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A novel region-based image-fusion framework for compressive imaging (CI) and its implementation scheme are proposed. Unlike
previousworks on conventional image fusion, we consider both compression capability on sensor side and intelligent understanding
of the image contents in the image fusion. Firstly, the compressed sensing theory and normalized cut theory are introduced. Then
region-based image-fusion framework for compressive imaging is proposed and its corresponding fusion scheme is constructed.
Experiment results demonstrate that the proposed schemedelivers superior performance over traditional compressive image-fusion
schemes in terms of both object metrics and visual quality.

1. Introduction

Image fusion is a process of combining information from
multiple images into a single fused image. According to
the development of fusion, image-fusion technologies can
be classified into three hierarchical levels, pixel-level [1, 2],
feature-level [3], and decision-level [4]. Since real-world
objects usually consist of structures at different scales, some
multiresolution representations, such as pyramid [5], gradi-
ent [6], wavelet [7–9], and bidimensional empirical mode
[10], have been proposed and used in pixel-level image fusion.
There are three categories of methods for computing the
weighted coefficient of w

1
(p) at passion p: coefficient-based,

window-based, and region-based [10, 11]. Generally, region-
based image fusion is more intelligent and has better per-
formance over coefficient-based and window-based fusion
schemes.

In recent years, with the rising attention on compres-
sive sensing (CS) theory [12, 13] from the academic and
industrial worlds, the image fusion for compressive sensing
has attracted the attention of many researchers. Compared
with the traditional image fusion which requires the whole
acquisition of the source images, compressive sensing image
fusion does not have any requirement on the source image

samplings. CS ensures that if a signal is sparse on a certain
basis, it can be recovered from a relatively small set of random
linear projections on another basis which is incoherent
with the sparsifying basis. Therefore, with the superiority
in reducing computational and transmission costs, CS has
become a much preferred algorithm for image fusion.

The most presented literatures on CS image fusion
explore the fusion schemes based on samplingmodel and fuse
CS coefficients directly in the fusion schemes [14–26]. There
are different ensembles of CSmatrices defined in previous CS
literature [27–29]. SBHE sampling operator [27] employed
in this paper has very good properties and it can be easily
applied to the optical domain (such as single pixel cameras),
with low requirement on storage space and high computing
speed. In addition, in contrast with the presented CS fusion
literatures, this paper proposed a novel region-based image-
fusion framework, which considers the fusion consistence in
the same regional partition. Therefore, it is more intelligent
for object detection in the fusion result.

Since the multiple image sensors are widely employed
in many fields such as multifocus, military, and medical
imaging, to increase the capabilities of intelligent machines
and systems, it is necessary to explore the adaptabilities
of different fusion algorithms for different scenarios. For
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example, imaging cameras usually have only a finite depth
of field. Only those objects within the depth of field of
the camera are focused, while other objects are blurred.
Therefore, multifocus image fusion [18–20, 30–32] can create
a better description of the scene than any of the individual
focused images. In the infrared (IR) and visible images fusion
scenario [14–16, 33], IR image is sensitive to IR light with
low definition, while visible image is captured with more
details of the scene. Thus, the fusion result of IR and visible
images can deliver a comprehensive representation of both
important objects detected by IR image and environmental
details from visible images. In medical imaging, image fusion
has been widely utilized for diagnosis and treatment [17, 34].
For instance, CT image is sensitive for the shooting of bone
structure, while MRI has better imaging for soft tissue. In
this way, by compositing CT and MRI images, additional
diagnostic information can be obtained [34].

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the background of CS and the normalized
cut theory. In Section 3, the region-based fusion framework
is proposed. The sampling operator, joint regional partition
algorithms, and the fusion schemes are elaborated in this
section. The experimental results and discussion are given in
Section 4. Finally, Section 5 concludes this paper and lists the
contributions.

2. Background

2.1. Compressive Sensing. The protocols of compressive sens-
ing are nonadaptive and parallelizable [12]. They do not
require knowledge of the signal/image acquired in advance,
neither do they attempt any understanding of the underlying
object to guide. Consider a length-𝑁, real valued signal x,
and suppose that it is 𝑘-sparse in a certain basis Ψ such
as an orthonormal wavelet basis, a Fourier basis, or a local
Fourier basis. In terms of matrix notation, the signal x can be
expressed as the decomposition of the basis

x = Ψ𝜃, (1)

where 𝜃 represents a vector of the transform coefficients with
only 𝑘 nonzero components. This implies that the signal
x is sparse on a certain basis, so that the CS theory can
be applied to it. Recent studies show that a signal can be
accurately reconstructed by taking only 𝑀 = 𝑂(𝑘 log𝑁)
linear, nonadaptive measurements if it is sparse on the
orthonormal basis. Measurements can be obtained through
the following linear system:

y = Φx = ΦΨ𝜃, (2)

where y represents the𝑀 × 1 measurement vector and Φ is
an𝑀 ×𝑁measurement matrix which is incoherent with Ψ;
that is,ΦΨ conforms the restricted isometry property (RIP).

Actually, the CS theory consists of two steps. (1) designs
a measurement matrix Φ that is incoherent with the sparsi-
fying basis Ψ to get the measurement vector y. The recent
studies on CS show that, on the fixed sparsifying basis
Ψ, Gaussian or Bernoulli iid matrices offer universal and
optimal performance as measurement matrices but with a

high computational complexity. In [12], a new sampling
operator called scrambled blockHadamard ensemble (SBHE)
is introduced, which is also quite universal but with a lower
complexity. Equation (2) reconstructs the signal x from
the CI measurement y. Since 𝑀 < 𝑁, the recovery of
signal x from y is ill-posed which makes it impossible to
solve the inverse transform from (2) directly. There have
been several reconstruction algorithms proposed in recent
years, such as gradient projection for sparse reconstruction
(GPSR) [35], basis pursuit [36], total variation minimization
[37], orthogonal matching pursuit (OMP) [38], and L1-norm
minimization [39, 40]. In this paper, the original image is
reconstructed with GPSR algorithm [35].

2.2. SBHE Sampling. Scrambled block Hadamard ensemble
(SBHE) [27] is quite universal but with a lower complexity.
In this paper, SBHE sampling is used as the compressive
sampling operator. In the block-based CS, the source images
are first divided into small blocks with size 𝐵 × 𝐵. For
each block, the same sampling operator 𝜙

𝐵
is used as the

measurement matrix. 𝜙
𝐵𝑖

is formed by the partial block
Hadamard transform with its columns randomly permuted
as SBHE [27]. The sampling operator Φ is a block diagonal
matrix of 𝜙

𝐵𝑖
:

𝜙 =
[
[
[

[

𝜙
𝐵1

𝜙
𝐵2

d
𝜙
𝐵𝐼

]
]
]

]

, 𝐼 = ⌊
𝑛

𝐵2
⌋ . (3)

In each block, we apply a linear sampling operator 𝜙
𝐵𝑖
with

SBHE structure, and the number of measurements is𝑚bi. Let
x
𝑖
represent the vectorized signal of the 𝑖th block through

raster scanning; then the corresponding block measurement
output vector can be described as

𝑦
𝑖
= 𝜙
𝐵𝑖
x
𝑖
, 𝑖 = 1, 2, . . . , 𝐼. (4)

At last, we unite the corresponding block measurement
output vector for reconstruction.

2.3. Normalized Cut Method. Image segmentation can be
treated as a problem of graph partitioning. In this paper, the
normalized cut (NCut) [41, 42] method is selected as the
image segmentation method. NCut method was put forward
by Shi and Malik and aimed to solve the clustering and
image segmentation problems. NCut considers the image as
a weighted-graphG = (V,E), in whichV stands for the set of
nodes (the pixels in the image) and E represents the edge set
connecting the nodes. The weight of the edge between node
𝑖 and node 𝑗 is 𝑤(𝑖, 𝑗), indicating the approximation relation
between pixels, and 𝑤(𝑖, 𝑗) = 𝑤(𝑗, 𝑖) ≥ 0.

NCut method divides the nodes of image 𝐺 by partition.
If two node sets,A andB, meet the requirementA∪B = V,A∩
B = 0, the edge connecting these two sets can be removed to
divide the image into two parts. The similarity between set A
and set B is defined as

NCut (A,B) = cut (A,B)
assoc (A,V)

+
cut (A,B)
assoc (B,V)

(5)
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Figure 1: Region-based image-fusion framework for compressive imaging.

in which cut (A,B) is the sum of all the edges’ weights
between A and V:

assoc (A,V) = ∑
𝑖∈A,𝑗∈V

𝑤 (𝑖, 𝑗) ; (6)

assoc (B,V) is the sumof all the edges’ weights betweenB and
V:

assoc (B,V) = ∑
𝑖∈B,𝑗∈V

𝑤 (𝑖, 𝑗) . (7)

The graphG = (V,E) can be partitioned into two disjoint sets
A and B by satisfying the NCut value is minimum.

Since it is quite time-consuming to calculate the eigen-
value and eigenvector of similarity 𝑊, generally we take
the similar Lanczos method to work it out. NCut method’s
calculating complexity is 𝑂(𝑛2𝑚). 𝑁 is the pixel number of
the image, and 𝑚 is the iterative step number the Lanczos
method needs to converge. Thus it can be seen that even
though the image is small, the computation amount is still
large.

In this paper, we accelerate the NCut method by tak-
ing block, 𝐵 × 𝐵 pixel matrix, as the basic node. In the
block-based CS, block is taken as the basic sampling unit.
Correspondingly it is taken as the basic unit in similarity
matrix construction of NCut method. Therefore, in block-
based graph partition, V denotes block, E denotes frontier
set connecting the two blocks, and edge weight between
block
𝑖
and block

𝑗
is 𝑤(𝑖, 𝑗), representing the approximate

relationship between blocks, and 𝑤(𝑖, 𝑗) = 𝑤(𝑗, 𝑖) ≥ 0.

3. Proposed Fusion Framework

3.1. Overview of Region-Based Fusion Framework. The pur-
pose of image fusion is to composite scenes, which con-
tributes a better understanding of the scene than any individ-
ual scene. In multiresolution image-fusion schemes, region-
based image-fusion scheme is more intelligent and has better
performance than pixel-based image fusion [43]. Compared
with pixel-level image fusion and feature-level image fusion,
image fusion based on regions has its own advantages:

enhancing robustness of fusion system and overcoming cer-
tain problems existing in the pixel-level fusion, like sensitivity
to noise, edge blur, and so forth. In CS image fusion, it is
necessary and valuable to explore whether region-based CS
scheme has better performance. In this way, region-based
fusion framework for compressive image is illustrated as in
Figure 1.

Firstly, the source image is compressed through compres-
sive sensing, so as to facilitate the transmission of the sensor.
Meanwhile, source images are segmented by region partition-
ing, with the purpose of getting an intelligent understanding
of the image contents. By combining the regional partition
results of source images, the joint regional partition result is
obtained. In the fusion phase, region-based fusion schemes
are adopted based on joint regional partition, making the
fusion scheme consistent in the same region. At last, inverse
transformation is applied to the coefficients derived from
fusion, and the fused image is obtained eventually.

In the image-fusion scheme, fusionweight coefficients are
calculated by mathematical combinations of image channels.
The calculation methods of fusion weight coefficient are
mainly based on average [44], mean, variance, PCA [19, 45,
46], and mutual information [47]. In Section 3.3, the fusion
scheme based on mutual information (MI) is described
and fusion scheme based on regional mutual information is
proposed.

3.2. Joint Regional Partition. In region-based image fusion,
fusion scheme is conducted based on the same region of
source images. For this reason, it is required that source
images have the unique and the same regional partition result.
Joint regional partition is the partition that combines regional
partition of source images, so that these source images can
deliver the same regional partition result.

Joint regional partition can be treated as the process of
combining label matrices. 𝐿

1
and 𝐿

2
represent partition label

matrix of two images. Joint label matrix is defined as follows:

𝐿 = 𝑁 ∗ 𝐿
1
+ 𝐿
2
. (8)
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Figure 2: (a) Left-focus clock, (b) right-focus clock, (c) regional partition of left-focus clock, (d) regional partition of right-focus clock, and
(e) joint partition of two clocks.

Here, 𝑁 = 𝑁
1
∗ 𝑁
2
, which refers to the number of all

possible combinations of regional partitions. In this way, 𝑁
is the integer big enough to guarantee that different regions
are equipped with different signs. In the dividing matrix S,
if regions of images are the same in corresponding place,
they have the same sign. Those different dividing regions are
granted with new signs.

Here we use NCut as the regional partition method and
use the joint label matrix as the joint regional partition
method in the multifocus scenario, illustrated in Figure 2.
Figures 2(a) and 2(b) described two multifocus clocks.
Figures 2(c) and 2(d) show the block-based partition results
of these two clocks. The joint regional partition is obtained
as shown in Figure 2(e). In this way, source images have the
same regional partition results.

3.3. Region-Based Fusion Schemes. Since the measurement is
the random projections of the signal rather than the simple
pixel value of the source images, it is improper to use the
traditional fusion schemes directly. For example, the max-
abs scheme or the simple mean scheme, both, select some
coefficient of a transform to represent the significance of
the images. However, in CS imaging, the magnitudes of the
random measurements do not have those interpretations.

Imitating the traditional fusion scheme, we adopt a linear
fusion scheme via weighted average on the project mea-
surements and such scheme is performed in a region-wise
manner. Consider

𝑦
𝑏
= 𝑤
1
𝑦
1
+ 𝑤
2
𝑦
2
. (9)

It is supposed that 𝑦
𝑏
is formed as (9), where 𝑦

1
and 𝑦

2
are

the 𝑖th CS region measurement vectors of the two source
images, respectively. Then, the challenge is to find a way to
decide the proper 𝑤

1
and 𝑤

2
to represent the importance

of the source images behind the random measurement. In
this section, fusion scheme based on mutual information is
implemented and fusion scheme based on regional mutual
information is proposed.

3.3.1. Fusion Scheme Based on Mutual Information. In most
presented literature [14–26], the measurements of multiple
input images are fused into composite measurements via
weighted average, in which the weights are calculated based
on entropymetrics of the originalmeasurements.Herewe use
the entropy metrics to measure the amount of information
in the images, which are well-established with information
theory. The most widely used entropy metrics include the
simple entropy 𝐻(𝑦), the joint entropy 𝐻(𝑦

1
, 𝑦
2
), and the
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mutual information 𝐼(𝑦
1
, 𝑦
2
), shown in (10), (11), and (12),

and they have the relationships in (13):

𝐻(𝑦) = −∑
𝑦

𝑝 (𝑦) log𝑃 (𝑦) , (10)

𝐻(𝑦
1
, 𝑦
2
) = −∑

𝑦
1

∑
𝑦
2

𝑃 (𝑦
1
, 𝑦
2
) log𝑃 (𝑦

1
, 𝑦
2
) , (11)

𝐼 (𝑦
1
, 𝑦
2
) = ∑
𝑦
1

∑
𝑦
2

𝑃 (𝑦
1
, 𝑦
2
) log

𝑃 (𝑦
1
, 𝑦
2
)

𝑃 (𝑦
1
) 𝑃 (𝑦

2
)
, (12)

𝐼 (𝑦
1
, 𝑦
2
) = 𝐻 (𝑦

1
) + 𝐻 (𝑦

2
) − 𝐻 (𝑦

1
, 𝑦
2
) . (13)

Intuitively, in the linear weighted average, the set of measure-
ments that containmore information should be assignedwith
a larger weight. Therefore, the following weight assignment
according to the distribution of informationmeasured by the
above entropy metrics is proposed:

𝑤
1
=

𝐻 (𝑦
1
)

𝐻 (𝑦
1
, 𝑦
2
)
−
𝐼 (𝑦
1
, 𝑦
2
)

2𝐻 (𝑦
1
)
⋅
𝐼 (𝑦
1
, 𝑦
2
)

𝐻 (𝑦
1
, 𝑦
2
)
,

𝑤
2
=

𝐻 (𝑦
2
)

𝐻 (𝑦
1
, 𝑦
2
)
−
𝐼 (𝑦
1
, 𝑦
2
)

2𝐻 (𝑦
2
)
⋅
𝐼 (𝑦
1
, 𝑦
2
)

𝐻 (𝑦
1
, 𝑦
2
)
.

(14)

3.3.2. Fusion Scheme Based on Regional Mutual Information.
Different from the traditional CS fusion, a novel region-
based CS image-fusion scheme is constructed. Region-based
mutual information provides more intelligent information
entropy. It is defined that S

1
represents the dividing matrix

of the first image and S
2
represents the dividing matrix of the

second image. Therefore, their joint dividing matrix can be
defined as

S = 𝑁 ∗ S
1
+ S
2
. (15)

In (15), 𝑁 = 𝑁
1
∗ 𝑁
2
, which refers to the number of all

possible combinations of regional partitions. In this way, N
is the integer big enough to guarantee that different regions
are equipped with different signs. In the dividing matrix S,
if regions of images are the same in corresponding place,
they have the same sign. Those different dividing regions are
grantedwith new signs.With the aid of S, weightmatricesW

1

andW
2
are calculated, respectively, as follows:

Wnew
𝑘

(𝑖, 𝑗) =
∑
(𝑚,𝑛)

𝛿 (S (𝑚, 𝑛) − S (𝑖, 𝑗)) ∗W
𝑘
(𝑚, 𝑛)

∑
(𝑚,𝑛)

𝛿 (S (𝑚, 𝑛) − S (𝑖, 𝑗))
.

(16)

In (16), 𝑘 ∈ {1, 2}, 𝛿(𝑥) is the unit impulse function:

𝛿 (𝑥) = {
1, 𝑥 = 0

0, others.
(17)

In the weight matrix Wnew
𝑘

, the same regions have the same
weights.

Table 1:The quantity assessment of fusionmethods for CT andMRI
images.

Methods
Metrics

IE Xydeas Piella
𝑄 𝑄

𝑤
𝑄
𝑒

Avg. 5.8369 0.2720 0.4124 0.5450 0.4354
Mean 6.6259 0.5762 0.5606 0.6710 0.5250
Var. 6.5445 0.5116 0.5437 0.6837 0.5450
PCA 6.6467 0.5870 0.5677 0.6926 0.5696
CS MI 6.4765 0.5250 0.5490 0.6651 0.5126
Proposed 6.3807 0.5195 0.5634 0.7231 0.6275

4. Experimental Results

4.1. Experiment Setup. To assess the fusion quality and adap-
tive capacity for different fusion scenarios, we set up three
groups of image fusion for different application scenarios.
These scenarios are the fusion of CT with MRI, the fusion of
infraredwith visible images, and themultifocus image fusion.

Objective assessments are also included in our exper-
iments. In this paper, IE, Xydeas’s [48], and Piella’s [49]
metrics are used as nonreference objective metrics. Infor-
mation entropy is generally applied to measure the amount
of information. The more information entropy there is,
the better fusion result is obtained. In addition, Xydeas’s
and Piella’s metrics are applied to the assessment of the
salient information transferred from the input images to
the fused images. Piella’s metric takes the image correlation
coefficient, mean luminance, contrast, and edge information
into account in a comprehensivemanner.Thedynamic ranges
of three Piella’s indexes, 𝑄, 𝑄

𝑤
, and 𝑄

𝑒
, are [0 1]. The closer

the values are to 1, the better the fusion performance is
expressed.

4.2. Experiment Result

4.2.1. Application Scenario 1: Medical Image Fusion. Medical
image fusion is a common and valuable fusion scene of image
fusion. Due to the high density resolution, CT image has
excellent performance in the shooting effect of bone structure
and calcified structure. MRI is not ideal for shooting bone
structure but performs well in contrastive resolution of the
soft tissue.Therefore, by compositing these twomodes, image
fusion can reduce information redundancy andmake mutual
information be complementary. It is of important research
value in clinical practice.

We implement CS fusion and regional CS fusion to the
experiment set of CT and MRI images. Experiment results
and objectivemeasurements are given in Figure 3 and Table 1.

In medical image fusion, although PCA scheme has
obtained high performance in objective metric, it generates a
significant block effect in human visual perception. From the
fusion result, it is demonstrated that our proposed method
avoids the blocking effect and has the best performance in
Piella’s metric. It means that salient information from the
inputs is well presented in the fused image.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: (a) CT image, (b) MRI image, (c) fusion result of average scheme, (d) fusion result of mean scheme, (e) fusion result of variance
scheme, (f) fusion result of PCA scheme, (g) fusion result of MI scheme, and (h) fusion result of the proposed method.

Table 2:The quantity assessment of fusionmethods for infrared and
visible light images.

Methods
Metrics

IE Xydeas Piella
𝑄 𝑄

𝑤
𝑄
𝑒

Avg. 6.2244 0.1129 0.4059 0.4718 0.2102
Mean 6.2106 0.1165 0.4030 0.4687 0.2066
Var. 6.2262 0.1174 0.4028 0.4682 0.2052
PCA 6.2297 0.1187 0.4026 0.4685 0.2060
CS MI 6.2168 0.1191 0.4021 0.4678 0.2058
Proposed 6.2875 0.1195 0.4129 0.4799 0.2186

4.2.2. Application Scenario 2: Infrared and Visible Light Image
Fusion. In the military image fusion of infrared and visible
light, infrared light has a strong ability in discovering impor-
tant military targets, while the texture expression ability of
visible light is excellent. Therefore, image fusion not only
embodies the important military targets, but also embodies
the good texture expression ability in the fusion results.

Alsowe implement CS fusion and region-basedCS fusion
to the experiment set of infrared and visible light image.
Experiment results and objective measurements are given in
Figure 4 and Table 2.

From Table 2, it is proved that, in the fusion scenario of
infrared image with visible light image, our proposedmethod
delivers better performance in IE, Xydeas’, and Piella’s metrics
than other five fusion schemes. It is also demonstrated that
the fused image reserved the edge and salient information

Table 3: The quantity assessment of fusion methods for multifocus
images.

Methods
Metrics

IE Xydeas Piella
𝑄 𝑄

𝑤
𝑄
𝑒

Avg. 7.3939 0.4174 0.6133 0.7747 0.4878
Mean 7.3814 0.4200 0.6071 0.7550 0.4648
Var. 7.3818 0.4182 0.6071 0.7552 0.4642
PCA 7.3812 0.4183 0.6068 0.7546 0.4642
CS MI 7.3843 0.4227 0.6085 0.7580 0.4690
Proposed 7.4123 0.4261 0.6124 0.7764 0.4939

from the source images. In addition, comparedwith compres-
sive image fusion, region-based image fusion for compressive
imaging can provide superior fused image in terms of several
quantitative fusion evaluation indexes.

4.2.3. Application Scenario 1: Multifocus Image Fusion. In
photography, due to the limitation of the depth of field of
the camera lens, only objects on the imaging plane can be
focused, while objects that are not on the imaging plane are
vague. Multifocus image fusion is used to fuse images of
different depths of field so that objects on different imaging
planes are all clear in the fusion results.

Also we implement CS fusion and regional CS fusion to
the experiment set of multifocus clock images. Experiment
results and objective measurements are given in Figure 5 and
Table 3.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: (a) Infrared image, (b) visible light image, (c) fusion result of average scheme, (d) fusion result of mean scheme, (e) fusion result
of variance scheme, (f) fusion result of PCA scheme, (g) fusion result of MI scheme, and (h) fusion result of the proposed method.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: (a) Left-focus clock, (b) right-focus clock, (c) fusion result of average scheme, (d) fusion result of mean scheme, (e) fusion result
of variance scheme, (f) fusion result of PCA scheme, (g) fusion result of MI scheme, and (h) fusion result of the proposed method.
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From Table 3, it is also proved that in the fusion scenario
of multifocus images, our proposed method is the best in
terms of both objective assessment and visual perception. In
addition, region-based image-fusion scheme can provide bet-
ter fusion results than themethodmentioned in Section 3.3.1,
under the condition of the same parameter setting, dictio-
nary, and fusion rule. In summary, the proposed scheme has
a better performance compared with the other five fusion
schemes in these three scenarios. Also it is indicated that the
proposed scheme is adaptive for different scenarios.

5. Conclusion

In this paper, a novel region-based image-fusion framework
for compressive imaging is proposed and region-based fusion
scheme is constructed, delivering a better fusion result in
comparison with that of the traditional CS fusion. The key
contributions are as follows.

(1) This paper explores the region-based fusion frame-
work and scheme for compressive imaging. In the
presented literatures, CS fusion directly combines the
coefficients after CS sampling, without exploring or
utilizing the relationship between those coefficients.
Based on the intrinsic relation between image blocks,
image blocks can be divided into different region
partitions. It is necessary and valuable to explore the
region-based CS fusion scheme based on the region
partitions.

(2) From the experimental result, it is shown that region-
based CS fusion result has better performance than
CS fusion which directly combines the coefficients
after CS sampling. For example, in medical image
fusion, traditional schemes such as mean, variance,
and PCA schemes may generate blocking effect that
could cause confusion in medical diagnosis. In this
way, region-based CS fusion scheme is better not
only in objective metrics but also from human visual
perspective.

(3) Since image fusion has been widely employed in
military and civil use, we apply the proposed method
into different fusion scenarios to test its adaptive capa-
bility. From the experimental result, region-based
CS fusion scheme is adaptive for different fusion
scenarios and has better performance than previous
CS fusion schemes.
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