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Tuberculosis (TB) and human immunodeficiency virus (HIV) can be considered a deadly human syndemic. In this paper, we
formulate a model for TB and HIV transmission dynamics. The model considers both TB and acquired immune deficiency
syndrome (AIDS) treatment for individuals with only one of the two infectious diseases or both. The basic reproduction number
and equilibrium points are determined and stability is analyzed. Through simulations, we show that TB treatment for individuals
with only TB infection reduces the number of individuals that become coinfected with TB and HIV/AIDS and reduces the diseases
(TB and AIDS) induced deaths. Analogously, the treatment of individuals with only AIDS also reduces the number of coinfected
individuals. Further, TB treatment for coinfected individuals in the active and latent stage of TB disease implies a decrease of the
number of individuals that passes from HIV-positive to AIDS.

1. Introduction

Tuberculosis (TB) and human immunodeficiency virus/
acquired immune deficiency syndrome (HIV/AIDS) are the
leading causes of death from an infectious disease worldwide
[1]. Individuals infected with HIV are more likely to develop
TB disease because of their immunodeficiency, and HIV
infection is the most powerful risk factor for progression
from TB infection to disease [2]. This interaction justifies
the fact that HIV and TB can be considered a deadly human
syndemic, where syndemic refers to the convergence of two or
more diseases that act synergistically to magnify the burden
of disease [3].

Following UNAIDS global report on AIDS epidemic
2013 [4], globally, an estimated 35.3 million people were
living with HIV in 2012, an increase from previous years
as more people are receiving the life-saving antiretroviral
therapy (ART). There were approximately 2.3 million new
HIV infections globally, showing a 33%decline in the number
of new infections with respect to 2001. At the same time,
the number of AIDS deaths is also declining with around 1.6
million AIDS deaths in 2012, down from about 2.3 million in
2005. In 2012, 1.1 million of 8.6 million people who developed
TB worldwide were HIV-positive. The number of people
dying from HIV-associated TB has been falling since 2003.

However, there were still 320 000 deaths fromHIV-associated
TB in 2012 and further efforts are needed to reduce this
burden [1]. ART is a critical intervention for reducing the risk
of TBmorbidity andmortality among people living withHIV
and, when combined with isoniazid preventive therapy, it can
have a significant impact on TB prevention [1].

Collaborative TB/HIV activities (including HIV testing,
ART therapy, and TB preventive measures) are crucial for
the reduction of TB-HIV coinfected individuals. The World
Health Organization (WHO) estimates that these collabora-
tive activities prevented 1.3 million people from dying, from
2005 to 2012. However, significant challenges remain: the
reduction of tuberculosis related deaths among people living
with HIV has slowed in recent years; the ART therapy is
not being delivered to TB-HIV coinfected patients in the
majority of the countries with the largest number of TB/HIV
patients; the pace of treatment scale-up for TB/HIV patients
has slowed; less than half of notified TB patients were tested
forHIV in 2012; and only a small fraction of TB/HIV-infected
individuals received TB preventive therapy [4].

The study of the joint dynamics of TB and HIV presents
formidable mathematical challenges due to the fact that the
models of transmission are quite distinct [5]. Few mathe-
matical models have been proposed for TB-HIV coinfection
(see, e.g., [5–9]). Kirschner [7] developed a cellular model
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for HIV-1 and TB coinfection inside a host. Roeger et al. [5]
proposed a population model for TB-HIV/AIDS coinfection
transmission dynamics, assuming that TB-infected individ-
uals in the active stage of the disease are too ill to remain
sexually active and therefore they are unable to transmit HIV.
In this work, we assume that active TB-infected individuals
are susceptible to HIV infection. Naresh and Tripathi [8]
proposed a model for TB-HIV coinfection in a variable
size population with only TB treatment. Here we consider
TB and HIV treatment in different stages of the disease.
Bhunu et al. [6] studied a TB-HIV coinfection model with
both TB and HIV treatment. The authors did not take into
account that an individual coinfected with TB and HIV can
effectively recover from TB infection. We assume that TB
can be cured, even in HIV-positive individuals [1]. Sharomi
et al. [9] also considered these assumptions, subdividing the
total population into 15 classes. It is our aim in this work to
develop amodel that balances two goals: simplicity and useful
information.

The paper is organized as follows. Section 2 describes our
model for TB-HIV syndemic with TB and HIV treatment.
In Section 3, the positivity and boundedness of solutions of
the model are proved and in Section 4 equilibrium points
and respective stability are analyzed. Section 5 is devoted to
numerical simulations and discussion of results.

2. TB-HIV/AIDS Model

Themodel subdivides the human population into 10mutually
exclusive compartments, namely, susceptible individuals (𝑆),
TB-latently infected individuals, who have no symptoms of
TB disease and are not infectious (𝐿

𝑇
), TB-infected individ-

uals, who have active TB disease and are infectious (𝐼
𝑇
), TB-

recovered individuals (𝑅
𝑇
), HIV-infected individuals with no

clinical symptoms of AIDS (𝐼
𝐻
), HIV-infected individuals

with AIDS clinical symptoms (𝐴), TB-latent individuals
coinfected with HIV (pre-AIDS) (𝐿

𝑇𝐻
), HIV-infected indi-

viduals (pre-AIDS) coinfected with active TB disease (𝐼
𝑇𝐻

),
TB-recovered individuals with HIV infection without AIDS
symptoms (𝑅

𝑇𝐻
), and HIV-infected individuals with AIDS

symptoms coinfected with TB (𝐴
𝑇
). The total population at

time 𝑡, denoted by𝑁(𝑡), is given by

𝑁(𝑡) = 𝑆 (𝑡) + 𝐿𝑇 (𝑡) + 𝐼𝑇 (𝑡) + 𝑅𝑇 (𝑡) + 𝐼𝐻 (𝑡) + 𝐴 (𝑡)

+ 𝐼
𝑇𝐻 (𝑡) + 𝐿𝑇𝐻 (𝑡) + 𝑅𝑇𝐻 (𝑡) + 𝐴𝑇 (𝑡) .

(1)

The susceptible population is increased by the recruitment
of individuals (assumed susceptible) into the population, at a
rateΛ. All individuals suffer from natural death, at a constant
rate 𝜇. Susceptible individuals acquire TB infection from
individuals with active TB at a rate 𝜆

𝑇
, given by

𝜆
𝑇
=
𝛽
1

𝑁
(𝐼
𝑇
+ 𝐼
𝑇𝐻

+ 𝐴
𝑇
) , (2)

where 𝛽
1
is the effective contact rate for TB infection. Simi-

larly, susceptible individuals acquireHIV infection, following
effective contact with people infected with HIV at a rate 𝜆

𝐻
,

given by
𝜆
𝐻
=
𝛽
2

𝑁
[𝐼
𝐻
+ 𝐼
𝑇𝐻

+ 𝐿
𝑇𝐻

+ 𝑅
𝑇𝐻

+ 𝜂 (𝐴 + 𝐴
𝑇
)] , (3)

where 𝛽
2
is the effective contact rate for HIV transmission

and the modification parameter 𝜂 ⩾ 1 accounts for the
relative infectiousness of individuals withAIDS symptoms, in
comparison to those infected with HIV with no AIDS symp-
toms. Individuals with AIDS symptoms are more infectious
than HIV-infected individuals (pre-AIDS) because they have
a higher viral load and there is a positive correlation between
viral load and infectiousness [14].

Individuals leave the latent TB class 𝐿
𝑇
by becoming

infectious, at a rate 𝑘
1
, or recovered, with a treatment rate

𝜏
1
. The treatment rate for active TB-infected individuals is 𝜏

2
.

We assume that TB-recovered individuals 𝑅
𝑇
acquire partial

immunity and the transmission rate for this class is given
by 𝛽
1
𝜆
𝑇
with 𝛽



1
⩽ 1. Individuals with active TB disease

suffer induced death at a rate 𝑑
𝑇
. We assume that individuals

in the class 𝑅
𝑇
are susceptible to HIV infection at a rate

𝜆
𝐻
. On the other hand, TB-active infected individuals 𝐼

𝑇

are susceptible to HIV infection, at a rate 𝛿𝜆
𝐻
, where the

modification parameter 𝛿 ⩾ 1 accounts for higher probability
of individuals in class 𝐼

𝑇
to become HIV-positive.

HIV-infected individuals (with no AIDS symptoms)
progress to the AIDS class 𝐴, at a rate 𝜌

1
. HIV-infected

individuals with AIDS symptoms are treated for HIV at the
rate𝛼
1
and suffer induced death at a rate𝑑

𝐴
. Individuals in the

class 𝐼
𝐻
are susceptible to TB infection at a rate 𝜓𝜆

𝑇
, where

𝜓 ⩾ 1 is amodification parameter traducing the fact thatHIV
infection is a driver of TB epidemic [3].

HIV-infected individuals (pre-AIDS) coinfectedwith TB-
disease, in the active stage 𝐼

𝑇𝐻
, are treated for TB at the

rate 𝜏
3
and progress to the AIDS-TB coinfection class 𝐴

𝑇

at a rate 𝜌
2
. Individuals in the class 𝐼

𝑇𝐻
suffer TB induced

death at a rate 𝑑
𝑇
. The anti-TB drugs can prevent or decrease

the likelihood of TB infection progression to active TB
disease in individuals in the class 𝐿

𝑇𝐻
[13]. The treatment

rate for individuals in this class is given by 𝜏
4
. However,

individuals in the class 𝐿
𝑇𝐻

are more likely to progress to
active TB disease than individuals infected only with latent
TB. In our model, this progression rate is given by 𝑘

2
.

Similarly, HIV infection makes individuals more susceptible
to TB reinfection when compared with non-HIV-positive
patients. The modification parameter associated with the TB
reinfection rate, for individuals in the class 𝑅

𝑇𝐻
, is given by

𝛽


2
, where 𝛽

2
⩾ 1. Individuals in this class progress to class

𝐴
𝑇
, at a rate 𝜌

3
.

HIV-infected individuals (with AIDS symptoms), coin-
fected with TB, are treated for HIV, at a rate 𝛼

2
. Individuals in

the class 𝐴
𝑇
suffer from AIDS-TB coinfection induced death

rate, at a rate 𝑑
𝑇𝐴
.

The aforementioned assumptions result in the follow-
ing system of differential equations that describes the
transmission dynamics of TB and HIV disease:

̇𝑆 (𝑡) = Λ − 𝜆
𝑇
𝑆 (𝑡) − 𝜆𝐻𝑆 (𝑡) − 𝜇𝑆 (𝑡) ,

�̇�
𝑇 (𝑡) = 𝜆𝑇𝑆 (𝑡) + 𝛽



1
𝜆
𝑇
𝑅
𝑇 (𝑡) − (𝑘1 + 𝜏1 + 𝜇) 𝐿𝑇 (𝑡) ,

̇𝐼
𝑇 (𝑡) = 𝑘1𝐿𝑇 (𝑡) − (𝜏2 + 𝑑𝑇 + 𝜇 + 𝛿𝜆𝐻) 𝐼𝑇 (𝑡) ,

�̇�
𝑇 (𝑡) = 𝜏1𝐿𝑇 (𝑡) + 𝜏2𝐼𝑇 (𝑡) − (𝛽



1
𝜆
𝑇
+ 𝜆
𝐻
+ 𝜇)𝑅

𝑇 (𝑡) ,
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Figure 1: Model for TB-HIV/AIDS transmission with treatment.

̇𝐼
𝐻 (𝑡) = 𝜆𝐻𝑆 (𝑡) − (𝜌1 + 𝜓𝜆𝑇 + 𝜇) 𝐼𝐻 (𝑡)

+ 𝛼
1
𝐴 (𝑡) + 𝜆𝐻𝑅𝑇 (𝑡) ,

�̇� (𝑡) = 𝜌1𝐼𝐻 (𝑡) − 𝛼1𝐴 (𝑡) − (𝜇 + 𝑑𝐴) 𝐴 (𝑡) ,

�̇�
𝑇𝐻 (𝑡) = 𝛽



2
𝜆
𝑇
𝑅
𝑇𝐻 (𝑡) − (𝑘2 + 𝜏4 + 𝜇) 𝐿𝑇𝐻 (𝑡) ,

̇𝐼
𝑇𝐻 (𝑡) = 𝛿𝜆𝐻𝐼𝑇 (𝑡) + 𝜓𝜆𝑇𝐼𝐻 (𝑡) + 𝛼2𝐴𝑇 (𝑡)

+ 𝑘
2
𝐿
𝑇𝐻 (𝑡) − (𝜏3 + 𝜌2 + 𝜇 + 𝑑𝑇) 𝐼𝑇𝐻 (𝑡) ,

�̇�
𝑇𝐻 (𝑡) = 𝜏3𝐼𝑇𝐻 (𝑡) + 𝜏4𝐿𝑇𝐻 (𝑡) − (𝛽



2
𝜆
𝑇
+ 𝜌
3
+ 𝜇)𝑅

𝑇𝐻
,

�̇�
𝑇 (𝑡) = 𝜌2𝐼𝑇𝐻 (𝑡) + 𝜌3𝑅𝑇𝐻 − (𝛼2 + 𝜇 + 𝑑𝑇𝐴) 𝐴𝑇 (𝑡) .

(4)

Themodel flow is described in Figure 1.The initial conditions
of model (4) satisfy

𝑆 (0) = 𝑆0 ⩾ 0, 𝐿
𝑇 (0) = 𝐿𝑇0 ⩾ 0, 𝐼

𝑇 (0) = 𝐼𝑇0 ⩾ 0,

𝑅
𝑇 (0) = 𝑅𝑇0 ⩾ 0,

𝐼
𝐻 (0) = 𝐼𝐻0 ⩾ 0, 𝐴 (0) = 𝐴0 ⩾ 0,

𝐿
𝑇𝐻 (0) = 𝐿𝑇𝐻0 ⩾ 0,

𝐼
𝑇𝐻 (0) = 𝐼𝑇𝐻0 ⩾ 0, 𝑅

𝑇𝐻 (0) = 𝑅𝑇𝐻0 ⩾ 0,

𝐴
𝑇 (0) = 𝐴𝑇0 ⩾ 0.

(5)

Note that if we consider the submodel of (4) with no HIV/
AIDS disease, that is, 𝐼

𝐻
= 𝐴 = 𝐿

𝑇𝐻
= 𝐼
𝑇𝐻

= 𝑅
𝑇𝐻

=

𝐴
𝑇
= 0, then we obtain the TB model from [12]. On the

other hand, if we consider the submodel with no TB, that is,

𝐿
𝑇
= 𝐼
𝑇
= 𝑅
𝑇
= 𝐿
𝑇𝐻

= 𝐼
𝑇𝐻

= 𝑅
𝑇𝐻

= 𝐴
𝑇
= 0, then we obtain

anHIV/AIDSmodel based on themodels proposed in [6, 15].

3. Positivity and Boundedness of Solutions

Let (𝑆, 𝐿
𝑇
, 𝐼
𝑇
, 𝑅
𝑇
, 𝐼
𝐻
, 𝐴, 𝐿
𝑇𝐻
, 𝐼
𝑇𝐻
, 𝑅
𝑇𝐻
, 𝐴
𝑇
) ∈ R10

+
be any

solution of (4) with initial conditions (5). Consider the
biologically feasible region given by

Ω = { (𝑆, 𝐿
𝑇
, 𝐼
𝑇
, 𝑅
𝑇
, 𝐼
𝐻
, 𝐴, 𝐿
𝑇𝐻
, 𝐼
𝑇𝐻
, 𝑅
𝑇𝐻
, 𝐴
𝑇
)

∈ R
10

+
: 0 ⩽ 𝑁 (𝑡) ⩽

Λ

𝜇
} .

(6)

For themodel system (4) to be epidemiologicallymeaningful,
it is important to prove that all its state variables are non-
negative for all time 𝑡 > 0. Suppose, for example, that at
some 𝑡 > 0 the variable 𝐿

𝑇
becomes zero, that is, 𝐿

𝑇
(𝑡) =

0, while all other variables are positive. Then, from the 𝐿
𝑇

equation we have 𝑑𝐿
𝑇
(𝑡)/𝑑𝑡 > 0. Thus, 𝐿

𝑇
(𝑡) ⩾ 0 for all

𝑡 > 0. Analogously, we can prove that all variables remain
nonnegative for all time 𝑡 > 0.

Adding all equations in model (4) gives

𝑑𝑁

𝑑𝑡
(𝑡) = Λ − 𝜇𝑁 (𝑡) − 𝑑𝑇𝐼𝑇 (𝑡) − 𝑑𝐴𝐴 (𝑡)

− 𝑑
𝑇
𝐼
𝑇𝐻 (𝑡) − 𝑑𝑇𝐴𝐴𝑇 (𝑡) .

(7)

Since𝑁(𝑡) ⩾ 𝐼
𝑇
(𝑡) + 𝐴(𝑡) + 𝐼

𝑇𝐻
(𝑡) + 𝐴

𝑇
(𝑡), then

Λ − (𝜇 + 𝑑
𝑇
+ 𝑑
𝐴
+ 𝑑
𝑇𝐴
)𝑁 (𝑡) ⩽

𝑑𝑁

𝑑𝑡
(𝑡) ⩽ Λ − 𝜇𝑁 (𝑡) .

(8)
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Therefore, we conclude that 𝑁(𝑡) is bounded for all 𝑡 > 0

and every solution of system (4) with initial condition in Ω
remains inΩ. This result is summarized below.

Lemma 1. The region Ω is positively invariant for model (4)
with nonnegative initial conditions in R10

+
.

4. Stability Analysis

Model (4) has four nonnegative equilibria, namely,

(i) the disease-free equilibrium (no disease):

Σ
0
= (𝑆
0
, 𝐿
𝑇0
, 𝐼
𝑇0
, 𝑅
𝑇0
, 𝐼
𝐻0
, 𝐴
0
, 𝐿
𝑇𝐻0

, 𝐼
𝑇𝐻0

, 𝑅
𝑇𝐻0

, 𝐴
𝑇0
)

= (
Λ

𝜇
, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

(9)

(ii) the HIV-AIDS free equilibrium:

Σ
𝑇
= (𝑆
⬦
, 𝐿
⬦

𝑇
, 𝐼
⬦

𝑇
, 𝑅
⬦

𝑇
, 𝐼
⬦

𝐻
, 𝐴
⬦
, 𝐿
⬦

𝑇𝐻
, 𝐼
⬦

𝑇𝐻
, 𝑅
⬦

𝑇𝐻
, 𝐴
⬦

𝑇
) (10)

with 𝐼⬦
𝑇
> 0 and 𝐼⬦

𝐻
= 𝐴
⬦
= 𝐿
⬦

𝑇𝐻
= 𝐼
⬦

𝑇𝐻
= 𝑅
⬦

𝑇𝐻
=

𝐴
⬦

𝑇
= 0 for 𝑅

1
> 1, where 𝑅

1
is the basic reproduction

number of model (4) with 𝐼
𝐻
= 𝐴 = 𝐿

𝑇𝐻
= 𝐼
𝑇𝐻

=

𝑅
𝑇𝐻

= 𝐴
𝑇
= 0 (only TB model) that is given by

𝑅
1
=

Λ

𝑁𝜇
(

𝛽
1

𝑑
𝑇
+ 𝜇 + 𝜏

2

)(
𝑘
1

𝑘
1
+ 𝜏
1
+ 𝜇

) (11)

(see [12]),
(iii) the TB-free equilibrium:

Σ
𝐻
= (𝑆
⋆
, 𝐿
⋆

𝑇
, 𝐼
⋆

𝑇
, 𝑅
⋆

𝑇
, 𝐼
⋆

𝐻
, 𝐴
⋆
, 𝐿
⋆

𝑇𝐻
, 𝐼
⋆

𝑇𝐻
, 𝑅
⋆

𝑇𝐻
, 𝐴
⋆

𝑇
) (12)

with 𝐿⋆
𝑇
= 𝐼
⋆

𝑇
= 𝑅
⋆

𝑇
= 𝐿
⋆

𝑇𝐻
= 𝐼
⋆

𝑇𝐻
= 𝑅
⋆

𝑇𝐻
= 𝐴
⋆

𝑇
= 0

and

𝑆
⋆
=

Λ

𝜇𝑅
2

, (13)

𝐼
⋆

𝐻
= (𝑅
2
− 1)

𝜇𝑁
𝐻
(𝛼
1
+ 𝑑
𝐴
+ 𝜇)

𝛽
2
(𝛼
1
+ 𝑑
𝐴
+ 𝜇 + 𝜂𝜌

1
)
, (14)

𝐴
⋆
= (𝑅
2
− 1)

𝜌
1
𝜇𝑁
𝐻

𝛽
2
(𝛼
1
+ 𝑑
𝐴
+ 𝜇 + 𝜂𝜌

1
)
, (15)

for𝑅
2
> 1, where𝑅

2
is the basic reproduction number

of model (4) with 𝐿
𝑇
= 𝐼
𝑇
= 𝑅
𝑇
= 𝐿
𝑇𝐻

= 𝐼
𝑇𝐻

=

𝑅
𝑇𝐻

= 𝐴
𝑇
= 0 (only HIV-AIDS model); that is,

𝑅
2
=

Λ

𝑁𝜇
𝛽
2
(

𝜇 + 𝛼
1
+ 𝑑
𝐴
+ 𝜂𝜌
1

𝜇𝛼
1
+ (𝜇 + 𝜌

1
) (𝜇 + 𝑑

𝐴
)
) , (16)

(iv) the syndemic equilibrium:

Σ
∗
= (𝑆
∗
, 𝐿
∗

𝑇
, 𝐼
∗

𝑇
, 𝑅
∗

𝑇
, 𝐼
∗

𝐻
, 𝐴
∗
, 𝐿
∗

𝑇𝐻
, 𝐼
∗

𝑇𝐻
, 𝑅
∗

𝑇𝐻
, 𝐴
∗

𝑇
) (17)

with 𝐼∗
𝑇
> 0, 𝐼∗

𝐻
> 0, 𝐴∗ > 0, 𝐿∗

𝑇𝐻
> 0, 𝐼∗

𝑇𝐻
> 0,

𝑅
∗

𝑇𝐻
> 0, and 𝐴∗

𝑇
> 0, for 𝑅

0
> 1, where 𝑅

0
is the

basic reproduction number of model (4); that is,

𝑅
0
= max {𝑅

1
, 𝑅
2
} . (18)

The details of the computation of the basic reproduction
number 𝑅

0
are given in Appendix A.

The following theorem states the stability of the equilib-
rium points.

Theorem 2. The disease-free equilibrium Σ
0
is locally asymp-

totically stable if 𝑅
0
< 1 and unstable if either 𝑅

𝑖
> 1

with 𝑖 = 1, 2. The HIV-AIDS free equilibrium Σ
𝑇
is locally

asymptotically stable if 𝑅
1
> 1, and the TB-free equilibrium

Σ
𝐻
is locally asymptotically stable for 𝑅

2
near 1.

Details of the proof of Theorem 2 are given in
Appendix B.

Explicit expressions for the coinfection endemic equi-
librium Σ

∗ are very difficult to compute analytically. In
Section 5, we consider an example, with 𝑅

0
> 1, for which

there exists a syndemic equilibrium, and analyze, num-
erically, the local asymptotical stability of the syndemic equi-
librium Σ

∗.

5. Numerical Analysis and Discussion

For numerical simulations, we consider the following initial
conditions for system (4):

(𝑆 (0) , 𝐿𝑇 (0) , 𝐼𝑇 (0) , 𝑅𝑇 (0) , 𝐼𝐻 (0) , 𝐴 (0) ,

𝐿
𝑇𝐻 (0) , 𝐼𝑇𝐻 (0) , 𝑅𝑇𝐻 (0) , 𝐴𝑇 (0))

= (
60𝑁

100
,
14𝑁

100
,
3𝑁

100
, 0,

4𝑁

100
,
𝑁

100
,
12𝑁

100
,
5𝑁

100
, 0,

𝑁

100
)

(19)

with𝑁 = 50000. The parameters of model (4) take the values
of Table 1.

5.1. Equilibrium Points and Stability Analysis. In Table 2 we
show the effect of the transmission coefficient 𝛽

1
on the

state 𝐼⬦
𝑇

of the HIV-free equilibrium Σ
𝑇
and on the basic

reproduction number 𝑅
1
. Table 3 shows the effect of the

transmission coefficient 𝛽
2
on the states 𝐼⋆

𝐻
and 𝐴

⋆ of the
TB-free equilibrium Σ

𝐻
and on the basic reproduction num-

ber 𝑅
2
. We conclude that the equilibrium states 𝐼⬦

𝑇
and

(𝐼
⋆

𝐻
, 𝐴
⋆
) increasewith the transmission coefficients𝛽

1
and𝛽
2
,

respectively.
In Figure 2 we considered different initial conditions in

a neighborhood of the initial conditions given by (19) and
𝑅
0
< 1 (𝑅

1
< 1 and 𝑅

2
< 1) to illustrate the stability of

the disease-free equilibrium Σ
0
given by (9). In these numer-

ical simulations we considered 𝛽
1
= 2.7 and 𝛽

2
= 0.03,

corresponding to 𝑅
1
= 0.62632 and 𝑅

2
= 0.55077, while the

rest of the parameters take the values in Table 1.
Figure 3 shows that, for𝑅

0
> 1, the syndemic equilibrium

Σ
∗ exists. We considered different initial conditions for the

state variables of system (4) in a neighborhood of (19), 𝛽
1
= 6

and 𝛽
2
= 0.1, corresponding to 𝑅

1
= 1.39239 and 𝑅

2
=

1.83593, and the rest of the parameters take the values in
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Table 1: Parameters of the TB-HIV/AIDS model (4).

Symbol Value References Symbol Value References
Λ 714 𝜏

4
1 yr−1

𝜇 1/70 yr−1 𝜌
1

0.1 yr−1 [10, 11]
𝛽
1

Variable 𝜌
2

0.25 yr−1

𝛽
2

Variable 𝜌
3

0.125 yr−1

𝛽


1
0.9 𝛼

1
0.33 yr−1 [6]

𝛽


2
1.1 𝛼

2
0.33 yr−1

𝑘
1

1 [12] 𝜓 1.07

𝑘
2

1.3𝑘
1

[13] 𝑑
𝑇

1/8 yr−1

𝜏
1

1 yr−1 [12] 𝑑
𝐴

0.3 yr−1

𝜏
2

2 yr−1 [12] 𝑑
𝑇𝐴

0.33 yr−1

𝜏
3

2 yr−1 𝜂 1.02

𝛿 1.03

Table 2: Effect of 𝛽
1
on 𝐼⬦
𝑇
and 𝑅

1
.

𝛽
1

4.3 6 10 15 50
𝑅
1

0.99788 1.39239 2.32065 3.48097 11.60326
𝐼
⬦

𝑇
0.00397 903.93492 2206.57268 2870.72755 3804.50589

Table 3: Effect of 𝛽
2
on 𝐼⋆
𝐻
, 𝐴⋆, and 𝑅

2
.

𝛽
2

0.051 0.055 0.07 0.09 0.99
𝑅
2

0.93669 1.01016 1.28566 1.65299 1.81829
𝐼
⋆

𝐻
0.01708 135.73817 2516.54721 4472.84980 4930.48696

𝐴
⋆ 0.00266 21.07182 390.59491 694.23361 765.26396

Table 1. We observe that the state variables converge to Σ∗
when 𝑡 → ∞. In this case, Σ∗ is given by

Σ
∗
= (𝑆
∗
, 𝐿
∗

𝑇
, 𝐼
∗

𝑇
, 𝑅
∗

𝑇
, 𝐼
∗

𝐻
, 𝐴
∗
, 𝐿
∗

𝑇𝐻
, 𝐼
∗

𝑇𝐻
, 𝑅
∗

𝑇𝐻
, 𝐴
∗

𝑇
)

= (4766.84, 2019.66, 943.06, 28621.89, 362.66, 56.29,

31.39, 55.15, 495.68, 112.33) .

(20)

5.2. Treatment Impact on TB-HIV/AIDS Coinfection. Con-
sider 𝛽

1
= 13 and 𝛽

2
= 0.06, while the rest of the parameters

take the values of Table 1. Figure 4 shows the impact of treat-
ing the individuals with active and latent TB on the number of
individuals coinfected with TB-HIV/AIDS. The treatment of
individuals with only TB, 𝐼

𝑇
and 𝐿

𝑇
, has a positive impact on

the reduction of the number of individuals coinfected with
TB-HIV/AIDS. Moreover, the number of individuals that
suffered from disease (TB and AIDS) induced death is higher
when individuals with TB-single infection are not treated. In
this case, the total population at the end of 20 years is around
10509 and, in the case where individuals with only TB are
treated, the total population at the end of 20 years is around
29758 individuals. In Figure 5, we assume that there are no
disease induced deaths; that is, 𝑑

𝑇
= 𝑑
𝐴
= 𝑑
𝑇𝐴

= 0. The
impact of treating individuals with only TB on the reduction
of the number of coinfected individuals is more evident.

Figure 6 illustrates the case where we compare the num-
ber of individuals coinfected with TB-HIV/AIDS when indi-
viduals with only AIDS symptoms 𝐴

𝑇
are or are not treated.

We observe that treating this class of individuals is important
for the reduction of the number of individuals that become
coinfected, with special attention to the individuals that have
AIDS symptoms and TB infection. In Figure 7, we considered
that there are no disease induced deaths (𝑑

𝑇
= 𝑑
𝐴
= 𝑑
𝑇𝐴

=

0). It is crucial that TB-infected individuals (in the latent
and active stage), which are also HIV-positive, take anti-
TB drugs, since they can recover from TB. We analyze the
impact of treating TB-HIV/AIDS coinfected individuals𝐿

𝑇𝐻
,

𝐼
𝑇𝐻

, and 𝐴
𝑇
on the reduction of the number of individuals

coinfection. If anti-TB drugs are supplied, then latent and
active TB individuals with HIV can recover and pass to the
class 𝑅

𝑇𝐻
(the number of individuals in the class 𝑅

𝑇𝐻
tends

to zero when TB is not treated). In Figure 8, we observe that,
after 7 years, the number of individuals infected with active
TB and HIV, in the case without treatment, becomes lower
than in the case with treatment. This is due to the fact that
coinfection precipitates AIDS symptoms.

Appendices

A. Computation of 𝑅
0

Thebasic reproduction number represents the expected aver-
age number of new infections produced by a single infectious
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Figure 3: Stability of the syndemic equilibrium Σ
∗.

individualwhen in contactwith a completely susceptible pop-
ulation [16]. Following [16], the basic reproduction number

𝑅
0
is obtained as the spectral radius of thematrix𝐹⋅𝑉−1 at the

disease-free equilibrium Σ
0
, given by (9), with 𝐹 = [𝐹1 𝐹2],
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Figure 5: Impact of TB treatment on single-infected individuals with no disease induced death.
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Figure 8: Impact of TB and AIDS treatment on coinfected individuals with no disease induced death.
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(A.1)

and 𝑉 = [𝑉1 𝑉2] with

𝑉
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𝜏
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(A.2)
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The dominant eigenvalues of the matrix 𝐹 ⋅ 𝑉−1 are

𝑅
1
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Λ
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𝐴
)
) .

(A.3)

Thus, the basic reproduction number𝑅
0
of model (4) is given

by

𝑅
0
= max {𝑅

1
, 𝑅
2
} . (A.4)

Note that 𝑅
1
is the basic reproduction number of model (4)

with 𝐼
𝑇
= 𝐴 = 𝐿

𝑇𝐻
= 𝐼
𝑇𝐻

= 𝑅
𝑇𝐻

= 𝐴
𝑇
= 0 (only TB model),

and 𝑅
2
is the basic reproduction number of model (4) with

𝐿
𝑇
= 𝐼
𝑇
= 𝑅
𝑇
= 𝐿
𝑇𝐻

= 𝐼
𝑇𝐻

= 𝑅
𝑇𝐻

= 𝐴
𝑇
= 0 (only HIV-

AIDS model).

B. Proof of Theorem 2

In this Appendix, we provide details of the proof of
Theorem 2.

Local Asymptotical Stability of the Disease-Free Equilibrium
Σ
0
. FollowingTheorem 2 of [16], the disease-free equilibrium,

Σ
0
, is locally asymptotically stable if all the eigenvalues of the

Jacobian matrix of the system (4), here denoted by 𝑀
𝑇
(Σ
0
),

computed at the disease-free equilibrium Σ
0
, given by (9),

have negative real parts.
The Jacobian matrix of the system (4) at disease-free

equilibrium Σ
0
is given by

𝑀
𝑇
(Σ
0
) = [𝑀𝑇1 (Σ0) 𝑀

𝑇2
(Σ
0
)] (B.1)

with

𝑀
𝑇1
(Σ
0
) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝜇 0 −
𝛽
1
Λ

𝜇𝑁
0 −

𝛽
2
Λ

𝜇𝑁

0 −𝑑
1

𝛽
1
Λ

𝜇𝑁
0 0

0 𝑘
1

−𝑑
2

0 0

0 𝜏
1

𝜏
2

−𝜇 0

0 0 0 0
𝛽
2
Λ

𝜇𝑁
− 𝑑
3

0 0 0 0 𝜌
1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑀
𝑇2
(Σ
0
) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−
𝛽
2
𝜂Λ

𝜇𝑁
−
𝛽
2
Λ

𝜇𝑁
−
𝛽
1
Λ

𝜇𝑁
−
𝛽
2
Λ

𝜇𝑁
−
𝛽
2
Λ

𝜇𝑁
−
𝛽
1
Λ

𝜇𝑁
−
𝛽
2
𝜂Λ

𝜇𝑁

0 0
𝛽
1
Λ

𝜇𝑁
0

𝛽
1
Λ

𝜇𝑁

0 0 0 0 0

0 0 0 0 0

𝛽
2
𝜂Λ

𝜇𝑁
+ 𝛼
1

𝛽
2
Λ

𝜇𝑁

𝛽
2
Λ

𝜇𝑁

𝛽
2
Λ

𝜇𝑁

𝛽
2
𝜂Λ

𝜇𝑁

−𝑑
4

0 0 0 0

0 −𝑑
5

0 0 0

0 𝑘
2

−𝑑
6

0 𝛼
2

0 𝜏
4

𝜏
3

−𝑑
7

0

0 0 𝜌
2

𝜌
3

−𝑑
8

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(B.2)
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where 𝑑
1
= 𝑘
1
+ 𝜏
1
+ 𝜇; 𝑑

2
= 𝜏
2
+ 𝜇 + 𝑑

𝑇
; 𝑑
3
= 𝜌
1
+ 𝜇;

𝑑
4
= 𝛼
1
+ 𝜇 + 𝑑

𝐴
; 𝑑
5
= 𝑘
2
+ 𝜇 + 𝜏

4
; 𝑑
6
= 𝜌
2
+ 𝜏
3
+ 𝜇 + 𝑑

𝑇
;

𝑑
7
= 𝜌
3
+ 𝜇; 𝑑

8
= 𝛼
2
+ 𝑑
𝑇𝐴
+ 𝜇. One has

trace [𝑀
𝑇
(Σ
0
)]

= −2𝜇 − (𝑑
1
+ 𝑑
2
+ 𝑑
3
+ 𝑑
4
+ 𝑑
5
+ 𝑑
6
+ 𝑑
7
+ 𝑑
8
) < 0,

det [𝑀
𝑇
(Σ
0
)]

=
1

𝑁2
(𝑑
5
(𝑑
6
𝑑
7
+ 𝑑
𝑇
(𝛼
2
+ 𝜇) 𝑑

7
+ 𝛼
2
𝜇𝑑
6
+ 𝑑
𝑇
𝑑
𝑇𝐴
𝑑
7
)

× (𝑁𝜇 (𝛼
1
𝜇 + (𝜇 + 𝜌

1
) (𝜇 + 𝑑

𝐴
))

− 𝛽
2
Λ (𝛼
1
+ 𝜇 + 𝑑

𝐴
+ 𝜌
1
𝜂))

× (𝑁𝜇 (𝑑
𝑇
+ 𝜇 + 𝜏

2
) (𝑘
1
+ 𝜏
1
+ 𝜇) − 𝑘

1
𝛽
1
Λ) > 0

(B.3)

for

𝑅
1
=

Λ

𝑁𝜇
(

𝛽
1

𝑑
𝑇
+ 𝜇 + 𝜏

2

)(
𝑘
1

𝑘
1
+ 𝜏
1
+ 𝜇

) < 1,

𝑅
2
=

Λ

𝑁𝜇
𝛽
2
(

𝜇 + 𝛼
1
+ 𝑑
𝐴
+ 𝜂𝜌
1

𝜇𝛼
1
+ (𝜇 + 𝜌

1
) (𝜇 + 𝑑

𝐴
)
) < 1.

(B.4)

We have just proved that the disease-free equilibrium Σ
0
of

model (4) is locally asymptotically stable if 𝑅
0
< 1 and

unstable if either 𝑅
𝑖
> 1, 𝑖 = 1, 2.

Global Asymptotical Stability of the Disease-Free Equilibrium
Σ
0
. For convenience, let us rewrite the model system (4) as

𝑑𝑋

𝑑𝑡
= 𝐹 (𝑋, 𝑍) ,

𝑑𝑍

𝑑𝑡
= 𝐺 (𝑋, 𝑍) , 𝐺 (𝑋, 0) = 0,

(B.5)

where𝑋 = (𝑆, 𝑅
𝑇
) and𝑍= (𝐿

𝑇
, 𝐼
𝑇
, 𝐼
𝐻
, 𝐴, 𝐿
𝑇𝐻
, 𝐼
𝑇𝐻
, 𝑅
𝑇𝐻
, 𝐴
𝑇
),

with𝑋 ∈ R2
+
denoting (its components) the number of unin-

fected individuals and 𝑍 ∈ R8
+
denoting (its components)

the number of infected individuals including the latent and
infectious.

The disease-free equilibrium is denoted by

𝐸
0
= (𝑋
0
, 0) , where 𝑋

0
= (

Λ

𝜇
, 0) . (B.6)

Following [6], if

(H1) 𝐸
0
is globally asymptotically stable for 𝑑𝑋/𝑑𝑡 =

𝐹(𝑋, 0),
(H2) 𝐺(𝑋,𝑍) ⩾ 0 for (𝑋, 𝑍) ∈ Ω, where 𝐺(𝑋,𝑍) = 𝐴𝑍 −

𝐺(𝑋,𝑍), 𝐴 = 𝐷
𝑍
𝐺(𝐸
0
, 0) is a Metzler matrix, and Ω

is given by (6),

then the fixed point 𝐸
0
= (𝑋
0
, 0) is a globally asymptotically

stable equilibrium of system (B.5). We have

𝑑𝑋

𝑑𝑡
= 𝐹 (𝑋, 𝑍) = [

Λ − 𝜆
𝑇
𝑆 − 𝜆
𝐻
𝑆 − 𝜇𝑆

𝜏
1
𝐿
𝑇
+ 𝜏
2
𝐼
𝑇
− (𝛽


1
𝜆
𝑇
+ 𝜆
𝐻
+ 𝜇)𝑅

𝑇

] ,

𝐹 (𝑋, 0) = [
Λ − 𝜇𝑆

−𝜇𝑅
𝑇

] ,

𝑑𝑍

𝑑𝑡
= 𝐺 (𝑋, 𝑍)

=

[
[
[
[
[
[
[
[
[
[
[

[

𝜆
𝑇
𝑆 + 𝛽


1
𝜆
𝑇
𝑅
𝑇
− (𝑘
1
+ 𝜏
1
+ 𝜇) 𝐿

𝑇

𝑘
1
𝐿
𝑇
− (𝜏
2
+ 𝑑
𝑇
+ 𝜇 + 𝛿𝜆

𝐻
) 𝐼
𝑇

𝜆
𝐻
𝑆 − (𝜌

1
+ 𝜓𝜆
𝑇
+ 𝜇) 𝐼

𝐻
+ 𝛼
1
𝐴 + 𝜆

𝐻
𝑅
𝑇

𝜌
1
𝐼
𝐻
− 𝛼
1
𝐴 − (𝜇 + 𝑑

𝐴
) 𝐴

𝛽


2
𝜆
𝑇
𝑅
𝑇𝐻

− (𝑘
2
+ 𝜏
4
+ 𝜇) 𝐿

𝑇𝐻

𝛿𝜆
𝐻
𝐼
𝑇
+ 𝜓𝜆
𝑇
𝐼
𝐻
+ 𝛼
2
𝐴
𝑇
+ 𝑘
2
𝐿
𝑇𝐻

− (𝜏
3
+ 𝜌
2
+ 𝜇 + 𝑑

𝑇
) 𝐼
𝑇𝐻

𝜏
3
𝐼
𝑇𝐻

+ 𝜏
4
𝐿
𝑇𝐻

− (𝛽


2
𝜆
𝑇
+ 𝜌
3
+ 𝜇)𝑅

𝑇𝐻

𝜌
2
𝐼
𝑇𝐻

+ 𝜌
3
𝑅
𝑇𝐻

− (𝛼
2
+ 𝜇 + 𝑑

𝑇𝐴
) 𝐴
𝑇

]
]
]
]
]
]
]
]
]
]
]

]

,

(B.7)

and 𝐺(𝑋, 0) = 0. Thus,

𝑑𝑋

𝑑𝑡
= 𝐹 (𝑋, 0) = [

Λ − 𝜇𝑆

−𝜇𝑅
𝑇

] ,

𝐴 = 𝐷
𝑍
𝐺 (𝑋
0
, 0) = [𝐷1 𝐷2]

(B.8)

with
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𝐷
1
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑘
1
− 𝜏
1
− 𝜇

𝛽
1
Λ

𝜇𝑁
0 0

𝑘
1

−𝜏
2
− 𝜇 − 𝑑

𝑇
0 0

0 0
𝛽
2
Λ

𝜇𝑁
− 𝜌
1
− 𝜇

𝛽
2
𝜂Λ

𝜇𝑁
+ 𝛼
1

0 0 𝜌
1

−𝛼
1
− 𝜇 − 𝑑

𝐴

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐷
2
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0
𝛽
1
Λ

𝜇𝑁
0

𝛽
1
Λ

𝜇𝑁

0 0 0 0

𝛽
2
Λ

𝜇𝑁

𝛽
2
Λ

𝜇𝑁

𝛽
2
Λ

𝜇𝑁

𝛽
2
𝜂Λ

𝜇𝑁

0 0 0 0

−𝑘
2
− 𝜏
4
− 𝜇 0 0 0

𝑘
2

−𝜌
2
− 𝜏
3
− 𝜇 − 𝑑

𝑇
0 𝛼

2

𝜏
4

𝜏
3

−𝜌
3
− 𝜇 0

0 𝜌
2

𝜌
3

−𝛼
2
− 𝑑
𝑇𝐴
− 𝜇

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐺 (𝑋, 𝑍) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜆
𝑇
(
Λ

𝜇
− 𝑆 − 𝛽



1
𝑅
𝑇
)

−𝛿𝜆
𝐻
𝐼
𝑇

𝜆
𝐻
(
Λ

𝜇
− 𝑆 − 𝑅

𝑇
− 𝜓𝐼
𝐻
)

0

−𝛽


2
𝜆
𝑇
𝑅
𝑇𝐻

− (𝛿𝜆
𝐻
𝐼
𝑇
+ 𝜓𝜆
𝑇
𝐼
𝐻
)

𝛽


2
𝜆
𝑇
𝑅
𝑇𝐻

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(B.9)

From (B.9) the condition (H2) is not satisfied, since𝐺(𝑋,𝑍) ⩾
0 is not true. Therefore, the disease-free equilibrium 𝐸

0
may

not be globally asymptotically stable. Following [17], the
backward bifurcation occurs at 𝑅

0
= 1 and the double

endemic equilibria can be supported for 𝑅
𝑐
< 𝑅
0
< 1, where

𝑅
𝑐
is a positive constant.

Existence and Stability of HIV-AIDS Free Equilibrium Σ
𝑇
. The

expressions for 𝑆⬦, 𝐿⬦
𝑇
, 𝐼⬦
𝑇
, and𝑅⬦

𝑇
are obtained if we consider

a submodel of (4) for which 𝐼
𝐻

= 𝐴 = 𝐿
𝑇𝐻

= 𝐼
𝑇𝐻

=

𝑅
𝑇𝐻

= 𝐴
𝑇
= 0 and the total population 𝑁 is given by

𝑁
𝑇
= 𝑆+𝐿

𝑇
+𝐼
𝑇
+𝑅
𝑇
.The basic reproduction number of this

submodel is given by 𝑅
1
(11). The existence, uniqueness, and

local asymptotic stability of Σ
𝑇
are proven in [12,Theorem 1].

Existence and Stability of TB-Free Equilibrium Σ
𝐻
. To prove

the existence of Σ
𝑇
, consider the submodel of (4) for which

𝐿
𝑇
= 𝐼
𝑇
= 𝑅
𝑇
= 𝐿
𝑇𝐻

= 𝐼
𝑇𝐻

= 𝑅
𝑇𝐻

= 𝐴
𝑇
= 0 and the total

population𝑁
𝐻
is given by𝑁

𝐻
= 𝑆+ 𝐼

𝐻
+𝐴. The equations of

this submodel are

̇𝑆 (𝑡) = Λ − 𝜆
𝐻
𝑆 (𝑡) − 𝜇𝑆 (𝑡) ,

̇𝐼
𝐻 (𝑡) = 𝜆𝐻𝑆 (𝑡) − (𝜌1 + 𝜇) 𝐼𝐻 (𝑡) + 𝛼1𝐴 (𝑡) ,

�̇� (𝑡) = 𝜌1𝐼𝐻 (𝑡) − 𝛼1𝐴 (𝑡) − (𝜇 + 𝑑𝐴) 𝐴,

(B.10)

where𝜆
𝐻
= 𝛽
2
((𝐼
𝐻
+𝜂𝐴)/𝑁

𝐻
). Setting the right-hand sides of

submodel (B.10) to zero, we obtain the endemic equilibrium
Σ
⋆

𝐻
= (𝑆
⋆
, 𝐼
⋆

𝐻
, 𝐴
⋆
) given by

𝑆
⋆
=

Λ

𝜇𝑅
2

,
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𝐼
⋆

𝐻
= (𝑅
2
− 1)

𝜇𝑁
𝐻
(𝛼
1
+ 𝑑
𝐴
+ 𝜇)

𝛽
2
(𝛼
1
+ 𝑑
𝐴
+ 𝜇 + 𝜂𝜌

1
)
,

𝐴
⋆
= (𝑅
2
− 1)

𝜌
1
𝜇𝑁
𝐻

𝛽
2
(𝛼
1
+ 𝑑
𝐴
+ 𝜇 + 𝜂𝜌

1
)
,

(B.11)

where 𝐼⋆
𝐻
> 0 and 𝐴⋆ > 0, whenever 𝑅

2
> 1.

In what follows we prove the local asymptotic stability
of the endemic equilibrium Σ

⋆

𝐻
, using the center manifold

theory [18], as described in [19, Theorem 4.1] (see also [16]),
considering ART treatment. The basic reproduction number
of this submodel 𝑅

2
is given by (16). Choose bifurcation

parameter, 𝛽∗, by solving for 𝛽
2
from 𝑅

2
= 1:

𝛽
∗
=
𝜇𝛼
1
+ (𝜇 + 𝜌

1
) (𝜇 + 𝑑

𝐴
)

𝛼 + 𝑑
𝐴
+ 𝜇 + 𝜂𝜌

. (B.12)

Submodel (B.10) has a disease-free equilibrium given by
Σ
∗

𝐻0
= (𝑥
10
, 𝑥
20
, 𝑥
30
) = (Λ/𝜇, 0, 0).

The Jacobian of the system (B.10), evaluated at Σ∗
𝐻0

and
with 𝛽

2
= 𝛽
∗, is given by

𝐽 (Σ
∗

𝐻0
) = [

[

−𝜇 −𝛽
2

−𝛽
2
𝜂

0 𝛽
2
− 𝜌 − 𝜇 𝛽

2
𝜂 + 𝛼

0 𝜌 −𝛼 − 𝑑
𝐴
− 𝜇

]

]

. (B.13)

The eigenvalues of the linearized system (B.13) are

𝜆
1
= 0, 𝜆

2
= −𝜇,

𝜆
3
= − (𝜂𝜌 (2𝜇

2
+ 𝜌 + 𝑑

𝐴
+ 𝛼) + 𝑑

𝐴
(2𝛼 + 2𝜇 + 𝑑

𝐴
)

+𝜌𝛼 + (𝜇 + 𝛼)
2
) (𝛼 + 𝑑

𝐴
+ 𝜇 + 𝜂𝜌)

−1
.

(B.14)

We observe that there is a simple eigenvalue with zero real
part and the other two eigenvalues have negative real part.
Thus, the system (B.10), with 𝛽

2
= 𝛽
∗, has a hyperbolic

equilibrium point and the center manifold theory [18] can
be used to analyze the dynamics of submodel (B.10) near
𝛽
2
= 𝛽
∗.

The Jacobian 𝐽(Σ
∗

𝐻0
) at 𝛽

2
= 𝛽
∗ has a right eigen-

vector (associated with the zero eigenvalue) given by 𝑤 =

[𝑤
1
, 𝑤
2
, 𝑤
3
]
𝑇, where

𝑤
1
= −

(𝜇𝛼
1
+ (𝜇 + 𝜌

1
) (𝜇 + 𝑑

𝐴
)) 𝑤
3

𝜌
1
𝜇

,

𝑤
2
=
(𝛼
1
+ 𝑑
𝐴
+ 𝜇)𝑤

3

𝜌
1

,

𝑤
3
= 𝑤
3
> 0.

(B.15)

Further, 𝐽(Σ∗
𝐻0
) for 𝛽

2
= 𝛽
∗ has a left eigenvector V =

[V
1
, V
2
, V
3
] (associated with the zero eigenvalue), where

V
1
= 0,

V
2
=
V
3
(𝛼
1
+ 𝑑
𝐴
+ 𝜇 + 𝜂𝜌

1
)

𝛼
1
+ 𝜂𝜌
1
+ 𝜇𝜂

,

V
3
= V
3
> 0.

(B.16)

To applyTheorem4.1 in [19] it is convenient to let𝑓
𝑘
represent

the right-hand side of the 𝑘th equation of the system (B.10)
and let 𝑥

𝑘
be the state variable whose derivative is given by

the 𝑘th equation for 𝑘 = 1, 2, 3. The local stability near the
bifurcation point 𝛽

2
= 𝛽
∗ is then determined by the signs

of two associated constants, denoted by 𝑎 and 𝑏, defined
(respectively) by

𝑎 =

3

∑

𝑘,𝑖,𝑗=1

V
𝑘
𝑤
𝑖
𝑤
𝑗

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑗

(0, 0) ,

𝑏 =

3

∑

𝑘,𝑖=1

V
𝑘
𝑤
𝑖

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝜙

(0, 0)

(B.17)

with 𝜙 = 𝛽
2
− 𝛽
∗.

For the system (B.10), the associated partial derivatives at
the disease-free equilibrium Σ

𝐻0
are given by

𝜕
2
𝑓
1

𝜕𝑥
2

2

=
2𝛽
∗
𝜇

Λ
,

𝜕
2
𝑓
1

𝜕𝑥
2
𝜕𝑥
3

=
𝛽
∗
𝜇 (1 + 𝜂)

Λ
,

𝜕
2
𝑓
1

𝜕𝑥
2

3

=
2𝛽
∗
𝜇𝜂

Λ
,

𝜕
2
𝑓
2

𝜕𝑥
2

2

=
−2𝛽
∗
𝜇

Λ
,

𝜕
2
𝑓
2

𝜕𝑥
2
𝜕𝑥
3

=
−𝛽
∗
𝜇 (1 + 𝜂)

Λ
,

𝜕
2
𝑓
2

𝜕𝑥
2

3

=
−2𝛽
∗
𝜇𝜂

Λ
.

(B.18)

It follows from the above expressions that

𝑎 = −V
3
𝑤
2

3
𝛽
∗
𝜇 (𝑘
1
+ 𝜇 + 𝜂𝜌

1
)

× (2𝑘
2

1
+ 4𝜇𝑘

1
+ 2𝜇
2
+ 𝜌
1
(𝛼
1
+ 𝜂 (𝛼

1
+ 𝜇 + 2𝜌

1
)

+𝑑
𝐴
(1 + 𝜂) + 𝜇))

× (𝜌
2

1
Λ (𝛼
1
+ 𝜂𝜌
1
+ 𝜇𝜂))

−1

< 0

(B.19)

with 𝑘
1
= 𝛼
1
+ 𝑑
𝐴
.

For the sign of 𝑏, it can be shown that the associated
nonvanishing partial derivatives are

𝜕
2
𝑓
1

𝜕𝑥
2
𝜕𝛽∗

= −1,
𝜕
2
𝑓
1

𝜕𝑥
3
𝜕𝛽∗

= −𝜂,

𝜕
2
𝑓
2

𝜕𝑥
2
𝜕𝛽∗

= 1,
𝜕
2
𝑓
2

𝜕𝑥
3
𝜕𝛽∗

= 𝜂.

(B.20)

It also follows from the above expressions that

𝑏 =
V
3
𝑤
3
(𝑘
1
+ 𝜇 + 𝜂𝜌

1
) (𝑘
1
+ 𝜇)

(𝛼
1
+ 𝜂𝜌
1
+ 𝜇𝜂) 𝜌

1

+
𝜂V
3
𝑤
3
(𝑘
1
+ 𝜇 + 𝜂𝜌

1
)

𝛼
1
+ 𝜂𝜌
1
+ 𝜇𝜂

> 0.

(B.21)

Thus, 𝑎 < 0 and 𝑏 > 0. UsingTheorem 4.1 of [19], the endemic
equilibrium Σ

⋆

𝐻
is locally asymptotically stable for 𝑅

2
near 1.
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