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We introduce and study a type of (one-dimensional) wave equations with noisy point sources. We first study the existence and
uniqueness problem of the equations. Then, we assume that the locations of point sources are unknown but we can observe the
solution at some other location continuously in time. We propose an estimator to identify the point source locations and prove the
convergence of our estimator.

1. Introduction

Assume that there are a certain number of objects in a certain
area of ocean or other media.The total number of the objects
and the location of each object are unknown. We need to
identify the total number and the precise locations of the
objects. The objects are also assumed to emit (point source)
sound waves and we are able to measure these sound waves
received in some known locations. The objective is to use
these measurements for our identification problem.

This type of problem has been studied mathematically
in the framework of inverse problems for partial differential
equations (wave equations). The sound travels according to
the following second-orderwave equationwith point sources:

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑡2
−

𝑑

∑

𝑖=1

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑥2

𝑖

=

𝑁

∑

𝑘=1

𝜎
𝑘
𝛿 (𝑥 − 𝑦

𝑘
)

𝑢 (0, 𝑥) = 0,
𝜕𝑢

𝜕𝑡
(0, 𝑥) = 0,

(1)

where 𝑥 ∈ R𝑑, 𝑡 ∈ (0, 𝑇), 𝑁 ∈ N, and 𝑦
1
, . . . , 𝑦

𝑁
are some

given points in R𝑑, 𝛿(𝑥) is the Dirac delta function, and 𝜎
𝑘
,

𝑘 = 1, 2, . . . , 𝑁, are some known constants. The solution
(𝑢(𝑡, 𝑥), 𝑥 ∈ 𝐷, 0 ≤ 𝑡 ≤ 𝑇) is supposed to be known for some
space points𝐷 and for some interval [0, 𝑇].The total number
𝑁 and each location 𝑦

𝑘
of point sources are estimated from

(𝑢(𝑡, 𝑥), 𝑥 ∈ 𝐷, 0 ≤ 𝑡 ≤ 𝑇). We refer to, for example, [1]
and in particular the references therein for some recent study
in this area. This theory has found substantial applications
in determining the heat sources in heat conduction, the
magnetic sources in brain, the earthquake sources of seismic
waves, and so on.

In practice, the sound wave travels inevitably under some
influence of noises. Voluntarily or involuntarily, the point
sources themselves may also emit noises to avoid being
detected. Thus, we are led to the following stochastic wave
equations:

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑡2
−

𝑑

∑

𝑖=1

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑥2

𝑖

= 𝑏 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥)) + 𝜎
0
(𝑡, 𝑥, 𝑢) �̇�

0
(𝑡, 𝑥)

+

𝑁

∑

𝑘=1

𝜎
𝑘
(𝑡, 𝑥, 𝑢) 𝛿 (𝑥 − 𝑦

𝑘
) �̇�

𝑘
(𝑡, 𝑥)

𝑢 (0, 𝑥) = V
0
(𝑥) ,

𝜕𝑢

𝜕𝑡
(0, 𝑥) = V

0
(𝑥) ,

(2)

where 𝑥 ∈ R𝑑, 𝑡 ∈ (0, 𝑇), 𝑁 ∈ N, and 𝑦
1
, . . . , 𝑦

𝑁
are

some given points in R𝑑, 𝛿(𝑥) is the Dirac delta function,
V

0
and V

1
(𝑥) are two given deterministic functions, and �̇�

𝑘
,
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𝑘 = 0, 1, 2, . . . , 𝑁, are independent Gaussian noises which are
white in time and correlated in space.

When 𝜎
1

= ⋅ ⋅ ⋅ = 𝜎
𝑘

= 0, the stochastic wave equation
(2) has been studied since long time. Let us mention the first
lecture note [2] and a recent lecture note [3]. Many properties
such as the sample path Hölder continuity of the solution are
obtained (see [4, 5] and the references therein).

However, when 𝜎
𝑖
, 𝑖 = 1, . . . , 𝑁, are not all zero, then (2)

is highly singular because of the presence of the Dirac delta
functions multiplied by the Gaussian noises. Such equation
has not been studied yet. The first objective of this paper is to
give the definition of the solution to such an equation and to
show the existence of uniqueness of the solution under some
appropriate conditions. This will be done in Section 2. Since
the case when 𝜎

1
= ⋅ ⋅ ⋅ = 𝜎

𝑁
= 0 has been well studied,

we will now assume 𝜎
0

= 0 to simplify our presentation.
However, since our objective is the identification of the 𝑁

and point source positions 𝑦
1
, . . . , 𝑦

𝑁
, we will not go to spend

too much effort here. For this reason, we restrict ourselves to
only one space dimension case. We will present higher space
dimension case in another project.

To well explain our approach of identification, we will
further restrict ourmodel.Wewill consider the special case of
(2) where the coefficients 𝜎

𝑘
(𝑡, 𝑥, 𝑢) = 𝜌

𝑘
(𝑡) are independent

of 𝑥 and 𝑢 and V
0
= V

0
= 0. Namely, we will concentrate on

the stochastic wave equation of the form

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑡2
−

𝑑

∑

𝑖=1

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑥2

𝑖

=

𝑁

∑

𝑘=1

𝜌
𝑘
(𝑡) 𝛿 (𝑥 − 𝑦

𝑘
) �̇�

𝑘
(𝑡, 𝑥)

𝑢 (0, 𝑥) = 0,
𝜕𝑢

𝜕𝑡
(0, 𝑥) = 0.

(3)

In this case, we will write down the explicit expression of the
solution. It will be done in Section 3. In this section, we also
obtain some properties of the solution which will be useful in
the later section of the paper.

Now, we assume that, in (3), the total number of
point sources 𝑁 and the positions 𝑦

𝑖
, 𝑖 = 1, . . . , 𝑁,

are unknown. However, we are able to observe the sound
signal received at some given known locations 𝑥

1
, . . . , 𝑥

𝑚
,

continuously in the time interval [0, 𝑇]. Namely, we assume
that (𝑢(𝑡, 𝑥

1
), . . . , 𝑢(𝑡, 𝑥

𝑚
), 0 ≤ 𝑡 ≤ 𝑇) are known. We

would like to use this information to identify 𝑁 and 𝑦
𝑖
,

𝑖 = 1, . . . , 𝑁. In Section 4, we will develop a new approach
to obtain some statistical estimators �̂� and 𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑁
to

estimate the total number 𝑁 and the locations 𝑦
1
, 𝑦

2
, . . . , 𝑦

𝑁

of the point sources. The approach combines the reciprocity
gap functional approach from the theory of partial differ-
ential equations with theory from stochastic processes. We
show the almost sure convergence of our estimators �̂� and
𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑁
to the true parameters𝑁 and 𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑁
.

2. Stochastic Wave Equations with
Noisy Point Sources

Let (Ω,F, 𝑃) be a basic probability space with right contin-
uous filtration of 𝜎-algebras {F

𝑡
, 𝑡 ⩾ 0} satisfying the usual

conditions. Let 𝐵(𝑡, 𝑥) = (𝐵
1
(𝑡, 𝑥), 𝐵

2
(𝑡, 𝑥), . . . , 𝐵

𝑁
(𝑡, 𝑥)), 𝑡 ⩾

0, 𝑥 ∈ R𝑑 be 𝑁 dimensional Gaussian random fields. The
formal derivatives �̇�

𝑘
(𝑡, 𝑥) := (𝜕

𝑑+1
/𝜕𝑡𝜕𝑥

1
⋅ ⋅ ⋅ 𝜕𝑥

𝑑
)𝐵

𝑘
(𝑡, 𝑥),

𝑘 = 1, 2, . . . , 𝑁, are called the Gaussian noises. We assume
that these Gaussian noises are white in time and correlated
in space with covariance 𝑟(𝑥, 𝑦) (see [5]). Namely, we assume
that

E [�̇�
𝑘
(𝑡, 𝑥) �̇�

𝑘
(𝑠, 𝑦)] = 𝛿 (𝑡 − 𝑠) 𝑟

𝑘
(𝑥, 𝑦) , (4)

whereEdenotes the expectation on (Ω,F, 𝑃), 𝑟
𝑘
: R𝑑

×R𝑑
→

R, and (𝑘 = 1, 2, . . . , 𝑁) are some symmetric positive definite
functions of 𝑥 and 𝑦. This is interpreted as

E [𝐵
𝑘
(𝑡, 𝑥) 𝐵

𝑘
(𝑠, 𝑦)]

= (𝑡 ∧ 𝑠) ∫

𝑥
1

0

⋅ ⋅ ⋅ ∫

𝑥
𝑑

0

∫

𝑦
1

0

⋅ ⋅ ⋅ ∫

𝑦
𝑑

0

𝑟
𝑘
(𝑢, V) d𝑢 dV.

(5)

For any (deterministic) smooth function 𝜑 in C∞

0
([0, 𝑇] ×

R𝑑
), the stochastic integral 𝐵

𝑘
(𝜑) = ∫

𝑇

0
∫
R𝑑

𝜑(𝑠, 𝑥)𝐵
𝑘
(d𝑠, d𝑥)

is well-defined in the sense of Walsh ([2]). The following fact
is well-known: for any two smooth functions 𝜑 and 𝜓 in
C∞

0
([0, 𝑇] ×R𝑑

), we have

E (𝐵
𝑘
(𝜑) 𝐵

𝑘
(𝜓))

= ∫

𝑇

0

d𝑠∬
R𝑑

𝜑 (𝑠, 𝑥) 𝑟
𝑘
(𝑥, 𝑦) 𝜓 (𝑠, 𝑦) d𝑥 d𝑦.

(6)

We also call E(𝐵
𝑘
(𝜑)𝐵

𝑘
(𝜓)) the covariance functional of �̇�

𝑘
,

denoted by 𝐽
𝑘
(𝜑, 𝜓).

Sometimes, we also use the Fourier transform theory to
study the stochastic integral and the stochastic equations. We
use F𝜑(𝑠, ⋅)(𝜉) = ∫

R𝑑
𝑒

2𝜋𝑖𝑥𝜉
𝜑(𝑠, 𝑥)d𝑥 to denote the Fourier

transformation of 𝜙(𝑠, ⋅) and 𝜑(𝑠, 𝑥) = 𝜑(𝑠, −𝑥).
If we assume that the noise is spatially homogeneous,

that is, 𝑟
𝑘
(𝑥, 𝑦) = 𝑟

𝑘
(𝑥 − 𝑦), then there exists a nonnegative

tempered measure 𝜇
𝑘
which is the Fourier transform of

𝑟
𝑘
(𝑥)d𝑥. With this notation, we can also write

𝐽
𝑘
(𝜑, 𝜓) = ∫

∞

0

d𝑠 ∫
R𝑑

𝜇
𝑘
(d𝜉)F𝜑 (𝑠, ⋅) (𝜉)F�̃� (𝑠, ⋅) (𝜉) . (7)

From the general theory of stochastic integral (see, e.g., [3]),
we see that if (𝑔(𝑡, 𝑥), 0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈ R𝑑

) is a real valued
F

𝑡
-adapted process such that

∫

𝑇

0

d𝑠∬
R𝑑

𝑟
𝑘
(𝑥, 𝑦)E [

𝑔 (𝑠, 𝑥)

𝑔 (𝑠, 𝑦)

] d𝑥𝑑𝑦 < ∞, (8)

then the stochastic integral ∫𝑇

0
∫
R𝑑

𝑔(𝑡, 𝑥)𝐵
𝑘
(𝑑𝑡, d𝑥) is well-

defined and

E[∫
𝑇

0

∫
R𝑑

𝑔 (𝑠, 𝑥) 𝐵
𝑘
(d𝑠, d𝑥)]

2

= ∫

𝑇

0

d𝑠∬
R𝑑

𝑟
𝑘
(𝑥, 𝑦)E [𝑔 (𝑠, 𝑥) 𝑔 (𝑠, 𝑦)] d𝑥 𝑑𝑦.

(9)

Now, let 𝑦 be a given fixed point inR𝑑 and let (𝜆(𝑡, 𝑥), 0 ≤ 𝑡 ≤

𝑇, 𝑥 ∈ R𝑑
) be a real valued F

𝑡
-adapted process. We want to
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define the stochastic integral ∫𝑡

0
∫
R𝑑

𝜆(𝑠, 𝑥)𝛿(𝑥 − 𝑦)𝐹(d𝑠 d𝑥),
where 𝛿(𝑥 − 𝑦) is the Dirac delta function. To this end, we
will use smooth functions to approximate the Dirac delta
function.

Let 𝜙 be a smooth function with compact support 𝐾 =

[−1, 1]
𝑑. Set 𝜙

𝑛
(𝑥 − 𝑦) = 𝑛

𝑑
𝜙(𝑛(𝑥 − 𝑦)). It is clear that 𝜙

𝑛

converges to 𝛿(𝑥 − 𝑦) in the sense of distribution as 𝑛 → ∞.
For each 𝑛, the stochastic integral

𝐼
𝑛
:= ∫

𝑇

0

∫
R𝑑

𝜆 (𝑠, 𝑥) 𝜙
𝑛
(𝑥 − 𝑦) 𝐵

𝑘
(d𝑠, d𝑥) (10)

is well-defined. We want to know whether 𝐼
𝑛
has a limit in

𝐿
2
(Ω,F, 𝑃) or not. First, we have the following computations:

E[𝐼
𝑛
− 𝐼

𝑚
]
2

= E(∫

𝑇

0

∫
R𝑑

𝜆 (𝑠, 𝑥) [𝜙
𝑛
(𝑥 − 𝑦)

− 𝜙
𝑚
(𝑥 − 𝑦)] 𝐵

𝑘
(d𝑠, d𝑥) )

2

= ∫

𝑇

0

∬
R𝑑
E [𝜆 (𝑠, 𝑥) 𝜆 (𝑠, 𝑧)]

× (𝜙
𝑛
(𝑥 − 𝑦) − 𝜙

𝑚
(𝑥 − 𝑦))

× (𝜙
𝑛
(𝑧 − 𝑦) − 𝜙

𝑚
(𝑧 − 𝑦))

× 𝑟
𝑘
(𝑥, 𝑧) d𝑥 d𝑧 d𝑠.

(11)

Passing the difference 𝜙
𝑛
(𝑥 − 𝑦) − 𝜙

𝑚
(𝑥 − 𝑦) to that of 𝜆 and

𝑟, we have

E[𝐼
𝑛
− 𝐼

𝑚
]
2

= ∫

𝑇

0

∬
R𝑑
E [𝜆 (𝑠, 𝑦 +

𝑥

𝑛
) 𝜆 (𝑠, 𝑦 +

𝑧

𝑛
)

× 𝑟 (𝑦 +
𝑥

𝑛
, 𝑦 +

𝑧

𝑛
) − 𝜆(𝑠, 𝑦 +

𝑥

𝑛
)

×𝜆(𝑠, 𝑦 +
𝑧

𝑚
) 𝑟 (𝑦 +

𝑥

𝑛
, 𝑦 +

𝑧

𝑚
)]

× 𝜙 (𝑥) 𝜙 (𝑧) d𝑥 d𝑧 d𝑠

+ ∫

𝑇

0

∬
R𝑑
E [𝜆 (𝑠, 𝑦 +

𝑥

𝑚
)𝜆(𝑠, 𝑦 +

𝑧

𝑚
)

× 𝑟 (𝑦 +
𝑥

𝑚
, 𝑦 +

𝑧

𝑚
) − 𝜆(𝑠, 𝑦 +

𝑥

𝑚
)

×𝜆(𝑠, 𝑦 +
𝑧

𝑛
) 𝑟 (𝑦 +

𝑥

𝑚
, 𝑦 +

𝑧

𝑛
)]

× 𝜙 (𝑥) 𝜙 (𝑧) d𝑥 d𝑧 d𝑠

=: 𝐼
1
+ 𝐼

2
.

(12)

𝐼
1
can be written as

𝐼
1
= ∫

𝑇

0

∬
R𝑑
E {𝜆 (𝑠, 𝑦 +

𝑥

𝑛
)

× (𝜆(𝑠, 𝑦 +
𝑧

𝑛
)

× [𝑟 (𝑦 +
𝑥

𝑛
, 𝑦 +

𝑧

𝑛
)

− 𝑟 (𝑦 +
𝑥

𝑛
, 𝑦 +

𝑧

𝑚
)]

+ 𝑟 (𝑦 +
𝑥

𝑛
, 𝑦 +

𝑧

𝑚
)

× [𝜆 (𝑠, 𝑦 +
𝑧

𝑛
)

−𝜆(𝑠, 𝑦 +
𝑧

𝑚
)])}

× 𝜙 (𝑥) 𝜙 (𝑧) d𝑥 d𝑧 d𝑠.

(13)

Now, we let 𝑟(𝑥, 𝑦) be a continuous function of 𝑥 and 𝑦. We
also assume that there is a 𝜀

0
> 0 such that

sup
|𝑦−𝑥|≤𝜀

0

E∫

𝑇

0

[𝜆(𝑠, 𝑦)
2

] d𝑠 < ∞,

lim
𝜀 → 0

sup
|𝑦−𝑥|≤𝜀

E∫

𝑇

0

[[𝜆 (𝑠, 𝑦) − 𝜆 (𝑠, 𝑥)]
2

] d𝑠 = 0.

(14)

We write 𝐼
1

= 𝐼
11

+ 𝐼
12
, where 𝐼

11
and 𝐼

12
are defined and

estimated as follows. For 𝐼
11
, we have

𝐼
11

:= ∫

𝑇

0

∬
R𝑑
E {𝜆 (𝑠, 𝑦 +

𝑥

𝑛
) 𝜆 (𝑠, 𝑦 +

𝑧

𝑛
)}

× [𝑟 (𝑦 +
𝑥

𝑛
, 𝑦 +

𝑧

𝑛
) − 𝑟 (𝑦 +

𝑥

𝑛
, 𝑦 +

𝑧

𝑚
)]

× 𝜙 (𝑥) 𝜙 (𝑧) d𝑥 d𝑧 d𝑠

≤ 𝐶 sup
|𝑥|≤1,|𝑧|≤1


𝑟 (𝑦 +

𝑥

𝑛
, 𝑦 +

𝑧

𝑛
) − 𝑟 (𝑦 +

𝑥

𝑛
, 𝑦 +

𝑧

𝑚
)



× ∫

𝑇

0

∬
R𝑑
E[𝜆 (𝑠, 𝑦 +

𝑥

𝑛
)]

2

𝜙 (𝑥) 𝜙 (𝑧) d𝑠 d𝑥 d𝑧

≤ 𝐶 sup
|𝑥|≤1,|𝑧|≤1


𝑟 (𝑦 +

𝑥

𝑛
, 𝑦 +

𝑧

𝑛
) − 𝑟 (𝑦 +

𝑥

𝑛
, 𝑦 +

𝑧

𝑚
)



× ∫
R𝑑

∫

𝑇

0

E[𝜆 (𝑠, 𝑦 +
𝑥

𝑛
)]

2

d𝑠𝜙 (𝑥) d𝑥

≤ 𝐶 sup
|𝑥|≤1,|𝑧|≤1


𝑟 (𝑦 +

𝑥

𝑛
, 𝑦 +

𝑧

𝑛
) − 𝑟 (𝑦 +

𝑥

𝑛
, 𝑦 +

𝑧

𝑚
)



× sup
|𝑥|≤1

∫

𝑇

0

E[𝜆 (𝑠, 𝑦 +
𝑥

𝑛
)]

2

d𝑠

→ 0.

(15)
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For 𝐼
12
, we have (recall𝐾 = [−1, 1]

𝑑)

𝐼
12

:= ∫

𝑇

0

∬
R𝑑
E {𝜆 (𝑠, 𝑦 +

𝑥

𝑛
)

× 𝑟 (𝑦 +
𝑥

𝑛
, 𝑦 +

𝑧

𝑚
)

× [𝜆 (𝑠, 𝑦 +
𝑧

𝑛
)

−𝜆(𝑠, 𝑦 +
𝑧

𝑚
)]}

× 𝜙 (𝑥) 𝜙 (𝑧) d𝑥 d𝑧 d𝑠

≤ 𝐶∫

𝑇

0

∬
𝐾

E {𝜆 (𝑠, 𝑦 +
𝑥

𝑛
)

× [𝜆 (𝑠, 𝑦 +
𝑧

𝑛
)

−𝜆(𝑠, 𝑦 +
𝑧

𝑚
)]} d𝑥 d𝑧 d𝑠

≤ 𝐶{∫

𝑇

0

∫
𝐾

E𝜆
2
(𝑠, 𝑦 +

𝑥

𝑛
) d𝑥 d𝑠}

1/2

× {∫

𝑇

0

∫
𝐾

E [𝜆 (𝑠, 𝑦 +
𝑧

𝑛
)

−𝜆(𝑠, 𝑦 +
𝑧

𝑚
)]

2

d𝑧 d𝑠}
1/2

≤ 𝐶{sup
|𝑥|≤1

∫

𝑇

0

E𝜆
2
(𝑠, 𝑦 +

𝑥

𝑛
) d𝑥}

1/2

d𝑠

× {sup
|𝑥|≤1

∫

𝑇

0

E [𝜆 (𝑠, 𝑦 +
𝑧

𝑛
)

−𝜆(𝑠, 𝑦 +
𝑧

𝑚
)]

2

d𝑠}
1/2

→ 0.

(16)

Thus, we have 𝐼
1
converging to 0.

In the sameway, we can show that 𝐼
2
converges to 0 under

the same conditions.

Theorem 1. Let �̇�
𝑘
(𝑡, 𝑥) be a Gaussian noise which is white in

time and correlated in space with covariance 𝑟
𝑘
(𝑥, 𝑦). Assume

that 𝑟(𝑥, 𝑦) is a continuous function of𝑥 and𝑦. Let (𝜆(𝑡, 𝑥), 0 ≤

𝑡 ≤ 𝑇, 𝑥 ∈ R𝑑
) be anF

𝑡
-adapted processes such that conditions

(14) hold. Then, the stochastic integral ∫
𝑇

0
∫
R𝑑

𝜆(𝑡, 𝑥)𝛿(𝑥 −

𝑦)𝐵
𝑘
(d𝑠, d𝑥) exists and

E[∫
𝑇

0

∫
R𝑑

𝜆 (𝑠, 𝑥) 𝛿 (𝑥 − 𝑦) 𝐵
𝑘
(d𝑠, d𝑥)]

2

= 𝑟
𝑘
(𝑦, 𝑦) ∫

𝑇

0

E[𝜆 (𝑠, 𝑦)]
2d𝑠.

(17)

Proof. The above argument shows the existence of the
stochastic integral ∫𝑇

0
∫
R𝑑

𝜆(𝑡, 𝑥)𝛿(𝑥 − 𝑦)𝐵
𝑘
(d𝑠, d𝑥). We have

E[𝐼
𝑛
]
2

= ∫

𝑇

0

∬
R𝑑
E [𝜆 (𝑠, 𝑥) 𝜆 (𝑠, 𝑧)]

× 𝜙
𝑛
(𝑥 − 𝑦) 𝜙

𝑛
(𝑧 − 𝑦)

× 𝑟
𝑘
(𝑥, 𝑧) d𝑥 d𝑧 d𝑠

= ∫

𝑇

0

∬
R𝑑
E [𝜆 (𝑠, 𝑦 +

𝑥

𝑛
) 𝜆 (𝑠, 𝑦 +

𝑧

𝑛
)

× 𝑟
𝑘
(𝑦 +

𝑥

𝑛
, 𝑦 +

𝑧

𝑛
)]

× 𝜙 (𝑥) 𝜙 (𝑧) d𝑥 d𝑧 d𝑠.

(18)

Now, the Fatou lemma yields (17).

We also need to bound general moments of the stochastic
integral ∫𝑇

0
∫
R𝑑

𝜆(𝑡, 𝑥)𝛿(𝑥−𝑦)𝐵
𝑘
(d𝑠, d𝑥). We have the follow-

ing Burkholder type inequality.

Theorem 2. Let �̇�
𝑘
(𝑡, 𝑥) be a Gaussian noise which is white in

time and correlated in space with covariance 𝑟
𝑘
(𝑥, 𝑦). Assume

that 𝑟(𝑥, 𝑦) is a continuous function of𝑥 and𝑦. Let (𝜆(𝑡, 𝑥), 0 ≤

𝑡 ≤ 𝑇, 𝑥 ∈ R𝑑
) be anF

𝑡
-adapted processes such that

sup
|𝑦−𝑥|≤𝜀

0

E(∫

𝑇

0

[𝜆(𝑠, 𝑦)
2

] d𝑠)
𝑝/2

< ∞,

lim
𝜀 → 0

sup
|𝑦−𝑥|≤𝜀

E(∫

𝑇

0

[[𝜆 (𝑠, 𝑦) − 𝜆 (𝑠, 𝑥)]
2

] d𝑠)
𝑝/2

= 0.

(19)

Then, the stochastic integral ∫𝑇

0
∫
R𝑑

𝜆(𝑡, 𝑥)𝛿(𝑥 − 𝑦)𝐵
𝑘
(d𝑠, d𝑥)

exists and

E[∫
𝑇

0

∫
R𝑑

𝜆 (𝑠, 𝑥) 𝛿 (𝑥 − 𝑦) 𝐵
𝑘
(d𝑠, d𝑥)]

𝑝

≤ 𝐶
𝑝
𝑟

𝑝/2

𝑘
(𝑦, 𝑦)E(∫

𝑇

0

[𝜆 (𝑠, 𝑦)]
2d𝑠)

𝑝/2

.

(20)

Now, we turn to consider the existence and uniqueness
of the solution to the stochastic wave equation (2). We will
follow the idea of mild solution. Since the Green function is
more sophisticated to study in the dimension higher than 1,
we will only study the one space dimensional wave equation
in this paper. Higher dimension case needs much more care.
Consider

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑡2
−

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑥2
= 𝑏 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥))

+ 𝜎
0
(𝑡, 𝑥, 𝑢 (𝑡, 𝑥)) �̇�

0
(𝑡, 𝑥)

+

𝑁

∑

𝑘=1

𝜎
𝑘
(𝑡, 𝑥, 𝑢 (𝑡, 𝑥))

× 𝛿 (𝑥 − 𝑦
𝑘
) �̇�

𝑘
(𝑡, 𝑥)

𝑢 (0, 𝑥) = V
0
(𝑥) ,

𝜕𝑢

𝜕𝑡
(0, 𝑥) = V

0
(𝑥) .

(21)
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In the one-dimensional case, the associated fundamental
solution (Green’s function) of the wave operator 𝜕

2
/𝜕𝑡

2
−

𝜕
2
/𝜕𝑥 is

𝐺 (𝑡, 𝑥, 𝑦) :=
1

2
𝐼
{|𝑥−𝑦|≤𝑡}

. (22)

First, we give the following definition about the solution.

Definition 3. A random field {𝑢(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ R} is called
a solution to the stochastic wave equation if it satisfies the
following identity:

𝑢 (𝑡, 𝑥) =

𝑁

∑

𝑘=1

∫

𝑡

0

∫
R

𝐺 (𝑡 − 𝑠, 𝑥 − 𝑧)

× 𝜎
𝑘
(𝑠, 𝑧, 𝑢 (𝑠, 𝑧)) 𝛿 (𝑧 − 𝑦

𝑘
) 𝐵

𝑘
(d𝑠, d𝑧)

+ ∫

𝑡

0

∫
R

𝐺 (𝑡 − 𝑠, 𝑥 − 𝑧) 𝑏 (𝑠, 𝑧, 𝑢 (𝑠, 𝑧)) d𝑠 d𝑧

+
d
d𝑡

∫
R

𝐺 (𝑡, 𝑥 − 𝑧) V
0
(𝑧) d𝑧

+ ∫
R

𝐺 (𝑡, 𝑥 − 𝑦) V
0
(𝑧) d𝑧.

(23)

Theorem 4. Assume that 𝑏(𝑡, 𝑥, 𝑢) and 𝜎
𝑘
(𝑡, 𝑥, 𝑢), 𝑘 =

0, 1, . . . , 𝑁, satisfy the global Lipschitz condition and the linear
growth condition in 𝑢 uniformly in 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ R.
Assume that V

0
is bounded continuous functions in R and

V
0
is bounded continuously differentiable functions in R with

bounded derivative. Then, there is a unique solution to (21).

Proof. Since the solution of wave equation has the past-light
cone property (see [6], p. 63), we can study the solution on
a bounded domain. To simplify the presentation, we assume
𝑏 = 0.

Let us define B
𝑝
as the set of all mappings 𝑢 : [0, 𝑇] ×R×

Ω → R such that 𝑢(𝑡, 𝑥, 𝜔) is continuous in (𝑡, 𝑥) ∈ [0, 𝑇]×R

for almost all 𝜔 ∈ Ω and

sup
0≤𝑡≤𝑇,𝑥∈R

E|𝑢 (𝑡, 𝑥)|
𝑝
< ∞. (24)

It is clear that B
𝑝
is a Banach space with the norm

‖𝑢‖B
𝑝

:= sup
0≤𝑡≤𝑇,𝑥∈R

(E|𝑢 (𝑡, 𝑥)|
𝑝
)

1/𝑝

. (25)

Wewill prove the existence and uniqueness of the solutions in
B = ∩

𝑝≥2
B

𝑝
to (21) by the Picard iteration. We define {𝑢

𝑖
}
∞

𝑖=0

recursively by the following:

𝑢
𝑖
(𝑡, 𝑥) = 𝑇 (𝑢

𝑖−1
) (𝑡, 𝑥)

:=

𝑁

∑

𝑘=1

∫

𝑡

0

∫
R

𝐺 (𝑡 − 𝑠, 𝑥 − 𝑧)

× 𝜎
𝑘
(𝑠, 𝑧, 𝑢

𝑖−1
(𝑠, 𝑧))

× 𝛿 (𝑧 − 𝑦
𝑘
) 𝐵

𝑘
(d𝑠, d𝑧)

+
d
d𝑡

∫
R

𝐺 (𝑡, 𝑥 − 𝑧) V
0
(𝑧) d𝑧

+ ∫
R

𝐺 (𝑡, 𝑥 − 𝑦) V
0
(𝑧) d𝑧

(26)

for any (𝑡, 𝑥) ∈ [0, 𝑇] ×R. We also define 𝑢
0
= 0.

First, we show the well-posedness of the above stochastic
integral for every 𝑖 = 1, 2, . . ..

For any 𝑝 > 1, let 𝑢
𝑖−1

∈ B
2𝑝
. By the Burkholder inequal-

ity, we have

E
𝑢𝑖

(𝑡, 𝑥 + ℎ) − 𝑢
𝑖
(𝑡, 𝑥)


2𝑝

⩽ 𝐶

𝑁

∑

𝑘=1

𝑟
𝑝
(𝑦

𝑘
, 𝑦

𝑘
)E

× {∫

𝑡

0

[𝐺 (𝑡 − 𝑠, 𝑥 + ℎ − 𝑦
𝑘
)

−𝐺 (𝑡 − 𝑠, 𝑥 − 𝑦
𝑘
)]

2

×
𝜎𝑘

(𝑠, 𝑦
𝑘
, 𝑢

𝑖−1
(𝑠, 𝑦

𝑘
))

2d𝑠}

𝑝

=: 𝐶

𝑁

∑

𝑘=1

𝐼
1𝑘
.

(27)

By the Hölder inequality, we have

𝐼
1𝑘

⩽ 𝐶[∫

𝑡

0

𝐺 (𝑡 − 𝑠, 𝑥 + ℎ − 𝑦
𝑘
)

− 𝐺 (𝑡 − 𝑠, 𝑥 − 𝑦
𝑘
)

𝑞d𝑠]

𝑝/𝑞

× ∫

𝑡

0

𝐺 (𝑡 − 𝑠, 𝑥 + ℎ − 𝑦
𝑘
) − 𝐺 (𝑡 − 𝑠, 𝑥 − 𝑦

𝑘
)

𝑝

× E
𝜎𝑘

(𝑠, 𝑦
𝑘
, 𝑢

𝑖−1
(𝑠, 𝑦

𝑘
))

2𝑝d𝑠

⩽ 𝐶 [∫

𝑡

0

𝐺 (𝑡 − 𝑠, 𝑥 + ℎ − 𝑦
𝑘
)

−𝐺 (𝑡 − 𝑠, 𝑥 − 𝑦
𝑘
)

𝑞d𝑠]

𝑝/𝑞

× ∫

𝑡

0

𝐺 (𝑡 − 𝑠, 𝑥 + ℎ − 𝑦
𝑘
) − 𝐺 (𝑡 − 𝑠, 𝑥 − 𝑦

𝑘
)

𝑝d𝑠

× [1 + sup
𝑠,𝑦
𝑘

E
𝑢𝑖−1

(𝑠, 𝑦
𝑘
)

2𝑝

]

⩽ 𝐶|ℎ|
1+𝑝/𝑞

,

(28)

where 𝑞 = 𝑝/(𝑝 − 1) is the conjugate number of 𝑝.
In the similar way, we can show E|𝑢(𝑡, 𝑥)−𝑢(𝑡+ 𝑠, 𝑥)|

2𝑝
⩽

𝐶|𝑠|
1+𝑝/𝑞 for any (𝑡, 𝑥) ∈ [0, 𝑇]×R.Thus by inductionwe have

E
𝑢𝑖

(𝑡 + 𝑠, 𝑥 + ℎ) − 𝑢
𝑖
(𝑡, 𝑥)


2𝑝

⩽ 𝐶 (|𝑠|
𝑝
+ |ℎ|

𝑝
) , (29)
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for all 𝑖 ∈ N and (𝑡, 𝑥) ∈ [0, 𝑇] × R. Let C
𝛼
denote the set

of all functions of 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ R, which are Hölder
continuous on both 𝑡 and 𝑥 on any compact subinterval of
R. Hence, by Kolmogorov’s theorem, we have, for any (fixed)
0 < 𝛼 < 1/2, 𝑢

𝑖
∈ C

𝛼
for every 𝑖 ∈ N. It is easy to check

E|𝑢(𝑡, 𝑥)|2𝑝
⩽ 𝐶. Now, we verify easily

∫

𝑡

0

E[𝐺 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝜎 (𝑠, 𝑦, 𝑢
𝑖
(𝑠, 𝑦))]

2d𝑠 ⩽ 𝐶. (30)

Moreover,

∫

𝑡

0

E [𝐺 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝜎 (𝑠, 𝑦, 𝑢
𝑖
(𝑠, 𝑦))

− 𝐺 (𝑡 − 𝑠, 𝑥 − 𝑧) 𝜎 (𝑠, 𝑧 (𝑢
𝑖
(𝑠, 𝑧)))]

2d𝑠

⩽ ∫

𝑡

0

E [
𝐺 (𝑡 − 𝑠, 𝑥 − 𝑦)

− 𝐺 (𝑡 − 𝑠, 𝑥 − 𝑧)|
2𝜎 (𝑠, 𝑦, 𝑢

𝑖
(𝑠, 𝑦))


2

+ 𝐺
2
(𝑡 − 𝑠, 𝑥 − 𝑧)

× (𝜎 (𝑠, 𝑦, 𝑢
𝑖
(𝑠, 𝑦))

− 𝜎(𝑠, 𝑧, 𝑢
𝑖
(𝑠, 𝑧)))

2

] d𝑠 ⩽ 𝐶
𝑦 − 𝑧



(31)

for any 𝑥 ∈ R. Thus, 𝐺(𝑡 − 𝑠, 𝑥 − 𝑦)𝜎(𝑠, 𝑦, 𝑢
𝑖
(𝑠, 𝑥)), 𝑖 =

1, 2, . . . , 𝑁, satisfy conditions (14). Therefore, (26) is well-
defined for all 𝑖 ∈ N.

Next, we show that {𝑢
𝑖
, 𝑖 = 1, 2, . . .} is a Cauchy sequence

in B
𝑝
for any 𝑝. For 𝑛,𝑚 ∈ N, by Burkholder’s inequality and

Jensen’s inequality, we have

E
𝑢𝑛

(𝑡, 𝑥) − 𝑢
𝑚
(𝑡, 𝑥)


2𝑝

⩽ 𝐶

𝑁

∑

𝑘=1

𝑟
𝑝
(𝑦

𝑘
, 𝑦

𝑘
)E{∫

𝑡

0

𝐺
2
(𝑡 − 𝑠, 𝑥 − 𝑦

𝑘
)

× (𝜎
𝑘
(𝑠, 𝑦

𝑘
, 𝑢

𝑛−1
(𝑠, 𝑦

𝑘
))

− 𝜎
𝑘
(𝑠, 𝑦

𝑘
, 𝑢

𝑚−1
(𝑠, 𝑦

𝑘
)))

2d𝑠}
𝑝

⩽ 𝐶

𝑁

∑

𝑘=1

𝑟
𝑝
(𝑦

𝑘
, 𝑦

𝑘
)

× ∫

𝑡

0

E
𝑢𝑛−1

(𝑠, 𝑦
𝑘
) − 𝑢

𝑚−1
(𝑠, 𝑦

𝑘
)

2𝑝d𝑠.

(32)

Let us denote by B
𝑝,𝑡

the set of all mappings 𝑢 : [0, 𝑡] × R ×

Ω → R such that 𝑢(𝑠, 𝑥, 𝜔) is continuous in (𝑠, 𝑥) ∈ [0, 𝑡]×R

for almost all 𝜔 ∈ Ω and

sup
0≤𝑡≤𝑇,𝑥∈R

E|𝑢 (𝑡, 𝑥)|
𝑝
< ∞. (33)

We also denote

‖𝑢‖B
𝑝,𝑡

:= sup
0≤𝑠≤𝑡,𝑥∈R

(E|𝑢 (𝑠, 𝑥)|
𝑝
)

1/𝑝

. (34)

Thus, (32) can be written as

𝑢𝑛
− 𝑢

𝑚


2𝑝

B
2𝑝

𝑝,𝑡

≤ 𝐶∫

𝑡

0

𝑢𝑛
− 𝑢

𝑚


2𝑝

B
2𝑝

𝑝,𝑠

d𝑠. (35)

Now, a routine argument shows that 𝑢
𝑛
is a Cauchy sequence

in B
2𝑝
. The limit of this sequence is denoted by 𝑢.

Letting 𝑖 → ∞ in (29), we have

E|𝑢 (𝑡 + 𝑠, 𝑥 + ℎ) − 𝑢 (𝑡, 𝑥)|
2𝑝

⩽ 𝐶 (|𝑠|
𝑝
+ |ℎ|

𝑝
) (36)

and sup
𝑥∈RE|𝑢(𝑡, 𝑥)|

2𝑝
⩽ 𝐶. This implies that the stochastic

integral ∫𝑡

0
𝐺(𝑡 − 𝑠, 𝑥 −𝑦)𝜎

𝑘
(𝑠, 𝑦, (𝑢(𝑠, 𝑦)))𝛿(𝑦−𝑦

𝑘
)𝐵

𝑘
(d𝑠, d𝑦)

is well-defined. It is easy to see

sup
0≤𝑡≤𝑇,𝑥∈R

E

∫

𝑡

0

𝐺 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝛿 (𝑦 − 𝑦
𝑘
)

× (𝜎
𝑘
(𝑠, 𝑦, (𝑢

𝑖
(𝑠, 𝑦))) −𝜎

𝑘
(𝑠, 𝑦, (𝑢 (𝑠, 𝑦))))

×𝐵
𝑘
(d𝑠, d𝑦)



2𝑝

→ 0

(37)

as 𝑖 → ∞. Now, letting 𝑖 tend to infinity on both sides of (26),
we see that 𝑢 satisfies (23). The uniqueness can be proved in
similar way.Thus, we complete the proof of this theorem.

3. Some Preliminaries for Estimation of the
Point Sources

To simplify the presentation of estimation method, we
assume 𝜎

0
(𝑡, 𝑥, 𝑢) = 0 in (21). We also assume that the

noises are space independent. Without loss of generality, we
also assume V

0
(𝑥) = V

0
(𝑥) = 0. Moreover, we assume that

𝜎
𝑘
(𝑡, 𝑥, 𝑢) = 𝜌

𝑘
. This means we will consider the following

stochastic wave equation:

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑡2
−

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑥2
=

𝑁

∑

𝑘=1

𝜌
𝑘
𝛿 (𝑥 − 𝑦

𝑘
) �̇�

𝑘
(𝑡)

𝑢 (0, 𝑥) = 0,
𝜕𝑢

𝜕𝑡
(0, 𝑥) = 0.

(38)

From the Duhamel principle, we know that the solution
of one-dimensional stochastic wave equations (38) is given by

𝑢 (𝑡, 𝑥) = ∫

𝑡

0

∫
𝑅

1
{|𝑥−𝑦|≤𝑡−𝑠}

(𝑦, 𝑠)

𝑁

∑

𝑘=1

𝜌
𝑘
𝛿 (𝑦 − 𝑦

𝑘
) d𝑦 d𝐵𝑘

𝑠

=

𝑁

∑

𝑘=1

∫

𝑡

0

∫
𝑅

𝜌
𝑘
1

{|𝑥−𝑦|≤𝑡−𝑠}
(𝑦, 𝑠) 𝛿 (𝑦 − 𝑦

𝑘
) d𝑦 d𝐵𝑖

𝑠
.

(39)

In the remainder of this paper, we assume that the
parameters 𝑁, 𝑦

1
, . . . , 𝑦

𝑁
𝜌

1
, . . . , 𝜌

𝑁
are unknown. However,

at some fixed location 𝑥 ∈ R, we can observe the sound wave
signal {𝑢(𝑡, 𝑥), 0 < 𝑡 ⩽ 𝑇} continuously over the time interval
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[0, 𝑇]. We would like to use {𝑢(𝑡, 𝑥), 0 < 𝑡 ⩽ 𝑇} to identify𝑁,
𝑦

𝑘
, and 𝜌

𝑘
, 𝑘 = 1, 2, . . . , 𝑁. If one can observe the soundwave

signals at some other locations 𝑥
1
, . . . , 𝑥

𝑚
, we can use the

similar approach to (better) estimate𝑁,𝑦
1
, . . . , 𝑦

𝑁
𝜌

1
, . . . , 𝜌

𝑁

from all the observations {𝑢(𝑡, 𝑥
1
), . . . , 𝑢(𝑡, 𝑥

𝑚
), 0 < 𝑡 ⩽ 𝑇}.

Put 𝛼
𝑘

= |𝑦
𝑘
− 𝑥|, 𝑘 = 1, 2, . . . , 𝑁. We arrange the real

positive numbers 𝛼
𝑘
in increasing order. For example, we can

assume 𝛼
1
< 𝛼

2
< ⋅ ⋅ ⋅ < 𝛼

𝑁
.

If 𝑡 < 𝛼
1
, then, for any 𝑘 and 𝑠 ≤ 𝑡, 𝛼

1
= |𝑦

𝑘
− 𝑥| ≤ 𝑡 − 𝑠

cannot hold, and hence 𝑢(𝑡, 𝑥) = 0.
If 𝛼

1
≤ 𝑡 < 𝛼

2
and 0 < 𝑠 < 𝑡 − |𝑦

1
− 𝑥| = 𝑡 − 𝛼

1
, then

𝑦
1
∈ {𝑦, |𝑦 − 𝑥| ≤ 𝑡 − 𝑠}; hence

𝑢 (𝑡, 𝑥) = ∫

𝑡−𝛼
1

0

𝜌
1
d𝐵1

𝑠
= 𝜌

1
𝐵

1

𝑡−𝛼
1

. (40)

Similarly, we have, for 𝛼
2
≤ 𝑡 < 𝛼

3
,

𝑢 (𝑡, 𝑥) = 𝜌
1
𝐵

1

𝑡−𝛼
1

+ 𝜌
2
𝐵

2

𝑡−𝛼
2

;

...
(41)

for 𝛼
𝑁−1

≤ 𝑡 < 𝛼
𝑁
,

𝑢 (𝑡, 𝑥) = 𝜌
1
𝐵

1

𝑡−𝛼
1

+ 𝜌
2
𝐵

2

𝑡−𝛼
2

+ ⋅ ⋅ ⋅ + 𝜌
𝑁−1

𝐵
𝑁−1

𝑡−𝛼
𝑁−1

; (42)

and, for 𝛼
𝑁

≤ 𝑡,

𝑢 (𝑡, 𝑥) = 𝜌
1
𝐵

1

𝑡−𝛼
1

+ 𝜌
2
𝐵

2

𝑡−𝛼
2

+ ⋅ ⋅ ⋅ + 𝜌
𝑁
𝐵

𝑁

𝑡−𝛼
𝑁

. (43)

Now, for any process 𝑍
𝑡
, we define its quadratic variation

process (if it exists) as

[𝑍, 𝑍]𝑡
= [𝑍]𝑡

= lim
|𝜋| → 0

𝑛−1

∑

𝑗=0

(𝑍
𝑡
𝑗+1

− 𝑍
𝑡
𝑗

)
2

, (44)

where 𝜋 : 0 = 𝑡
0

< 𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑛

= 𝑡 is a partition
of the interval [0, 𝑡] and |𝜋| = max

0≤𝑗≤𝑛−1
(𝑡

𝑗+1
− 𝑡

𝑗
). For 𝑑

dimensional Brownian motion 𝐵 = {𝐵
1
, . . . , 𝐵

𝑑
}, we know

that [𝐵
𝑖
, 𝐵

𝑗
]
𝑡
= 𝑡𝛿

𝑖𝑗
for 𝑖, 𝑗 = 1, 2, . . . , 𝑑 and any 𝑡 > 0, where

𝛿
𝑖𝑗
= 1, if 𝑖 = 𝑗, 0, otherwise.
The quadratic variation process of 𝑢(𝑡, 𝑥) is given by

ℎ (𝑡)
Δ

= [𝑢 (⋅, 𝑥)]𝑡
=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

0, 𝑡 < 𝛼
1
;

𝜌
1
(𝑡 − 𝛼

1
) , 𝛼

1
≤ 𝑡 < 𝛼

2
;

...
...

𝑁−1

∑

𝑘=1

𝜌
𝑘
(𝑡 − 𝛼

𝑘
) 𝛼

𝑁−1
≤ 𝑡 < 𝛼

𝑁
;

𝑁

∑

𝑘=1

𝜌
𝑘
(𝑡 − 𝛼

𝑘
) , 𝛼

𝑁
≤ 𝑡.

(45)

Since we can observe {𝑢(𝑡, 𝑥)} at the space location 𝑥

continuously from the time interval [0, 𝑇], we know that
the quadratic variation process ℎ(𝑡), 0 ≤ 𝑡 ≤ 𝑇 is also an
observable.

Let 𝑇 be large enough; for example, 𝑇 > 𝛼
𝑁
. We denote

𝛼
0

= 0, 𝛼
𝑁+1

= 𝑇. On [0, 𝑇], ℎ(𝑡) has its second-order
distributional derivative by

ℎ

(𝑡) =

𝑁

∑

𝑘=1

𝜌
𝑘
𝛿 (𝑡 − 𝛼

𝑘
) . (46)

For 𝑔 ∈ 𝐶
2
[0, 𝑇] with 𝑔(0) = 0, we can define linear operator

R(𝑔), which is called the reciprocity gap functional as follows:

R (𝑔)
Δ

= ∫

𝑇

0

ℎ (𝑡) 𝑔

(𝑡) d𝑡 − ℎ (𝑇) 𝑔


(𝑇) + ℎ


(𝑇) 𝑔 (𝑇) .

(47)

By the integration by parts formula, we have

R (𝑔) =

𝑁

∑

𝑘=1

𝜌
𝑘
𝑔 (𝛼

𝑘
) . (48)

For any function independent of the unknown parameters,
we know from the definition that R(𝑔) is also independent
of the unknown parameters. Namely,R(𝑔) is observable.

To obtain our estimators for the parameters, we take

𝑔
𝑛
(𝑡) = (sin 𝜋𝑡

2𝑇
)

𝑛

, 𝑛 = 1, 2, . . . . (49)

Then,

R (𝑔
𝑛
) =

𝑁

∑

𝑘=1

𝜌
𝑘
(sin

𝜋𝛼
𝑘

2𝑇
)

𝑛

=

𝑁

∑

𝑘=1

𝜌
𝑘
𝑆

𝑛

𝑘
, (50)

where 𝑆
𝑘
= sin(𝜋𝛼

𝑘
/2𝑇).

Clearly, since {R(𝑔
𝑛
), 𝑛 = 1, 2, . . .} are constructed from

𝑢(𝑡, 𝑥), we see that they are observable. Furthermore, once
we know 𝑆

𝑘
, then we can get 𝛼

𝑘
from the identity 𝛼

𝑘
=

(2𝑇/𝜋) arcsin(𝑆
𝑘
).

The 𝑆
𝑘
can be obtained fromR(𝑔

𝑛
) by the following way.

We let 𝐻
𝜇
(𝜇 = 0, 1) be the 𝑁 × 𝑁 matrices of the following

forms:

𝐻
𝜇
= (

R (𝑔
𝜇
) R (𝑔

𝜇+1
) ⋅ ⋅ ⋅ R (𝑔

𝜇+𝑁−1
)

R (𝑔
𝜇+1

) R (𝑔
𝜇+2

) ⋅ ⋅ ⋅ R (𝑔
𝜇+𝑁

)

...
...

...
...

R (𝑔
𝜇+𝑁−1

) R (𝑔
𝜇+𝑁

) ⋅ ⋅ ⋅ R (𝑔
𝜇+2𝑁−2

)

) .

(51)

The following result is from [7, 8]. For more details, see
[7, 8] and references therein.

Theorem 5. Let 𝐻
𝜇
(𝜇 = 0, 1) be defined above; then

𝑆
1
, 𝑆

2
, . . . , 𝑆

𝑁
are the eigenvalues of Hermite matrix 𝐻

−1

0
𝐻

1
.

Proof. First, we will introduce some intermediate quantities
as follows. For 𝑗 ∈ 𝑁, we define

𝐴
𝑗
= (

(𝑆
1
)

𝑗

(𝑆
2
)

𝑗

⋅ ⋅ ⋅ (𝑆
𝑁
)

𝑗

(𝑆
1
)

𝑗+1

(𝑆
2
)

𝑗+1

⋅ ⋅ ⋅ (𝑆
𝑁
)

𝑗+1

...
... ⋅ ⋅ ⋅

...
(𝑆

1
)

𝑁+𝑗−1

(𝑆
2
)

𝑁+𝑗−1

⋅ ⋅ ⋅ (𝑆
𝑁
)

𝑁+𝑗−1

)

𝑁×𝑁

. (52)
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We denote the diagonal matrix

𝐷 = diag (𝑆
1
, 𝑆

2
, . . . , 𝑆

𝑁
) . (53)

We define the vectors

𝜇
𝑗
= (

R (𝑔
𝑗
)

R (𝑔
𝑗+1

)

...
R (𝑔

𝑁+𝑗−1
)

)

𝑁×1

(54)

and vector 𝜌 = (𝜌
1
, 𝜌

2
, . . . , 𝜌

𝑁
)
𝑇.

It is obvious that, for all 𝑗 ⩾ 0, we have

𝜇
𝑗
= 𝐴

𝑗
𝜌, 𝐴

𝑗+1
= 𝐴

𝑗
𝐷. (55)

Thus, for all 𝑗, we have

𝜇
𝑗+1

= 𝐴
0
𝐷

𝑗+1
𝜌 = 𝐴

0
𝐷𝐴

−1

0
𝐴

0
𝐷

𝑗
𝜌 = 𝐴

0
𝐷𝐴

−1

0
𝜇

𝑗
. (56)

Denote Γ = 𝐴
0
𝐷𝐴

−1

0
. Then, 𝜇

𝑗+1
= Γ𝜇

𝑗
and the matrix Γ

has the 𝑆
𝑘
as its eigenvalue corresponding to the eigenvector

𝛽
𝑘
= (1, 𝑆

1

𝑘
, . . . , 𝑆

𝑁−1

𝑘
)
𝑇 for 𝑘 = 1, 2, . . . , 𝑁.

On the other hand, we have

𝐻
1
= (𝜇

1
, 𝜇

2
, . . . , 𝜇

𝑁
) = Γ (𝜇

0
, 𝜇

1
, . . . , 𝜇

𝑁−1
) = Γ𝐻

0
. (57)

Because 𝐴
0
is a Vandermonde matrix and 𝑆

1
, 𝑆

2
, . . . , 𝑆

𝑁

are assumed to be distinct, we also can show that vectors
𝜇

0
, 𝜇

1
, . . . , 𝜇

𝑁−1
are independent, which means that 𝐻

0
is

invertible. Hence, Γ = 𝐻
1
𝐻

−1

0
. The conclusion follows.

Remark 6. Let𝑀 > 𝑁 be integers. Defining𝜇
𝑗
(𝑀) = (R(𝑔

𝑗
),

R(𝑔
𝑗+1

), . . . ,R(𝑔
𝑀+𝑗−1

))
𝑇 (𝑇denotes the transpose), one can

see that the vectors𝜇
0
(𝑀), 𝜇

1
(𝑀), . . . , 𝜇

𝑀−1
(𝑀) are images of

𝜌,𝐷𝜌, . . . , 𝐷
𝑀−1

𝜌 ∈ 𝑅
𝑁 by the action of the matrix

𝐴
0
(𝑀) = (

1 1 ⋅ ⋅ ⋅ 1

(𝑆
1
)
1

(𝑆
2
)
1

⋅ ⋅ ⋅ (𝑆
𝑁
)
1

...
... ⋅ ⋅ ⋅

...
(𝑆

1
)
𝑀−1

(𝑆
2
)
𝑀−1

⋅ ⋅ ⋅ (𝑆
𝑁
)
𝑀−1

)

𝑀×𝑁

, (58)

from which and from the independence of the vectors
𝜇

0
(𝑀), 𝜇

1
(𝑀), . . . , 𝜇

𝑀−1
(𝑀) one can deduce that the deter-

minant of matrix (𝜇
0
, 𝜇

1
, . . . , 𝜇

𝑀−1
) is equal to zero. For more

details, see [7].

Remark 7. One can find, from the proof, that vector 𝜌 is the
solution of linear equations 𝜇

0
= 𝐴

0
𝜌.

4. Estimations for Point Sources from Discrete
Time Observations

By Theorem 5, we know that the parameters we want to
estimate are contained in the eigenvalues of Hermite matrix
𝐻

−1

0
𝐻

1
.

We assume in this section that the wave signals are
observed at the location 𝑥 ∈ R but at discrete time instants

0 = 𝑡
0
< 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑚
= 𝑇. We denote Δ = 𝑡

𝑗+1
− 𝑡

𝑗
(𝑗 =

0, 1, . . . , 𝑚 − 1).
We define the approximation ℎ

Δ
of the quadratic varia-

tions ℎ of solution process 𝑢(𝑡, 𝑥) for any Δ > 0. Assume that
there are integers 𝑙

1
, 𝑙

2
, . . . , 𝑙

𝑁
such that 𝑡

𝑙
𝑗

⩽ 𝛼
𝑗
< 𝑡

𝑙
𝑗
+1

for all
𝑗 = 1, 2, . . . , 𝑁. For any 0 < 𝑡 < 𝑇, since there is an integer 𝑗

𝑡

such that 𝑡
𝑗
𝑡

⩽ 𝑡 < 𝑡
𝑗
𝑡
+1
, one defines

ℎ
Δ
(𝑡)

Δ

=

𝑗
𝑡

∑

𝑘=1

𝑢 (𝑡
𝑘
, 𝑥) − 𝑢 (𝑡

𝑘−1
, 𝑥)


2

. (59)

This is also an approximation of the quadratic variations pro-
cess ℎ(𝑡) of solution process 𝑢(𝑡, 𝑥) based on the observation
time instants 0 = 𝑡

0
< 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑚
= 𝑇. We know that

for 𝑡 fixed ℎ
Δ
(𝑡)

𝐿
2

→ 𝑗𝑡 − 𝛼
1
− 𝛼

2
− ⋅ ⋅ ⋅ − 𝛼

𝑗
as Δ → 0 with

𝛼
𝑗
⩽ 𝑡 < 𝛼

𝑗+1
. In fact, we can show that convergence holds in

the almost sure sense (see Lemma 10).
To use ℎ

Δ
(𝑡) to obtain estimators of the parameters, we

compute the following. For any twice differentiable function
𝑔, by Abel sum formula, we have

∫

𝑇

0

ℎ
Δ
(𝑡) 𝑔


(𝑡) d𝑡 = ℎ

Δ
(𝑇) 𝑔


(𝑇)

− ∫

𝑇

0

𝑔

(𝑡) dℎ

Δ
(𝑡) = ℎ

Δ
(𝑇) 𝑔


(𝑇)

−

𝑚

∑

𝑖=1

𝑔

(𝑡

𝑖
)
𝑢 (𝑡

𝑖
, 𝑥) − 𝑢 (𝑡

𝑖−1
, 𝑥)


2

= ℎ
Δ
(𝑇) 𝑔


(𝑇) −


𝑢 (𝑇, 𝑥) − 𝑢 (𝑡

𝑀
Δ

−1
, 𝑥)



2

×

𝑚

∑

𝑖=1

𝑔

(𝑡

𝑖
) +

𝑚−1

∑

𝑖=1

(𝑍
𝑖+1

− 𝑍
𝑖
)

𝑖

∑

𝑘=1

𝑔

(𝑡

𝑘
) ,

(60)

where𝑍
𝑖
= |𝑢(𝑡

𝑖
, 𝑥)−𝑢(𝑡

𝑖−1
, 𝑥)|

2, 𝑖 = 1, 2, . . . , 𝑚.Thus, we can
define

R
Δ
(𝑔)

Δ

= ∫

𝑇

0

ℎ
Δ
(𝑡) Δ𝑔 (𝑡) d𝑡 − ℎ

Δ
(𝑇) 𝑔


(𝑇)

+

𝑢 (𝑇, 𝑥) − 𝑢 (𝑡

𝑀
Δ

−1
, 𝑥)



2
𝑚

∑

𝑖=1

𝑔

(𝑡

𝑖
) .

(61)

For any nonnegative integer 𝜇, we introduce

𝐻
Δ,𝜇,𝑚

= (

R
Δ
(𝑔

𝜇
) R

Δ
(𝑔

𝜇+1
) ⋅ ⋅ ⋅ R

Δ
(𝑔

𝜇+𝑚−1
)

R
Δ
(𝑔

𝜇+1
) R

Δ
(𝑔

𝜇+2
) ⋅ ⋅ ⋅ R

Δ
(𝑔

𝜇+𝑚
)

...
...

...
...

R
Δ
(𝑔

𝜇+𝑚−1
) R

Δ
(𝑔

𝜇+𝑚
) ⋅ ⋅ ⋅ R

Δ
(𝑔

𝜇+2𝑚−2
)

) .

(62)
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First, we estimate 𝑁. It is known that when 𝑚 > 𝑁, 𝐻
0,𝑚

will be degenerate. However, there is a difference between
𝐻

Δ,0,𝑚
and 𝐻

0,𝑚
and there may be also error from the

computer computation. To make the method robust, we
introduce a small number 𝛿. We propose to estimate 𝑁 by
the following estimator:

�̂� = max {𝑚,
det (𝐻Δ,0,𝑚

)
 > 𝛿} . (63)

As in the case of continuous time observation we let
𝑆

↑

Δ,1
, 𝑆

↑

Δ,2
, . . . , 𝑆

↑

Δ,𝑁
be the 𝑛 eigenvalues (in increasing order)

of the Hermite matrix Γ
Δ

= 𝐻
−1

Δ,0
𝐻

Δ,1
. Then, we obtain the

estimations of the locations of the point sources by

�̂�
Δ,𝑘

=
𝑦𝑘

− 𝑥
 = 𝑔

−1

𝑘
(𝑆

↑

Δ,𝑘
) , (64)

for 𝑘 = 1, 2, . . . , 𝑁. The estimation of 𝑦
𝑘
follows from (64).

Note that 𝑔
𝑘
, 𝑘 = 1, 2, . . ., are given by (49).

Similar to 𝐴
0
, 𝜇

0
in Theorem 5, we define

𝐴
0
(Δ) = (

1 1 ⋅ ⋅ ⋅ 1

𝑆
↑

Δ,1
𝑆

↑

Δ,2
⋅ ⋅ ⋅ 𝑆

↑

Δ,𝑁

...
... ⋅ ⋅ ⋅

...
(𝑆

↑

Δ,1
)

𝑁−1

(𝑆
↑

Δ,2
)

𝑁−1

⋅ ⋅ ⋅ (𝑆
↑

Δ,𝑁
)

𝑁−1

)

𝑁×𝑁

,

𝜇
0
(Δ) = (

R
Δ
(𝑔

0
)

R
Δ
(𝑔

1
)

...
R

Δ
(𝑔

𝑁−1
)

)

𝑁×1

.

(65)

As in Remark 7, the estimation 𝜌 = (𝜌
1
, 𝜌

2
, . . . , 𝜌

𝑁
) of the

strength 𝜌 of the point sources can be obtained by solving the
following linear equation:

𝜇
0
(Δ) = 𝐴

0
(Δ) 𝜌. (66)

Now, we can summarize the estimation procedure as
follows.

Step 1. Compute ℎ
Δ
(𝑡) on [0, 𝑇] and R

Δ
(𝑔

𝑖
) according to

transformation (61).

Step 2. Identify the value of𝑁 as the maximum𝑀 such that

det (𝜇
0
(Δ,𝑀) , 𝜇

1
(Δ,𝑀) , . . . , 𝜇

𝑀−1
(Δ,𝑀)) ̸= 0. (67)

Step 3. Compute the eigenvalues 𝑆↑

Δ,𝑘
of matrix𝐻

−1

Δ,0
𝐻

Δ,1
.

Step 4. Compute the intensities by formulae 𝜌(Δ) =

𝐴
−1

0
(Δ)𝜇

0
(Δ).

5. Convergence of Estimations

In this section, we will show that the estimations obtained in
the previous section converge to the true values a.s. as time
space Δ tends to zero.

Theorem 8. For any function 𝑔 ∈ 𝐶
2
([0, 𝑇]) with 𝑔(0) = 0,

we haveR
Δ
(𝑔) converging toR(𝑔) a.s. as Δ → 0.

This will be fulfilled by the following two lemmas.

Lemma 9. For any function 𝑔 ∈ 𝐶([0, 𝑇]), ∫𝑇

0
ℎ

Δ
(𝑡)𝑔(𝑡)𝑑𝑡

converges to ∫
𝑇

0
ℎ(𝑡)𝑔(𝑡)𝑑𝑡 in the sense of 𝐿2 as Δ → 0.

Proof. It is sufficient to show that, for any function 𝑔 ∈

𝐶([0, 𝑇]), ∫𝑇

0
ℎ

Δ
(𝑡)𝑔(𝑡)d𝑡 converges to ∫

𝑇

0
ℎ(𝑡)𝑔(𝑡)d𝑡 in the

sense of 𝐿2 as Δ → 0. By Hölder inequality, one has, for any
function 𝑔 ∈ 𝐶([0, 𝑇]),

E(∫

𝑇

0

ℎ
Δ
(𝑡)𝑔(𝑡)d𝑡 − ∫

𝑇

0

ℎ(𝑡)𝑔(𝑡)d𝑡)
2

⩽ ∫

𝑇

0

E(ℎ
Δ
(𝑡) − ℎ (𝑡))

2d𝑡 × ∫

𝑇

0

𝑔
2
(𝑡) d𝑡

=

𝑁

∑

𝑗=1

∫

𝛼
𝑗+1

𝛼
𝑗

E[ℎ
Δ
(𝑡) − ℎ(𝑡)]

2d𝑡 × ∫

𝑇

0

𝑔
2
(𝑡) d𝑡

= ∫

𝑇

0

𝑔
2
(𝑡) d𝑡

𝑁

∑

𝑗=1

𝐼
𝑗
,

(68)

where

𝐼
𝑗
= ∫

𝑡
𝑙𝑗+1

𝛼
𝑗

E(ℎ
Δ
(𝑡) − ℎ (𝑡))

2d𝑡

+

𝑙
𝑗+1

−1

∑

𝑘=𝑙
𝑗
+1

∫

𝑡
𝑘+1

𝑡
𝑘

E(ℎ
Δ
(𝑡) − ℎ (𝑡))

2d𝑡

+ ∫

𝛼
𝑗+1

𝑡
𝑙𝑗+1

E(ℎ
Δ
(𝑡) − ℎ (𝑡))

2d𝑡.

(69)

For 𝑙
𝑗
+ 1 ⩽ 𝑘 ⩽ 𝑙

𝑗+1
− 1, we have

∫

𝑡
𝑘+1

𝑡
𝑘

E(ℎ
Δ
(𝑡) − ℎ (𝑡))

2d𝑡

= ∫

𝑡
𝑘+1

𝑡
𝑘

E(

𝑘

∑

𝑖=1

𝑢 (𝑡
𝑖
, 𝑥) − 𝑢 (𝑡

𝑖−1
, 𝑥)


2

− (

𝑗

∑

𝑖=1

𝜌
𝑖
(𝑡 − 𝛼

𝑖
)))

2

d𝑡

= ∫

𝑡
𝑘+1

𝑡
𝑘

E(

𝑗−1

∑

𝑠=1

𝑙
𝑠+1

∑

𝑖=𝑙
𝑠
+1

𝑢 (𝑡
𝑖
, 𝑥) − 𝑢 (𝑡

𝑖−1
, 𝑥)


2

+

𝑘

∑

𝑖=𝑙
𝑗
+1

𝑢 (𝑡
𝑖
, 𝑥) − 𝑢 (𝑡

𝑖−1
, 𝑥)


2

− (

𝑗

∑

𝑖=1

𝜌
𝑖
(𝑡 − 𝛼

𝑖
)))

2

d𝑡
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= ∫

𝑡
𝑘+1

𝑡
𝑘

E(

𝑗−1

∑

𝑠=1

(

𝑙
𝑠+1

∑

𝑖=𝑙
𝑠
+2


(𝜌

1
𝐵

1

𝑡
𝑖
−𝛼
1

+ ⋅ ⋅ ⋅ + 𝜌
𝑠
𝐵

𝑠

𝑡
𝑖
−𝛼
𝑠

)

− (𝜌
1
𝐵

1

𝑡
𝑖−1

−𝛼
1

+ ⋅ ⋅ ⋅ + 𝜌
𝑠
𝐵

𝑠

𝑡
𝑖−1

−𝛼
𝑠

)


2

+

(𝜌

1
𝐵

1

𝑡
𝑙𝑠+1

−𝛼
1

+ ⋅ ⋅ ⋅ + 𝜌
𝑠
𝐵

𝑠

𝑡
𝑙𝑠+1

−𝛼
𝑠

)

− (𝜌
1
𝐵

1

𝑡
𝑙𝑠

−𝛼
1

+ ⋅ ⋅ ⋅ + 𝜌
𝑠−1

𝐵
𝑠−1

𝑡
𝑙𝑠

−𝛼
𝑠−1

)


2

)

+ (

𝑘

∑

𝑖=𝑙
𝑗
+2


(𝜌

1
𝐵

1

𝑡
𝑖
−𝛼
1

+ ⋅ ⋅ ⋅ + 𝜌
𝑗
𝐵

𝑗

𝑡
𝑖
−𝛼
𝑗

)

− (𝜌
1
𝐵

1

𝑡
𝑖−1

−𝛼
1

+ ⋅ ⋅ ⋅ + 𝜌
𝑗
𝐵

𝑗

𝑡
𝑖−1

−𝛼
𝑗

)


2

+


(𝜌

1
𝐵

1

𝑡
𝑙𝑗+1

−𝛼
1

+ ⋅ ⋅ ⋅ + 𝜌
𝑗
𝐵

𝑗

𝑡
𝑙𝑗+1

−𝛼
𝑗

)

− (𝜌
1
𝐵

1

𝑡
𝑙𝑗

−𝛼
1

+ ⋅ ⋅ ⋅

+ 𝜌
𝑗−1

𝐵
𝑗−1

𝑡
𝑙𝑗

−𝛼
𝑗−1

)



2

)

− (

𝑗

∑

𝑖=1

𝜌
𝑖
(𝑡 − 𝛼

𝑖
)))

2

d𝑡.

(70)

Let 𝑋 be a standard normal random variable. Denote the
constant E(𝑋2

− 1)
2 by 𝐴 (actually 𝐴 = 2). By the inde-

pendent increments property of Brownian motion and the
independence between 𝐵

𝑘 and 𝐵
𝑙 for 𝑘 ̸= 𝑙, we have

∫

𝑡
𝑘+1

𝑡
𝑘

E(ℎ
Δ
(𝑡) − ℎ (𝑡))

2d𝑡

= 𝐶∫

𝑡
𝑘+1

𝑡
𝑘

(𝐴

𝑗−1

∑

𝑠=1

( (𝑙
𝑠+1

− 𝑙
𝑠
− 1) 𝑠

2
Δ

2

+ ((𝑠 − 1) Δ + 𝑡
𝑙
𝑠
+1

− 𝛼
𝑠
)

2

)

+ 𝐴𝑗
2
Δ

2
(𝑘 − 𝑙

𝑗
− 1)

+ 𝐴((𝑗 − 1)Δ + 𝑡
𝑙
𝑗
+1

− 𝛼
𝑗
)

2

)

+ [ (𝑗𝑡 − 𝛼
1
− ⋅ ⋅ ⋅ − 𝛼

𝑗
)

− (𝑗𝑘Δ − 𝑙
1
Δ − ⋅ ⋅ ⋅ − 𝑙

𝑗
Δ + 𝑡

𝑙
1
+1

−𝛼
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑙
𝑗
+1

− 𝛼
𝑗
)]

2

d𝑡

⩽ 𝐶∫

𝑡
𝑘+1

𝑡
𝑘

(

𝑗−1

∑

𝑠=1

(𝑙
𝑠+1

− 𝑙
𝑠
) 𝑠

2
Δ

2

+ 𝑗
2
Δ

2
(𝑘 − 𝑙

𝑗
) + 9𝑗

2
Δ

2
) d𝑡

= 𝐶Δ
2
+ 𝑜 (Δ

2
) ,

(71)

where the constant 𝐶 depends only on 𝑇, 𝐴, 𝛼
𝑗
, 𝜌

𝑗
(𝑗 =

1, 2, . . . , 𝑁) and 𝑜(𝑥)/𝑥 → 0 as 𝑥 → 0. In the similar
way, we can get the same estimates for the first and last terms
in 𝐼

𝑗
. Since the total number of the terms in 𝐼

𝑗
is less than

((𝛼
𝑗+1

− 𝛼
𝑗
)/Δ) + 2, 𝐼

𝑗
→ 0 as Δ → 0. Hence, we complete

the proof of this lemma.

Lemma 10. For any function 𝑔 ∈ 𝐶([0, 𝑇]), ∫𝑇

0
ℎ

Δ
(𝑡)𝑔(𝑡)𝑑𝑡

converges to ∫
𝑇

0
ℎ(𝑡)𝑔(𝑡)𝑑𝑡 a.s. as Δ → 0.

Proof. By integration by parts, we know

∫

𝑇

0

ℎ
Δ
(𝑡) 𝑔 (𝑡) d𝑡 = 𝐺 (𝑇) ℎ

Δ
(𝑇)

−

𝑁

∑

𝑘=1

𝐺 (𝑡
𝑘
)
𝑢 (𝑡

𝑘
, 𝑥) − 𝑢 (𝑡

𝑘−1
, 𝑥)


2

,

(72)

where 𝐺(𝑡) = ∫
𝑡

0
𝑔(𝑠)d𝑠. Therefore, for any Δ > 0, the

square integrable functional∫𝑇

0
ℎ

Δ
(𝑡)𝑔(𝑡)d𝑡 of𝑁 dimensional

Brownian motion 𝐵 = (𝐵
1
, 𝐵

2
, . . . , 𝐵

𝑁
) belongs to the direct

sum of 𝑅 and the second chaos.
To this end, we define the second quantization operator

Γ(𝛼) (for 0 ≤ 𝛼 ≤ 1) from 𝐿
2 to 𝐿

2 by

Γ (𝛼) 𝐹 =

∞

∑

𝑛=0

𝛼
𝑛
𝐽

𝑛
𝐹, (73)

where 𝐹 ∈ 𝐿
2
(Ω).

Setting 𝑚 = 𝛼
−2

+ 1 ≥ 2, then, by the hypercontractivity
of OU semigroup (see [9, 10]), one has

‖Γ (𝛼) 𝐹‖𝑚
≤ ‖𝐹‖2

. (74)

Letting 𝐹 = ∫
𝑇

0
ℎ

Δ
(𝑡)𝑔(𝑡)d𝑡 − ∫

𝑇

0
ℎ(𝑡)𝑔(𝑡)d𝑡 ∈ Range(𝐽

0
⊕ 𝐽

2
),

we have

Γ (𝛼) 𝐹 = E𝐹 + 𝛼
2
(𝐹 − E𝐹) = (1 − 𝛼

2
)E𝐹 + 𝛼

2
𝐹. (75)

Thus, the hypercontractivity justifies the following form:

𝛼

2
𝐹
𝑚

⩽ ‖𝐹‖2
+

(1 − 𝛼

2
)E𝐹

𝑚

⩽ ‖𝐹‖2
+

(1 − 𝛼

2
)E𝐹

2
⩽ 𝐶Δ

1/2
.

(76)

In the last inequality, we use the facts appearing in the end of
the proof of Lemma 9. Therefore,

E|𝐹|
𝑚

≤ 𝐶(𝑚 − 1)
𝑚
Δ

𝑚/2
. (77)
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Now, we identify the Δ → 0 with 1/𝑛 → 0 as 𝑛 →

0. Denote the set {|𝐹| > 𝑛
−1/8

} by 𝐴
𝑛
, 𝑛 = 1, 2, . . ..

Then, 𝑃(𝐴
𝑛
) ≤ 𝐶/𝑛

𝑚/2. Choose 𝑚 large enough such that
∑

∞

0
𝑃(𝐴

𝑛
) < ∞ holds. Thus, the Borel-Cantelli lemma can

be applied to show 𝐹 = ∫
𝑇

0
ℎ

Δ
(𝑡)𝑔(𝑡)d𝑡 − ∫

𝑇

0
ℎ(𝑡)𝑔(𝑡)d𝑡 → 0

a.s. as Δ tends to zero.

Proof of Theorem 8. As the proof of Lemma 10, we just need
to show that the limit holds in the sense of 𝐿2. Actually, as
Δ → 0, one has


𝑢 (𝑇, 𝑥) − 𝑢 (𝑡

𝑀
Δ

−1
, 𝑥)



2
𝑀
Δ

∑

𝑖=1

𝑔

(𝑡

𝑖
)

= (

𝑢 (𝑇, 𝑥) − 𝑢 (𝑡

𝑀
Δ

−1
, 𝑥)



2

− 𝑁Δ)

×

𝑀
Δ

∑

𝑖=1

𝑔

(𝑡

𝑖
) + 𝑁Δ

𝑀
Δ

∑

𝑖=1

𝑔

(𝑡

𝑖
)

→ 𝑁∫

𝑇

0

𝑔

(𝑡) d𝑡 = 𝑁𝑔 (𝑇) = ℎ


(𝑇) 𝑔 (𝑇) .

(78)

Hence, the result of Theorem 8 is concluded.

SinceWeyl’s perturbation theorem (see [11, 12]) says that

max
𝑘


𝜆

↑

𝑘
(Δ) − 𝜆

↑

𝑘


⩽


𝐻

−1

Δ,0
𝐻

Δ,1
− 𝐻

−1

0
𝐻

1


, (79)

by Theorem 8, we can get the convergence of estimations of
the locations by an obvious way, which is stated as follows.

Theorem 11. For any 𝑘 = 1, 2, . . . , 𝑁, one has 𝑆↑

Δ,𝑘
→ 𝑆

𝑘
a.s.

as Δ → 0.

Next, we will give the convergence of estimators of the
intensities of the point sources.

Theorem 12. Let 𝜌(Δ) = (𝜌
1
(Δ), 𝜌

2
(Δ), . . . , 𝜌

𝑁
(Δ)) be the

solution of linear equations 𝜇
0
(Δ) = 𝐴

0
(Δ)𝜌(Δ); that is,

𝜌(Δ) = 𝐴
−1

0
(Δ)𝜇

0
(Δ).Then, one has 𝜌(Δ) → 𝜌 a.s. asΔ → 0.

Proof. Notice that 𝜌 solves the equation 𝜇
0

= 𝐴
0
𝜌. By

Theorems 8 and 11, one can get the conclusion of this
theorem.
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