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The purpose of the present paper is to investigate the mixed Dirichlet-Neumann boundary value problems for the anisotropic
Laplace-Beltrami equation divC(𝐴∇C𝜑) = 𝑓 on a smooth hypersurfaceCwith the boundary Γ = 𝜕C inR𝑛.𝐴(𝑥) is an 𝑛×𝑛 bounded
measurable positive definite matrix function. The boundary is decomposed into two nonintersecting connected parts Γ = Γ

𝐷
∪ Γ
𝑁

and on Γ
𝐷
the Dirichlet boundary conditions are prescribed, while on Γ

𝑁
the Neumann conditions. The unique solvability of the

mixed BVP is proved, based upon the Green formulae and Lax-Milgram Lemma. Further, the existence of the fundamental solution
to divS(𝐴∇S) is proved, which is interpreted as the invertibility of this operator in the setting H𝑠

𝑝,#(S) → H𝑠−2
𝑝,# (S), where H

𝑠

𝑝,#(S)

is a subspace of the Bessel potential space and consists of functions with mean value zero.

1. Introduction

Let C ⊂ S be a smooth subsurface of a closed hypersurface
S in the Euclidean space R𝑛 (see Section 2 for details) and
let Γ = 𝜕C ̸= 0 be its smooth boundary 𝜕C = Γ. Let D

𝑗
:=

𝜕
𝑗
− ]
𝑗
𝜕^ , 𝑗 = 1, . . . , 𝑛, be Günter’s tangential derivatives, and

letΔC(𝑡,D) := D2
1
+⋅ ⋅ ⋅+D2

𝑛
be the Laplace-Beltrami operator

restricted to the hypersurface C (see [1–3] and Section 2
below for details).

In [3], the boundary value problem for the Laplace-
Beltrami equation with the Dirichlet boundary condition

(ΔC (𝑡,D) 𝑢) (𝑡) = 𝑓 (𝑡) , 𝑡 ∈ C,

𝑢
+

(𝑠) = 𝑔 (𝑠) , on Γ
(1)

and with the Neumann boundary condition

(ΔC (𝑡,D) 𝑢) (𝑡) = 𝑓 (𝑡) , 𝑡 ∈ C,

(D^Γ𝑢)
+

(𝑠) = ℎ (𝑠) , on Γ
(2)

were considered where ^
Γ

:= (]
Γ,1
, . . . , ]

Γ,𝑛
)
⊤ is the unit

normal vector field to the boundary Γ and tangent to

the hypersurfaceC and𝜑+ denotes the trace on the boundary.
The derivative

D^Γ :=

𝑛

∑
𝑘=1

]
Γ,𝑘
D
𝑘
, 𝑠 ∈ Γ, (3)

is tangent to the hypersurface C and normal with respect to
the boundary Γ.

The BVPs (1) and (2) were investigated in [3] in the
following classical weak setting:

𝑓 ∈ H̃
−1

(C) , 𝑔 ∈ H
1/2

(Γ) , ℎ ∈ H
−1/2

(Γ) , (4)

and also in nonclassical weak setting:

𝑓 ∈ H̃
𝑠−2

𝑝
(C) , 𝑔 ∈ W

𝑠−1/𝑝

𝑝
(Γ) , ℎ ∈ W

𝑠−1−1/𝑝

𝑝
(Γ) ,

1 < 𝑝 < ∞, 𝑠 >
1

𝑝
,

(5)

and the following was proved.

Theorem 1. The Dirichlet problems (1), (4) and (1), (5) have a
unique solution.

For the solvability of the Neumann problems (2), (4) and
(2), (5), the necessary and sufficient compatibility condition

(𝑓, 1)
C
− (ℎ, 1)

Γ
= 0 (6)
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should be fulfilled, which guarantees the existence and the
uniqueness of solution.

If 𝑓 and ℎ are regular integrable functions, the compati-
bility condition (6) acquires the form

∫
C

𝑓 (𝑦) 𝑑𝜎 − ∮
Γ

ℎ (𝑠) 𝑑𝑠 = 0. (7)

In Remarks 15 and 16, it is shown that the unique
solvability of the Dirichlet BVP (1), (4) and the Neumenn
BVP (2), (4) in the classical formulation follows from the Lax-
Milgram Lemma.

The investigation in [3] is based on the technique of
Günter’s derivatives developed in the preprint of Duduchava
from 2002 and later in the paper of Duduchava et al. [2] and
applies potential method. Similar problems, for 𝑝 = 2, by
different technique were investigated earlier in the paper of
Mitrea and Taylor [4].

The purpose of the present paper is to investigate the
boundary value problems for the anisotropic Laplace equa-
tion with mixed boundary conditions:

divC (𝐴∇C𝑢) (𝑡) = 𝑓 (𝑡) , 𝑡 ∈ C,

𝑢
+

(𝑠) = 𝑔 (𝑠) , on Γ
𝐷
,

⟨^
Γ
(𝑠) , (𝐴∇C𝑢)

+

(𝑠)⟩ = ℎ (𝑠) , on Γ
𝑁
,

(8)

where 𝜕C = Γ = Γ
𝐷
∪ Γ
𝑁
is a decomposition of the boundary

into two connected parts,𝐴 = {𝑎
𝑖𝑗
} is an 𝑛×𝑛 strictly positive

definite matrix, and

⟨𝐴 (𝑥) 𝜉, 𝜉⟩ ⩾ 𝐶
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

, 𝜉 ∈ R
𝑛

, (9)

for all 𝑥 ∈ C. We consider the BVP (8) in the weak classical
setting (4).

The nonclassical weak setting (5) will be considered in a
forthcoming paper.

Remark 2. As shown in [14], page 196, condition (4) does
not ensure the uniqueness of solutions to the BVPs (1), (2)
and (8). The right hand side f needs additional constraint
that it belongs to the subspace H̃−1

0
(Ω) ⊂ H̃−1(Ω) which

is the orthogonal complement to the subspace H̃−1(Γ) of
those distributions from H̃−1(Ω) which are supported on the
boundary Γ = 𝜕Ω of the domain only.

For the non-classical setting (5) we schould impose a
similar constraint 𝑓 ∈ H̃−1

𝑝,0
(Ω) ⊂ H̃−1

𝑝
(Ω), which is defined

as in the case 𝑝 = 2.

For the classical setting (4), we apply the Lax-Milgram
Lemma and prove unique solvability of the problem rather
easily, while (5) in the nonclassical investigation relies again
on the potential method.

Mixed BVPs for the Laplace equation in domains were
investigated by Lax-Milgram Lemma by many authors (see,
e.g., the recent lecture notes online [5]).

BVPs on hypersurfaces arise in a variety of situations
and have many practical applications. See, for example,

[6, Section 7.2] for the heat conduction by surfaces, [7, Section
10] for the equations of surface flow, [8, 9] for the vacuum
Einstein equations describing gravitational fields, and [10] for
the Navier-Stokes equations on spherical domains, as well as
the references therein.

A hypersurface S in R𝑛 has the natural structure of an
(𝑛−1)-dimensional Riemannianmanifold and the aforemen-
tioned PDEs are not the immediate analogues of the ones
corresponding to the flat, Euclidean case, since they have to
take into consideration geometric characteristics of S such
as curvature. Inherently, these PDEs are originally written in
local coordinates, intrinsic to the manifold structure of S.

Another problem considered in the present paper is the
existence of a fundamental solution for the Laplace-Beltrami
operator. An essential difference between differential oper-
ators on hypersurfaces and the Euclidean space R𝑛 lies in
the existence of fundamental solution: in R𝑛 fundamental
solution exists for all partial differential operators with con-
stant coefficients if it is not trivially zero. On a hypersurface
even Laplace-Beltrami operator does not have a fundamental
solution because it has a nontrivial kernel, constants, in
all Bessel potential spaces. Therefore we consider Laplace-
Beltrami operator in Hilbert spaces with detached constants
W𝑠
𝑝,#(S) → W𝑠−2

𝑝,# (S), for all 1 < 𝑝 < ∞, 𝑠 ∈ R, and
prove that it is an invertible operator. Another description
of the space W𝑠

𝑝,#(S) is that it consists of all functions 𝜑 ∈

W𝑠
𝑝
(S) (distributions if 𝑠 < 0, which have the zero mean

value, (𝜑, 1)S = 0). The established invertibility implies the
existence of the certain fundamental solution, which can be
used to define the volume (Newtonian), single layer, and
double layer potentials.

The structure of the paper is as follows. In Section 2, we
expose all necessary definitions and some auxiliary material,
partly newones.Here the invertibility of the Laplace-Beltrami
operator in the setting W𝑠

𝑝,#(S) → W𝑠−2
𝑝,# (S) is proved. In

Section 3, using the Lax-Milgram Lemma, it is proved that
the basic mixed BVP (8) has a unique solution in the weak
classical setting (4).

2. Auxiliary Material

We commence with definitions of a hypersurface. There
exist other equivalent definitions but these are the most
convenient for us. Equivalence of these definitions and some
other properties of hypersurfaces are exposed, for example,
in [3, 11].

Definition 3. A subsetS ⊂ R𝑛 of the Euclidean space is called
a hypersurface if it has a coveringS = ⋃

𝑀

𝑗=1
S
𝑗
and coordinate

mappings

Θ
𝑗
: 𝜔
𝑗
󳨀→ S

𝑗
:= Θ
𝑗
(𝜔
𝑗
) ⊂ R

𝑛

,

𝜔
𝑗
⊂ R
𝑛−1

, 𝑗 = 1, . . . ,𝑀,

(10)

such that the corresponding differentials

𝐷Θ
𝑗
(𝑝) := matr [𝜕

1
Θ
𝑗
(𝑝) , . . . , 𝜕

𝑛−1
Θ
𝑗
(𝑝)] (11)
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have the full rank
rank𝐷Θ

𝑗
(𝑝) = 𝑛 − 1,

∀𝑝 ∈ 𝑌
𝑗
, 𝑘 = 1, . . . , 𝑛, 𝑗 = 1, . . . ,𝑀;

(12)

that is, all points of 𝜔
𝑗
are regular for Θ

𝑗
for all 𝑗 = 1, . . . ,𝑀.

Such a mapping is called an immersion as well.

Here and in what follows matr[𝑥
1
, . . . , 𝑥

𝑘
] refers to the

matrix with the listed vectors 𝑥
1
, . . . , 𝑥

𝑘
as columns.

A hypersurface is called smooth if the corresponding
coordinate diffeomorphisms Θ

𝑗
in (10) are smooth (𝐶∞-

smooth). Similarly is defined a 𝜇-smooth hypersurface.
The next definition of a hypersurface is implicit.

Definition 4. Let 𝑘 ⩾ 1 and 𝜔 ⊂ R𝑛 be a compact domain. An
implicit 𝐶𝑘-smooth hypersurface in R𝑛 is defined as the set

S = {X ∈ 𝜔 : ΨS (X) = 0} , (13)

where ΨS : 𝜔 → R is a 𝐶𝑘-mapping, which is regular
∇Ψ(X) ̸= 0.

Stoke’s derivatives are concrete examples of tangential
operators

MS := [M
𝑗𝑘
]
𝑛×𝑛

, M
𝑗𝑘
:= ]
𝑗
𝜕
𝑘
− ]
𝑘
𝜕
𝑗
= 𝜕rtial

𝑚𝑗, 𝑘
.

(14)

Corollary 5 (Green’s formula; cf. [1]). Let Ω ⊂ R𝑛 be a
domain with Lipschitz boundary. For the Laplace operator

Δ := 𝜕
2

1
+ ⋅ ⋅ ⋅ + 𝜕

2

𝑛
(15)

and functions 𝜑, 𝜓 ∈ W1
2
(Ω), Δ𝜓 ∈ W̃1(Ω), the following I and

II Green formulae are valid:

∫
Ω

(Δ𝜓) (𝑦) 𝜑 (𝑦) 𝑑𝑦

= ∮
𝜕Ω

(𝜕^𝜓) (𝜏) 𝜑 (𝜏) 𝑑𝜎

−

𝑛

∑
𝑗=1

∫
Ω

(𝜕
𝑗
𝜓) (𝑦) (𝜕

𝑗
𝜑) (𝑦) 𝑑𝑦,

∫
Ω

(Δ𝜓) (𝑦) 𝜑 (𝑦) 𝑑𝑦

= ∫
Ω

𝜓 (𝑦) (Δ𝜑) (𝑦) 𝑑𝑦

+ ∮
𝜕Ω

[(𝜕^𝜓) (𝜏) 𝜑 (𝜏) + 𝜓 (𝜏) (𝜕^𝜑) (𝜏)] 𝑑𝜎.

(16)

Integrals in (16) are understood in the sense of duality between
spaces W̃−1(Ω) and W1(Ω), H−1/2(𝜕Ω) and H1/2(𝜕Ω), and so
forth.

Let S be a closed hypersurface in R𝑛 and let C be a
smooth subsurface of S, given by an immersion

Θ : 𝜔 󳨀→ C, 𝜔 ⊂ R
𝑛−1 (17)

with a boundary Γ = 𝜕C, given by another immersion

Θ
Γ
: 𝜔 󳨀→ Γ := 𝜕C, 𝜔 ⊂ R

𝑛−2

, (18)

and let ^(X) be the outer unit normal vector field to C and
letN(𝑥) denote an extended unit field in a neighborhood𝜔C

ofC. ^
Γ
(𝑡) is the outer normal vector field to the boundary Γ,

which is tangential toC.
A curve on a smooth surfaceC is a mapping

𝛾 : I 󳨃󳨀→ C, I := (𝑎, 𝑏] ⊂ R, (19)

of a line intervalI toC.
A vector field on a domainΩ in R𝑛 is a mapping

U : Ω 󳨀→ R
𝑛

, U (𝑥) =

𝑛

∑
𝑗=1

𝑈
𝑗
(𝑥) e𝑗, (20)

where 𝑈𝑗 ∈ 𝐶∞
0
(Ω) and e𝑗 is the element of the natural

Cartesian basis in R𝑛:

𝑒
1

:= (1, 0, . . . , 0) , . . . , 𝑒
𝑛

:= (0, . . . , 0, 1) , (21)

in the Euclidean space R𝑛.
ByV(Ω) we denote the set of all smooth vector fields on

Ω.
A vector fieldU ∈ V(Ω) defines the first order differential

operator

U𝑓 (𝑥) = 𝜕rtialU𝑓 (𝑥) := lim
ℎ→0

𝑓 (FℎU (𝑥)) − 𝑓 (𝑥)

ℎ

=
𝑑

𝑑𝑡
𝑓 (F
𝑡

U (𝑥))
󵄨󵄨󵄨󵄨󵄨𝑡=0

,

(22)

whereF𝑡U(𝑥) is the orbit of the vector field 𝑈.
Let

𝑃 (𝐷) 𝑢 =

𝑛

∑
𝑗=1

𝑎
𝑗
𝜕
𝑗
𝑢 + 𝑏𝑢, 𝑎

𝑗
, 𝑏 ∈ 𝐶

1

(R
𝑚×𝑚

) , (23)

be a first order differential operatorwith real valued (variable)
matrix coefficients, acting on vector-valued functions in
R𝑛, and its principal symbol is given by the matrix-valued
function

𝜎 (𝑃; 𝜉) :=

𝑛

∑
𝑗=1

𝑎
𝑗
𝜉
𝑗
, 𝜉 = {𝜉

𝑗
}
𝑛

𝑗=1

∈ R
𝑛

. (24)

To distinguish an open and a closed hypersurface, we
use the notation S for a closed hypersurface without the
boundary 𝜕rtialS = 0 (we remind the reader that the notation
C is reserved for an open hypersurface with the boundary
Γ := 𝜕rtialS).

Definition 6. We say that 𝑃 is a tangential operator to the
hypersurface S, with unit normal ^, if

𝜎 (𝑃; ^) = 0 on the hypersurface S. (25)
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Lemma7. Let𝑃 be, as in (23), a first order differential operator
with 𝐶1-smooth coefficients. 𝑃 is tangential if and only if the
adjoint 𝑃∗ operator is tangential.

If 𝑃 is tangential to S and 𝑃 is defined in a neighborhood
of S, then

(𝑃𝜑) |
S
= 𝑃 (𝜑 |S) , (26)

for every 𝐶1 function 𝜑 defined in a neighborhood of S.

We continue with the definition of the surface divergence
divS, the surface gradient ∇S, and the surface Laplace-
Beltrami operator ΔS.

According to the classical differential geometry, the sur-
face gradient ∇S of a function 𝑓 ∈ 𝐶1(S) is defined by

∇S𝑓 = grad𝑓 =
∑
𝑗,𝑘
(𝑔𝑗𝑘𝜕rtial

𝑗
𝑓) 𝜕rtial

𝜕rtial𝑥
𝑘

, (27)

and the surface divergence of a smooth tangential vector field
V is defined by

divSV :=

𝑛−1

∑
𝑘=1

𝑉
𝑗

;𝑗
, 𝑉
𝑗

;𝑘
:= 𝜕
𝑘
𝑉
𝑗

+

𝑛−1

∑
𝑚=1

Γ
𝑗

𝑘𝑚
𝑉
𝑚

, (28)

where Γ𝑗
𝑘𝑚

denotes the Christoffel symbols

Γ
𝑗

𝑘𝑚
:=

1

2

𝑛−1

∑
𝑘=1

𝑔
𝑗ℓ

[𝜕
𝑚
𝑔
𝑘ℓ
+ 𝜕
𝑘
𝑔
𝑚ℓ

− 𝜕
ℓ
𝑔
𝑘𝑚
] = Γ
𝑗

𝑚𝑘
(29)

and 𝐺 := [𝑔
𝑗𝑘
] is the covariant Riemann metric tensor, while

𝐺−1 := [𝑔𝑗𝑘] is the inverse to it-the contravariant Riemann
tensor.

divS is the negative dual to the surface gradient:

⟨divSV, 𝑓⟩ := − ⟨V, ∇S𝑓⟩ , ∀V ∈ V (S) , ∀𝑓 ∈ 𝐶
1

(S) .

(30)

The Laplace-Beltrami operator ΔS on S is defined as the
composition

ΔS𝜓 = divS∇S𝜓 = −∇
∗

S (∇S𝜓) . (31)

Theorem 8 (cf. [2]). For any function 𝜑 ∈ 𝐶1(S), one has

∇S𝜑 = {D1𝜑,D2𝜑, . . . ,D𝑛𝜑}
⊤

. (32)

Also, for a 1-smooth tangential vector field V = ∑
𝑛

𝑗=1
𝑉𝑗𝑒
𝑗
∈

V(S),

divSV = −∇
∗

SV :=

𝑛

∑
𝑗=1

D
𝑗
𝑉
𝑗

. (33)

The Laplace-Beltrami operator ΔS on S takes the form

ΔS𝜓 =

𝑛

∑
𝑗=1

D
2

𝑗
𝜓 = ∑
𝑗<𝑘

M
2

𝑗𝑘
𝜓 =

1

2

𝑛

∑
𝑗,𝑘=1

M
2

𝑗𝑘
𝜓, ∀𝜓 ∈ 𝐶

2

(S) .

(34)

Corollary 9 (cf. [2]). Let S be a smooth closed hypersurface.
The homogeneous equation

ΔS𝜓 = 0 (35)

has only a constant solution in the spaceW1(S).

Proof. Due to (31) and (35), we get

0 = (−ΔS𝜓, 𝜓) = (∇S𝜓, ∇S𝜓) =
󵄩󵄩󵄩󵄩∇S𝜓 | L

2
(S)

󵄩󵄩󵄩󵄩 , (36)

which gives ∇S𝜓 = 0. But the trivial surface gradient means
constant function 𝜓 = const (this is easy to ascertain
by analysing the definition of Günter’s derivatives; see, e.g.,
[3]).

LetM be a nontrivial mesM ̸= 0, smooth closed or open
hypersurface, 𝑠 ∈ R, and 1 < 𝑝 < ∞. For the definitions
of Bessel potential H𝑠

𝑝
(M) and Sobolev-Slobodeckii W𝑠

𝑝
(M)

spaces for a closed smooth manifoldM, we refer to [12] (also
see [1, 13, 14]). For 𝑝 = 2 the Sobolev-Slobodetski W𝑠

2
(M)

and Bessel potentialH𝑠
2
(Γ) spaces coincide (i.e., the norms are

equivalent).
LetC be a subsurface of a smooth closed surfaceM,C ⊂

M, with the smooth boundary Γ := 𝜕rtialS.The space H̃𝑠
𝑝
(C)

is defined as the subspace of those functions 𝜑 ∈ H𝑠
𝑝
(M),

which are supported in the closure of the subsurface, supp𝜑 ⊂
C, whereas H𝑠

𝑝
(C) denotes the quotient space H𝑠

𝑝
(C) =

H𝑠
𝑝
(M)/H̃𝑠

𝑝
(C𝑐), and C𝑐 := M \ C is the complementary

subsurface to C. The space H𝑠
𝑝
(C) can be identified with

the space of distributions 𝜑 on C which have an extension
to a distribution ℓ𝜑 ∈ H𝑠

𝑝
(M). Therefore, 𝑟CH

𝑠

𝑝
(M) =

H𝑠
𝑝
(C), where 𝑟C denotes the restriction operator of functions

(distributions) from the surfaceM to the subsurface R𝑛.
The spaces W̃𝑠

𝑝
(C) and W𝑠

𝑝
(C) are defined similarly (see

[12] and also [1, 13, 14]).
By X𝑠

𝑝
(M) we denote one of the spaces: H𝑠

𝑝
(M) and

Sobolev-SlobodeckiW𝑠
𝑝
(M) (ifM is closed or open), and by

X̃𝑠
𝑝
(M) denote one of the spaces: H̃𝑠

𝑝
(M) and W̃𝑠

𝑝
(M) (ifM

is open). Consider the space

X
𝑠

𝑝,# (M) := {𝜑 ∈ X
𝑠

2
(M) : (𝜑, 1) = 0} . (37)

It is obvious that X𝑠
𝑝,#(M) does not contain constants: if 𝑐

0
=

const ∈ X𝑠
𝑝,#(M), then

0 = (𝑐
0
, 1) = 𝑐

0
(1, 1) = 𝑐

0
mesM (38)

and 𝑐
0
= 0. Moreover, X𝑠

𝑝
(M) decomposes into the direct

sum

X
𝑠

𝑝
(M) = X

𝑠

𝑝,# (M) + {const} (39)

and the dual (adjoint) space is

(X
𝑠

𝑝,# (M))
∗

= X
−𝑠

𝑝
󸀠
,# (M) , 𝑝

󸀠

:=
𝑝

𝑝 − 1
. (40)
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In fact, the decomposition (39) follows from the representa-
tion

𝜑 = 𝜑
0
+ 𝜑aver, 𝜑

0
∈ X
𝑠

𝑝,# (M) , 𝜑aver :=
1

mesM
(𝜑, 1)

(41)

of arbitrary function 𝜑 ∈ X𝑠
𝑝
(M), because the average of

the difference of a function and its average is zero: (𝜑
0
)aver =

(𝜑 − 𝜑aver)aver = 0.
Since the Sobolev space W𝑚

𝑝,#(M) with integer smooth-
ness parameter 𝑚 = 1, 2, . . . does not contain constants, due
to Corollary 9 the equivalent norm in this space can also be
defined as follows:

󵄩󵄩󵄩󵄩󵄩
𝜑 | W

𝑚

𝑝,#(M)
󵄩󵄩󵄩󵄩󵄩0
:= ∑
1⩽|𝛼|⩽𝑚

󵄩󵄩󵄩󵄩󵄩
D
𝛼

𝜑 | L
𝑝
(M)

󵄩󵄩󵄩󵄩󵄩
. (42)

In particular, in the spaceW1
𝑝,#(M) the equivalent norm is

󵄩󵄩󵄩󵄩󵄩
𝜑 | W

1

𝑝,# (M)
󵄩󵄩󵄩󵄩󵄩0
:=
󵄩󵄩󵄩󵄩󵄩
∇S𝜑 | L𝑝 (M)

󵄩󵄩󵄩󵄩󵄩
. (43)

The description (40) of the dual space follows from the
fact that the dual space to X𝑠

𝑝
(M) is X−𝑠

𝑝
󸀠 (M) (see [12]) and,

therefore, due to the decomposition (39) and Hahn-Banach
theorem the dual space to X𝑠

𝑝,#(M) should be embedded
intoX−𝑠

𝑝
󸀠 (M).The only functional fromX−𝑠

𝑝
󸀠 (M) that vanishes

on the entire space X𝑠
𝑝,#(M) is constant 1 ∈ X−𝑠

𝑝
󸀠 (M)

(see definition (37)). After detaching this functional the
remainder coincides, due to (39), with the space X−𝑠

𝑝
󸀠
,#(M),

which is the dual toX𝑠
𝑝,#(M).

Theorem 10. Let S be ℓ-smooth ℓ = 1, 2, . . . , 1 < 𝑝 < ∞ and
|𝑠| ⩽ ℓ. LetX𝑠

𝑝
(S) be the same as in (37)–(40).

LetH ∈ 𝐶ℓ−1(R𝑛) have one of the following properties:

(i) H has a nonnegative real part ReH(𝑡) ⩾ 0, for all
𝑡 ∈ S, andmes supp ReH ̸= 0;

(ii) H has a constant complex part Im H(𝑡) = const ̸= 0;

(iii) Re H = 0,mes supp ImH ̸= 0, and the complex part
ImH does not change the sign: either ImH(𝑡) ⩾ 0, for
all 𝑡 ∈ S, or ImH(𝑡) ⩽ 0, for all 𝑡 ∈ S.

The perturbed operator

divS𝐴∇S −H𝐼 : X
𝑠+1

𝑝
(S) 󳨀→ X

𝑠−1

𝑝
(S) (44)

is invertible, which can be interpreted as the existence of the
fundamental solution to divS𝐴∇S −H𝐼.

The operator divS𝐴∇S itself is invertible between the spaces
with detached constants (see (37))

divS𝐴∇S : X
𝑠+1

𝑝,# (S) 󳨀→ X
𝑠−1

𝑝,# (S) . (45)

And, therefore, divS𝐴∇S has the fundamental solution in the
setting (45).

Proof. The first part of the theorem is proved in [3, Theorem
7.1] for the space settingW1(S) → W−1(S) only. Therefore,
we will prove it here in full generality.

First of all, note that the operator (44) is bounded and
elliptic, as an elliptic operator on the closed hypersurface
divS𝐴∇S − H𝐼 in (44) is Fredholm, for all 𝑠 ∈ R and 1 <

𝑝 < ∞ (it has a parametrix if S is infinitely smooth; see
[13, 15, 16]). On the other hand,

(− (divS𝐴∇S −H) 𝜑, 𝜑)
𝐿2(S)

= −∫
Γ

⟨(^
Γ
, 𝐴∇S𝜑)

+

, 𝜑
+

⟩ 𝑑𝑠

+ (𝐴∇S𝜑, ∇S𝜑)S + (ReH𝜑, 𝜑)
S

+ 𝑖(ImH𝜑, 𝜑)
S

∀𝜑 ∈ W
1

2
(S) .

(46)

Let us prove the uniqueness of the solution. For this, con-
sider homogenous boundary conditions:𝑓 = 0, (^

Γ
, 𝐴∇S𝜑) =

0 on Γ
𝑁
and 𝜑+ = 0 on Γ

𝐷
. Then, (divS𝐴∇S −H)𝜑 = 0 and

∫
Γ

⟨(^
Γ
, 𝐴∇S𝜑)

+

, 𝜑+⟩𝑑𝑠 = 0, and finally we get

(𝐴∇S𝜑, ∇S𝜑)S + (ReH𝜑, 𝜑)
S
= 0, (ImH𝜑, 𝜑)S = 0.

(47)

Now let Re H(𝑡) ⩾ 0, for all 𝑡 ∈ S, and
mes supp Re H ̸= 0 (case (i)). Then from the first equality in
(47), it follows that

(𝐴∇S𝜑, ∇S𝜑)S = 0, (ReH𝜑, 𝜑)
S
= 0. (48)

The first equality (𝐴∇S𝜑, ∇S𝜑)S = 0 yields 𝜑(𝑡) = 𝐶 = const
and by inserting this in the second one we get

0 = (ReH𝜑, 𝜑)
S
= 𝐶∫

S

H (𝑡) 𝑑𝜎, (49)

and the conclusion 𝜑(𝑡) = 𝐶 = const = 0 is immediate.
If 𝑀 = ImH(𝑡) = const ̸= 0 (case (ii)), the same

conclusion follows from the second equality in (47):

0 = (ImH𝜑, 𝜑)S = 𝑀(𝜑, 𝜑)
S
= 𝑀

󵄩󵄩󵄩󵄩𝜑 | 𝐿2 (S)
󵄩󵄩󵄩󵄩
2

, (50)

and, again, 𝜑 = 0.
If Re H = 0, either Im H(𝑡) ⩾ 0, for all 𝑡 ∈ S, or

Im H(𝑡) ⩽ 0, for all 𝑡 ∈ S, and mes supp Im H ̸= 0 (case
(iii)); from equality (46) it follows that

(− (divS𝐴∇S −H) 𝜑, 𝜑)
S

= (𝐴∇S𝜑, ∇S𝜑)S + 𝑖(ImH𝜑, 𝜑)
S
= 0

(51)

and, consequently, if (divS𝐴∇S −H)S𝜑 = 0 forW
1

2
(S), then

(𝐴∇S𝜑, ∇S𝜑)S = 0, (ImH𝜑, 𝜑)S = 0. (52)

The conclusion 𝜑 = const = 0 follows as in the case (i).
Therefore, Ker(divS𝐴∇S − H𝐼) = {0}. Since the

operator is self-adjoint, the same is true for the dual
operator Coker(divS𝐴∇S − H𝐼) = Ker(divS𝐴∇S −

H𝐼) = {0} which, together with the Fredholm property of
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divS𝐴∇S −H𝐼 : W1(S) → W−1(S), yields the invertibility
of this operator (of the operator in (44) for 𝑠 = 0 and 𝑝 = 2).

If 𝑠 ̸= 0 or 𝑝 ̸= 2, we proceed as follows. It is well known
(see, e.g., [17]) that if an operator is Fredholm in the scale of
Banach spaces (44), for all 𝑠 ∈ R, 1 < 𝑝 < ∞, and is invertible
for only one pair of parameters (𝑝, 𝑠) = (2, 0), it is invertible
for all values of the parameters 𝑠 ∈ R, 1 < 𝑝 < ∞.

To prove the second assertion (see [3, Lemma 5.2] for
a particular case), we note that the natural domain of the
operator divS𝐴∇S isX𝑠+1

𝑝,# (S).
To prove that the image of the operator divS𝐴∇S coin-

cides with the spaceX𝑠−1
𝑝,# (S), let 𝜓0 ∈ X𝑠−1

𝑝,# (S) be orthogonal
to the image ImdivS𝐴∇S of the operator. Then the equality

0 = (divS𝐴∇S𝜑, 𝜓0) = (𝜑, divS𝐴∇S𝜓0) (53)

holds for all 𝜑 ∈ X𝑠+1
𝑝
(S). But then divS𝐴∇S𝜓0 = 0,

which implies 𝜓
0

= const and, therefore, constants are
only functions orthogonal to the image of the operator
ImdivS𝐴∇S. This proves that the image ImdivS𝐴∇S :=

divS𝐴∇S𝑝 coincides with the spaceX𝑠−1
𝑝,# (S).

Now, note that the operator −divS𝐴∇S in the setting

−divS𝐴∇S : W
1

2,# (S) 󳨀→ W
−1

2,# (S) (54)

is positive definite (coercive). Indeed, due to (9), (31), and
(43), we get

(−divS𝐴∇S𝜑, 𝜑) = (𝐴∇S𝜑, ∇S𝜑)

≥ 𝐶
󵄩󵄩󵄩󵄩∇S𝜑 | L2 (S)

󵄩󵄩󵄩󵄩
2

= 𝐶
󵄩󵄩󵄩󵄩󵄩
𝜑 | W

1

2,# (S)
󵄩󵄩󵄩󵄩󵄩

2

∀𝜑 ∈ W
1

2,# (S) .

(55)

Therefore, divS𝐴∇S has the trivial kernel Ker(divS𝐴∇S) =

{0} in W1
2,#(S) and is normally solvable (has the closed

image). Since divS𝐴∇S is self-adjoint and the spacesW1
2,#(S)

andW−1
2,#(S) are adjoint (see (40)), the adjoint operator to (54)

is normally solvable as well and has a trivial kernel.
The proof is accomplished as in the first part of the

theorem.

Corollary 11 (cf. [3]). For the operator divC(𝐴∇C) on the open
hypersurface C with the boundary 𝜕C := Γ, the following
Green formulae are valid:

(divS (𝐴∇C𝜑) , 𝜓)C

= (⟨^
Γ
, (𝐴∇C𝜑)

+

⟩ , 𝜓
+

)
Γ

− (𝐴∇C𝜑, ∇C𝜓)C,

(divS (𝐴∇C𝜑) , 𝜓)C − (𝜑, divS (𝐴∇C𝜓))C

= (⟨^
Γ
, (𝐴∇C𝜑)

+

⟩ , 𝜓
+

)
Γ
− (𝜑
+

, ⟨^
Γ
, (𝐴∇C𝜓)

+

⟩)
Γ

,

(56)

where (𝜑, 𝜓)C denotes the scalar product of functions 𝜑, 𝜓 ∈

𝐶∞(C). We have encountered already the normal boundary
derivative ⟨^

Γ
, (𝐴∇C𝜑)

+

⟩ in the mixed BVP (9).

Lemma 12 (see [18, 19] (Lax-Milgram)). Let B be a Banach
space and let 𝐴(𝜑, 𝜓) be a continuous, bilinear form

𝐴 (⋅, ⋅) : B ×B 󳨀→ R (57)

and positive definite

𝐴 (𝜑, 𝜑) ≥ 𝐶
󵄩󵄩󵄩󵄩𝜑 | B

󵄩󵄩󵄩󵄩
2

∀𝜑 ∈ B, 𝐶 > 0. (58)

Let 𝐿(⋅) : B → R be a continuous linear functional.
A linear equation

𝐴 (𝜑, 𝜓) = 𝐿 (𝜓) (59)

has a unique solution 𝜑 ∈ B for arbitrary 𝜓 ∈ B.

3. Mixed BVP for the
Laplace-Beltrami Equation

Let again C ⊂ S be a smooth subsurface of a closed
hypersurface S and let Γ = 𝜕C ̸= 0 be its smooth boundary
𝜕C = Γ. Let divC𝐴∇C be the operator restricted to the
hypersurface C. The boundary is divided into two parts
𝜕C = Γ = Γ

𝐷
∪ Γ
𝑁
and in the present section we consider

the boundary value problems for (8) with mixed boundary
conditions in a weak classical formulation (4).

Note that functions 𝜑 ∈ W𝑠
𝑝
(C) and 𝜑 ∈ H𝑠

𝑝
(C) have the

trace 𝜑+ ∈ W
𝑠−1/𝑝

𝑝
(Γ) on the boundary, provided 1 < 𝑝 < ∞

and 𝑠 > 1/𝑝 (see [12] for details). Therefore if we look for a
solution of the BVP (8) in the space W1(C), the trace 𝑢+ on
Γ
𝐷
exists and belongs to the space H1/2(Γ

𝐷
).

Concerning the existence of the Neumann trace
⟨^
Γ
, 𝐴∇C⟩

+ in (8) for a solution 𝑢 ∈ W1(C) is not guaranteed
by the general trace theorem. But in this case, the first
Green formula (56) ensures the existence of the Neumann
trace. Indeed, by setting 𝜑 = 𝑢 and inserting the data
(divC𝐴∇C)𝑢(𝑡) = 𝑓(𝑡) from (8) into the first Green formula
(56), we get the following:

(⟨^
Γ
, (𝐴∇C𝑢)

+

⟩ , 𝜓
+

)
Γ

− (𝐴∇C𝑢, ∇C𝜓)C = (divC (𝐴∇C𝑢) , 𝜓)C = (𝑓, 𝜓)
C
,

(60)

and finally we get

(⟨^
Γ
, (𝐴∇C𝑢)

+

⟩ , 𝜓
+

)
Γ

= (𝑓, 𝜓)
C
+ (𝐴∇C𝑢, ∇C𝜓)C, (61)

for arbitrary 𝜓 ∈ W1(C). Since 𝜓+ ∈ H1/2(Γ), the scalar
product (𝐴∇C𝑢, ∇C𝜓)C in the right-hand side of equality (61)
is correctly defined and defines correct duality in the left-
hand side of the equality. Since 𝜓+ ∈ H1/2(Γ) is arbitrary, by
the duality argument, this gives that ⟨^

Γ
, (𝐴∇C𝑢)

+

⟩ should be
in the dual space, that is, in H−1/2(Γ).

To prove the forthcoming theorem about the unique
solvability of the BVP (61) we need more properties of
trace operators (called retractions) and their inverses, called
coretractions (see [12, Section 2.7]).

To keep the exposition simpler we recall a very particular
case of Lemma 4.8 from [1], which we apply in the present
investigation.
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Lemma 13 (see Lemma 4.8 in [1]). Let 𝑠 > 0, 𝑠 ∉ N, 1 <

𝑝 < ∞, B(𝐷) be a normal differential operator of the first
order defined in the vicinity of the boundary Γ = 𝜕rtialC and
let A(𝐷) be a normal differential operator of the second order
defined on the surfaceC. Then there exists a continuous linear
operator

B : W
𝑠

𝑝
(Γ) ⊗W

𝑠−1

𝑝
(Γ) 󳨀→ H

𝑠+1/𝑝

𝑝
(C) (62)

such that

(BΦ)
+

= 𝜑
0
, (B (𝐷)BΦ)

+

= 𝜑
1
,

A (𝐷)BΦ ∈ H̃
𝑠−2+1/𝑝

𝑝
(C) ,

(63)

for arbitrary pair of functions Φ = (𝜑
0
, 𝜑
1
)
⊤, where 𝜑

0
∈

W𝑠
𝑝
(Γ) and 𝜑

1
∈ W𝑠−1
𝑝
(Γ).

Theorem 14. The mixed boundary value problem (8) in the
weak classical setting (4) and the additional constraint 𝑓 ∈

H̃−1
0
(Ω) ⊂ H̃−1(Ω) (see Remark 2), has a unique solution in

the spaceW1(C).

Proof. We commence by reduction of the BVP (8) to an
equivalent one with the homogeneous Dirichlet condition.
For this we extend the boundary data 𝑔 ∈ W1/2(Γ

𝐷
) up to

some function 𝑔 ∈ W1/2(Γ) on the entire boundary Γ and
apply Lemma 13: there exists a function𝐺 ∈ W1(C) such that
𝐺+(𝑡) = 𝑔(𝑡) for 𝑡 ∈ Γ

𝐷
(actually 𝐺+ = 𝑔 almost everywhere

on the boundary) and divC(𝐴∇C𝐺) ∈ W̃−1(C).
For a new unknown function V := 𝑢 − 𝐺, we have the

following equivalent reformulation of the BVP (8):

divC (𝐴∇CV) (𝑡) = 𝑓0 (𝑡) , 𝑡 ∈ C,

V+ (𝑠) = 0, on Γ
𝐷
,

⟨^
Γ
(𝑠) , (𝐴∇CV)

+

(𝑠)⟩ = ℎ
0
(𝑠) , on Γ

𝑁
,

(64)

where

𝑓
0
:= 𝑓 + divC (𝐴∇C𝐺) ∈ W̃

−1

(C) ,

ℎ
0
:= ℎ + ⟨^

Γ
, (𝐴∇C𝐺)

+

⟩ ∈ W
−1/2

(Γ
𝑁
) ,

V+ ∈ W̃
1/2

(Γ
𝑁
) .

(65)

To justify the last inclusion V+ ∈ W̃1/2(Γ
𝑁
), note that, due

to our construction, the trace of a solution on Γ
𝐷
vanishes

V+|
Γ𝐷
= 0.

Let Γ
0
⊂ Γ be a part of the boundary and, by W𝑠(Γ

0
,C),

𝑠 > 1/2, denote the space of functions 𝜑 ∈ W𝑠(Γ
0
,C) which

has the trace on the boundary supported in Γ
0
; that is, 𝜑+ ∈

W̃𝑠−1/2(Γ
0
).

By inserting the data from the reformulated boundary
value problem (64) into the first Green identity (56), where
𝜑 = 𝜓 = V, we get

(𝐴∇CV, ∇CV)C

= (⟨^
Γ
, (𝐴∇CV)

+

⟩ , V+)
Γ𝐷

+ (⟨^
Γ
, (𝐴∇CV)

+

⟩ , V+)
Γ𝑁

− (divC (𝐴∇CV) , V)C = (ℎ
0
, V+)
Γ𝑁

− (𝑓
0
, V)

C
,

V ∈ W̃
1

(Γ
𝑁
,C) .

(66)

In the left-hand side of the equality (66) we have a symmetric
bilinear form, which is positive definite

(𝐴∇CV, ∇CV)C ⩾ 𝐶
󵄩󵄩󵄩󵄩∇CV

󵄩󵄩󵄩󵄩
2

∀V ∈ W̃
1

(Γ
𝑁
,C) , (67)

because 𝐴 = [𝑎
𝑗𝑘
]
𝑛×𝑛

is strictly positive definite matrix. On
the other hand, all functions on the space W̃1(Γ

𝑁
,C) vanish

on the part of the boundary Γ
𝐷
, and∇CV defines an equivalent

norm on this space
󵄩󵄩󵄩󵄩∇CV

󵄩󵄩󵄩󵄩 ⩽
󵄩󵄩󵄩󵄩󵄩
V | W1 (Γ

𝑁
)
󵄩󵄩󵄩󵄩󵄩
⩽ 𝐶
1

󵄩󵄩󵄩󵄩∇CV
󵄩󵄩󵄩󵄩 ∀V ∈ W̃

1

(Γ
𝑁
,C) .

(68)

From (67) and (68) follows the positive definiteness:

(𝐴∇CV, ∇CV)C ⩾ 𝐶
2

󵄩󵄩󵄩󵄩󵄩
V | W1 (Γ

𝑁
)
󵄩󵄩󵄩󵄩󵄩

2

∀V ∈ W̃
1

(Γ
𝑁
,C) .

(69)

(ℎ
0
, V+)
Γ𝑁

and (𝑓
0
, V)C from equality (66) are

correctly defined continuous functionals, because
ℎ
0
∈ W−1/2(Γ

𝑁
), 𝑓
0
∈ W̃−1(C), while their counterparts in

the functional belong to the dual spaces V+ ∈ W̃1/2(Γ
𝑁
) and

V ∈ W̃1(Γ
𝑁
,C) ⊂ W1(C).

The Lax-Milgram Lemma 12 accomplishes the proof.

Remark 15. TheLax-MilgramLemma 12 can be applied to the
Dirichlet BVP (1), (4), but only after equivalent reformula-
tion: due to Lemma 13 we can pick up a function 𝐺 ∈ W1(C)

such that 𝐺+ = 𝑔 and divC(𝐴∇C𝐺) ∈ W̃−1(C).
For a new unknown function V := 𝑢 − 𝐺, we have the

following equivalent reformulation of the BVP (5):

divC (𝐴∇CV) (𝑡) = 𝑓0 (𝑡) , 𝑡 ∈ C,

V+ (𝑠) = 0, on Γ,
(70)

where

𝑓
0
:= 𝑓 + divC (𝐴∇C𝐺) ∈ W̃

−1

(C) , V ∈ W̃
1

(C) . (71)

By inserting the data from the reformulated boundary value
problem (70) into the first Green identity (56), where𝜑 = 𝜓 =

V, we get

(𝐴∇CV, ∇CV)C = (⟨^
Γ
, (𝐴∇CV)

+

⟩ , V+)
Γ

− (divC (𝐴∇CV) , V)C = −(𝑓
0
, V)C,

V ∈ W̃
1

(C) .

(72)

Now the Lax-Milgram Lemma can be applied, which proves
the unique solvability of the Dirichlet BVP (1), (4).
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Remark 16. TheLax-MilgramLemma 12 can be applied to the
Neumann BVP (2), (4):

divC (𝐴∇CV) (𝑡) = 𝑓0 (𝑡) , 𝑡 ∈ C,

⟨^
Γ
, (𝐴∇CV)

+

⟩ (𝑠) = 0, on Γ.
(73)

By inserting the data from the boundary value problem (2)
into the first Green identity (56), where 𝜑 = 𝜓 = 𝑢, we get

(𝐴∇C𝑢, ∇C𝑢)C

= (⟨^
Γ
, 𝐴∇C𝑢⟩

+

, 𝑢
+

)
Γ

− ((divC𝐴∇C) 𝑢, 𝑢)C

= (ℎ, 𝑢)
Γ
− (𝑓, 𝑢)

C
, 𝑢 ∈ W

1

2,# (C) .

(74)

We need the compatibility condition (6) to ensure that the
equality in (74) will be fulfilled on the subspace W1

2,#(C): if
V = const, the left-hand side vanishes, while the right-hand
side vanishes, (ℎ, const)

Γ
− (𝑓, const)C = 0, if and only if the

compatibility condition (6) holds:

(ℎ, 1)
Γ
− (𝑓, 1)

C
= ∮
Γ

ℎ (𝑠) 𝑑𝑠 − ∫
C

𝑓 (𝑦) 𝑑𝜎 = 0, (75)

and the last representation in the equality is possible if ℎ and
𝑓 are regular integrable functions.

Due to (55), the bilinear form (𝐴∇CV, ∇CV)C is positive
definite and both functionals in the right-hand side of (74)
are bounded on the subspace W1

2,#(C). Now we can apply
the Lax-Milgram Lemma and prove the existence of a unique
solution V ∈ W1

2,#(C) to the Neumann BVP (2), (4), provided
the compatibility9 condition (6) holds.
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