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A mathematical model which links predator-vector(prey) and host-vector theory is proposed to examine the indirect effect of
predators on vector-host dynamics. The equilibria and the basic reproduction number R

0
are obtained. By constructing Lyapunov

functional and using LaSalle’s invariance principle, global stability of both the disease-free and disease equilibria are obtained.
Analytical results show thatR

0
provides threshold conditions on determining the uniform persistence and extinction of the disease,

and predator density at any time should keep larger or equal to its equilibrium level for successful disease eradication. Finally, taking
the predation rate as parameter, we provide numerical simulations for the impact of predators on vector-host disease control. It is
illustrated that predators have a considerable influence on disease suppression by reducing the density of the vector population.

1. Introduction

Host-vector diseases are infectious diseases caused by an
infectious microbe transmitted by a blood (or sap-) sucking
arthropod called vectors, which carry the diseasewithout get-
ting it themselves. For instance, human and animal diseases
are such as malaria, dengue fever, West Nile virus, Chagas
disease, sleeping sickness, and Lyme disease. Host-vector
disease also affects other living organisms, such as plants.
Examples of vector-borne infections in crops include tobacco
mosaic virus (TMV), tomato spotted wilt virus (TSWV),
tomato yellow leaf curl virus (TYLCV), cucumber mosaic
virus (CMV), and potato virus Y (PVY) [1]. Vector-borne
infections in trees include the pine wilt disease and the red
ring disease in palms [2].

Recently, the frequent occurrence of natural disasters
and environmental degradation around the world creates
conditions suitable for breeding of vectors so that vector-
borne diseases are constantly emerging. It is estimated that
almost three-fourths of the new infectious diseases in recent
years belong to vector-borne infectious disease. Vector-borne
diseases remain a serious global threat to humans, livestock,
and crops and cause great economic losses in agriculture and

forestry; thus; control of such diseases is of great economic
and public health concern.

The present mode of controlling vector-borne disease
includes using bednets, spraying insecticides [3], and sterile
insect technique (SIT) [4–6]. Effective vaccines and treatment
control have not been adopted for most of the diseases
except that malaria, which is preventable and curable when
treatment and prevention measures are taken properly. One
potential approach to control vector-borne disease is to intro-
duce biological enemies (biocontrol agents) of the vector.
Compared to insecticidemethod and sterile insect technique,
introducing biological enemies (biocontrol agents) of the
vector is more safe and cost-efficient. Moreover, it will lead
to ecological balance and environment protection. Biological
control of vectors has been successfully applied in controlling
a variety of disease pathogens, including crop diseases such
as the tomato leaf curl virus in India and the cassava mosaic
virus in sub-Saharan Africa [7, 8], as well as tree diseases
such as pine wilt disease in Japan and China [9, 10]. For
human diseases, Entomogenous fungi are used as promising
biopesticides for tick and sleeping sickness control [11, 12].
Predators have been introduced as biological control agents
of vectors for various diseases such as malaria, dengue fever,
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tick disease, and Lyme disease [13–20]. Several recent studies
suggested that predators led to a decline in local cases of
dengue fever in Vietnam and Thailand [21, 22] and malaria
in India [23, 24].

Mathematical models provide a powerful tool to under-
stand the dynamics of disease spreading through a population
and in decision-making process regarding disease predic-
tion and disease control. Since Ross [25] first proposed a
malaria model in 1911, many authors have been attracted to
mathematical modeling, and very large good results on the
subject have been presented. For example, the authors in [26]
studied the global dynamics and back bifurcation of a vector-
borne disease model with horizontal transmission in host
population, which includes exposed classes both in host and
vector populations and extended models studied in [27, 28].

However, compared with biological control of herbivo-
rous pests, which has long been established as amajor compo-
nent of pestmanagement programmers and is aimed to direct
decrease pest densities by pest enemies [29, 30], biological
control of vectors has been seldom investigated based on
mathematical models. The main reason is that modeling the
biological control of vectors is a complex interaction, mainly
including the virus-host interaction, vector-host interaction,
and vector- (prey-) enemy interaction, which is more com-
plicated than the only pest-enemy interaction [31, 32] of
biological pest control.

Up to know, only several authors have studied the
biological control of vector to reduce the disease incidence
by mathematical models. For examples, Moore et al. [33]
first proposed a host-vector-predator model to study the
effect of predator on the transmission and control of vector-
borne disease.The efficacy of three types of biocontrol agents:
predator/parasitoid, competitor, and pathogen of the vector,
is compared in [34] to reduce disease incidence. Zhou and
Yao [35] improved the model proposed in [33], study the
disease control threshold, and limit cycles with persistence
of disease or without disease. However, both papers [33, 35]
focus on the constant total host populations, and the hosts
and vectors are simply divided into susceptible and infective
ones.

Motivated by the above considerations, in this paper we
consider a new host-vector-predator model, where both total
host and vector population are time-dependent population
size and the total host population is divided into four
subpopulations of susceptible hosts, exposed hosts, infectious
hosts, and recovered hosts. Furthermore, the total vector
population is divided into three subpopulations of susceptible
hosts, exposed hosts, and infectious hosts. The aim is to
explore the global dynamics of the proposed host-vector-
predator model and the impacts of predator on host-vector
disease control.

The rest of the paper is organized as follows. In Section 2,
we present a formulation of the mathematical model. The
equilibria and the basic reproduction number are given
in Section 3. In Section 4, global stability analysis of the
equilibria is investigated. In Section 5, we use some numer-
ical simulations to explore the impact of predators on the
prevalence of vector-borne disease. Conclusions are given in
Section 6.

2. Model Formulation

The basic model for the transmission dynamics of vector-
borne disease with predator control is given by the following
deterministic system of nonlinear differential equations:

𝑑𝑆
ℎ (𝑡)

𝑑𝑡
= 𝑏
1
− 𝛽
1
𝑆
ℎ (𝑡) 𝐼V (𝑡) − 𝜇ℎ𝑆ℎ (𝑡) ,

𝑑𝐸
ℎ (𝑡)

𝑑𝑡
= 𝛽
1
𝑆
ℎ
(𝑡) 𝐼V (𝑡) − (𝛼ℎ + 𝜇ℎ) 𝐸ℎ (𝑡) ,

𝑑𝐼
ℎ (𝑡)

𝑑𝑡
= 𝛼
ℎ
𝐸
ℎ
(𝑡) − (𝛾

ℎ
+ 𝛿
ℎ
+ 𝜇
ℎ
) 𝐼
ℎ
(𝑡) ,

𝑑𝑅
ℎ
(𝑡)

𝑑𝑡
= 𝛾
ℎ
𝐼
ℎ
(𝑡) − 𝜇

ℎ
𝑅
ℎ
(𝑡) ,

𝑑𝑆V (𝑡)

𝑑𝑡
= 𝑏
2
− 𝛽
2
𝑆V (𝑡) 𝐼ℎ (𝑡) − 𝜇V𝑆V (𝑡) − ℎ𝑆V (𝑡) 𝑃V (𝑡) ,

𝑑𝐸V (𝑡)

𝑑𝑡
= 𝛽
2
𝑆V (𝑡) 𝐼ℎ (𝑡)−𝛼V𝐸V (𝑡)−𝜇V𝐸V (𝑡)−ℎ𝐸V (𝑡) 𝑃V (𝑡) ,

𝑑𝐼V (𝑡)

𝑑𝑡
= 𝛼V𝐸V (𝑡) − 𝜇V𝐼V (𝑡) − ℎ𝐼V (𝑡) 𝑃V (𝑡) ,

𝑑𝑃V (𝑡)

𝑑𝑡
= 𝜀ℎ (𝑆V (𝑡) + 𝐸V (𝑡) + 𝐼V (𝑡)) 𝑃V (𝑡) − 𝑒𝑃V (𝑡) ,

(1)

with initial conditions

𝑆
ℎ (0) ≥ 0, 𝐸

ℎ (0) ≥ 0, 𝐼
ℎ (0) ≥ 0,

𝑅
ℎ
(0) ≥ 0, 𝑆V (0) ≥ 0, 𝐸V (0) ≥ 0,

𝐼V (0) ≥ 0, 𝑃V (0) ≥ 0,

(2)

where the total host population at time 𝑡 denoted by𝑁
ℎ
(𝑡) is

divided into four subpopulations of susceptible hosts 𝑆
ℎ
(𝑡),

exposed hosts 𝐸
ℎ
(𝑡), infectious hosts 𝐼

ℎ
(𝑡), and recovered

hosts 𝑅
ℎ
(𝑡), so that 𝑁

ℎ
(V) = 𝑆

ℎ
(𝑡) + 𝐸

ℎ
(𝑡) + 𝐼

ℎ
(𝑡) + 𝑅

ℎ
(𝑡).

The total vector population at time 𝑡 denoted by 𝑁V(𝑡) is
split into susceptible vectors 𝑆V(𝑡), exposed vectors 𝐸V(𝑡) and
infectious vectors 𝐼V(𝑡), so that𝑁V(𝑡) = 𝑆V(𝑡)+𝐸V(𝑡)+𝐼V(𝑡).The
predator of the vector at time 𝑡 is represented by 𝑃V(𝑡). 𝑏1 and
𝑏
2
are, respectively, the recruitment rate of hosts and vectors.

Parameters 𝛽
1
and 𝛽

2
are, respectively, the rate of biting from

susceptible hosts to infected hosts and susceptible vectors to
infected vectors. 𝜇

ℎ
and 𝜇V are, respectively, the natural death

rate of infected hosts and vectors. Exposed hosts and vectors
develop symptoms of the disease and move to the infectious
class at rates 𝛼

ℎ
and 𝛼V, respectively. 𝛾ℎ is the natural recovery

rate from the infected hosts. 𝛿
ℎ
is the disease-caused death

rate of infected hosts. ℎ and 𝜀 are, respectively, the predation
rates and conversation rate of the predator to the vector. 𝑒
is the mortality of the predator including naturally, being
preyed both by humans and other animals.
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Adding the host equations in (1), we have

𝑑𝑁
ℎ
(𝑡)

𝑑𝑡
= 𝑏
1
− 𝜇
ℎ
𝑁
ℎ
(𝑡) − 𝛿

ℎ
𝐼
ℎ
(𝑡) , (3)

and from the last four equations of system (1), we have

𝑑𝑁V (𝑡)

𝑑𝑡
= 𝑏
2
− 𝜇V𝑁V (𝑡) − ℎ𝑁V (𝑡) 𝑃V (𝑡) ,

𝑑𝑃V (𝑡)

𝑑𝑡
= 𝜀ℎ𝑁V (𝑡) 𝑃V (𝑡) − 𝑒𝑃V (𝑡) .

(4)

By (3) and (4), we have

𝑑𝑁
ℎ
(𝑡)

𝑑𝑡
≤ 𝑏
1
− 𝜇
ℎ
𝑁
ℎ
(𝑡) ,

𝑑𝑁V (𝑡)

𝑑𝑡
≤ 𝑏
2
− 𝜇V𝑁V (𝑡) ,

𝑑𝑃V (𝑡)

𝑑𝑡
= 𝜀ℎ𝑁V (𝑡) 𝑃V (𝑡) − 𝑒𝑃V (𝑡) .

(5)

Let

Γ = { (𝑆
ℎ
, 𝐸
ℎ
, 𝐼
ℎ
, 𝑅
ℎ
, 𝑆V, 𝐸V, 𝐼V, 𝑃V) ∈ 𝑅

+

8

| 0 ≤ 𝑆
ℎ
+ 𝐸
ℎ
+ 𝐼
ℎ
+ 𝑅
ℎ
≤
𝑏
1

𝜇
ℎ

,

0 ≤ 𝑆V + 𝐸V + 𝐼V ≤
𝑏
2

𝜇V
, 𝑃V ≥ 0} ;

(6)

then, it is easy to verify that Γ is positively an invariant of
system (1).

Since the fourth equation for 𝑅
ℎ
(𝑡) in system (1) does

not influence the dynamics behavior of system, we can omit
the equations for 𝑅

ℎ
(𝑡). System (1) in the invariant space Γ

can be written as the following seven dimensional nonlinear
systems:

𝑑𝑆
ℎ
(𝑡)

𝑑𝑡
= 𝑏
1
− 𝛽
1
𝑆
ℎ
(𝑡) 𝐼V (𝑡) − 𝜇ℎ𝑆ℎ (𝑡) ,

𝑑𝐸
ℎ
(𝑡)

𝑑𝑡
= 𝛽
1
𝑆
ℎ
(𝑡) 𝐼V (𝑡) − (𝛼ℎ + 𝜇ℎ) 𝐸ℎ (𝑡) ,

𝑑𝐼
ℎ
(𝑡)

𝑑𝑡
= 𝛼
ℎ
𝐸
ℎ
(𝑡) − 𝑚𝐼

ℎ
(𝑡) ,

𝑑𝑆V (𝑡)

𝑑𝑡
= 𝑏
2
− 𝛽
2
𝑆V (𝑡) 𝐼ℎ (𝑡) − 𝜇V𝑆V (𝑡) − ℎ𝑆V (𝑡) 𝑃V (𝑡) ,

𝑑𝐸V (𝑡)

𝑑𝑡
= 𝛽
2
𝑆V (𝑡) 𝐼ℎ (𝑡)−𝛼V𝐸V (𝑡)−𝜇V𝐸V (𝑡)−ℎ𝐸V (𝑡) 𝑃V (𝑡) ,

𝑑𝐼V (𝑡)

𝑑𝑡
= 𝛼V𝐸V (𝑡) − 𝜇V𝐼V (𝑡) − ℎ𝐼V (𝑡) 𝑃V (𝑡) ,

𝑑𝑃V (𝑡)

𝑑𝑡
= 𝜀ℎ (𝑆V (𝑡) + 𝐸V (𝑡) + 𝐼V (𝑡)) 𝑃V (𝑡) − 𝑒𝑃V (𝑡) ,

(7)

where𝑚 = 𝛾
ℎ
+ 𝛿
ℎ
+ 𝜇
ℎ
. Let

Γ = { (𝑆
ℎ
, 𝐸
ℎ
, 𝐼
ℎ
, 𝑆V, 𝐸V, 𝐼V, 𝑃V) ∈ 𝑅

+

7

| 0 ≤ 𝑆
ℎ
+ 𝐸
ℎ
+ 𝐼
ℎ
≤
𝑏
1

𝜇
ℎ

,

0 ≤ 𝑆V + 𝐸V + 𝐼V ≤
𝑏
2

𝜇V
, 𝑃V ≥ 0} .

(8)

Obviously, for system (7), the region Γ is positively invariant.

3. The Equilibria and the Basic Reproduction
Number

Lemma 1. The equilibria of system (7) are as follows.

(i) If the predator is present, that is, 𝑃V(𝑡) > 0 for any
𝑡 ∈ [0, +∞), then there exist a disease-free equilib-
rium 𝐸

1
(𝑆
0

ℎ
, 0, 0, 𝑆

0

V , 0, 0, 𝑃̃V) and a disease equilibrium
𝐸
2
(𝑆
ℎ
, 𝐸
ℎ
, 𝐼
ℎ
, 𝑆V, 𝐸V, 𝐼V, 𝑃̃V) if 𝑅0 is larger than one.

(ii) If the predator is absent, that is, 𝑃V(𝑡) ≡ 0 for any
𝑡 ∈ [0, +∞), then there exist a disease-free equilibrium
𝐸
3
((𝑏
1
/𝜇
ℎ
)0, 0, (𝑏

2
/𝜇V), 0, 0, 0) and a disease equilib-

rium 𝐸
4
(
_
𝑆 ℎ,

_
𝐸ℎ,

_
𝐼 ℎ,

_
𝑆 V,

_
𝐸V,

_
𝐼 V, 0) if 𝑅1 is larger than

one.

where

𝑆
0

ℎ
=
𝑏
1

𝜇
ℎ

, 𝑆
0

V = 𝑁̃V,

𝑆
ℎ
=
𝑄
1
𝑄
2
𝑄
3
(𝜇V + ℎ𝑃̃V + 𝛽2𝐼ℎ)

𝛼
ℎ
𝛼V𝛽1𝛽2𝑁̃V

,

𝐼
ℎ
=

𝑅
2

0
− 1

𝑄2
1
𝑄2
2
𝑄
3
𝑄
4
𝜇
ℎ
(𝜇
ℎ
𝛽
2
𝑄
3
+ 𝛼V𝛽1𝛽2𝑁̃V)

,

𝐸
ℎ
=
𝑄
2

𝛼
ℎ

𝐼
ℎ
, 𝑆V =

𝑏
2

𝜇V + ℎ𝑃̃V + 𝛽2𝐼ℎ
,

𝐸V =
𝛼V𝛽2𝑁̃V𝐼ℎ (𝜇V + ℎ𝑃̃V)

𝛼V𝑄3 (𝜇V + ℎ𝑃V + 𝛽2𝐼ℎ)
,

𝐼V =
𝛼V𝛽2𝑁̃V𝐼ℎ

𝑄
3
(𝜇V + ℎ𝑃̃V + 𝛽2𝐼ℎ)

,

_
𝑆 ℎ =

𝑄
1
𝑄
2
𝑄
5
𝜇V (𝜇V + 𝛽2

_
𝐼 ℎ)

𝛼
ℎ
𝛼V𝛽1𝛽2𝑏2

,
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_
𝐼 ℎ =

𝑅
2

1
− 1

𝑄2
1
𝑄2
2
𝑄
5
𝜇
ℎ
[𝜇
ℎ
𝜇V𝛽2𝑄5 + 𝛼V𝛽1𝛽2𝑏2]

,

_
𝐸ℎ =

𝑄
2

𝛼
ℎ

_
𝐼 ℎ,

_
𝑆 V =

𝑏
2

𝜇V + 𝛽2
_
𝐼 ℎ

,

_
𝐸V =

𝜇V
_
𝐼 V

𝛼V
,

_
𝐼 V =

𝑏
2
𝛼V𝛽2

_
𝐼 ℎ

𝜇V𝑄5 (𝜇V + 𝛽2
_
𝐼 ℎ)

,

𝑄
1
= 𝛼
ℎ
+ 𝜇
ℎ
, 𝑄

2
= 𝑚 = 𝛾

ℎ
+ 𝛿
ℎ
+ 𝜇
ℎ
,

𝑄
3
= 𝛼V + 𝜇V + ℎ𝑃̃V, 𝑄

4
= (𝜇V + ℎ𝑃̃V) ,

𝑄
5
= 𝛼V + 𝜇V, 𝑁̃V =

𝑒

𝜀ℎ
,

𝑃̃V =
𝑏
2
− 𝜇V𝑁̃V

ℎ𝑁̃V
if 𝑏2
𝜇V
>
𝑒

𝜀ℎ
.

(9)

Here (𝑏
2
/𝜇V) is the equilibrium level of total vector population

of system (7) without predators, while (𝑒/𝜀ℎ) is the equilibrium
level of total vector population of system (7) with predators.
(𝑏
2
/𝜇V) > (𝑒/𝜀ℎ) is the sufficient and necessary conditions to

ensure 𝑃̃V > 0. Therefore, from the viewpoint of biological
meaning, if the predators are present, we always assume that
(𝑏
2
/𝜇V) > (𝑒/𝜀ℎ).

𝑅
0

= √(𝛼
ℎ
𝛼V𝛽1𝛽2𝑏1𝑁̃V/𝜇ℎ𝑄1𝑄2𝑄3𝑄4) and 𝑅

1
=

√(𝛼
ℎ
𝛼V𝑏1𝑏2𝛽1𝛽2/𝜇ℎ𝜇

2

V𝑄1𝑄2𝑄5), respectively, are the basic
reproduction number of system (7) and system (7) without
predators by [36, 37].

Remark 2. It is not difficult to find that𝑅
0
is less than𝑅

1
.That

is, predation results into a reduction in the basic reproduction
number 𝑅

0
of system (7).

4. Global Stability Analysis

The purpose of this section is to discuss the global stability of
the disease-free and disease equilibria of system (7) to obtain
the control condition under which diseases can be eradicated
by predators preying on vectors. Before giving themain proof,
we first give the following Lemma.

Lemma 3. For system (4), the unique positive equilibrium
(𝑁̃V, 𝑃̃V) is globally asymptotically stable, where 𝑁̃V and 𝑃̃V are
given in Lemma 1.

By constructing Lyapunov function 𝑉(𝑡) =

(𝜀/2)(𝑁V(𝑡) − 𝑁̃V)
2

+ 𝑁̃V(𝑃V(𝑡) − 𝑃̃V − 𝑃̃V ln(𝑃V(𝑡)/𝑃̃V))
and using LaSalle’s invariance principle, it is not difficult
to prove that the positive equilibrium (𝑁̃V, 𝑃̃V) is globally
asymptotically stable. Here we omit it.

Theorem 4. If 𝑅
0
≤ 1 and for any 𝑡 ∈ [0, +∞), 𝑃V(𝑡) ≥ 𝑃̃V;

then, the disease-free equilibrium 𝐸
1
of system (7) is globally

asymptotically stable.

Proof. We construct the following Lyapunov functional:

𝐿 (𝑡) = 𝑤
0
(𝑆
ℎ
(𝑡) − 𝑆

0

ℎ
− 𝑆
0

ℎ
ln
𝑆
ℎ
(𝑡)

𝑆0
ℎ

) + 𝑤
1
𝐸
ℎ
(𝑡)

+ 𝑤
2
𝐼
ℎ (𝑡) + 𝑤3 (𝑆V (𝑡) − 𝑆

0

V − 𝑆
0

V ln
𝑆V (𝑡)

𝑆0V
)

+ 𝑤
4
𝐸V (𝑡) + 𝑤5𝐼V (𝑡)

+ 𝑤
6
(𝑃V (𝑡) − 𝑃̃V − 𝑃̃V ln

𝑃V (𝑡)

𝑃̃V
) ,

(10)

where 𝑤
0
= 𝑤
1
= (𝛼

ℎ
/𝑄
1
), 𝑤
2
= 1, 𝑤

3
= 𝑤
4
=

(𝑏
1
𝛼
ℎ
𝛼V𝛽1/𝜇ℎ𝑄1𝑄3𝑄4), 𝑤5 = (𝑏

1
𝛼
ℎ
𝛽
1
/𝜇
ℎ
𝑄
1
𝑄
4
), 𝑤
6

=

(𝑤
3
/𝜀).
Calculating the derivative of 𝐿(𝑡) along the solution of (7)

yields that

𝑑𝐿 (𝑡)

𝑑𝑡
= 𝑤
0
(
𝑆
ℎ (𝑡) − 𝑆

0

ℎ

𝑆
ℎ
(𝑡)

) [𝑏
1
− 𝛽
1
𝑆
ℎ (𝑡) 𝐼V (𝑡) − 𝜇ℎ𝑆ℎ (𝑡)]

+ 𝑤
1
[𝛽
1
𝑆
ℎ
(𝑡) 𝐼V (𝑡) − (𝛼ℎ + 𝜇ℎ) 𝐸ℎ (𝑡)]

+ 𝑤
2
[𝛼
ℎ
𝐸
ℎ (𝑡) − 𝑚𝐼ℎ (𝑡)]

+ 𝑤
3
(
𝑆V (𝑡) − 𝑆

0

V

𝑆V (𝑡)
)

× [𝑏
2
− 𝛽
2
𝑆V (𝑡) 𝐼ℎ (𝑡) − 𝜇V𝑆V (𝑡) − ℎ𝑆V (𝑡) 𝑃V (𝑡)]

+ 𝑤
4
[𝛽
2
𝑆V (𝑡) 𝐼ℎ (𝑡) − 𝛼V𝐸V (𝑡)

−𝜇V𝐸V (𝑡) − ℎ𝐸V (𝑡) 𝑃V (𝑡)]

+ 𝑤
5
[𝛼V𝐸V (𝑡) − 𝜇V𝑆V (𝑡) − ℎ𝐼V (𝑡) 𝑃V (𝑡)]

+ 𝑤
6
(
𝑃V (𝑡) − 𝑃̃V

𝑃V (𝑡)
)

× [𝜀ℎ (𝑆V (𝑡) + 𝐸V (𝑡) + 𝐼V (𝑡)) − 𝑒] 𝑃V (𝑡) .

(11)

By the equilibrium conditions 𝑏
1
= 𝜇
ℎ
𝑆
0

ℎ
and 𝑏

2
= 𝜇V𝑆

0

V +

ℎ𝑆
0

V𝑃̃V, it follows that

𝑑𝐿 (𝑡)

𝑑𝑡

= −𝜇
ℎ
𝑤
0

(𝑆
ℎ
(𝑡) − 𝑆

0

ℎ
)
2

𝑆
ℎ (𝑡)

− 𝜇V𝑤3
(𝑆V(𝑡) − 𝑆

0

V)
2

𝑆V (𝑡)

+ (𝑤
1
− 𝑤
0
) 𝛽
1
𝑆
ℎ
(𝑡) 𝐼V (𝑡) + (𝑤4 − 𝑤3) 𝛽2𝑆V (𝑡) 𝐼ℎ (𝑡)

+ (𝑤
2
𝛼
ℎ
− 𝑤
1
𝑄
1
) 𝐸
ℎ
(𝑡) + (𝑤

5
𝛼V − 𝑤4𝑄3) 𝐸V (𝑡)
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+ [𝑤
3
𝛽
2
𝑁̃V − 𝑤2𝑄2] 𝐼ℎ (𝑡) + [𝑤0𝛽1

𝑏
1

𝜇
ℎ

− 𝑤
5
𝑄
4
] 𝐼V (𝑡)

+ 𝑤
3
ℎ
(𝑆V (𝑡) − 𝑆

0

V)

𝑆V (𝑡)
(𝑆
0

V𝑃̃V − 𝑆V (𝑡) 𝑃V (𝑡))

+ 𝑤
4
ℎ𝐸V (𝑡) (𝑃̃V − 𝑃V (𝑡))

+ 𝑤
5
ℎ𝐼V (𝑡) (𝑃̃V − 𝑃V (𝑡)) + 𝑤6𝜀ℎ𝐼V (𝑡) (𝑃V (𝑡) − 𝑃̃V)

× (𝑁V (𝑡) − 𝑁̃V) .

(12)

Since

𝑤
3
ℎ
(𝑆V (𝑡) − 𝑆

0

V)

𝑆V (𝑡)
(𝑆
0

V𝑃̃V − 𝑆V (𝑡) 𝑃V (𝑡))

+ 𝑤
4
ℎ𝐸V (𝑡) (𝑃̃V − 𝑃V (𝑡))

= −𝑤
3
ℎ𝑃̃V

(𝑆V (𝑡) − 𝑆
0

V)
2

𝑆V (𝑡)

+ 𝑤
3
ℎ (𝑆V (𝑡) − 𝑆

0

V) (𝑃̃V − 𝑃V (𝑡)) ,

(13)

then using 𝑆0
ℎ
= 𝑏
1
/𝜇
ℎ
, 𝑆
0

V = 𝑁̃V we have

𝑑𝐿 (𝑡)

𝑑𝑡

= −𝜇
ℎ
𝑤
0

(𝑆
ℎ
(𝑡) − (𝑏

1
/𝜇
ℎ
))
2

𝑆
ℎ
(𝑡)

− 𝑤
3
(𝜇V + ℎ𝑃̃V)

(𝑆V(𝑡) − 𝑁̃V)
2

𝑆V (𝑡)

+ 𝑄
2
(𝑅
2

0
− 1) 𝐼

ℎ
(𝑡) + [𝑤

3
ℎ (𝑆V (𝑡) − 𝑁̃V)

+𝑤
4
ℎ𝐸V (𝑡) + 𝑤5ℎ𝐼V (𝑡) ]

× (𝑃̃V − 𝑃V (𝑡))

+ 𝑤
6
𝜀ℎ (𝑃V (𝑡) − 𝑃̃V) (𝑁V (𝑡) − 𝑁̃V) .

(14)

After some rearrangement, we have

𝑑𝐿 (𝑡)

𝑑𝑡

= −𝜇
ℎ
𝑤
0

(𝑆
ℎ
(𝑡) − (𝑏

1
/𝜇
ℎ
))
2

𝑆
ℎ
(𝑡)

− 𝑤
3
(𝜇V + ℎ𝑃̃V)

(𝑆V(𝑡) − 𝑁̃V)
2

𝑆V (𝑡)

+ 𝑄
2
(𝑅
2

0
− 1) 𝐼

ℎ (𝑡) + ℎ (𝑤5 − 𝑤3) 𝐼V (𝑡) (𝑃̃V − 𝑃V) .

(15)

Since 𝑃V(𝑡) ≥ 𝑃̃V, then we have 𝑁V(𝑡) ≤ 𝑁̃V for any 𝑡 ∈
[0, +∞). Otherwise, if 𝑁V(𝑡) > 𝑁̃V for any 𝑡 ∈ [0, +∞), then
𝜀ℎ𝑁V(𝑡) − 𝑒 > 0; thus, from the last equation of system (7),
we have (𝑑𝑃V(𝑡)/𝑑𝑡) > 0. On the other hand, by Lemma 1,
lim
𝑡→+∞

𝑃V(𝑡) = 𝑃̃V, so for any 𝑡 ∈ [0, +∞), 𝑃V(𝑡) < 𝑃̃V. This

contradicts 𝑃V(𝑡) ≥ 𝑃̃V. So𝑁V(𝑡) ≤ 𝑁̃V when 𝑃V(𝑡) ≥ 𝑃̃V for any
𝑡 ∈ [0, +∞). Thus, (𝑑𝐿(𝑡)/𝑑𝑡) ≤ 0 if 𝑅

0
≤ 1 and 𝑃V(𝑡) ≥ 𝑃̃V

for any 𝑡 ∈ [0, +∞). Furthermore, (𝑑𝐿(𝑡)/𝑑𝑡) = 0 if and only
if 𝑆
ℎ
= 𝑆
0

ℎ
, 𝑆V = 𝑆

0

V = 𝑁̃V, 𝐸ℎ = 𝐸V = 𝐼
ℎ
= 𝐼V = 0 and

𝑃V = 𝑃̃V. Consequently, the largest compact invariant set in
{(𝑆
ℎ
(𝑡), 𝐸
ℎ
(𝑡), 𝐼
ℎ
(𝑡), 𝑆V(𝑡), 𝐸V(𝑡), 𝐼V(𝑡), 𝑃V(𝑡)) ∈ Γ : 𝑑𝐿/𝑑𝑡 = 0}

when 𝑅
0
≤ 1 is the singleton 𝐸

1
. Then by Lyapunov-LaSalle

theorem, the equilibrium 𝐸
1
is globally stable if 𝑅

0
≤ 1 and

𝑃V(𝑡) ≥ 𝑃̃V for any 𝑡 ∈ [0, +∞).

Remark 5. From Theorem 4 we can see that when 𝑅
0
≤

1 the disease-free equilibrium 𝐸
1
of system (7) is globally

asymptotically stable if the predator population size 𝑃V(𝑡) is
not less than the predator equilibrium level 𝑃̃V, which depends
on the total equilibrium vector density 𝑁̃V. That is, the
predator density threshold for successful disease eradication
is 𝑃V(𝑡) = 𝑃̃V. If 𝑃V(𝑡) ≥ 𝑃̃V and 𝑅0 ≤ 1 then disease can be
eradicated; otherwise; pathogen persists though predators are
introduced and 𝑅

0
≤ 1.

Similar to the proof of Theorem 4, we have the following
corollary to show that the disease-free equilibrium 𝐸

3
of

system (7) in absence of predators is global asymptotically
stable.

Corollary 6. If 𝑅
1
≤ 1 then the disease-free equilibrium 𝐸

3
of

system (7) without predators is globally asymptotically stable.

A global stability result for the endemic equilibrium𝐸
2
of

the system (7) is given below.

Theorem 7. The endemic equilibrium state 𝐸
2
of system (7) is

globally asymptotically stable if

𝑅
0
> 1, 𝛼V =

𝛽
2
𝑆V𝐼ℎ

𝐸V
, (16)

where 𝑆V, 𝐼ℎ and 𝐸V are the disease equilibrium value of
susceptible vectors, infected hosts, and exposed vectors of system
(7).

Proof. Consider the following Lyapunov functional:

𝑉 (𝑡)

= 𝑐
1
(𝑆
ℎ
(𝑡) − 𝑆

ℎ
ln
𝑆
ℎ
(𝑡)

𝑆
ℎ

) + 𝑐
2
(𝐸
ℎ
(𝑡) − 𝐸

ℎ
ln
𝐸
ℎ
(𝑡)

𝐸
ℎ

)

+ 𝑐
3
(𝐼
ℎ
(𝑡) − 𝐼

ℎ
ln
𝐼
ℎ
(𝑡)

𝐼
ℎ

) + 𝑐
4
(𝑆V (𝑡) − 𝑆V ln

𝑆V (𝑡)

𝑆V
)

+ 𝑐
5
(𝐸V (𝑡) − 𝐸V ln

𝐸V (𝑡)

𝐸V
) + 𝑐
6
(𝐼V (𝑡) − 𝐼V ln

𝐼V (𝑡)

𝐼V
)

+ 𝑐
7
(𝑃V (𝑡) − 𝑃̃V ln

𝑃V (𝑡)

𝑃̃V
) ,

(17)
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where 𝑐
2
= 𝑐
1
, 𝑐
3
= (𝑐
1
𝛽
1
𝑎
1
/𝑑
1
), 𝑐
4
= 𝑐
5
= (𝑐
1
𝛽
1
𝑎
1
/𝛽
2
𝑎
2
),

𝑐
6
= (𝑐
5
𝛽
2
𝑎
2
/𝑑
2
), 𝑐
7
= (𝑐
4
/𝜀), 𝑆
ℎ
𝐼V = 𝑎

1
, 𝑆V𝐼ℎ = 𝑎

2
, 𝑑
1
=

𝛼
ℎ
𝐸
ℎ
, 𝑑
2
= 𝛼V𝐸V.

Calculate the derivative of 𝑉(𝑡) along the solution of (1);
this yields that

𝑑𝑉 (𝑡)

𝑑𝑡

= 𝑐
1
(1 −

𝑆
ℎ

𝑆
ℎ (𝑡)

) [𝑏
1
− 𝛽
1
𝑆
ℎ
(𝑡) 𝐼V (𝑡) − 𝜇ℎ𝑆ℎ (𝑡)]

+ 𝑐
2
(1 −

𝐸
ℎ

𝐸
ℎ (𝑡)

) [𝛽
1
𝑆
ℎ
(𝑡) 𝐼V (𝑡) − (𝛼ℎ + 𝜇ℎ) 𝐸ℎ (𝑡)]

+ 𝑐
3
(1 −

𝐼
ℎ

𝐼
ℎ (𝑡)

) [𝛼
ℎ
𝐸
ℎ
(𝑡) − 𝑚𝐼

ℎ
(𝑡)]

+ 𝑐
4
(1 −

𝑆V

𝑆V (𝑡)
)

× [𝑏
2
− 𝛽
2
𝑆V (𝑡) 𝐼ℎ (𝑡) − 𝜇V𝑆V (𝑡) − ℎ𝑆V (𝑡) 𝑃V (𝑡)]

+ 𝑐
5
(1 −

𝐸V

𝐸V (𝑡)
)

× [𝛽
2
𝑆V (𝑡) 𝐼ℎ (𝑡) − 𝛼V𝐸V (𝑡) − 𝜇V𝐸V (𝑡) − ℎ𝐸V (𝑡) 𝑃V (𝑡)]

+ 𝑐
6
(1 −

𝐼V

𝐼V (𝑡)
)

× [𝛼V𝐸V (𝑡) − 𝜇V𝐼V (𝑡) − ℎ𝐼V (𝑡) 𝑃V (𝑡)]

+ 𝑐
7
(1 −

𝑃̃V

𝑃V (𝑡)
)

× [𝜀ℎ (𝑆V (𝑡) + 𝐸V (𝑡) + 𝐼V (𝑡)) 𝑃V (𝑡) − 𝑒𝑃V (𝑡)] .

(18)

System (7) satisfied the following relations at equilibrium
point:

𝑏
1
= 𝛽
1
𝑆
ℎ
𝐼V + 𝜇ℎ𝑆ℎ,

(𝛼
ℎ
+ 𝜇
ℎ
) =

𝛽
1
𝑆
ℎ
𝐼V

𝐸
ℎ

,

𝑚 =
𝛼
ℎ
𝐸
ℎ

𝐼
ℎ

,

𝑏
2
= 𝛽
2
𝑆V𝐼ℎ + 𝜇V𝑆V + ℎ𝑆V𝑃̃V,

(𝛼V + 𝜇V) =
𝛽
2
𝑆V𝐼ℎ

𝐸V
− ℎ𝑃̃V,

𝜇V =
𝛼V𝐸V

𝐼V
− ℎ𝑃̃V,

𝑒 = 𝜀ℎ𝑁̃V, 𝑁̃V = 𝑆V + 𝐸V + 𝐼V.

(19)

Substituting 𝑏
1
up to 𝑒 in the above equation, we obtain

𝑑𝑉 (𝑡)

𝑑𝑡

= −𝑐
1
𝜇
ℎ

(𝑆
ℎ
(𝑡) − 𝑆

ℎ
)
2

𝑆
ℎ
(𝑡)

− 𝑐
4
𝜇V
(𝑆V (𝑡) − 𝑆V)

2

𝑆V (𝑡)

+ 𝑐
1
(1 −

𝑆
ℎ

𝑆
ℎ
(𝑡)
) [𝛽
1
𝑆
ℎ
𝐼V − 𝛽1𝑆ℎ (𝑡) 𝐼V (𝑡)]

+ 𝑐
2
(1 −

𝐸
ℎ

𝐸
ℎ
(𝑡)
) [𝛽
1
𝑆
ℎ
(𝑡) 𝐼V (𝑡) − 𝐸ℎ

𝛽
1
𝑆
ℎ
𝐼V

𝐸
ℎ

]

+ 𝑐
3
(1 −

𝐼
ℎ

𝐼
ℎ
(𝑡)
) [𝛼
ℎ
𝐸
ℎ (𝑡) − 𝛼ℎ𝐸ℎ

𝐼
ℎ (𝑡)

𝐼
ℎ

]

+ 𝑐
4
(1 −

𝑆V

𝑆V (𝑡)
)

× [𝛽
2
𝑆V𝐼ℎ − 𝛽2𝑆V (𝑡) 𝐼ℎ (𝑡) + ℎ𝑆V𝑃̃V − ℎ𝑆V (𝑡) 𝑃V (𝑡)]

+ 𝑐
5
(1 −

𝐸V

𝐸V (𝑡)
)

× [𝛽
2
𝑆V (𝑡) 𝐼ℎ (𝑡) − 𝛽2𝑆V𝐼ℎ

𝐸V (𝑡)

𝐸V

−ℎ𝐸V (𝑡) 𝑃V (𝑡) + ℎ𝐸V (𝑡) 𝑃̃V]

+ 𝑐
6
(1 −

𝐼V

𝐼V (𝑡)
)

× [𝛼V𝐸V (𝑡) − 𝛼V𝐸V
𝐼V

𝐼V (𝑡)
− ℎ𝐼V (𝑡) 𝑃V (𝑡) + ℎ𝐼V (𝑡) 𝑃̃V]

+ 𝑐
7
(1 −

𝑃̃V

𝑃V (𝑡)
)

× [𝜀ℎ (𝑆V (𝑡) + 𝐸V (𝑡) + 𝐼V (𝑡) − 𝑆V − 𝐸V − 𝐼V)] 𝑃V (𝑡) .

(20)

Set

𝑆
ℎ

𝑆
ℎ

= 𝑥
1
,

𝐸
ℎ

𝐸
ℎ

= 𝑥
2
,

𝐼
ℎ

𝐼
ℎ

= 𝑥
3
,

𝑆V

𝑆V
= 𝑥
4
,

𝐸V

𝐸V
= 𝑥
5
,

𝐼V

𝐼V
= 𝑥
6
,

𝑃V

𝑃̃V
= 𝑥
7
, 𝑆V𝑃̃V = 𝑎3, 𝐸V𝑃̃V = 𝑎4,

𝐼V𝑃̃V = 𝑎5;

(21)
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then, from the above equation, we obtain

𝑑𝑉 (𝑡)

𝑑𝑡

= −𝑐
1
𝜇
ℎ

(𝑆
ℎ
(𝑡) − 𝑆

ℎ
)
2

𝑆
ℎ
(𝑡)

− 𝑐
4
𝜇V
(𝑆V (𝑡) − 𝑆V)

2

𝑆V (𝑡)

+ 𝑐
1
𝛽
1
𝑎
1
− 𝑐
1
𝛽
1
𝑎
1
𝑥
1
𝑥
6
− 𝑐
1
𝛽
1
𝑎
1

1

𝑥
1

+ 𝑐
1
𝛽
1
𝑎
1
𝑥
6

+ 𝑐
2
𝛽
1
𝑎
1
+ 𝑐
2
𝛽
1
𝑎
1
𝑥
1
𝑥
6
− 𝑐
2
𝛽
1
𝑎
1
𝑥
2
− 𝑐
2
𝛽
1
𝑎
1

𝑥
1
𝑥
6

𝑥
2

+ 𝑐
3
𝑑
1
+ 𝑐
3
𝑑
1
𝑥
2
− 𝑐
3
𝑑
1
𝑥
3
− 𝑐
3
𝑑
1

𝑥
2

𝑥
3

+ 𝑐
4
𝛽
2
𝑎
2
+ 𝑐
4
𝛽
2
𝑎
2
𝑥
3
− 𝑐
4
𝛽
2
𝑎
2
𝑥
3
𝑥
4
− 𝑐
4
𝛽
2
𝑎
2

1

𝑥
4

+ 𝑐
4
ℎ𝑎
3
− 𝑐
4
ℎ𝑎
3
𝑥
4
𝑥
7
− 𝑐
4
ℎ𝑎
3

1

𝑥
4

+ 𝑐
4
ℎ𝑎
3
𝑥
7

+ 𝑐
5
𝛽
2
𝑎
2
+ 𝑐
5
𝛽
2
𝑎
2
𝑥
3
𝑥
4
− 𝑐
5
𝛽
2
𝑎
2
𝑥
5
− 𝑐
5
𝛽
2
𝑎
2

𝑥
3
𝑥
4

𝑥
5

− 𝑐
5
ℎ𝑎
4
𝑥
5
𝑥
7
+ 𝑐
5
ℎ𝑎
4
𝑥
5
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(22)

After some rearrangement, we have
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(23)

By some reduction, it follows that
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Since the arithmetic mean is greater than or is equal to the
geometric mean, then

2 − 𝑥
4
−
1

𝑥
4

≥ 0,

1

𝑥
1
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𝑥
1
𝑥
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+
𝑥
2

𝑥
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+
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𝑥
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𝑥
3
𝑥
4

𝑥
5

+
𝑥
5

𝑥
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(25)

Thus, it follows from (24) that (𝑑𝑉(𝑡)/𝑑𝑡) ≤ 0 in Ω. The
equation (𝑑𝑉(𝑡)/𝑑𝑡) = 0 holds if and only if 𝑥

1
= 𝑥
2
= 𝑥
3
=

𝑥
4
= 𝑥
5
= 𝑥
6
= 1; that is, 𝑆

ℎ
= 𝑆
ℎ
, 𝐸
ℎ
= 𝐸
ℎ
, 𝐼
ℎ
= 𝐼
ℎ
, 𝑆V =

𝑆V, 𝐸V = 𝐸V, 𝐼V = 𝐼V, 𝑃V = 𝑃̃V. Therefore, we prove the global
stability of the disease in Γ. The maximal compact invariant
set in {𝑆

ℎ
, 𝐸
ℎ
, 𝐼
ℎ
, 𝑆V, 𝐸V, 𝐼V, 𝑃V ∈ Γ : 𝑑𝑉(𝑡)/𝑑𝑡 = 0} is {𝐸2}when

𝑅
0
> 1 and 𝛼V = (𝛽3𝑆V𝐼ℎ/𝐸V). From the LaSalle’s invariance

principle, we finish the proof of Theorem 7.

Similar to the proof of Theorem 7, we have the following
corollary to show that the disease equilibrium 𝐸

4
of system

(7) in absence of predators is globally asymptotically stable.

Corollary 8. The endemic equilibrium state 𝐸
4
of system (7)

without predators is globally asymptotically stable if 𝑅
1
> 1.

Remark 9. From Theorems 4 and Theorem 7, Corollary 6
and Corollary 8 we find that 𝑅

0
= 1 and 𝑅

1
= 1

provide threshold conditions on determining the uniform
persistence and extinction of the disease with and without
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Figure 1: Global asymptotically stability of the unique disease equilibrium of system (7) without predators when 𝑅
1
> 1.
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Figure 2: The population densities of the infected hosts and vectors of system (7) without and with predators.

predators, respectively.Moreover, we also find that the disease
is persistent without predators if 𝑅

1
> 1, then by introducing

predators, the disease will tend to be extinct if 𝑅
0
≤ 1.

5. Numerical Simulations

In this section, we examine the effects of predators on the
transmission dynamics of vector-borne diseases by some
numerical simulations.We choose the following set of param-
eter values (it should be stated that these parameters are
chosen for illustrative purpose only and may not necessarily
be realistic epidemiologically): 𝑏

1
= 0.786098, 𝑏

2
= 0.190028,

𝛽
1
= 0.961509, 𝛽

2
= 0.535061, 𝜇

ℎ
= 0.914518, 𝜇V =

0.0150508, 𝛼
ℎ
= 0.645664, 𝛼V = 0.19636, and 𝑚 = 1.120469;

By simple calculations, the basic reproduction number 𝑅
1
=

11.2826 > 1; then, by Corollary 8, the disease equilibrium of
system (7) without predators is globally asymptotically stable.
That is, the disease persists without predators (see Figure 1).

Choose 𝑒 = 0.1, 𝜀 = 0.15; we consider the effect
of predators on disease control by comparing equilibrium
level of infected hosts and vectors with different values of
ℎ in absence of the predators, that is, ℎ = 0; then, by the
Corollary 8 disease persists (see the solid line of Figure 2). By
introducing predators of the vector population, we find that
the equilibrium infection levels have been reduced a bit if the
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predation rate ℎ is equal to 0.1; however, the disease persists
(see the dotted line of Figure 2). Increasing the predation
rate such that ℎ = 0.3, we find that though the disease still
persists, the equilibrium levels of infected hosts and vectors
have been greatly lessened (see the dot and dashed line of
Figure 2). By enhancing the predation rate ℎ such that ℎ =
0.5 > ℎ

∗
= 0.4755 (ℎ

∗ satisfies that 𝑅
0
= 1), then 𝑅

0
=

0.9411 < 1; therefore, byTheorem 4 the vector-borne disease
can be eradicated by introducing vector predators (see the
dashed line of Figure 2).

Remark 10. From Figures 1 and 2, we find that predation has
a positive effect on vector-host disease control by reducing
vector density. Furthermore, disease can be eradicated if
predation rate ℎ is large enough such that 𝑅

0
(ℎ) ≤ 1 and

the predator density 𝑃V(𝑡) satisfies 𝑃V(𝑡) ≥ 𝑃̃V, where 𝑃̃V is the
predator equilibrium level.

6. Conclusions

In this paper, we propose a host-vector-predator coupled
model with variable host and vector population size to
investigate the effect of predators on vector-borne disease
control by analyzing the global stability of the disease-free
and disease equilibria. It is shown that the basic reproduction
number 𝑅

0
characterizes the disease transmission dynamics:

if 𝑅
0
≤ 1, then there exists only the disease-free equilibrium

which is globally asymptotically stable when predator density
at any time keeps larger or equal to its equilibrium level;
that is, disease tends to be extinct when predators are
introduced, and if 𝑅

0
> 1, then there is a disease equilibrium

which is globally asymptotically stable; that is, disease still
persists though predators are introduced. As corollaries, the
globally stability of system (7) without predators is given. To
examine the effect of predator on disease control, numerical
simulations are given by choosing to focus on parameter ℎ,
which is predation rate. We conclude that predation leads
to decrease of equilibrium levels both for infected host and
vector population; as ℎ increases, then the infected host and
vector equilibrium population will be lessened. Furthermore,
if ℎ > ℎ

∗
(ℎ
∗ satisfies that 𝑅

0
= 1), then vector-borne

diseases can be eradicated.
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