∑
𝑑

𝑖=1
𝑞
2

𝑖
satisfying

instability criterion (23) is not empty for given parameters 𝑑1,
𝑑2, 𝛼, 𝛽, 𝜒, 𝜇, and 𝑈𝑐. Let

w0 (x) = ∑

q∈Ω
{𝑤
−

q r− (q) + 𝑤
+

q r+ (q)} 𝑒q (x) ∈ 𝐻
2
, (81)

such that ‖w0‖ = 1. Then there exist constants 𝛿0 > 0, 𝐶 > 0,
and 𝜃 > 0, depending on 𝑑1, 𝑑2, 𝛼, 𝛽, 𝜒, 𝜇, and 𝑈𝑐, such that
for all 0 < 𝛿 ≤ 𝛿0, if the initial perturbation of the steady state
[𝑈, 𝑉] is w𝛿(⋅, 0) = 𝛿w0, then its nonlinear evolution w𝛿(⋅, 𝑡)
satisfies

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

w𝛿 (⋅, 𝑡) − 𝛿𝑒𝜆max𝑡 ∑

q∈Ωmax

𝑤
+

qr+ (q) 𝑒q (x)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶 {𝑒
−𝜌𝑡

+ 𝛿
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻2
+ 𝛿
2󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
3

𝐻2

+ 𝛿𝑒
𝜆max𝑡 + 𝛿

2
𝑒
2𝜆max𝑡} 𝛿𝑒

𝜆max𝑡

(82)

for 0 ≤ 𝑡 ≤ 𝑇
𝛿, and 𝜌 > 0 is the gap between 𝜆max and the rest

of 𝜆q in (82).

Proof. Let w𝛿(x, 𝑡) be the solutions of (18) with initial data
w𝛿(⋅, 0) = 𝛿w0. Define

𝑇
∗
= sup{𝑡 | 󵄩󵄩󵄩󵄩󵄩w

𝛿
(⋅, 𝑡) − 𝛿𝑒

L𝑡w0
󵄩󵄩󵄩󵄩󵄩
≤
𝐶1

2
𝛿𝑒
𝜆max𝑡} .

𝑇
∗∗

= sup{𝑡 | 󵄩󵄩󵄩󵄩󵄩w
𝛿
(⋅, 𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻2
+
󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑡)󵄩󵄩󵄩󵄩󵄩

2

𝐻2

≤
1

𝐶∗
2

min{𝑑1

4
,
[𝜒𝑈𝑐 (1 − 𝑈𝑐)]

2

2𝑑1

}} .

(83)
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We recall (80) and choose 𝜃 such that

𝐶
∗

2
𝐶4𝜃 (1 + 2𝐶

1/2

4
𝜃) < min{

𝜆max
4

,
𝑑1

8
,
[𝜒𝑈𝑐 (1 − 𝑈𝑐)]

2

4𝑑1

} .

(84)

We first estimate𝐻2 norm ofw𝛿(x, 𝑡) for 0 ≤ 𝑡 ≤ min{𝑇𝛿,
𝑇
∗
, 𝑇
∗∗
}. By the definition of𝑇∗ andLemma 1, for 0 < 𝑡 ≤ 𝑇

∗,
we have

󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑡)󵄩󵄩󵄩󵄩󵄩 ≤

3

2
𝐶1𝛿𝑒
𝜆max𝑡. (85)

From Lemma 5, direct computation gives
󵄩󵄩󵄩󵄩󵄩
w𝛿(⋅, 𝑡)󵄩󵄩󵄩󵄩󵄩𝐻2 ≤ √𝐶4 {𝛿

󵄩󵄩󵄩󵄩w0
󵄩󵄩󵄩󵄩𝐻2 + 𝛿𝑒

𝜆max𝑡} . (86)

It follows from (86) and (𝑎+𝑏)𝑝 ≤ 2
𝑝−1

(𝑎
𝑝
+𝑏
𝑝
)(𝑎, 𝑏 ≥ 0, 𝑝 ≥

1) that
󵄩󵄩󵄩󵄩󵄩
w𝛿(⋅, 𝑡)󵄩󵄩󵄩󵄩󵄩

3

𝐻2
≤ 4(𝐶4)

3/2

{𝛿
3󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
3

𝐻2
+ 𝛿
3
𝑒
3𝜆max𝑡} . (87)

Secondly, we establish a sharper 𝐿2 estimate for w𝛿(x, 𝑡)
for 0 ≤ 𝑡 ≤ min{𝑇𝛿, 𝑇∗, 𝑇∗∗}. Applying Duhamel’s principle,
we get

w𝛿 (⋅, 𝑡) = 𝛿𝑒
L𝑡w0

− ∫

𝑡

0

𝑒
L(𝑡−𝜏)

[𝜒 (1 − 2𝑈𝑐) ∇𝑢
𝛿
(𝜏) ∇V𝛿 (𝜏)

− 2𝜒𝑢
𝛿
(𝜏) ∇𝑢

𝛿
(𝜏) ∇V𝛿 (𝜏)

+ 𝜒 (1 − 2𝑈𝑐) 𝑢
𝛿
(𝜏) ∇
2V𝛿 (𝜏)

− 𝜒(𝑢
𝛿
(𝜏))
2

∇
2V𝛿 (𝜏)

+
𝜇

𝑈𝑐

(𝑢
𝛿
(𝜏))
2

, 0] 𝑑𝜏.

(88)

By Lemma 1, (57), (59), and Lemma 5, for 0 ≤ 𝑡 ≤ min{𝑇𝛿,
𝑇
∗
, 𝑇
∗∗
}, we know

󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑡) − 𝛿𝑒L𝑡w0

󵄩󵄩󵄩󵄩󵄩

≤ 𝐶1𝐶5 ∫

𝑡

0

𝑒
𝜆max(𝑡−𝜏) (

󵄩󵄩󵄩󵄩󵄩
w𝛿 (𝜏)󵄩󵄩󵄩󵄩󵄩

2

𝐻2
+
󵄩󵄩󵄩󵄩󵄩
w𝛿 (𝜏)󵄩󵄩󵄩󵄩󵄩

3

𝐻2
) 𝑑𝜏,

(89)

where 𝐶5 = 𝜒|1 − 2𝑈𝑐|(𝐶
2

12
/𝐶
2

9
+ 𝐶6) + 𝜇𝐶7/𝜒|1 − 2𝑈𝑐|𝑈𝑐 +

𝜒𝐶6(2𝐶
2

12
/𝐶
2

9
+ 1). By our choice of 𝑡 ≤ min{𝑇𝛿, 𝑇∗, 𝑇∗∗}, it

is further bounded by
󵄩󵄩󵄩󵄩󵄩
w𝛿 (𝑡) − 𝛿𝑒L𝑡w0

󵄩󵄩󵄩󵄩󵄩

≤ 𝐶1𝐶4𝐶5

{{

{{

{

𝛿
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻2
+ 4√𝐶4𝛿

2󵄩󵄩󵄩󵄩w0
󵄩󵄩󵄩󵄩
3

𝐻2

𝜆max

+
𝛿𝑒
𝜆max𝑡 + 2√𝐶4𝛿

2
𝑒
2𝜆max𝑡

𝜆max

}}

}}

}

𝛿𝑒
𝜆max𝑡.

(90)

Next, We prove by contradiction that for 𝛿 sufficiently
small, 𝑇𝛿 = min{𝑇𝛿, 𝑇∗, 𝑇∗∗}. If 𝑇∗∗ is the smallest, we can
let 𝑡 = 𝑇

∗∗
≤ 𝑇
𝛿 in (86) and (87) to get

󵄩󵄩󵄩󵄩󵄩
w𝛿 (𝑇∗∗)󵄩󵄩󵄩󵄩󵄩𝐻2 +

󵄩󵄩󵄩󵄩󵄩
w𝛿 (𝑇∗∗)󵄩󵄩󵄩󵄩󵄩

2

𝐻2

≤ √𝐶4𝛿
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩𝐻2 + 𝐶4𝛿
2󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻2

+ √𝐶4𝜃 (1 +
√𝐶4𝜃)

<
1

𝐶∗
2

min{𝑑1

4
,
[𝜒𝑈𝑐 (1 − 𝑈𝑐)]

2

2𝑑1

} ,

(91)

where 𝜃 satisfies (84) with 𝐶4 ≥ 1 and 𝛿 is sufficiently small
such that √𝐶4𝛿‖w0‖𝐻2 + 𝐶4𝛿

2
‖w0‖
2

𝐻2
≤ (1/2𝐶

∗

2
)min{𝑑1/4,

[𝜒𝑈𝑐(1 − 𝑈𝑐)]
2
/2𝑑1}. This is a contradiction to the definition

of 𝑇∗∗.
If 𝑇∗ is the smallest, let 𝑡 = 𝑇

∗
≤ 𝑇
𝛿 in (88), we see that

󵄩󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑇∗) − 𝛿𝑒L𝑇

∗

w0
󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶1𝐶4𝐶5

{{

{{

{

𝛿
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻2
+ 4√𝐶4𝛿

2󵄩󵄩󵄩󵄩w0
󵄩󵄩󵄩󵄩
3

𝐻2

𝜆max

+
𝜃 + 2√𝐶4𝜃

2

𝜆max

}}

}}

}

𝛿𝑒
𝜆max𝑇

∗

<
𝐶1

2
𝛿𝑒
𝜆max𝑇

∗

,

(92)

for 𝛿 is small such that 𝐶4𝐶5((𝛿‖w0‖
2

𝐻2
+ 4√𝐶4𝛿

2
‖w0‖
3

𝐻2
)/

𝜆max) < 1/4, by our choice of 𝜃 in (84) and let 𝐶5/𝐶
∗

2
≤ 1.

This again contradicts the definition of 𝑇∗. Hence, 𝑇𝛿 is the
smallest.

Finally, we can obtain from (31) that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

w𝛿 (⋅, 𝑡) − 𝛿𝑒𝜆max𝑡 ∑

q∈Ωmax

𝑤
+

qr+ (q) 𝑒q (x)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑡) − 𝛿𝑒L𝑡w0

󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛿 ∑

q∈Ωmax

𝑤
−

q r− (q) 𝑒
𝜆
−

q𝑡𝑒q (x)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛿 ∑

q∈Ω\Ωmax

{𝑤
−

q r− (q) 𝑒
𝜆
−

q𝑡 + 𝑤
+

q r+ (q) 𝑒
𝜆
+

q𝑡} 𝑒q (x)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑡) − 𝛿𝑒L𝑡w0

󵄩󵄩󵄩󵄩󵄩
+ 𝐼1 + 𝐼2.

(93)
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By (30), (37), (39), and the definition of 𝜌, we get

𝐼
2

1
≤ 𝛿
2
𝑒
2(𝜆max−𝜌)𝑡(

𝜋

2
)

𝑑

∑

q∈Ωmax

󵄨󵄨󵄨󵄨󵄨
𝑤
−

q
󵄨󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨r− (q)
󵄨󵄨󵄨󵄨
2

≤ 𝛿
2
𝑒
2(𝜆max−𝜌)𝑡𝐶

2

2
𝐶
2

4
(
𝜋

2
)

𝑑

∑

q∈Ωmax

𝑞
6󵄨󵄨󵄨󵄨󵄨
w𝑞
󵄨󵄨󵄨󵄨󵄨

2

.

(94)

From (25) we know that there is one (or two) 𝑞2 satisfying
𝜆
+
(𝑞
2
) = 𝜆max. If there is only one 𝑞2 satisfying 𝜆+(𝑞2) =

𝜆max, we denote it by 𝑞
2

max; if there are 𝑞
2

1
and 𝑞

2

2
satisfying

𝜆
+
(𝑞
2

𝑖
) = 𝜆max (𝑖 = 1, 2), we can let 𝑞2max = max{𝑞2

1
, 𝑞
2

2
}. It

follows from (30) and (94) that

𝐼1 ≤ 𝐶6𝛿𝑒
(𝜆max−𝜌)𝑡, (95)

where 𝐶6 = 𝐶2𝐶3𝑞
3

max. Furthermore, by (29), (30), and the
definition of 𝜌, we know that

𝐼2 ≤ 𝛿𝑒
(𝜆max−𝜌)𝑡. (96)

Substituting (90), (95), and (96) into (93), one can obtain
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

w𝛿 (⋅, 𝑡) − 𝛿𝑒𝜆max𝑡 ∑

q∈Ωmax

𝑤
+

q r+ (q) 𝑒q (x)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶 {𝑒
−𝜌𝑡

+ 𝛿
󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
2

𝐻2
+ 𝛿
2󵄩󵄩󵄩󵄩w0

󵄩󵄩󵄩󵄩
3

𝐻2

+ 𝛿𝑒
𝜆max𝑡 + 𝛿

2
𝑒
2𝜆max𝑡} 𝛿𝑒

𝜆max𝑡,

(97)

where 𝐶 = max{𝐶6 + 1, 4𝐶1𝐶
3/2

4
𝐶5/𝜆max} with 𝐶4 ≥ 1 and

thereby concluding the proof.

Theorem 6 implies that the dynamics of a general pertur-
bation are characterized by such linear dynamics over a long
time period of 𝜀𝑇𝛿 ≤ 𝑡 ≤ 𝑇

𝛿, for any 𝜀 > 0. In particular,
choose a fixed q0 = (𝑞01, 𝑞02, . . . , 𝑞0𝑑) ∈ Ωmax and let w0(x) =

𝜅(r+(q0)/|r+(q0)|)𝑒q0(x), where 𝜅 = 1/‖𝑒q0‖ = √(2/𝜋)
𝑑 so

that ‖w0(x)‖ = 1. Then

󵄩󵄩󵄩󵄩w0(x)
󵄩󵄩󵄩󵄩𝐻2 = (1 +

󵄨󵄨󵄨󵄨q0
󵄨󵄨󵄨󵄨
2
+
󵄨󵄨󵄨󵄨q0

󵄨󵄨󵄨󵄨
4
)
1/2

. (98)

Therefore, if 𝑡 ≤ 𝑇
𝛿, we can obtain from (97) and (98)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

w𝛿 (⋅, 𝑇𝛿) − 𝛿𝑒𝜆max𝑇
𝛿

𝜅
r+ (q0)
󵄨󵄨󵄨󵄨r+ (q0)

󵄨󵄨󵄨󵄨

𝑒q0 (x)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐶8 {𝛿
𝜌/𝜆max + 𝜃

2
+ 𝜃
3
} ,

(99)

where𝐶8 = 𝐶max{𝜃1−(𝜌/𝜆max), (1 + |q0|
2
+ |q0|

4
)
3/2

+1}. If 0 <
𝜃 < (1/𝐶8)

3/2 and 𝛿0 = (𝜃/2𝐶8 − 𝜃
2
− 𝜃
3
)
𝜆max/𝜌, then

󵄩󵄩󵄩󵄩󵄩
w𝛿 (⋅, 𝑇𝛿)󵄩󵄩󵄩󵄩󵄩 ≥ 𝜃 − 𝐶8 {𝛿

𝜌/𝜆max + 𝜃
2
+ 𝜃
3
} ≥

𝜃

2
> 0,

0 < 𝛿 ≤ 𝛿0.

(100)

This means nonlinear instability as 𝛿 → 0.

Respecting the above-mentioned facts, the models (7)
and (13) have no nonconstant positive steady state no matter
what the self-diffusion coefficients 𝑑1, 𝑑2 and cross diffusion
𝑑3 are; in other words, self-diffusion and cross diffusion
(without chemotaxis) cannot drive instability and cannot
generate patterns for the corresponding model. This means
that chemotaxis-driven instability occurs. We prove that for
any given general perturbation of magnitude 𝛿, linear fastest
growing modes determine the nonlinear evolution for the
model (2), over a time period of the order ln 1/𝛿. Therefore,
our results indeed provide a rigorous mathematical descrip-
tion for the nonlinear pattern formation in a volume-filling
chemotaxis model with logistic growth.
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