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By establishing a comparison result and using the monotone iterative technique combined with the method of upper and lower
solutions, we investigate the existence of solutions for nonlinear fractional differential systems with coupled four-point boundary
value problems.

1. Introduction

This paper discusses the coupled four-point boundary value
problems

𝐷
𝑝
𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) = 0, 𝑡 ∈ (0, 1) , 1 < 𝑝 ≤ 2,

𝐷
𝑞
𝑦 (𝑡) + 𝑔 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) = 0, 𝑡 ∈ (0, 1) , 1 < 𝑞 ≤ 2,

𝑥 (0) = 𝑦 (0) = 0, 𝑥 (1) = 𝑎𝑦 (𝜉) , 𝑦 (1) = 𝑏𝑥 (𝜂) ,

(1)

where 𝑓 and 𝑔 : (0, 1) × R × R → R are continuous, 𝜉, 𝜂 ∈

(0, 1), 𝑎, 𝑏 > 0 with 𝑎𝑏 < 1, and 𝐷
𝑝
𝑥 denotes the Caputo

fractional derivative of 𝑥 with 1 < 𝑝 ≤ 2 defined by

𝐷
𝑝
𝑥 (𝑡) = 𝐼

2−𝑝
𝑥

(𝑡) =

1

Γ (𝑝)
∫

𝑡

0

(𝑡 − 𝑠)
1−𝑝

𝑥

(𝑠) 𝑑𝑠. (2)

𝐼
2−𝑝 is theRiemann-Liouville fractional integral of order 2−𝑝;
see [1–4].

It is well known that

𝐼
2−𝑝

(𝐷
2−𝑝

𝑥 (𝑡)) = 𝑥 (𝑡) −

1

∑

𝑘=0

𝑥
(𝑘)
(0
+
)

𝑘!
𝑡
𝑘
,

𝐷
2−𝑝

(𝐼
2−𝑝

𝑥 (𝑡)) = 𝑥 (𝑡) .

(3)

Fractional differential equation’s modeling capabilities in
physics, chemistry, economics, and other fields, over the last
few decades, have resulted in the rapid development of the
theory of fractional differential equations; we refer the reader
to the books [1–4]. On the other hand, the study of systems
involving coupled boundary value problems is also important
as such systems occur in the study of reaction-diffusion
equations and Sturm-Liouville problems, for example, [5–16].
In [17–25], using the upper and lower solutions method and
the monotone iterative method, the authors considered the
existence of solutions of initial value problems and boundary
value problems for fractional differential equations. But, as
far as we know, there have been few papers which have
considered the existence of solutions of (1) by means of the
monotone iterative method.

Motivated by the above papers, in this paper, we will
investigate the existence of a solution of problem (1) bymeans
of the upper and lower solutions method and the monotone
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iterative method. The novelty of this paper is that Caputo-
type fractional differential systems involve two different
fractional derivatives𝐷𝑝 and𝐷𝑞 and that the nonlinear terms
𝑓, 𝑔 in the systems (1) involve unknown functions 𝑥(𝑡) and
𝑦(𝑡).

In the following, we denote

𝐸 = 𝐶
2
([0, 1] ,R) , 𝐸1 = 𝐶 ([0, 1] , (0, +∞)) . (4)

2. Preliminaries and Lemmas

In this section, we introduce the definition of the lower and
upper solutions and present some existence and uniqueness
results for linear problems together with comparison results
for differential systems (1) which will be needed in the next
section.

Throughout this paper, we always assume that the follow-
ing condition is satisfied:

(𝐻1) 0 < 𝑎𝑏 < 1.

Definition 1. (𝑢0, V0) ∈ 𝐸 × 𝐸 is called a lower system of
solutions of differential system (1) if

𝐷
𝑝
𝑢0 (𝑡) + 𝑓 (𝑡, 𝑢0 (𝑡) , V0 (𝑡)) ≥ 0, 𝑡 ∈ (0, 1) ,

𝐷
𝑞V0 (𝑡) + 𝑔 (𝑡, 𝑢0 (𝑡) , V0 (𝑡)) ≥ 0, 𝑡 ∈ (0, 1) ,

𝑢0 (0) ≤ 0, V0 (0) ≤ 0,

𝑢0 (1) ≤ 𝑎V0 (𝜉) , V0 (1) ≤ 𝑏𝑢0 (𝜂) .

(5)

Analogously, (𝛼0, 𝛽0) ∈ 𝐸 × 𝐸 is called an upper system of
solutions if it satisfies the reversed inequalities.

If 𝑢0(𝑡) ≤ 𝛼0(𝑡) and V0(𝑡) ≤ 𝛽0(𝑡), 𝑡 ∈ [0, 1], we say that
(𝑢0, V0) and (𝛼0, 𝛽0) are ordered lower and upper system of
solutions of (1). In what follows, we assume that (𝑢0, V0) and
(𝛼0, 𝛽0) are ordered lower and upper system of solutions of
(1) and define the sector

Ω = { (𝑥, 𝑦) ∈ 𝐸 × 𝐸 : (𝑢0 (𝑡) , V0 (𝑡))

≤ (𝑥 (𝑡) , 𝑦 (𝑡))

≤ (𝛼0 (𝑡) , 𝛽0 (𝑡)) , 𝑡 ∈ [0, 1]} ,

(6)

where the vectorial inequalities mean that the same inequal-
ities hold between their corresponding components.

Lemma2 (see [17]). Let 𝑧(𝑡) ∈ 𝐸 and 𝑟(𝑡) ∈ 𝐸1. If 𝑧(𝑡) satisfies
the inequality

−𝐷
𝑝
𝑧 (𝑡) ≤ −𝑟 (𝑡) 𝑧 (𝑡) , 𝑝 ∈ (1, 2] , 𝑡 ∈ (0, 1) ,

𝑧 (0) ≤ 0, 𝑧 (1) ≤ 0,

(7)

then 𝑧(𝑡) ≤ 0, ∀𝑡 ∈ [0, 1].

We have the following important result.

Lemma 3 (comparison theorem). Let 𝑀(𝑡),𝑁(𝑡) ∈ 𝐸1 be
given. Assume that 𝑥(𝑡), 𝑦(𝑡) satisfy

−𝐷
𝑝
𝑥 (𝑡) ≤ −𝑀 (𝑡) 𝑥 (𝑡) , 𝑡 ∈ (0, 1) ,

−𝐷
𝑞
𝑦 (𝑡) ≤ −𝑁 (𝑡) 𝑦 (𝑡) , 𝑡 ∈ (0, 1) ,

𝑥 (0) ≤ 0, 𝑦 (0) ≤ 0,

𝑥 (1) ≤ 𝑎𝑦 (𝜉) , 𝑦 (1) ≤ 𝑏𝑥 (𝜂) .

(8)

Then 𝑥(𝑡) ≤ 0, 𝑦(𝑡) ≤ 0, ∀𝑡 ∈ [0, 1].

Proof. Suppose the contrary. By Lemma 2, We consider the
following three possible cases.

Case 1. Consider 𝑥(1) ≤ 0 and 𝑦(1) > 0. By Lemma 2, 𝑥(𝑡) ≤
0, ∀𝑡 ∈ [0, 1]. Then 𝑦(1) ≤ 𝑏𝑥(𝜂) ≤ 0 which contradicts
𝑦(1) > 0.

Case 2. Consider 𝑦(1) ≤ 0 and 𝑥(1) > 0. By Lemma 2, 𝑦(𝑡) ≤
0,∀𝑡 ∈ [0, 1].Then𝑥(1) ≤ 𝑎𝑦(𝜉) ≤ 0which contradicts𝑥(1) >
0.

Case 3. Consider 𝑥(1) > 0 and 𝑦(1) > 0. By Lemma 2, we
have 𝑥(1) = max𝑡∈[0,1]𝑥(𝑡) > 0 and 𝑦(1) = max𝑡∈[0,1]𝑦(𝑡) > 0.
We only prove that 𝑥(1) = max𝑡∈[0,1]𝑥(𝑡) > 0. If not, 𝑥(𝑡)
has a local positive maximum at some 𝑡0 ∈ (0, 1) such that
𝑥(𝑡0) = max𝑡∈[0,1]𝑥(𝑡) > 0. Then, by Theorem 2.1 in [21], we
have the fact that the Caputo derivative of the function 𝑥 is
nonpositive at the point 𝑡0. Thus,

0 ≤ −𝐷
𝑝
𝑥 (𝑡0) ≤ −𝑀(𝑡0) 𝑥 (𝑡0) < 0, (9)

which is a contradiction. Furthermore, considering the
boundary condition𝑦(1) ≤ 𝑏𝑥(𝜂), there exists 𝑡1 ∈ [0, 𝜂) such
that

𝑥 (𝑡) ≤ 0, 𝑡 ∈ [0, 𝑡1] ; 𝑥 (𝑡) ≥ 0, 𝑡 ∈ [𝑡1, 1] . (10)

A similar proof, for 𝑦(𝑡), gives us that there exists 𝑡2 ∈ [0, 𝜉)

such that

𝑦 (𝑡) ≤ 0, 𝑡 ∈ [0, 𝑡2] ; 𝑦 (𝑡) ≥ 0, 𝑡 ∈ [𝑡2, 1] . (11)

It follows from (10) and (11) that

𝑥 (1) ≤ 𝑎𝑦 (𝜉) ≤ 𝑎𝑦 (1) ≤ 𝑎𝑏𝑥 (𝜂) ≤ 𝑎𝑏𝑥 (1) , (12)

which implies that 𝑎𝑏 ≥ 1, a contradiction. Hence 𝑥(𝑡) ≤

0,𝑦(𝑡) ≤ 0, ∀𝑡 ∈ [0, 1].

Corollary 4. Let 𝑀(𝑡),𝑁(𝑡) ∈ 𝐸1 be given. Assume that
𝑥(𝑡), 𝑦(𝑡) satisfy

−𝐷
𝑝
𝑥 (𝑡) = −𝑀 (𝑡) 𝑥 (𝑡) , 𝑡 ∈ (0, 1) ,

−𝐷
𝑞
𝑦 (𝑡) = −𝑁 (𝑡) 𝑦 (𝑡) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, 𝑦 (0) = 0,

𝑥 (1) = 𝑎𝑦 (𝜉) , 𝑦 (1) = 𝑏𝑥 (𝜂) .

(13)

Then 𝑥(𝑡) = 𝑦(𝑡) = 0, ∀𝑡 ∈ [0, 1].
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Lemma 5. Let 𝜌, 𝜎 ∈ 𝐶[0, 1], then the linear differential
system with coupled four-point boundary value problem

𝐷
𝑝
𝑥 (𝑡) + 𝜌 (𝑡) = 0, 𝑡 ∈ (0, 1) , 1 < 𝑝 ≤ 2,

𝐷
𝑞
𝑦 (𝑡) + 𝜎 (𝑡) = 0, 𝑡 ∈ (0, 1) , 1 < 𝑞 ≤ 2,

𝑥 (0) = 𝑦 (0) = 0, 𝑥 (1) = 𝑎𝑦 (𝜉) , 𝑦 (1) = 𝑏𝑥 (𝜂)

(14)

has integral representation

𝑥 (𝑡) = ∫

1

0

𝐺1 (𝑡, 𝑠) 𝜌 (𝑠) 𝑑𝑠 + ∫

1

0

𝐻1 (𝑡, 𝑠) 𝜎 (𝑠) 𝑑𝑠,

𝑦 (𝑡) = ∫

1

0

𝐺2 (𝑡, 𝑠) 𝜎 (𝑠) 𝑑𝑠 + ∫

1

0

𝐻2 (𝑡, 𝑠) 𝜌 (𝑠) 𝑑𝑠,

(15)

where

𝐺1 (𝑡, 𝑠) = 𝐺𝑝 (𝑡, 𝑠) +
𝑎𝑏𝜉𝑡

1 − 𝑎𝑏𝜉𝜂
𝐺𝑝 (𝜂, 𝑠) ,

𝐻1 (𝑡, 𝑠) =
𝑎𝑡

1 − 𝑎𝑏𝜉𝜂
𝐺𝑞 (𝜉, 𝑠) ,

𝐺2 (𝑡, 𝑠) = 𝐺𝑞 (𝑡, 𝑠) +
𝑎𝑏𝜂𝑡

1 − 𝑎𝑏𝜉𝜂
𝐺𝑞 (𝜉, 𝑠) ,

𝐻2 (𝑡, 𝑠) =
𝑏𝑡

1 − 𝑎𝑏𝜉𝜂
𝐺𝑝 (𝜂, 𝑠) ,

𝐺𝑝 (𝑡, 𝑠) =

{{{{

{{{{

{

𝑡(1 − 𝑠)
𝑝−1

− (𝑡 − 𝑠)
𝑝−1

Γ (𝑝)
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡(1 − 𝑠)
𝑝−1

Γ (𝑝)
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(16)

Proof. It follows from [21] that (14) is equivalent to the system
of integral equations

𝑥 (𝑡) = 𝑥 (1) 𝑡 + ∫

1

0

𝐺𝑝 (𝑡, 𝑠) 𝜌 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] ,

𝑦 (𝑡) = 𝑦 (1) 𝑡 + ∫

1

0

𝐺𝑞 (𝑡, 𝑠) 𝜎 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] .

(17)

By coupled four-point boundary value conditions of problem
(14), we have

𝑦 (1) = 𝑏𝑥 (𝜂) = 𝑏𝜂𝑥 (1) + 𝑏∫

1

0

𝐺𝑝 (𝜂, 𝑠) 𝜌 (𝑠) 𝑑𝑠, (18)

𝑥 (1) = 𝑎𝑦 (𝜉) = 𝑎𝜉𝑦 (1) + 𝑎∫

1

0

𝐺𝑞 (𝜉, 𝑠) 𝜎 (𝑠) 𝑑𝑠. (19)

After simple computation, we get

𝑥 (1) =
𝑎𝑏𝜉

1 − 𝑎𝑏𝜉𝜂
∫

1

0

𝐺𝑝 (𝜂, 𝑠) 𝜌 (𝑠) 𝑑𝑠

+
𝑎

1 − 𝑎𝑏𝜉𝜂
∫

1

0

𝐺𝑞 (𝜉, 𝑠) 𝜎 (𝑠) 𝑑𝑠,

(20)

𝑦 (1) =
𝑎𝑏𝜂

1 − 𝑎𝑏𝜉𝜂
∫

1

0

𝐺𝑞 (𝜉, 𝑠) 𝜎 (𝑠) 𝑑𝑠

+
𝑏

1 − 𝑎𝑏𝜉𝜂
∫

1

0

𝐺𝑝 (𝜂, 𝑠) 𝜌 (𝑠) 𝑑𝑠.

(21)

Substituting (20) into (18) and (21) into (19), respectively, we
obtain the desired results.

Nowwe enunciate the following existence anduniqueness
results for differential system:

𝐷
𝑝
𝑥 (𝑡) − 𝑀 (𝑡) 𝑥 (𝑡) + 𝜌 (𝑡) = 0, 𝑡 ∈ (0, 1) , 1 < 𝑝 ≤ 2,

𝐷
𝑞
𝑦 (𝑡) − 𝑁 (𝑡) 𝑦 (𝑡) + 𝜎 (𝑡) = 0, 𝑡 ∈ (0, 1) , 1 < 𝑞 ≤ 2,

𝑥 (0) = 𝑦 (0) = 0, 𝑥 (1) = 𝑎𝑦 (𝜉) , 𝑦 (1) = 𝑏𝑥 (𝜂) ,

(22)

where𝑀,𝑁 ∈ 𝐸1.

Lemma 6. Let𝑀,𝑁 ∈ 𝐸1. Then differential system (22) has a
unique solution.

Proof. Indeed, by Lemma 5, differential system (22) is equiv-
alent to the operator equation

(𝑥, 𝑦) = 𝑇 (𝑥, 𝑦) + (𝜌, �̃�) , (23)

where
𝑇 (𝑥, 𝑦) (𝑡)

= (−∫

1

0

𝐺1 (𝑡, 𝑠)𝑀 (𝑠) 𝑥 (𝑠) 𝑑𝑠 − ∫

1

0

𝐻1 (𝑡, 𝑠)𝑁 (𝑠) 𝑦 (𝑠) 𝑑𝑠,

− ∫

1

0

𝐺2 (𝑡, 𝑠)𝑁 (𝑠) 𝑦 (𝑠) (𝑠) 𝑑𝑠

−∫

1

0

𝐻2 (𝑡, 𝑠)𝑀 (𝑠) 𝑥 (𝑠) 𝑑𝑠) ,

𝜌 (𝑡) = ∫

1

0

𝐺1 (𝑡, 𝑠) 𝜌 (𝑠) 𝑑𝑠 + ∫

1

0

𝐻1 (𝑡, 𝑠) 𝜎 (𝑠) 𝑑𝑠,

�̃� (𝑡) = ∫

1

0

𝐺2 (𝑡, 𝑠) 𝜎 (𝑠) 𝑑𝑠 + ∫

1

0

𝐻2 (𝑡, 𝑠) 𝜌 (𝑠) 𝑑𝑠.

(24)

We apply the Fredholm theorem to find the unique solution
of differential system (22). By using standard arguments, we
can easily show that T : C[0, 1] × C[0, 1] → C[0, 1] ×
C[0, 1] is linear completely continuous Also, by Corollary 4,
the operator equation (𝑥, 𝑦) = 𝑇(𝑥, 𝑦) has only the zero
solution. Thus, for given (𝜌, �̃�) ∈ 𝐶[0, 1] × 𝐶[0, 1], operator
equation (23) has a unique solution in𝐶[0, 1]×𝐶[0, 1], by the
Fredholm theorem. This ends the proof.
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3. Main Results

In this section, we prove the existence of extremal solutions
of differential system (1).

Theorem 7. Assume that 𝑓 ∈ 𝐶([0, 1] × R × R,R), 𝑔 ∈

𝐶([0, 1] ×R×R,R). Let (𝑢0, V0) and (𝛼0, 𝛽0) be ordered lower
and upper system of solutions of (1). In addition, we assume
that

(𝐻2) 𝑓(𝑡, 𝑥, 𝑦) is nondecreasing in 𝑦 and there exists
𝑀(𝑡) ∈ 𝐸1 such that

𝑓 (𝑡, 𝑥1, 𝑦) − 𝑓 (𝑡, 𝑥2, 𝑦) ≥ −𝑀 (𝑡) (𝑥1 − 𝑥2) , (25)

where 𝑢0(𝑡) ≤ 𝑥2 ≤ 𝑥1 ≤ 𝛼0(𝑡), V0(𝑡) ≤ 𝑦 ≤ 𝛽0(𝑡);
(𝐻3) 𝑔(𝑡, 𝑥, 𝑦) is nondecreasing in𝑥 and there exists𝑁(𝑡) ∈

𝐸1 such that

𝑔 (𝑡, 𝑥, 𝑦1) − 𝑔 (𝑡, 𝑥, 𝑦2) ≥ −𝑁 (𝑡) (𝑦1 − 𝑦2) , (26)

where V0(𝑡) ≤ 𝑦2 ≤ 𝑦1 ≤ 𝛽0(𝑡), 𝑢0(𝑡) ≤ 𝑥 ≤ 𝛼0(𝑡).

Then differential system (1) has extremal solutions in the
sectionΩ.

Proof. Let us define two sequences {(𝑢𝑛, V𝑛), (𝛼𝑛, 𝛽𝑛)} by
relations

𝐷
𝑝
𝑢𝑛+1 (𝑡) − 𝑀 (𝑡) 𝑢𝑛+1 (𝑡) + 𝑓 (𝑡, 𝑢𝑛 (𝑡) , V𝑛 (𝑡))

+ 𝑀 (𝑡) 𝑢𝑛 (𝑡) = 0, 𝑡 ∈ (0, 1) ,

𝐷
𝑞V𝑛+1 (𝑡) − 𝑁 (𝑡) V𝑛+1 (𝑡) + 𝑔 (𝑡, 𝑢𝑛 (𝑡) , V𝑛 (𝑡))

+ 𝑁 (𝑡) V𝑛 (𝑡) = 0, 𝑡 ∈ (0, 1) ,

𝑢𝑛+1 (0) = V𝑛+1 (0) = 0, 𝑢𝑛+1 (1) = 𝑎V𝑛+1 (𝜉) ,

V𝑛+1 (1) = 𝑏𝑢𝑛+1 (𝜂) ,

𝐷
𝑝
𝛼𝑛+1 (𝑡) − 𝑀 (𝑡) 𝛼𝑛+1 (𝑡) + 𝑓 (𝑡, 𝛼𝑛 (𝑡) , 𝛽𝑛 (𝑡))

+ 𝑀 (𝑡) 𝛼𝑛 (𝑡) = 0, 𝑡 ∈ (0, 1) ,

𝐷
𝑞
𝛽𝑛+1 (𝑡) − 𝑁 (𝑡) 𝛽𝑛+1 (𝑡) + 𝑔 (𝑡, 𝛼𝑛 (𝑡) , 𝛽𝑛 (𝑡))

+ 𝑁 (𝑡) 𝛽𝑛 (𝑡) = 0, 𝑡 ∈ (0, 1) ,

𝛼𝑛+1 (0) = 𝛽𝑛+1 (0) = 0, 𝛼𝑛+1 (1) = 𝑎𝛽𝑛+1 (𝜉) ,

𝛽𝑛+1 (1) = 𝑏𝛼𝑛+1 (𝜂) ,

(27)

for 𝑛 = 1, 2, . . .. Note that {(𝑢1, V1), (𝛼1, 𝛽1)} are well defined,
by Lemma 6. First, we show that

(𝑢0, V0) ≤ (𝑢1, V1) ≤ (𝛼1, 𝛽1) ≤ (𝛼0, 𝛽0) . (28)

Let 𝑧 = 𝑢0 − 𝑢1, 𝑤 = V0 − V1. This and the assumption that
(𝑢0, V0) is a lower system of solutions of (1) yield

−𝐷
𝑝
𝑧 (𝑡) ≤ −𝑀 (𝑡) 𝑧 (𝑡) , 𝑡 ∈ (0, 1) ,

−𝐷
𝑞
𝑤 (𝑡) ≤ −𝑁 (𝑡) 𝑤 (𝑡) , 𝑡 ∈ (0, 1) ,

𝑧 (0) ≤ 0, 𝑤 (0) ≤ 0, 𝑧 (1) ≤ 𝑎𝑤 (𝜉) ,

𝑤 (1) ≤ 𝑏𝑧 (𝜂) .

(29)

Hence, 𝑢0(𝑡) ≤ 𝑢1(𝑡) and V0(𝑡) ≤ V1(𝑡), 𝑡 ∈ [0, 1], by Lemma 3.
By a similar way, we can show that 𝛼1(𝑡) ≤ 𝛼0(𝑡) and 𝛽1(𝑡) ≤
𝛽0(𝑡), 𝑡 ∈ [0, 1]. Now we put 𝑧 = 𝑢1 − 𝛼1, 𝑤 = V1 − 𝛽1. Hence,
in view of assumptions (𝐻2), (𝐻3), we have

−𝐷
𝑝
𝑧 (𝑡) = −𝑀 (𝑡) 𝑧 (𝑡) − 𝑓 (𝑡, 𝛼0 (𝑡) , 𝛽0 (𝑡))

− 𝑀 (𝑡) 𝛼0 (𝑡) + 𝑓 (𝑡, 𝑢0 (𝑡) , V0 (𝑡)) + 𝑀 (𝑡) 𝑢0 (𝑡)

≤ −𝑀 (𝑡) 𝑧 (𝑡) − 𝑓 (𝑡, 𝛼0 (𝑡) , 𝛽0 (𝑡))

− 𝑀 (𝑡) 𝛼0 (𝑡) + 𝑓 (𝑡, 𝑢0 (𝑡) , 𝛽0 (𝑡)) + 𝑀 (𝑡) 𝑢0 (𝑡)

≤ −𝑀 (𝑡) 𝑧 (𝑡) , 𝑡 ∈ (0, 1) ,

−𝐷
𝑞
𝑤 (𝑡) ≤ −𝑁 (𝑡) 𝑤 (𝑡) , 𝑡 ∈ (0, 1) ,

𝑧 (0) = 0, 𝑤 (0) = 0, 𝑧 (1) = 𝑎𝑤 (𝜉) ,

𝑤 (1) = 𝑏𝑧 (𝜂) .

(30)

This and Lemma 3 prove that (𝑢1, V1) ≤ (𝛼1, 𝛽1), 𝑡 ∈ [0, 1], so,
relation (28) holds.

Now we show that (𝑢1, V1) is a lower system of solution of
problem (1). Note that

𝐷
𝑝
𝑢1 (𝑡) + 𝑓 (𝑡, 𝑢1 (𝑡) , V1 (𝑡))

≥ 𝑀 (𝑡) 𝑢1 (𝑡) − 𝑓 (𝑡, 𝑢0 (𝑡) , V0 (𝑡)) − 𝑀 (𝑡) 𝑢0 (𝑡)

+ 𝑓 (𝑡, 𝑢1 (𝑡) , V0 (𝑡)) ≥ 0, 𝑡 ∈ (0, 1) ,

𝐷
𝑞V1 (𝑡) + 𝑔 (𝑡, 𝑢1 (𝑡) , V1 (𝑡)) ≥ 0 𝑡 ∈ (0, 1) ,

𝑢1 (0) = V1 (0) = 0, 𝑢1 (1) = 𝑎V1 (𝜉) ,

V1 (1) = 𝑏𝑢1 (𝜂) ,

(31)

by assumptions (𝐻2), (𝐻3). It proves that (𝑢1, V1) is a lower
system of solution of (1). Similarly, we can prove that (𝛼1, 𝛽1)
is an upper system of solution of problem (1).

By mathematical induction we can show that

(𝑢0, V0) ≤ (𝑢1, V1) ≤ ⋅ ⋅ ⋅ ≤ (𝑢𝑛, V𝑛) ≤ (𝛼𝑛, 𝛽𝑛)

≤ ⋅ ⋅ ⋅ ≤ (𝛼1, 𝛽1) ≤ (𝛼0, 𝛽0)

(32)

for 𝑡 ∈ [0, 1] and 𝑛 = 1, 2, . . .. Employing standard
arguments we see that the sequences {(𝑢𝑛, V𝑛), (𝛼𝑛, 𝛽𝑛)} con-
verge to their limit functions (𝑢∗, V∗), (𝛼

∗
, 𝛽
∗
), respectively.

Indeed, (𝑢∗, V∗) and (𝛼
∗
, 𝛽
∗
) are solutions of problem (1) and

(𝑢0(𝑡), V0(𝑡)) ≤ (𝑢∗, V∗) ≤ (𝛼
∗
, 𝛽
∗
) ≤ (𝛼0, 𝛽0) on [0, 1].

We need to show now that (𝑢∗, V∗) and (𝛼
∗
, 𝛽
∗
) are

extremal solutions of problem (1) in the segmentΩ. To prove
it, we assume that (𝑥, 𝑦) is another solution of problem (1)
and (𝑢𝑛, V𝑛) ≤ (𝑥(𝑡), 𝑦(𝑡)) ≤ (𝛼𝑛(𝑡), 𝛽𝑛(𝑡)), 𝑡 ∈ [0, 1] for some
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positive integer 𝑛. Put 𝑧 = 𝑢𝑛+1 − 𝑥, 𝑤 = V𝑛+1 − 𝑦. Hence, in
view of assumptions (𝐻2), (𝐻3), we have

−𝐷
𝑝
𝑧 (𝑡) = −𝑀 (𝑡) 𝑧 (𝑡) − 𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))

− 𝑀 (𝑡) 𝑥 (𝑡) + 𝑓 (𝑡, 𝑢𝑛 (𝑡) , V𝑛 (𝑡)) + 𝑀 (𝑡) 𝑢𝑛 (𝑡)

≤ −𝑀 (𝑡) 𝑧 (𝑡) − 𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) − 𝑀 (𝑡) 𝑥 (𝑡)

+ 𝑓 (𝑡, 𝑢𝑛 (𝑡) , 𝑦 (𝑡)) + 𝑀 (𝑡) 𝑢𝑛 (𝑡)

≤ −𝑀 (𝑡) 𝑧 (𝑡) , 𝑡 ∈ (0, 1) ,

−𝐷
𝑞
𝑤 (𝑡) ≤ −𝑁 (𝑡) 𝑤 (𝑡) , 𝑡 ∈ (0, 1) ,

𝑧 (0) = 0, 𝑤 (0) = 0, 𝑧 (1) = 𝑎𝑤 (𝜉) ,

𝑤 (1) = 𝑏𝑧 (𝜂) .

(33)

Hence, (𝑢𝑛+1(𝑡), V𝑛+1(𝑡)) ≤ (𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈ [0, 1], by
Lemma 3. By a similar way, we can show that (𝑥(𝑡), 𝑦(𝑡)) ≤
(𝛼𝑛+1(𝑡), 𝛽𝑛+1(𝑡)), 𝑡 ∈ [0, 1]. So by induction, (𝑢𝑛(𝑡), V𝑛(𝑡)) ≤
(𝑥(𝑡), 𝑦(𝑡)) ≤ (𝛼𝑛(𝑡), 𝛽𝑛(𝑡)), 𝑡 ∈ [0, 1] on [0, 1] for all 𝑛.
Taking the limit as 𝑛 → +∞, we conclude (𝑢∗(𝑡), V∗(𝑡)) ≤
(𝑥(𝑡), 𝑦(𝑡)) ≤ (𝛼

∗
(𝑡), 𝛽
∗
(𝑡)), 𝑡 ∈ [0, 1]. That is, (𝑢∗(𝑡), V∗(𝑡))

and (𝛼∗(𝑡), 𝛽∗(𝑡)) are extremal systems of solutions of (1) in
Ω.

4. Example

Consider the following problems:

𝐷
5/4
𝑥 (𝑡) + sin 𝑡 − 2𝑥 (𝑡) +

1

8
𝑦
3
(𝑡) 𝑡
3
= 0, 𝑡 ∈ (0, 1) ,

𝐷
7/4
𝑦 (𝑡) − 𝑦

3
(𝑡) + 𝑥

2
(𝑡) + 1 = 0, 𝑡 ∈ (0, 1) ,

𝑥 (0) = 𝑦 (0) = 0, 𝑥 (1) =
1

4
𝑦 (

1

2
) ,

𝑦 (1) = 2𝑥 (
3

4
) .

(34)

Obviously,

𝑓 (𝑡, 𝑥, 𝑦) = sin 𝑡 − 2𝑥 +
1

8
𝑦
3
𝑡
3
,

𝑔 (𝑡, 𝑥, 𝑦) = −𝑦
3
+ 𝑥
2
+ 1.

(35)

Take (𝑢0(𝑡), V0(𝑡)) = (0, 0), (𝛼0(𝑡), 𝛽0(𝑡)) = (𝑡, 2); then

𝐷
5/4
𝑢0 (𝑡) + sin 𝑡 − 2𝑢0 (𝑡) +

1

8
V3
0
(𝑡) 𝑡
3
= sin 𝑡 ≥ 0,

𝑡 ∈ (0, 1) ,

𝐷
7/4V0 (𝑡) − V3

0
(𝑡) + 𝑢

2

0
(𝑡) + 1 = 1 ≥ 0, 𝑡 ∈ (0, 1) ,

𝑢0 (0) = V0 (0) = 0, 𝑢0 (1) =
1

4
V0 (

1

2
) ,

V0 (1) = 2𝑢0 (
3

4
) ,

𝐷
5/4
𝛼0 (𝑡) + sin 𝑡 − 2𝛼0 (𝑡) +

1

8
𝛽
3

0
(𝑡) 𝑡
3

= sin 𝑡 − 2𝑡 + 𝑡
3
≤ 0, 𝑡 ∈ (0, 1) ,

𝐷
7/4
𝛽0 (𝑡) − 𝛽

3

0
(𝑡) + 𝛼

2

0
(𝑡) + 1 = −7 + 𝑡

2
≤ 0,

𝑡 ∈ (0, 1) ,

𝛼0 (0) = 0, 𝛽0 (0) ≥ 0,

𝛼0 (1) ≥
1

4
𝛽0 (

1

2
) , 𝛽0 (1) ≥ 2𝛼0 (

3

4
) .

(36)

It shows that (𝑢0(𝑡), V0(𝑡)) and (𝛼0(𝑡), 𝛽0(𝑡)) are lower and
upper systems of solutions of (34).

On the other hand, it is easy to verify that conditions (𝐻2),
(𝐻3) hold for𝑀(𝑡) = 2 and𝑁(𝑡) = 12.

By Theorem 7, problem (34) has an extremal system
of solutions (𝑢∗(𝑡), V∗(𝑡)) and (𝛼

∗
(𝑡), 𝛽
∗
(𝑡)), which can be

obtained by taking limits from some iterative sequences.
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