
Research Article
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The Caccioppoli inequality of weakly A-harmonic tensors has been proved, which can be used to consider the weak reverse Hölder
inequality, regularity property, and zeros of weakly A-harmonic tensors.

1. Introduction

In this paper, we consider the 𝐴-harmonic equation for
differential forms

𝑑
∗

𝐴 (𝑥, 𝑑𝑢) = 0, (1)

where 𝐴 : Ω × ∧
𝑙

(R𝑛) → ∧
𝑙+1

(R𝑛) satisfies the conditions
󵄨󵄨󵄨󵄨𝐴 (𝑥, 𝜉)

󵄨󵄨󵄨󵄨 ≤ 𝛽
󵄨󵄨󵄨󵄨𝜉

󵄨󵄨󵄨󵄨

𝑝−1

, ⟨𝐴 (𝑥, 𝜉) , 𝜉⟩ ≥ 𝛼
󵄨󵄨󵄨󵄨𝜉

󵄨󵄨󵄨󵄨

𝑝 (2)

for almost every 𝑥 ∈ Ω and all 𝜉 ∈ ∧
𝑙

(R𝑛). Here, 𝛼, 𝛽 > 0

are constants and 1 < 𝑝 < ∞ is a fixed exponent associated
with (1). 𝑢 ∈ 𝑊

1,𝑝

loc (Ω, ∧
𝑙−1

) is an 𝐴-harmonic tensor in Ω if 𝑢

satisfies (1) in Ω.
There has been remarkable work [1–10] in the study of (1).

When 𝑢 is a 0-form, that is, 𝑢 is a function, (1) is equivalent
to

div𝐴 (𝑥, ∇𝑢) = 0. (3)

Lots of results have been obtained in recent years about
different versions of the 𝐴-harmonic equation; see [11–15].

In 1995, Stroffolini [16] first introduced weakly 𝐴-
harmonic tensors and gave the higher integrability result
of weakly 𝐴-harmonic tensors. The word weak means that
the integrable exponent 𝑟 of 𝑢 is smaller than the natural
exponent 𝑝. In 2010, Gao and Wang [17] gave an alternative
proof of the higher integrability result of weakly 𝐴-harmonic
tensors by introducing the definition of weak 𝑊𝑇

2
-class of

differential forms.

Definition 1 (see [16, 17]). A very weak solution to (1) (also
called weakly 𝐴-harmonic tensor) is an element 𝑢 of the
Sobolev space 𝑊

1,𝑟

loc (Ω, ∧
𝑙−1

) with max{1, 𝑝 − 1} ≤ 𝑟 < 𝑝 such
that

∫
Ω

⟨𝐴 (𝑥, 𝑑𝑢) , 𝑑𝜑⟩𝑑𝑥 = 0 (4)

for all 𝜑 ∈ 𝑊
1,(𝑟/(𝑟−𝑝+1))

(Ω, ∧
𝑙−1

) with compact support.
Under some conditions, the present paper proves that

almost every zero for the gradients of weakly 𝐴-harmonic
tensor 𝑢 has infinite order. To do this, we need to give
the Caccioppoli inequality and the weak reverse Hölder
inequality of weakly 𝐴-harmonic tensors.

We keep using the traditional notation.
Let Ω be a connected open subset of R𝑛, let 𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛

be the standard unit basis of R𝑛, and let ∧
𝑙

= ∧
𝑙

(R𝑛) be the
linear space of 𝑙-covectors, spanned by the exterior products
𝑒
𝐼

= 𝑒
𝑖
1

∧ 𝑒
𝑖
2

∧ ⋅ ⋅ ⋅ ∧ 𝑒
𝑖
𝑙

, corresponding to all ordered 𝑙-tuples
𝐼 = (𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑙
), 1 ≤ 𝑖

1
< 𝑖
2

< ⋅ ⋅ ⋅ < 𝑖
𝑙
≤ 𝑛, 𝑙 = 0, 1, . . . , 𝑛. Let

R = R1. The Grassman algebra ∧ = ⊕∧
𝑙 is a graded algebra

with respect to the exterior products. For 𝛼 = ∑ 𝛼
𝐼

𝑒
𝐼

∈ ∧ and
𝛽 = ∑ 𝛽

𝐼

𝑒
𝐼

∈ ∧, the inner product in ∧ is given by ⟨𝛼, 𝛽⟩ =

∑ 𝛼
𝐼

𝛽
𝐼 with summation over all 𝑙-tuples 𝐼 = (𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑙
) and

all integers 𝑙 = 0, 1, . . . , 𝑛. The Hodge star operator ⋆ : ∧ →

∧ is denoted by the rules ⋆1 = 𝑒
1

∧ 𝑒
2

∧ ⋅ ⋅ ⋅ ∧ 𝑒
𝑛
and 𝛼 ∧

⋆𝛽 = 𝛽 ∧ ⋆𝛼 = ⟨𝛼, 𝛽⟩(⋆1) for all 𝛼, 𝛽 ∈ ∧. The norm of
𝛼 ∈ ∧ is given by the formula |𝛼|

2

= ⟨𝛼, 𝛼⟩ = ⋆(𝛼 ∧ ⋆𝛼) ∈

∧
0

= R. The Hodge star is an isometric isomorphism on ∧
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with ⋆ : ∧
𝑙

→ ∧
𝑛−𝑙 and ⋆ ⋆ (−1)

𝑙(𝑛−𝑙)

: ∧
𝑙

→ ∧
𝑙. Balls

are denoted by 𝐵 and 𝜌𝐵 is the ball with the same center as
𝐵 and with diam(𝜌𝐵) = 𝜌 diam(𝐵). We do not distinguish
balls from cubes throughout this paper. The 𝑛-dimensional
Lebesgue measure of a set 𝐸 ⊆ R𝑛 is denoted by |𝐸|.

Differential forms are important generalizations of real
functions and distributions; note that a 0-form is the usual
function in R𝑛. A differential 𝑙-form 𝜔 on Ω is a Schwartz
distribution on 𝜔 with values in ∧

𝑙

(R𝑛). We use 𝐷
󸀠

(Ω, ∧
𝑙

)

to denote the space of all differential 𝑙-forms 𝜔(𝑥) =

∑
𝐼
𝜔
𝐼
(𝑥)𝑑𝑥

𝐼
= ∑ 𝜔

𝑖
1
𝑖
2
,...,𝑖
𝑙

(𝑥)𝑑𝑥
𝑖
1

∧ 𝑑𝑥
𝑖
2

∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑥
𝑖
𝑙

. We write
𝐿
𝑝

(Ω, ∧
𝑙

) for the 𝑙-forms with 𝜔
𝐼

∈ 𝐿
𝑝

(Ω,R) for all ordered
𝑙-tuples 𝐼. Thus, 𝐿𝑝(Ω, ∧

𝑙

) is a Banach space with norm

‖𝜔‖
𝑝,Ω

= (∫
Ω

|𝜔 (𝑥)|
𝑝

𝑑𝑥)

1/𝑝

= (∫
Ω

(∑
󵄨󵄨󵄨󵄨𝜔𝐼 (𝑥)

󵄨󵄨󵄨󵄨

2

)
𝑝/2

𝑑𝑥)

1/𝑝

.

(5)

For 𝜔 ∈ 𝐷
󸀠

(Ω, ∧
𝑙

), the vector-valued differential form ∇𝜔 =

(𝜕𝜔/𝜕𝑥
1
, . . . , 𝜕𝜔/𝜕𝑥

𝑛
) consists of differential forms 𝜕𝜔/𝜕𝑥

𝑖
∈

𝐷
󸀠

(Ω, ∧
𝑙

) where the partial differentiations are applied to the
coefficients of 𝜔. As usual, 𝑊

1,𝑝

(Ω, ∧
𝑙

) is used to denote the
Sobolev space of 𝑙-forms, which equals𝐿

𝑝

(Ω, ∧
𝑙

) ⋂ 𝐿
𝑝

1
(Ω, ∧
𝑙

)

with norm

‖𝜔‖
𝑊
1,𝑝
(Ω,∧
𝑙
)

= ‖𝜔‖
𝑊
1,𝑝
(Ω,∧
𝑙
)

= diam (Ω)
−1

‖𝜔‖
𝑝,Ω

+ ‖∇𝜔‖
𝑝,Ω

.

(6)

The notations 𝑊
1,𝑝

loc (Ω,R) and 𝑊
1,𝑝

loc (Ω, ∧
𝑙

) are self-
explanatory. We denote the exterior derivative by
𝑑 : 𝐷

󸀠

(Ω, ∧
𝑙

) → 𝐷
󸀠

(Ω, ∧
𝑙+1

) for 𝑙 = 0, 1, . . . , 𝑛. Its
formal adjoint operator 𝑑

⋆

: 𝐷
󸀠

(Ω, ∧
𝑙+1

) → 𝐷
󸀠

(Ω, ∧
𝑙

) is
given by 𝑑

⋆

= (−1)
𝑛𝑙+1

⋆ 𝑑⋆ on 𝐷
󸀠

(Ω, ∧
𝑙+1

), 𝑙 = 0, 1, . . . , 𝑛.
A differential 𝑙-form 𝑢 ∈ 𝐷

󸀠

(Ω, ∧
𝑙

) is called a closed form
if 𝑑𝑢 = 0 in Ω. It is called exact if there exists a differential
form 𝛼 ∈ 𝐷

󸀠

(Ω, ∧
𝑙−1

) such that 𝑢 = 𝑑𝛼. Poincaré Lemma
implies that exact forms are closed.

From [1, 18], if 𝐷 ⊂ R𝑛 is a bounded, convex domain,
to each 𝑦 ∈ 𝐷 there corresponds a linear operator 𝐾

𝑦
:

𝐶
∞

(𝐷, ∧
𝑙

) → 𝐶
∞

(𝐷, ∧
𝑙−1

) defined by

(𝐾
𝑦
𝜔) (𝑥; 𝜉

1
, . . . , 𝜉

𝑙−1
)

= ∫

1

0

𝑡
𝑙−1

𝜔 (𝑡𝑥 + 𝑦 − 𝑡𝑦; 𝑥 − 𝑦, 𝜉
1
, . . . , 𝜉

𝑙−1
) 𝑑𝑡

(7)

and a decomposition 𝜔 = 𝑑(𝐾
𝑦
𝜔) + 𝐾

𝑦
(𝑑𝜔). A homotopy

operator 𝑇 : 𝐶
∞

(𝐷, ∧
𝑙

) → 𝐶
∞

(𝐷, ∧
𝑙−1

) is defined by
averaging 𝐾

𝑦
over all points 𝑦 in 𝐷; that is,

𝑇𝜔 = ∫
𝐷

𝜑 (𝑦) 𝐾
𝑦
𝜔𝑑𝑦, (8)

where 𝜑 ∈ 𝐶
∞

0
(𝐷) is normalized by ∫

𝐷

𝜑(𝑦)𝑑𝑦 = 1. Then,
there is also a decomposition

𝜔 = 𝑑 (𝑇𝜔) + 𝑇 (𝑑𝜔) . (9)

The 𝑙-form 𝜔
𝐷

∈ 𝐷
󸀠

(𝐷, ∧
𝑙

) is defined by

𝜔
𝐷

=
{

{

{

|𝐷|
−1

∫
𝐷

𝜔 (𝑦) 𝑑𝑦 if 𝑙 = 0

𝑑 (𝑇𝜔) if 𝑙 = 1, 2, . . . , 𝑛

(10)

for all𝜔 ∈ 𝐿
𝑝

(𝐷, ∧
𝑙

). Clearly,𝜔
𝐷
is a closed form and for 𝑙 > 0,

𝜔
𝐷
is an exact form.

2. The Caccioppoli Inequality of
Weakly 𝐴-Harmonic Tensors

We need the following elementary inequality.

Lemma 2 (see [19]). Suppose 𝑋 and 𝑌 are vectors of an inner
product space. Then

󵄨󵄨󵄨󵄨|𝑋|
−𝜀

𝑋 − |𝑌|
−𝜀

𝑌
󵄨󵄨󵄨󵄨 ≤

1 + 𝜀

1 − 𝜀
2
𝜀

|𝑋 − 𝑌|
1−𝜀 (11)

for 0 ≤ 𝜀 < 1, and
󵄨󵄨󵄨󵄨|𝑋|
𝜀

𝑋 − |𝑌|
𝜀

𝑌
󵄨󵄨󵄨󵄨 ≤ (1 + 𝜀) (|𝑌| + |𝑋 − 𝑌|)

𝜀

|𝑋 − 𝑌| (12)

for 𝜀 ≥ 0.

Next is the caccioppoli inequality of weakly 𝐴-harmonic
tensors.

Theorem 3. Let 𝑢 ∈ 𝐷
󸀠

(Ω, ∧
𝑙−1

) be a weakly 𝐴-harmonic
tensor in a domain Ω ∈ R𝑛 and 𝑑𝑢 ∈ 𝐿

𝑟

(𝐷, ∧
𝑙

), 𝑙 = 1, . . . , 𝑛.
Then, there exists a constant 𝐶, independent of 𝑢, such that

∫
𝐵
𝜌

|𝑑𝑢|
𝑟

𝑑𝑥 ≤ 𝐶 (𝑛, 𝑝,
𝛽

𝛼
) ∫
𝐵
𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 − 𝑐

𝑅 − 𝜌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥 (13)

for all balls 𝐵 ⊂ Ω and all closed forms 𝑐, where 0 < 𝜌 < 𝑅.

Proof . Let 𝑢 ∈ 𝑊
1,𝑟

loc (Ω, ∧
𝑙−1

) be a very weak solution of (1).
Fix 𝑅
0

: 𝑅
0

≤ 𝑑 = dist(𝑥
0
, 𝜕Ω) for all 𝑥

0
∈ Ω. Let 𝐵

𝑅
=

𝐵
𝑅
(𝑥
0
) ⊂⊂ Ω and 0 < 𝑅/2 ≤ 𝜏 < 𝑡 ≤ 𝑅 be arbitrarily fixed

cube. Fix a cutoff function 𝜂(𝑥) ∈ 𝐶
∞

0
(𝐵
𝑅
) such that supp 𝜂 ⊂

𝐵
𝑡
, 0 ≤ 𝜂 ≤ 1, |∇𝜂| ≤ 𝐶(𝑛)/(𝑡 − 𝜏), and 𝜂 ≡ 1 on 𝐵

𝜏
. Consider

the exact form of 𝜂(𝑢 − 𝑐), where 𝑐 ∈ 𝐷
󸀠

(Ω, ∧
𝑙−1

) with 𝑑𝑐 = 0.
With the aid of the Hodge decomposition [18],

󵄨󵄨󵄨󵄨𝑑 (𝜂 (𝑢 − 𝑐))
󵄨󵄨󵄨󵄨

𝑟−𝑝

𝑑 (𝜂 (𝑢 − 𝑐)) = 𝑑𝜑 + ℎ, (14)

where 𝑑𝜑, ℎ ∈ 𝐿
𝑟/(𝑟−𝑝+1)

(𝐵
𝑡
, ∧
𝑙

), and

‖ℎ‖
𝑟/(𝑟−𝑝+1)

≤ 𝐶 (𝑛) (𝑝 − 𝑟)
󵄩󵄩󵄩󵄩𝑑(𝜂(𝑢 − 𝑐))

󵄩󵄩󵄩󵄩

𝑟−𝑝+1

𝑟
. (15)

Then we have
󵄩󵄩󵄩󵄩𝑑𝜑

󵄩󵄩󵄩󵄩𝑟/(𝑟−𝑝+1)
≤

󵄩󵄩󵄩󵄩𝑑 (𝜂 (𝑢 − 𝑐)) |
𝑟−𝑝

𝑑 (𝜂 (𝑢 − 𝑐))
󵄩󵄩󵄩󵄩𝑟/(𝑟−𝑝+1)

+ ‖ℎ‖
𝑟/(𝑟−𝑝+1)

≤
󵄩󵄩󵄩󵄩𝑑 (𝜂 (𝑢 − 𝑐))

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩

𝑟−𝑝+1

𝑟

+ 𝐶 (𝑛)
󵄨󵄨󵄨󵄨𝑝 − 𝑟

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑑 (𝜂 (𝑢 − 𝑐))

󵄩󵄩󵄩󵄩

𝑟−𝑝+1

𝑟

≤ 𝐶 (𝑛)
󵄩󵄩󵄩󵄩𝑑 (𝜂 (𝑢 − 𝑐))

󵄩󵄩󵄩󵄩

𝑟−𝑝+1

𝑟
.

(16)
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We can use 𝜑 ∈ 𝑊
1,𝑟/(𝑟−𝑝+1)

(Ω, ∧
𝑙−1

) as a test function for (4).
Then, by Definition 1,

∫
𝐵
𝑡

⟨𝐴 (𝑥, 𝑑𝑢) ,
󵄨󵄨󵄨󵄨𝑑 (𝜂 (𝑢 − 𝑐))

󵄨󵄨󵄨󵄨

𝑟−𝑝

𝑑 (𝜂 (𝑢 − 𝑐)) − ℎ⟩ 𝑑𝑥

= 0.

(17)

Let

𝐸 =
󵄨󵄨󵄨󵄨𝑑 (𝜂 (𝑢 − 𝑐))

󵄨󵄨󵄨󵄨

𝑟−𝑝

𝑑 (𝜂 (𝑢 − 𝑐))

−
󵄨󵄨󵄨󵄨𝜂𝑑 (𝑢 − 𝑐)

󵄨󵄨󵄨󵄨

𝑟−𝑝

𝜂𝑑 (𝑢 − 𝑐) ;

(18)

using Lemma 2 yields

|𝐸| ≤ 2
𝑝−𝑟

𝑝 − 𝑟 + 1

𝑟 − 𝑝 + 1

󵄨󵄨󵄨󵄨(𝑢 − 𝑐) 𝑑𝜂
󵄨󵄨󵄨󵄨

𝑟−𝑝+1

. (19)

Then (17) becomes

∫
𝐵
𝑡

⟨𝐴 (𝑥, 𝑑𝑢) ,
󵄨󵄨󵄨󵄨𝜂𝑑 (𝑢 − 𝑐)

󵄨󵄨󵄨󵄨

𝑟−𝑝

𝜂𝑑 (𝑢 − 𝑐)⟩ 𝑑𝑥

≤ ∫
𝐵
𝑡

⟨𝐴 (𝑥, 𝑑𝑢) , ℎ⟩ 𝑑𝑥 − ∫
𝐵
𝑡

⟨𝐴 (𝑥, 𝑑𝑢) , 𝐸⟩ 𝑑𝑥.

(20)

Noticing that 𝑐 satisfies 𝑑𝑐 = 0, then by the condition (2) we
get

∫
𝐵
𝑡

⟨𝐴 (𝑥, 𝑑𝑢) ,
󵄨󵄨󵄨󵄨𝜂𝑑 (𝑢 − 𝑐)

󵄨󵄨󵄨󵄨

𝑟−𝑝

𝜂𝑑 (𝑢 − 𝑐)⟩ 𝑑𝑥

= ∫
𝐵
𝑡

⟨𝐴 (𝑥, 𝑑𝑢) ,
󵄨󵄨󵄨󵄨𝜂𝑑𝑢

󵄨󵄨󵄨󵄨

𝑟−𝑝

𝜂𝑑𝑢⟩ 𝑑𝑥

≥ 𝛼 ∫
𝐵
𝜏

|𝑑𝑢|
𝑟

𝑑𝑥.

(21)

Combining the above inequality with (20), we get

𝛼 ∫
𝐵
𝜏

|𝑑𝑢|
𝑟

𝑑𝑥

≤ ∫
𝐵
𝑡

⟨𝐴 (𝑥, 𝑑𝑢) , ℎ⟩ 𝑑𝑥 − ∫
𝐵
𝑡

⟨𝐴 (𝑥, 𝑑𝑢) , 𝐸⟩ 𝑑𝑥

= 𝐼
1

+ 𝐼
2
.

(22)

In the following we will estimate the right side of (22). By (2),
the Hölder inequality, and (15),

󵄨󵄨󵄨󵄨𝐼1
󵄨󵄨󵄨󵄨 ≤ ∫
𝐵
𝑡

|𝐴 (𝑥, 𝑑𝑢)| |ℎ| 𝑑𝑥

≤ 𝛽 ∫
𝐵
𝑡

|𝑑𝑢|
𝑝−1

|ℎ| 𝑑𝑥

≤ 𝛽(∫
𝐵
𝑡

|𝑑𝑢|
𝑟

)

(𝑝−1)/𝑟

(∫
𝐵
𝑡

|ℎ|
𝑟/(𝑟−𝑝+1)

𝑑𝑥)

(𝑟−𝑝+1)/𝑟

≤ 𝛽𝐶 (𝑛) (𝑝 − 𝑟) (∫
𝐵
𝑡

|𝑑𝑢|
𝑟

)

(𝑝−1)/𝑟

× (∫
𝐵
𝑡

󵄨󵄨󵄨󵄨𝑑 (𝜂
𝑝

(𝑢 − 𝑐))
󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥)

(𝑟−𝑝+1)/𝑟

.

(23)

For

(∫
𝐵
𝑡

󵄨󵄨󵄨󵄨𝑑 (𝜂
𝑝

(𝑢 − 𝑐))
󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥)

(𝑟−𝑝+1)/𝑟

= (∫
𝐵
𝑡

󵄨󵄨󵄨󵄨󵄨
𝜂
𝑝

𝑑𝑢 + 𝑝𝜂
𝑝−1

(𝑢 − 𝑐) 𝑑𝜂
󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥)

(𝑟−𝑝+1)/𝑟

≤ 𝐶 (𝑝, 𝑟) (∫
𝐵
𝑡

󵄨󵄨󵄨󵄨𝜂𝑑𝑢
󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥)

(𝑟−𝑝+1)/𝑟

+ 𝐶 (𝑝, 𝑟) (∫
𝐵
𝑡

󵄨󵄨󵄨󵄨(𝑢 − 𝑐) 𝑑𝜂
󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥)

(𝑟−𝑝+1)/𝑟

≤ 𝐶 (𝑝, 𝑟) (∫
𝐵
𝑡

|𝑑𝑢|
𝑟

𝑑𝑥)

(𝑟−𝑝+1)/𝑟

+ 𝐶 (𝑛, 𝑝, 𝑟) (∫
𝐵
𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 − 𝑐

𝑡 − 𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥)

(𝑟−𝑝+1)/𝑟

,

(24)

(23) and (24) with Young’s inequality yield
󵄨󵄨󵄨󵄨𝐼1

󵄨󵄨󵄨󵄨 ≤ 𝛽𝐶 (𝑛, 𝑝, 𝑟) (𝑝 − 𝑟)

× ∫
𝐵
𝑡

|𝑑𝑢|
𝑟

𝑑𝑥 + 𝛽𝐶 (𝑛, 𝑝, 𝑟) (𝑝 − 𝑟) 𝜀 ∫
𝐵
𝑡

|𝑑𝑢|
𝑟

𝑑𝑥

+ 𝛽𝐶 (𝜀, 𝑛, 𝑝, 𝑟) (𝑝 − 𝑟) ∫
𝐵
𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 − 𝑐

𝑡 − 𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥.

(25)

Next we estimate 𝐼
2
. By (2), the Hölder inequality, (19), and

Young’s inequality,
󵄨󵄨󵄨󵄨𝐼2

󵄨󵄨󵄨󵄨 ≤ ∫
𝐵
𝑡

|𝐴 (𝑥, 𝑑𝑢)| |𝐸| 𝑑𝑥

≤ 2
𝑝−𝑟

𝑝 − 𝑟 + 1

𝑟 − 𝑝 + 1
𝛽 ∫
𝐵
𝑡

|𝑑𝑢|
𝑝−1󵄨󵄨󵄨󵄨(𝑢 − 𝑐) 𝑑𝜂

󵄨󵄨󵄨󵄨

𝑟−𝑝+1

𝑑𝑥

≤ 𝛽𝐶 (𝑛, 𝑝, 𝑟) (∫
𝐵
𝑡

|𝑑𝑢|
𝑟

𝑑𝑥)

(𝑝−1)/𝑟

× (∫
𝐵
𝑡

󵄨󵄨󵄨󵄨(𝑢 − 𝑐) 𝑑𝜂
󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥)

(𝑟−𝑝+1)/𝑟

≤ 𝜀𝛽𝐶 (𝑛, 𝑝, 𝑟) ∫
𝐵
𝑡

|𝑑𝑢|
𝑟

𝑑𝑥 + 𝛽𝐶 (𝑛, 𝑝, 𝑟, 𝜀)

× ∫
𝐵
𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 − 𝑐

𝑡 − 𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥.

(26)

Combining (22), (25), and (26), we get

𝛼 ∫
𝐵
𝜏

|𝑑𝑢|
𝑟

𝑑𝑥

≤ 𝛽𝐶 (𝑛, 𝑝, 𝑟) ((𝑝 − 𝑟) (1 + 𝜀) + 𝜀) ∫
𝐵
𝑡

|𝑑𝑢|
𝑟

𝑑𝑥

+ 𝛽𝐶 (𝜀, 𝑛, 𝑝, 𝑟) ((𝑝 − 𝑟) + 1) ∫
𝐵
𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 − 𝑐

𝑡 − 𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥.

(27)
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Let 𝑝 − 𝑟 and 𝜀 small enough to let

𝛽𝐶 (𝑛, 𝑝, 𝑟) ((𝑝 − 𝑟) (1 + 𝜀) + 𝜀)

𝛼
= 𝜃 < 1; (28)

then we have

∫
𝐵
𝜏

|𝑑𝑢|
𝑟

𝑑𝑥 ≤ 𝜃 ∫
𝐵
𝑡

|𝑑𝑢|
𝑟

𝑑𝑥 + 𝐶 (𝑛, 𝑝, 𝑟,
𝛽

𝛼
) ∫
𝐵
𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 − 𝑐

𝑡 − 𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥.

(29)

Next we will refine the inequality (29). Let

0 < 𝜌, 𝑡 < 𝑅, 𝑓 (𝑡) = ∫
𝐵
𝑡

|𝑑𝑢|
𝑟

𝑑𝑥, 𝐴 = ∫
𝐵
𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 − 𝑐

𝑅 − 𝜌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥.

(30)

Choosing 𝜀 ∈ (0, 1) satisfied 𝜀
𝑟

> 𝜃. Let

𝑡
0

= 𝜌, 𝑡
𝑖+1

= 𝑡
𝑖
+ (1 − 𝜀) 𝜀

𝑖

(𝑅 − 𝜌) , 𝑖 = 0, 1, 2, . . . (31)

then when 𝑘 → ∞, 𝑡
𝑘

→ 𝑅. We deduce from (29) that

𝑓 (𝜌) = 𝑓 (𝑡
0
)

≤ 𝜃𝑓 (𝑡
1
) + 𝐶 ∫

𝐵
𝑡1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 − 𝑐

(1 − 𝜀) 𝜀0 (𝑅 − 𝜌)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥

≤ 𝜃𝑓 (𝑡
1
) +

𝐶𝐴

(1 − 𝜀)
𝑟

≤ 𝜃
𝑘

𝑓 (𝑡
𝑘
) +

𝐶𝐴

(1 − 𝜀)
𝑟

𝑘−1

∑

𝑖=0

(𝜃𝜀
−𝑟

)
𝑖

.

(32)

Let 𝑘 → ∞ yield

∫
𝐵
𝜌

|𝑑𝑢|
𝑟

𝑑𝑥 ≤ 𝐶 (𝑛, 𝑝, 𝑟,
𝛽

𝛼
) ∫
𝐵
𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 − 𝑐

𝑅 − 𝜌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥. (33)

Finally, in our case, 𝑟 is sufficiently close to 𝑝; we can estimate
𝐶(𝑛, 𝑝, 𝑟, 𝛽/𝛼) independently of 𝑟.

Especially, let 𝜌 = 𝑅/2, 𝑐 = 𝑢
𝐵
𝑅

, and then (13) becomes

∫
𝐵
𝑅/2

|𝑑𝑢|
𝑟

𝑑𝑥 ≤ 𝐶 (𝑛, 𝑝,
𝛽

𝛼
) ∫
𝐵
𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 − 𝑢
𝐵
𝑅

𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥, (34)

or

( −∫
𝐵
𝑅/2

|𝑑𝑢|
𝑟

𝑑𝑥)

1/𝑟

≤
𝐶 (𝑛, 𝑝, 𝛽/𝛼)

𝑅
( −∫
𝐵
𝑅

󵄨󵄨󵄨󵄨󵄨
𝑢 − 𝑢
𝐵
𝑅

󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥)

1/𝑟

.

(35)

3. Zeros for the Gradients of
Weakly 𝐴-Harmonic Tensors

We need the following Poincaré inequality.

Lemma 4 (see [16]). Let 𝐷 be a cube or a ball, and 𝜔 ∈

𝐿
𝑠

(𝐷, ∧
𝑙

) with 𝑑𝜔 ∈ 𝐿
𝑠

(𝐷, ∧
𝑙+1

). Then

1

diam𝐷
(−∫
𝐷

󵄨󵄨󵄨󵄨𝜔 − 𝜔
𝐷

󵄨󵄨󵄨󵄨

𝑠

)

1/𝑠

≤ 𝐶 (𝑛, 𝑠) ( −∫
𝐷

|𝑑𝜔|
𝑛𝑠/(𝑛+𝑠−1)

)

(𝑛+𝑠−1)/𝑛𝑠

.

(36)

Here we denote by −∫
𝐷

the integral mean over 𝐷.

Using the Caccioppoli inequality (13) and Lemma 4, we
can get the weak-reverse Hölder inequality of weakly 𝐴-
harmonic tensors.

Theorem 5. Let 𝑢 ∈ 𝐷
󸀠

(Ω, ∧
𝑙−1

) be a weakly 𝐴-harmonic
tensor in a domain Ω ∈ R𝑛, and 𝑑𝑢 ∈ 𝐿

𝑟

(𝐷, ∧
𝑙

), 𝑙 = 1, . . . , 𝑛.
Then there exists a constant 𝐶, independent of 𝑢 and 𝑅, such
that

( −∫
𝐵
𝑅/2

|𝑑𝑢|
𝑟

𝑑𝑥)

1/𝑟

≤ 𝐶 (𝑛, 𝑝, 𝑟,
𝛽

𝛼
) ( −∫

𝐵
𝑅

|𝑑𝑢|
𝑛𝑟/(𝑛+𝑟−1)

𝑑𝑥)

(𝑛+𝑟−1)/𝑛𝑟

(37)

for all balls 𝐵 ⊂ Ω.

Proof. By Lemma 4,

(−∫
𝐵
𝑅

󵄨󵄨󵄨󵄨𝑢 − 𝑢
𝑐

󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥)

1/𝑟

≤ 𝐶 (𝑛, 𝑟) 𝑅( −∫
𝐵
𝑅

|𝑑𝑢|
𝑛𝑟/(𝑛+𝑟−1)

𝑑𝑥)

(𝑛+𝑟−1)/𝑛𝑟

.

(38)

Then, by (35), we get

( −∫
𝐵
𝑅/2

|𝑑𝑢|
𝑟

𝑑𝑥)

1/𝑟

≤ 𝐶 (𝑛, 𝑝, 𝑟,
𝛽

𝛼
) ( −∫

𝐵
𝑅

|𝑑𝑢|
𝑛𝑟/(𝑛+𝑟−1)

𝑑𝑥)

(𝑛+𝑟−1)/𝑛𝑟

.

(39)

Next we consider the main results of this paper.

Definition 6 (see [20]). A point 𝑥
0

∈ Ω is said to be an
essential zero of a function ℎ ∈ 𝐿

1

loc(Ω) if

lim
𝑅→0

1

𝑅𝑛
∫
𝑄(𝑥
0
,𝑅)

|ℎ (𝑥)| 𝑑𝑥 = 0, (40)
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where 𝑄(𝑥
0
, 𝑅) denotes the cube centered at 𝑥

0
of side length

2𝑅. The order of the essential zero is defined to be

𝑁 (𝑥
0
) = sup{𝛼 : lim

𝑅→0

1

𝑅𝑛+𝛼
∫
𝑄(𝑥
0
,𝑅)

|ℎ (𝑥)| 𝑑𝑥 = 0} . (41)

Lemma 7 (see [20]). Let ℎ ∈ 𝐿
1

loc(Ω) satisfy the weak-reverse
Hölder inequality

1

|𝑄|
∫
𝑄

ℎ
𝑝

𝑑𝑥 ≤ 𝐴
𝑝
(

1

|2𝑄|
∫
2𝑄

ℎ𝑑𝑥)

𝑝

(42)

for all cubes 𝑄 ⊂ 2𝑄 ⊂ Ω and some 1 < 𝑝 < ∞, with a
constant 𝐴

𝑃
independent of the cube. Then almost every zero

of ℎ has infinite order.

Theorem 8. There exist exponents 𝑟
0

= 𝑟
0
(𝑛, 𝑝, 𝛽/𝛼) ∈

(1, 2); if 𝑟 > 𝑟
0
, then for the weakly 𝐴-harmonic tensor 𝑢 ∈

𝑊
1,𝑟

loc (Ω, ∧
𝑙−1

) almost every zero of 𝑑𝑢 has infinite order.

Proof. By the weak-reverse Hölder inequality (37) and
Lemma 7, we get the desired result.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors are supported by NSFC (11371050) and NSF of
Hebei Province (A2013209278).

References

[1] R. P. Agarwal, S.Ding, andC.Nolder, Inequalities forDifferential
Forms, Springer, New York, NY, USA, 2009.

[2] C. A. Nolder, “Hardy-Littlewood theorems for 𝐴-harmonic
tensors,” Illinois Journal of Mathematics, vol. 43, no. 4, pp. 613–
632, 1999.

[3] T. Iwaniec and G. Martin, “Quasiregular mappings in even
dimensions,” Acta Mathematica, vol. 170, no. 1, pp. 29–81, 1993.

[4] S. Ding and J. Zhu, “Poincaré-type inequalities for the homo-
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