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We study the regularity criterion for the 3D nematic liquid crystal flows in the framework of anisotropic Lebesgue space. More
precisely, we proved some sufficient conditions in terms of velocity or the fractional derivative of velocity in one direction.

1. Introduction

This paper is devoted to the regularity criterion for the three-
dimensional nematic liquid crystal flows:

𝑢
𝑡
+ (𝑢 ⋅ ∇) 𝑢 + ∇𝑝 − ]Δ𝑢 = −𝜆∇ ⋅ (∇𝑑 ⊙ ∇𝑑) ,

𝑥 ∈ 𝑅
3
, 𝑡 > 0,

𝑑
𝑡
+ (𝑢 ⋅ ∇) 𝑑 = 𝛾 (Δ𝑑 − 𝑓 (𝑑)) , 𝑥 ∈ 𝑅

3
, 𝑡 > 0,

∇ ⋅ 𝑢 = 0, 𝑥 ∈ 𝑅
3
, 𝑡 > 0,

(1)

with initial data

(𝑢, 𝑑) |
𝑡=0

= (𝑢
0
, 𝑑
0
) , 𝑥 ∈ 𝑅

3
, (2)

where 𝑢(𝑥, 𝑡) is the velocity field, 𝑑(𝑥, 𝑡) represents the
macroscopic average of the nematic liquid crystal orientation
field, and 𝑝(𝑥, 𝑡) is the scalar pressure. The symbol ∇𝑑 ⊙ ∇𝑑
denotes a matrix whose (𝑖, 𝑗)th entry is given by 𝜕

𝑖
𝑑 ⋅ 𝜕
𝑗
𝑑 for

1 ≤ 𝑖, 𝑗 ≤ 3; here𝑓(𝑑) = (1/𝜀
2
)(|𝑑|
2
−1)𝑑. Since the sizes of the

viscosity constants ], 𝜆, 𝛾, 𝜀 do not play important roles in our
proof, for simplicity, we assume all these positive constants to
be one.

The hydrodynamic theory of liquid crystals was estab-
lished by Ericksen and Leslie [1–4]; the model (1) is a
simplified system of Ericksen-Leslie model which was first
introduced by Lin in [5], and one of the most significant

works is given by Lin and Liu [6]; more precisely, they
established global existence for weak solutions and classical
solutions. Recently, Liu et al. in [7] established the regularity
criterion for (1) as follows:

∫

𝑇

0





𝜕
3
𝑢 (𝜏)






𝛽

𝐿
𝛼𝑑𝜏 < ∞, with 2

𝛽

+

3

𝛼

≤ 1, 𝛼 > 3.

(3)

One may refer to some interesting and important regularity
criteria of nematic liquid crystal flows studied by many
authors (see, e.g., [8–13] and the references therein). When 𝑑
is constant, the system (1) becomes the well-known Navier-
Stokes equations. The regularity of solutions to the 3D NS
equations has been widely investigated during the past fifty
years; see, for example, [14–22] and so on. The aim of this
paper is to establish a new regularity criterion by providing
sufficient condition in terms of velocity or the fractional deri-
vative of velocity in one direction in the framework of aniso-
tropic Lebesgue space.

Throughout the paper, the norm of the Lebesgue spaces
𝐿
𝑝
(𝑅
3
) is denoted by ‖ ⋅ ‖

𝐿
𝑝 and denoted the directional

derivatives of a function 𝜙 by 𝜕
𝑖
𝜙 = (𝜕𝜙/𝜕𝑥

𝑖
) (𝑖 = 1, 2, 3),

the symbol ∫𝑓(𝑥)𝑑𝑥 = ∫
𝑅
3
𝑓(𝑥)𝑑𝑥, Λ

𝑖
= √−𝜕

2

𝑖
, Λ = √−Δ,
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‖‖𝜙‖
𝐿
𝑝

𝑖

‖
𝐿
𝑞

𝑗,𝑘

= (∫
𝑅
2
(∫
𝑅
|𝜙(𝑥)|

𝑝
𝑑𝑥
𝑖
)
𝑞/𝑝
𝑑𝑥
𝑗
𝑑𝑥
𝑘
)
1/𝑞, and (𝑖, 𝑗, 𝑘)

belongs to the permutation group 𝑆 = span{1, 2, 3}. Denote

𝐸
1
= {(𝛾, 𝛼) ∈ (2,∞]

2
,

1

𝛾

+

2

𝛼

< 1} ,

𝐸
2
= {𝛼 ∈ (2,∞] ,

3 − 𝛼𝑟

𝛼

< 1,

1 − 𝛼𝑟

𝛼 − 2

< 1} .

(4)

Theorem 1. Let (𝑢
0
, 𝑑
0
) ∈ 𝐻

1
(𝑅
3
) × 𝐻

2
(𝑅
3
) with the initial

data div 𝑢
0
= 0, and let the pair (𝑢, 𝑏) be the weak solution to

the liquid crystal flows (1)-(2) on [0, 𝑇) for some 0 < 𝑇 < ∞. If
𝑢 satisfies

∫

𝑇

0






‖𝑢 (𝜏)‖

𝐿
𝛾

𝑖







𝛽

𝐿
𝛼

𝑗,𝑘

𝑑𝜏 < ∞, with 2

𝛽

+

2

𝛼

+

1

𝛾

≤ 1,

(𝛾, 𝛼) ∈ 𝐸
1
,

(5)

then (𝑢, 𝑑) can be extended beyond 𝑇.

Theorem 2. Let (𝑢
0
, 𝑑
0
) ∈ 𝐻

1
(𝑅
3
) × 𝐻

2
(𝑅
3
) with the initial

data div 𝑢
0
= 0, and let the pair (𝑢, 𝑏) be the weak solution to

the liquid crystal flows (1)-(2) on [0, 𝑇) for some 0 < 𝑇 < ∞. If
𝑢 satisfies

∫

𝑇

0





Λ
𝑟

𝑖
𝑢 (𝜏)






𝛽

𝐿
𝛼𝑑𝜏 < ∞, with

2

𝛽

+

3

𝛼

≤

{
{
{
{

{
{
{
{

{

1 +

1

𝛼

, 𝛼 ∈ (2,∞) , if 𝑟 ∈ ( 1
𝛼

, 1] ,

or
1 + 𝑟, 𝛼 ∈ 𝐸

2
, if 𝑟 ∈ [0, 1

𝛼

) ,

(6)

then (𝑢, 𝑑) can be extended beyond 𝑇.

Corollary 3. Under the assumption of Theorem 2, if we fix
𝑟 = 1, then the sufficient condition is that

∫

𝑇

0





𝜕
𝑖
𝑢 (𝜏)






𝛽

𝐿
𝛼𝑑𝜏 < ∞, with 2

𝛽

+

3

𝛼

≤ 1 +

1

𝛼

,

𝛼 ∈ (2,∞) .

(7)

Remark 4. Comparing with the corresponding results in
[7], it is obvious that the conclusion of Corollary 3 is an
improvement version of Theorem 1.1 in [7] in some sense.

2. The Proof of Theorems 1 and 2

In this section, we will prove Theorems 1 and 2. For con-
venience, we first recall the following three-dimensional
Sobolev and Ladyzhenskaya inequalities in the whole space
(see, e.g., [23–25]).

Lemma 5. Let 2 ≤ 𝑞 ≤ 6, 2 ≤ 𝑝 < ∞, and 2 < 𝑟, 𝑠 ≤ ∞.
There hold that




𝜙



𝐿
𝑞 ≤ 𝐶





𝜙





(6−𝑞)/2𝑞

𝐿
2





𝜕
1
𝜙





(𝑞−2)/2𝑞

𝐿
2





𝜕
2
𝜙





(𝑞−2)/2𝑞

𝐿
2





𝜕
3
𝜙





(𝑞−2)/2𝑞

𝐿
2

,













𝜙



𝐿
𝑝

𝑖,𝑗







𝐿
2

𝑘

≤ 𝐶




𝜙





2/𝑝

𝐿
2





𝜕
𝑖
𝜙





(𝑝−2)/2𝑝

𝐿
2






𝜕
𝑗
𝜙







(𝑝−2)/2𝑝

𝐿
2

,












𝜙



𝐿
2𝑟/(𝑟−2)

𝑖






𝐿
2𝑠/(𝑠−2)

𝑗,𝑘

≤ 𝐶




𝜙





1−(1/𝑟)−(2/𝑠)

𝐿
2





𝜕
𝑖
𝜙





1/𝑟

𝐿
2






𝜕
𝑗
𝜙







1/𝑠

𝐿
2





𝜕
𝑘
𝜙





1/𝑠

𝐿
2 .

(8)

Proof of Theorem 1. Suppose that [0, 𝑇∗) is themaximal inter-
val of the existence of the local smooth solution. If 𝑇∗ ≥ 𝑇,
then there is nothing to prove; on the other side, for 𝑇∗ < 𝑇,
our strategy is to show that

lim sup
𝑡→𝑇

∗

(‖∇𝑢 (⋅, 𝑡)‖
2

𝐿
2 + ‖Δ𝑑 (⋅, 𝑡)‖

2

𝐿
2) ≤ 𝐶, (9)

under the assumption (5). As a result, the interval [0, 𝑇∗)
cannot be a maximal interval of existence, which leads to a
contradiction.

Wemultiply (1)
1
by 𝑢 and integrate over𝑅3 and, similarly,

multiply (1)
2
by −Δ𝑑+𝑓(𝑑) and integrate over𝑅3 and then by

adding two results above and using the fact that∇⋅(∇𝑑⊙∇𝑑) =
∇(|∇𝑑|

2
/2) + Δ𝑑∇𝑑, we obtain
1

2

𝑑

𝑑𝑡

∫ (|𝑢|
2
+ |∇𝑑|

2
+

1

2

(|𝑑|
2
− 1)

2

)𝑑𝑥

+ ∫ (|∇𝑢|
2
+




Δ𝑑 − 𝑓 (𝑑)






2

) 𝑑𝑥 = 0.

(10)

Here we used the facts that div 𝑢 = 0 and (𝑢 ⋅ ∇𝑢, 𝑢) =

(𝑢, ∇𝑝) = (𝑢⋅∇𝑑, 𝑓(𝑑)) = (𝑢, ∇(|𝑑|
2
/2)) = 0; here (⋅, ⋅)denotes

the usual inner product of 𝐿2(𝑅3), which implies
‖𝑢‖
𝐿
∞
(0,𝑇;𝐿

2
)
+ ‖𝑢‖
𝐿
2
(0,𝑇;𝐻

1
)
≤ 𝐶. (11)

Besides, we multiply (1)
2
by |𝑑|4𝑑 and integrate over 𝑅3

and get
1

6

𝑑

𝑑𝑡

∫ |𝑢|
6
𝑑𝑥 + ∫ (5|𝑑|

4
|∇𝑑|
2
+ |𝑑|
8
) 𝑑𝑥 = ∫ |𝑑|

6
𝑑𝑥,

(12)
which implies

‖𝑑 (⋅, 𝑡)‖
𝐿
∞
(0,𝑇;𝐿

6
)
≤ 𝐶





𝑑
0




𝐿
6 ≤ 𝐶





𝑑
0




𝐻
1 . (13)

Multiplying the first equation of (1) by −Δ𝑢 and inte-
grating over 𝑅3. Similarly, by taking Δ on both sides of the
second equation of (1), by multiplying the resulting equation
by Δ𝑑, by integrating over 𝑅3, and then by adding two results
above and taking the divergence-free condition div 𝑢 = 0 into
account, we obtain

1

2

𝑑

𝑑𝑡

(‖∇𝑢‖
2

𝐿
2 + ‖Δ𝑑‖

2

𝐿
2) + ‖Δ𝑢‖

2

𝐿
2 + ‖∇Δ𝑑‖

2

𝐿
2

= ∫ (𝑢 ⋅ ∇) 𝑢 ⋅ Δ𝑢 𝑑𝑥

− 2

3

∑

𝑖=1

∫∇𝑢
𝑖
𝜕
𝑖
∇𝑑Δ𝑑𝑑𝑥 − ∫Δ𝑓 (𝑑) Δ𝑑 𝑑𝑥

= 𝐼
1
+ 𝐼
2
+ 𝐼
3
.

(14)



Abstract and Applied Analysis 3

In the following, we establish the bounds of 𝐼
1
–𝐼
3
, for the

first term 𝐼
1
; thanks to Lemma 5 and using Young’s inequality,

we have

𝐼
1
≤ ∫ |𝑢| |∇𝑢| |Δ𝑢| 𝑑𝑥

≤






‖𝑢‖
𝐿
𝛾

3





𝐿
𝛼

1,2







‖∇𝑢‖
𝐿
2𝛾/(𝛾−2)

3






𝐿
2𝛼/(𝛼−2)

1,2

‖Δ𝑢‖
𝐿
2

≤ 𝐶






‖𝑢‖
𝐿
𝛾

3





𝐿
𝛼

1,2

‖∇𝑢‖
1−(1/𝛾)−(2/𝛼)

𝐿
2

×




𝜕
1
∇𝑢






1/𝛼

𝐿
2





𝜕
2
∇𝑢






1/𝛼

𝐿
2





𝜕
3
∇𝑢






1/𝛾

𝐿
2
‖Δ𝑢‖
𝐿
2

≤ 𝐶






‖𝑢‖
𝐿
𝛾

3





𝐿
𝛼

1,2

‖∇𝑢‖
1−(1/𝛾)−(2/𝛼)

𝐿
2

‖Δ𝑢‖
(1/𝛾)+(2/𝛼)+1

𝐿
2

≤

1

2

‖Δ𝑢‖
2

𝐿
2 + 𝐶






‖𝑢‖
𝐿
𝛾

3







2𝛼𝛾/(𝛼𝛾−2𝛾−𝛼)

𝐿
𝛼

1,2

‖∇𝑢‖
2

𝐿
2 .

(15)

For the second term 𝐼
2
, similar to estimate of 𝐼

1
, we have

𝐼
2
= −2

3

∑

𝑖=1

∫∇𝑢
𝑖
𝜕
𝑖
∇𝑑Δ𝑑𝑑𝑥

= 2

3

∑

𝑖,𝑗=1

∫(𝑢
𝑖
𝜕
𝑗
𝜕
𝑖
𝜕
𝑗
𝑑Δ𝑑𝑑𝑥 + 𝑢

𝑖
𝜕
𝑖
𝜕
𝑗
𝑑𝜕
𝑗
Δ𝑑) 𝑑𝑥

≤ 𝐶∫ |𝑢|






∇
2
𝑑






|∇Δ𝑑| 𝑑𝑥

≤ 𝐶






‖𝑢‖
𝐿
𝛾

3





𝐿
𝛼

1,2

‖Δ𝑑‖
1−(1/𝛾)−(2/𝛼)

𝐿
2

×




𝜕
1
Δ𝑑






1/𝛼

𝐿
2





𝜕
2
Δ𝑑






1/𝛼

𝐿
2





𝜕
3
Δ𝑑






1/𝛾

𝐿
2
‖∇Δ𝑑‖

𝐿
2

≤

1

4

‖∇Δ𝑑‖
2

𝐿
2 + 𝐶






‖𝑢‖
𝐿
𝛾

3







2𝛼𝛾/(𝛼𝛾−2𝛾−𝛼)

𝐿
𝛼

1,2

‖Δ𝑑‖
2

𝐿
2 .

(16)

For the term 𝐼
3
, using Hölder’s inequality, Young’s inequality,

and (13), one has

𝐼
3
= −∫Δ𝑓 (𝑑) Δ𝑑 𝑑𝑥 = ∫∇ (|𝑑|

2
𝑑) ⋅ ∇Δ𝑑𝑑𝑥 + ‖Δ𝑑‖

2

𝐿
2

= 3∫ |𝑑|
2
∇𝑑 ⋅ ∇Δ𝑑𝑑𝑥 + ‖Δ𝑑‖

2

𝐿
2

≤ 𝐶‖𝑑‖
2

𝐿
6‖∇𝑑‖𝐿

6‖∇Δ𝑑‖
𝐿
2 + ‖Δ𝑑‖

2

𝐿
2

≤

1

4

‖∇Δ𝑑‖
2

𝐿
2 + 𝐶‖Δ𝑑‖

2

𝐿
2 .

(17)

Substituting the above estimates (15)–(17) into (14), we obtain

𝑑

𝑑𝑡

(‖∇𝑢‖
2

𝐿
2 + ‖Δ𝑑‖

2

𝐿
2) + ‖Δ𝑢‖

2

𝐿
2 + ‖∇Δ𝑑‖

2

𝐿
2

≤ 𝐶(1 +






‖𝑢‖
𝐿
𝛾

3







2𝛼𝛾/(𝛼𝛾−2𝛾−𝛼)

𝐿
𝛼

1,2

) ‖∇𝑢‖
2

𝐿
2 + 𝐶‖Δ𝑑‖

2

𝐿
2 .

(18)

Integrating (18) from 0 to 𝑡, using Hölder’s inequality and
Young’s inequality, one has

‖∇𝑢‖
2

𝐿
2 + ‖Δ𝑑‖

2

𝐿
2 + ∫

𝑡

0

(‖Δ𝑢‖
2

𝐿
2 + ‖∇Δ𝑑‖

2

𝐿
2) 𝑑𝜏

≤ 𝐶∫

𝑡

0

(1 +






‖𝑢‖
𝐿
𝛾

3







2𝛼𝛾/(𝛼𝛾−2𝛾−𝛼)

𝐿
𝛼

1,2

)

× (‖∇𝑢‖
2

𝐿
2 + ‖Δ𝑑‖

2

𝐿
2) 𝑑𝜏 +





∇𝑢
0






2

𝐿
2 +





Δ𝑑
0






2

𝐿
2 .

(19)

Finally, applying Gronwall’s inequality and using condi-
tion (5), then (𝑢, 𝑑) can be extended beyond𝑇.This completes
the proof of Theorem 1.

Proof of Theorem 2. When 𝑟 ∈ [0, 1/𝛼), combiningTheorem 1
and using the following imbedding theorem, one can get the
conclusion that








‖𝑢‖
𝐿
𝛼/(1−𝛼𝑟)

𝑖






𝐿
𝛼

𝑗,𝑘

≤ 𝐶




Λ
𝑟

𝑖
𝑢



𝐿
𝛼 . (20)

When 𝑟 ∈ (1/𝛼, 1), our strategy is to show that

∫

𝑡

0





Λ
𝑟

𝑖
𝑢 (𝜏)






𝛽

𝐿
𝛼𝑑𝜏 < ∞,

2

𝛽

+

3

𝛼

≤ 1 +

1

𝛼

, 𝛼 ∈ (2,∞)

(21)

is a sufficient condition. We can verify that integral term
∫

𝑡

0
‖‖𝑢(𝜏)‖

𝐿
∞

𝑖

‖
2𝛿/(𝛿−2)

𝐿
𝛿

𝑗,𝑘

𝑑𝜏 satisfies the conditions of Theorem 1

with 𝛿 ∈ (2,∞). Applying Lemma 5, Hölder’s inequality, and
the interpolation theorem, one can conclude that, for 𝛿 ∈

[𝛼(2𝑟 + 1)/𝑟𝛼, 𝛼],






‖𝑢‖
𝐿
∞

𝑖





𝐿
𝛿

𝑗,𝑘

≤ 𝐶








‖𝑢‖
𝜃

𝐿
2

𝑖





Λ
𝑟

𝑖
𝑢





1−𝜃

𝐿
𝛼

𝑖






𝐿
𝛿

𝑗,𝑘

≤ 𝐶






‖𝑢‖
𝐿
2

𝑖







𝜃

𝐿
𝑝

𝑗,𝑘












Λ
𝑟

𝑖
𝑢



𝐿
𝛼

𝑖








1−𝜃

𝐿
𝛼

𝑗,𝑘

≤ 𝐶







‖𝑢‖
𝐿
𝑝

𝑗,𝑘








𝜃

𝐿
2

𝑖





Λ
𝑟

𝑖
𝑢





1−𝜃

𝐿
𝛼

≤ 𝐶‖𝑢‖
2𝜃/𝑝

𝐿
2






𝜕
𝑗
𝑢







(𝑝−2)𝜃/2𝑝

𝐿
2

×




𝜕
𝑘
𝑢





(𝑝−2)𝜃/2𝑝

𝐿
2





Λ
𝑟

𝑖
𝑢





1−𝜃

𝐿
𝛼

≤ 𝐶‖𝑢‖
2𝜃/𝑝

𝐿
2
‖∇𝑢‖
(𝑝−2)𝜃/𝑝

𝐿
2





Λ
𝑟

𝑖
𝑢





1−𝜃

𝐿
𝛼 ,

(22)

where 1/𝛿 = (𝜃/𝑝) + ((1 − 𝜃)/𝛼) with 𝜃 = 2(𝑟𝛼 − 1)/(2(𝑟𝛼 −

1) + 𝛼) and we have used the fact that 𝛿 ≥ ((2𝑟 + 1)𝛼 − 2)/𝛼𝑟

implies 𝑝 ≥ 2. Using Hölder’s inequality, one has

∫

𝑡

0






‖𝑢(𝜏)‖

𝐿
∞

𝑖







2𝛿/(𝛿−2)

𝐿
𝛿

𝑗,𝑘

𝑑𝜏

≤ 𝐶∫

𝑡

0

‖𝑢‖
4𝛿𝜃/𝑝(𝛿−2)

𝐿
2

‖∇𝑢‖
2𝛿𝜃(𝑝−2)/𝑝(𝛿−2)

𝐿
2
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×




Λ
𝑟

𝑖
𝑢





2(1−𝜃)𝛿/(𝛿−2)

𝐿
𝛼 𝑑𝜏

≤ 𝐶‖𝑢‖
4𝛿𝜃/𝑝(𝛿−2)

𝐿
∞

𝑡
𝐿
2

‖∇𝑢‖
2𝛿𝜃(𝑝−2)/𝑝(𝛿−2)

𝐿
2

𝑡
𝐿
2

× (∫

𝑡

0





Λ
𝑟

𝑖
𝑢





(2(1−𝜃)𝛿/(𝛿−2))𝜂

𝐿
𝛼 𝑑𝜏)

1/𝜂

,

(23)

where 𝜂 = 𝑝(𝛿 − 2)/(𝑝(𝛿 − 2) − 𝛿𝜃(𝑝 − 2)).
According to the fact that 1/𝛿 = (𝜃/𝑝) + ((1 − 𝜃)/𝛼) and

𝜃 = 2(𝑟𝛼 − 1)/(2(𝑟𝛼 − 1) + 𝛼), we have

2 (1 − 𝜃) 𝛿

𝛿 − 2

𝜂

=

2𝑝𝛿 (1 − 𝜃)

𝑝 (𝛿 − 2) − 𝛿𝜃 (𝑝 − 2)

=

2𝛿 (1 − 𝜃)

𝛿 − 2 − 𝛿𝜃 (1 − (2/𝑝))

=

2𝛿 (1 − 𝜃)

𝛿 − 2 − 𝛿𝜃 + 2𝛿 (1/𝛿) − 2𝛿 ((1 − 𝜃) /𝛼)

=

2𝛿 (1 − 𝜃)

𝛿 − 𝛿𝜃 − (2𝛿 (1 − 𝜃) /𝛼)

=

2 (1 − 𝜃)

1 − 𝜃 − (2 (1 − 𝜃) /𝛼)

=

2𝛼 (1 − 𝜃)

𝛼 − 𝛼𝜃 − 2 (1 − 𝜃)

=

2𝛼

𝛼 − 2

.

(24)

This together with Theorem 1 gives the desired result of
Theorem 2.
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