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Based on classical epidemic models, this paper considers a deterministic epidemic model for the spread of the pine wilt disease
which has vector mediated transmission. The analysis of the model shows that its dynamics are completely determined by the
basic reproduction number 𝑅

0
. Using a Lyapunov function and a LaSalle’s invariant set theorem, we proved the global asymptotical

stability of the disease-free equilibrium.We find that if 𝑅
0
≤ 1, the disease free equilibrium is globally asymptotically stable, and the

disease will be eliminated. If 𝑅
0
> 1, a unique endemic equilibrium exists and is shown to be globally asymptotically stable, under

certain restrictions on the parameter values, using the geometric approach method for global stability, due to Li and Muldowney
and the disease persists at the endemic equilibrium state if it initially exists.

1. Introduction

Pinewilt disease (PWD) is caused by the pinewood nematode
Bursaphelenchus xylophilus Nickle, which is vectored by the
Japanese pine sawyer beetle Monochamus alternatus. The
first epidemic of PWD was recorded in 1905 in Japan [1].
Since PWD was found in Japan, the pinewood nematode
has spread to Korea, Taiwan, and China and has devas-
tated pine forests in East Asia. Furthermore, it was also
found in Portugal in 1999 [2]. The greatest losses to pine
wilt have occurred in Japan. During the 20th century, the
disease spread through highly susceptible Japanese black (P.
thunbergiana) and Japanese red (P. densiflora) pine forests
with devastating impact. Iowa, Illinois, Missouri, Kentucky,
eastern Kansas, and southeastern Nebraska have experienced
heavy losses of Scots pine. Thus, PWD has become the most
serious threat to forest worldwide [3].

Mathematical modeling is useful in understanding the
process of transmission of a disease, and determining the
different factors that influence the spread of the disease. In
this way, different control strategies can be developed to limit
the spread of infection. Lately, some mathematical models
have been formulated on pest-tree dynamics, such as PWD

transmission model which was investigated by Lee and Kim
[4] and Shi and Song [5].

The incidence rate of the transmission of the disease plays
an important role in the study ofmathematical epidemiology.
In classical epidemiological models, the incidence rate is
assumed to be bilinear given by𝛽𝑆𝐼, where𝛽 is the probability
of transmission per contact rate, 𝑆 is susceptible, and 𝐼 is
infective populations, respectively. However, actual data and
evidence observed for many diseases show that dynamics of
disease transmission are not always as simple as it is shown
in these rates. In 1978, Capasso and Serio [6] introduced
a saturated incidence rate 𝑔(𝐼)𝑆 in epidemic models where
𝑔(𝐼) = 𝛽𝐼/(1 + 𝛼𝐼), 𝛽 > 0, 𝛼 > 0. This incidence rate is
important because the number of effective contacts between
infected and susceptible individuals may be saturated at high
infective levels in order to avoid the overcrowding effect of
infective individuals.

There are many papers for mathematical models with
nonlinear incidence rates [7–15]. Lee and Kim [4] introduced
a model of a pine wilt disease with nonlinear incidence
rate. Their model does not include an exposed class for the
host population and falls within the susceptible-infected (SI)
category of models. When the pine tree has been infected by
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the nematode, the pine tree stopped the cessation of oleoresin
exudation in 2-3 weeks. We consider the role of incubation
period during disease transmission, that is, exposed pine
trees 𝐸

ℎ
, the tree has been infected by the nematode but still

sustains the ability for oleoresin exudation.
In this paper, we propose a mathematical model with

nonlinear incidence rates to describe the host-vector interac-
tion between pines and pine sawyers carrying nematode by
means of ordinary differential equation. The vector (beetles)
population is described by a system for the susceptible and
infected vector and the dynamics of the host (pine trees)
are described by SEI model. The ODE model shows that the
dynamics are completely determined by the basic reproduc-
tion number𝑅

0
. If𝑅
0
≤ 1, the disease-free equilibrium is glo-

bally stable and the disease dies out. If 𝑅
0

> 1, a unique
endemic equilibrium exists and is globally stable in the
interior of the feasible region and the disease persists at the
endemic equilibrium.

The paper is organized as follows. In Section 2, the host-
vector model for pine wilt disease with nonlinear incidence
rates is presented, where the dynamics of hosts and vectors
are described by SEI and SI models, respectively.The stability
of disease free equilibrium and the stability of endemic
equilibrium are investigated in Sections 3 and 4, respectively.
In Section 5, the global stability of endemic equilibrium is
proved using the geometric approach method for global
stability, due to Li and Muldowney [16]. Some numerical
results and conclusions are presented in Section 6.

2. Model Frame Work

This model regards Monochamus alternatus as vector and
pine tree as host, and establishes the host-vector epidemic
model.

The total host population at time 𝑡, 𝑁
ℎ
(𝑡) is divided into

three subclasses of susceptible pine trees at time 𝑡, 𝑆
ℎ
(𝑡); that

is, the susceptible pine trees have a potential to be infected
by the nematode and can exude oleoresin which acts as a
physical barrier to beetle oviposition, and beetles cannot
oviposit on them. Exposed pine trees𝐸

ℎ
(𝑡) have been infected

by the nematode but still sustain the ability for oleoresin
exudation, and infected pine trees 𝐼

ℎ
(𝑡) have been infected

by the nematode and the oleoresin exudation ability have
been lost and also beetles can oviposit on it. Furthermore, we
assume that the class of recovered 𝑅

ℎ
(𝑡) is negligible because

every infectious pine tree dies within the year of infection
or in the next year. The number of total host population is
denoted by 𝑁

ℎ
(𝑡) = 𝑆

ℎ
(𝑡) + 𝐸

ℎ
(𝑡) + 𝐼

ℎ
(𝑡). And then, we

assume that the total vector population at time 𝑡,𝑁V(𝑡) is split
into two subclasses the number of susceptible adult beetles
𝑆V(𝑡) which does not carry pinewood nematode at time 𝑡 and
the number of infective adult beetles 𝐼V(𝑡) which does carry
pinewood nematode at time 𝑡, so that total vector population
is denoted by 𝑁V(𝑡) = 𝑆V(𝑡) + 𝐼V(𝑡). Our model excludes the
immature beetles which are in the egg stage, a pupal stage,
because they do not participate in the infection cycle. The
parameters in the system are as follows: the parameter 𝑎

ℎ

is the constant increase rate of pine tree at time 𝑡 and 𝑏V is
the constant emergence rate of adult beetles at time 𝑡 (the

period of emergence). And 𝜇
1
is the natural death rate of

pine tree host and 𝜇
2
is the natural death rate of beetles as

vectors. The parameter 𝛼 is denoted by the probability that
infectious beetles transmit nematode bymeans of contact and
𝛾 is the probability of having pinewood nematode when the
beetle emerges out in the 𝐼V(𝑡). And the parameter 𝜙 is the
average number of contact per day of the vectors adult beetles
during maturation feeding period. The parameter 𝛽 denotes
the transfer rates between the exposed and the infectious.

In this model, the nonlinear incidence term 𝛼𝜙𝑆
ℎ
𝐼V/(1 +

𝑚𝐼V) denotes the rate at which the pine trees host 𝑆
ℎ
gets

infected by infectious adult beetles 𝐼V(𝑡) which do carry
pinewood nematode at time 𝑡, and 𝛾𝐼

ℎ
𝑆V/(1+𝑛𝐼ℎ) refers to the

rate at which the susceptible pine sawyers 𝑆V have pinewood
nematode when it emerges in the infected pine trees 𝐼

ℎ

and 𝑚, 𝑛 determine the level at which the force of infection
saturates. The incidence function forms reflect a saturating
effect of diseases transmission. All parameters are assumed
to be positive based on some biological reasons. Thus, a
host-vector epidemic model with nonlinear incidence can be
described by the following system of differential equations:

𝑑𝑆
ℎ

𝑑𝑡
= 𝑎
ℎ
−

𝛼𝜙𝑆
ℎ
𝐼V

1 + 𝑚𝐼V
− 𝜇
1
𝑆
ℎ
,

𝑑𝐸
ℎ

𝑑𝑡
=

𝛼𝜙𝑆
ℎ
𝐼V

1 + 𝑚𝐼V
− (𝛽 + 𝜇

1
) 𝐸
ℎ
,

𝑑𝐼
ℎ

𝑑𝑡
= 𝛽𝐸
ℎ
− 𝜇
1
𝐼
ℎ
,

𝑑𝑆V

𝑑𝑡
= 𝑏V −

𝛾𝐼
ℎ
𝑆V

1 + 𝑛𝐼
ℎ

− 𝜇
2
𝑆V,

𝑑𝐼V

𝑑𝑡
=

𝛾𝐼
ℎ
𝑆V

1 + 𝑛𝐼
ℎ

− 𝜇
2
𝐼V.

(1)

Considering ecological signification, we restrict our attention
to the dynamics of the model in Ω = {(𝑆

ℎ
, 𝐸
ℎ
, 𝐼
ℎ
, 𝑆V, 𝐼V) ∈

𝑅
5

+
| 𝑆
ℎ

≥ 0, 𝐸
ℎ

≥ 0, 𝐼
ℎ

≥ 0, 𝑆V ≥ 0, 𝐼V ≥ 0}. We make
some reasonable technical assumptions on the parameters of
the model, namely, 𝛼 > 0, 𝜙 > 0, 𝛽 > 0, 𝛾 > 0, 𝑎

ℎ
> 0,

𝑏V > 0, 𝜇
1

> 0, 𝜇
2

> 0, in Ω. The above systems for the
host population and the vector are also equipped with initial
conditions as follows: 𝑆

ℎ
(0) = 𝑆

0

ℎ
, 𝐸
ℎ
(0) = 𝐸

0

ℎ
, 𝐼
ℎ
(0) = 𝐼

0

ℎ
,

𝑆V(0) = 𝑆
0

V , and 𝐼V(0) = 𝐼
0

V .
The total host population dynamics are given by

𝑑𝑁
ℎ
/𝑑𝑡 = 𝑎

ℎ
− 𝜇
1
𝑁
ℎ
.

The given initial conditions make sure that𝑁
ℎ
(0) ≥ 0.

The total dynamics of vector population is given by
𝑑𝑁V/𝑑𝑡 = 𝑏V − 𝜇

2
𝑁V. It is easily seen that both for the

host population and for the vector population, the corre-
sponding total population sizes are asymptotically constant
such as lim

𝑡→∞
𝑁
ℎ
(𝑡) = 𝑎

ℎ
/𝜇
1
and lim

𝑡→∞
𝑁V(𝑡) = 𝑏V/𝜇2.

This implies that in our model, we assume without loss of
generality that 𝑁

ℎ
(𝑡) = 𝑎

ℎ
/𝜇
1
, 𝑁V(𝑡) = 𝑏V/𝜇2 for all 𝑡 ≥ 0

provided that 𝑆0
ℎ
+ 𝐸
0

ℎ
+ 𝐼
0

ℎ
= 𝑎
ℎ
/𝜇
1
, 𝑆0V + 𝐼

0

V = 𝑏V/𝜇2.
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Theorem 1. Let (𝑆
ℎ
, 𝐸
ℎ
, 𝐼
ℎ
, 𝑆V, 𝐼V) be the solution of the system

(1) with initial conditions 𝑆
ℎ
(0) = 𝑆

0

ℎ
, 𝐸
ℎ
(0) = 𝐸

0

ℎ
, 𝐼
ℎ
(0) = 𝐼

0

ℎ
,

𝑆V(0) = 𝑆
0

V , and 𝐼V(0) = 𝐼
0

V and the compact set

Ω = { (𝑆
ℎ
, 𝐸
ℎ
, 𝐼
ℎ
, 𝑆V, 𝐼V)

∈ 𝑅
5

+
| 0 ≤ 𝑆

ℎ
+ 𝐸
ℎ
+ 𝐼
ℎ
≤

𝑎
ℎ

𝜇
1

, 0 ≤ 𝑆V + 𝐼V ≤
𝑏V

𝜇
2

} .

(2)

Then, Ω is positively invariant and attracting under the flow
described by (1).

Proof. Consider the following Lyapunov function:

𝑉 (𝑡) = (𝑉
1
(𝑡) , 𝑉
2
(𝑡)) = (𝑆

ℎ
+ 𝐸
ℎ
+ 𝐼
ℎ
, 𝑆V + 𝐼V) . (3)

Its time derivative is

𝑑𝑉

𝑑𝑡
= (

𝑑𝑉
1

𝑑𝑡
,
𝑑𝑉
2

𝑑𝑡
)

= ( ̇𝑆
ℎ
+ 𝐸̇
ℎ
+ ̇𝐼
ℎ
, ̇𝑆V +

̇𝐼V) = (𝑎
ℎ
− 𝜇
1
𝑉
1
, 𝑏V − 𝜇

2
𝑉
2
) .

(4)

With this in mind, we can get that

𝑑𝑉
1

𝑑𝑡
= 𝑎
ℎ
− 𝜇
1
𝑉
1
≤ 0, for 𝑉

1
≥

𝑎
ℎ

𝜇
1

,

𝑑𝑉
2

𝑑𝑡
= 𝑏V − 𝜇

2
𝑉
2
≤ 0, for 𝑉

2
≥

𝑏V

𝜇
2

.

(5)

Then, it follows from (5) that 𝑑𝑉/𝑑𝑡 ≤ 0 which implies that
Ω is a positively invariant set. On the other hand, a standard
comparison theorem [17] can be used to show that

0 ≤ (𝑉
1
, 𝑉
2
) ≤ (

𝑎
ℎ

𝜇
1

+ 𝑉
1
(0) 𝑒
−𝜇
1
𝑡
,
𝑏V

𝜇
2

+ 𝑉
2
(0) 𝑒
−𝜇
2
𝑡
) , (6)

where 𝑉
1
(0) and 𝑉

2
(0) are in the initial conditions of 𝑉

1
(𝑡)

and 𝑉
2
(𝑡), respectively.

Thus, as 𝑡 → ∞, 0 ≤ (𝑉
1
, 𝑉
2
) ≤ (𝑎

ℎ
/𝜇
1
, 𝑏V/𝜇2) and one

can conclude thatΩ is an attractive set.

The values of 𝑆
ℎ
and 𝑆V can be determined correspond-

ingly by 𝑆V = (𝑏V/𝜇2) − 𝐼V, 𝑆ℎ = (𝑎
ℎ
/𝜇
1
) − 𝐸
ℎ
− 𝐼
ℎ
by the

results of theorem [18]. Also, we can reduce system (1) to a
3-dimensional system by eliminating 𝑆

ℎ
and 𝑆V, respectively,

in the feasible regionΩ

𝑑𝐸
ℎ

𝑑𝑡
=

𝛼𝜙𝐼V

1 + 𝑚𝐼V
(
𝑎
ℎ

𝜇
1

− 𝐸
ℎ
− 𝐼
ℎ
) − (𝛽 + 𝜇

1
) 𝐸
ℎ
,

𝑑𝐼
ℎ

𝑑𝑡
= 𝛽𝐸
ℎ
− 𝜇
1
𝐼
ℎ
,

𝑑𝐼V

𝑑𝑡
=

𝛾𝐼
ℎ

1 + 𝑛𝐼
ℎ

(
𝑏V

𝜇
2

− 𝐼V) − 𝜇
2
𝐼V.

(7)

Therefore, from now on, we will investigate the following
3-dimensional nonlinear system so that the dynamics of

system (1) and (7) are qualitively equivalent to the dynamics
of system. It is easy to verify that all of the solutions of system
(7) exist and are nonnegative. The feasible region for the
system (2) is

Γ = {(𝐸
ℎ
, 𝐼
ℎ
, 𝐼V) ∈ 𝑅

3

+
| 0 ≤ 𝐸

ℎ
+ 𝐼
ℎ
≤

𝑎
ℎ

𝜇
1

,

0 ≤ 𝐼V ≤
𝑏V

𝜇
2

, 𝐸
ℎ
≥ 0, 𝐼
ℎ
≥ 0, 𝐼V ≥ 0} ,

(8)

where 𝑅
3

+
denotes the nonnegative cone of 𝑅3 including its

lower-dimensional faces.
With respect to system (7), we have the following result.

Theorem 2. Let (𝐸
ℎ
, 𝐼
ℎ
, 𝐼V) be the solution of the system (7)

with initial conditions 𝐸
ℎ
(0) = 𝐸

0

ℎ
, 𝐼
ℎ
(0) = 𝐼

0

ℎ
, 𝐼V(0) = 𝐼

0

V , and
the closed set Γ. Then, Γ is positively invariant with respect to
system (7) and attracting under the flow described by (7).

3. The Disease-Free Equilibrium and
Its Stability

Direct calculations show that the system (7) always has
the disease-free equilibrium point given by 𝐸

0
= (0, 0, 0).

The dynamics of the disease are described by the quantity
𝑅
0
= 𝑎
ℎ
𝑏V𝜙𝛼𝛽𝛾/𝜇

2

1
𝜇
2

2
(𝛽 + 𝜇

1
). 𝑅
0
is the critical threshold of

model (7) that is called the basic reproduction number in
the epidemic model. Using Theorem 2 in [19], at first, the
following results are established.

Theorem 3. If 𝑅
0
< 1, the disease-free equilibrium 𝐸

0
of the

model (7) is locally asymptotically stable, and is unstable if𝑅
0
>

1.

Proof. We linearize the system (7) around the disease-free
equilibrium 𝐸

0
. The matrix of the linearization at 𝐸

0
is given

by

J (E0) = (

−(𝛽 + 𝜇
1
) 0

𝑎
ℎ
𝛼𝜙

𝜇
1

𝛽 −𝜇
1

0

0
𝑏V𝛽

𝜇
2

−𝜇
2

). (9)

The characteristic equation of this matrix is given by det(𝜆𝐼−
𝐽(𝐸
0
)) = 0, where 𝐼 is the 3 × 3 unit matrix. Expanding

the determinant into a characteristic equation, we obtain the
following equation, which is equivalent to

𝜆
3
+ 𝑎
1
𝜆
2
+ 𝑎
2
𝜆 + 𝑎
3
= 0, (10)

where

𝑎
1
= 2𝜇
1
+ 𝜇
2
+ 𝛽 > 0,

𝑎
2
= (𝜇
1
+ 𝜇
2
) (𝛽 + 𝜇

1
) + 𝜇
1
𝜇
2
> 0,

𝑎
3
= 𝜇
1
𝜇
2
(𝛽 + 𝜇

1
) (1 − 𝑅

0
) > 0.

(11)
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These three eigenvalues have negative real part if they
satisfy the Routh-Hurwitz Criteria [20], such that 𝑎

𝑖
> 0 for

𝑖 = 1, 2, 3, with 𝑎
1
> 0, 𝑎

3
> 0, and 𝑎

1
𝑎
2
> 𝑎
3
. If 𝑅
0
< 1, then

𝑎
1
𝑎
2
− 𝑎
3

= (2𝜇
1
+ 𝜇
2
+ 𝛽) [(𝜇

1
+ 𝜇
2
) (𝛽 + 𝜇

1
) + 𝜇
1
𝜇
2
]

− 𝜇
1
𝜇
2
(𝛽 + 𝜇

1
) (1 − 𝑅

0
) ,

= (2𝜇
1
+ 𝜇
2
+ 𝛽) (𝜇

1
+ 𝜇
2
) (𝛽 + 𝜇

1
)

+ 𝜇
1
𝜇
2
(2𝜇
1
+ 𝜇
2
+ 𝛽) − 𝜇

1
𝜇
2
(𝛽 + 𝜇

1
) (1 − 𝑅

0
)

= (2𝜇
1
+ 𝜇
2
+ 𝛽) (𝜇

1
+ 𝜇
2
) (𝛽 + 𝜇

1
)

+ 𝜇
1
𝜇
2
(2𝜇
1
+ 𝜇
2
+ 𝛽) − 𝜇

1
𝜇
2
(𝛽 + 𝜇

1
)

+ 𝜇
1
𝜇
2
(𝛽 + 𝜇

1
) 𝑅
0

= (2𝜇
1
+ 𝜇
2
+ 𝛽) (𝜇

1
+ 𝜇
2
) (𝛽 + 𝜇

1
)

+ 𝜇
1
𝜇
2
(𝜇
1
+ 𝜇
2
) + 𝜇
1
𝜇
2
(𝛽 + 𝜇

1
) 𝑅
0
> 0.

(12)

According to the Routh-Hurwitz Criteria, the disease-free
equilibrium 𝐸

0
of the model (7) is locally asymptotically

stable.

Now, we study the global behavior of the disease-free
equilibrium for system (7).

Theorem 4. If 𝑅
0
≤ 1, the disease-free equilibrium 𝐸

0
of the

model (7) is globally asymptotically stable in Γ.

Proof. We construct the following Lyapunov function:

𝑉 (𝑡) = 𝑎
1
𝐸
ℎ
+ 𝑎
2
𝐼
ℎ
+ 𝑎
3
𝐼V, (13)

where

𝑎
1
=

𝑏V𝛽𝛾

𝜇
1
𝜇
2

2
(𝛽 + 𝜇

1
)
, 𝑎

2
=

𝑏V𝛾

𝜇
1
𝜇
2

2

,

𝑎
3
=

1

𝜇
2

.

(14)

Its derivative along the solutions to the system (7) is

𝑉
󸀠
(𝑡) = 𝑎

1
𝐸
󸀠

ℎ
+ 𝑎
2
𝐼
󸀠

ℎ
+ 𝑎
3
𝐼
󸀠

V

= 𝑎
1
[

𝛼𝜙𝐼V

1 + 𝑚𝐼V
(
𝑎
ℎ

𝜇
1

− 𝐸
ℎ
− 𝐼
ℎ
) − (𝛽 + 𝜇

1
) 𝐸
ℎ
]

+ 𝑎
2
[𝛽𝐸
ℎ
− 𝜇
1
𝐼
ℎ
] + 𝑎
3
[

𝛾𝐼
ℎ

1 + 𝑛𝐼
ℎ

(
𝑏V

𝜇
2

− 𝐼V) − 𝜇
2
𝐼V]

≤ 𝑎
1
[𝛼𝜙𝐼V (

𝑎
ℎ

𝜇
1

− 𝐸
ℎ
− 𝐼
ℎ
) − (𝛽 + 𝜇

1
) 𝐸
ℎ
]

+ 𝑎
2
[𝛽𝐸
ℎ
− 𝜇
1
𝐼
ℎ
] + 𝑎
3
[𝛾𝐼
ℎ
(
𝑏V

𝜇
2

− 𝐼V) − 𝜇
2
𝐼V]

≤
𝑏V𝛽𝛾

𝜇
1
𝜇
2

2
(𝛽 + 𝜇

1
)

× {𝛼𝜙𝐼V (
𝑎
ℎ

𝜇
1

− 𝐸
ℎ
− 𝐼
ℎ
) − (𝛽 + 𝜇

1
) 𝐸
ℎ
}

+
𝑏V𝛾

𝜇
1
𝜇
2

2

(𝛽𝐸
ℎ
− 𝜇
1
𝐼
ℎ
) +

1

𝑢
2

(
𝑏V𝛾

𝜇
2

𝐼
ℎ
− 𝜇
2
𝐼V)

= 𝐼V {(𝑅0 − 1) −
𝑏V𝛼𝜙𝛽𝛾

𝜇
1
𝜇
2

2
(𝛽 + 𝜇

1
)
(𝐸
ℎ
+ 𝐼
ℎ
)} ≤ 0.

(15)

Thus, 𝑉󸀠(𝑡) is negative if 𝑅
0
≤ 1. Furthermore, 𝑉 > 0 along

the solution of the system and is zero if and only if 𝐸
ℎ
, 𝐼V, and

𝐼V are zero. Also, 𝑉
󸀠
≤ 0. If 𝑅

0
≤ 1, then 𝑉

󸀠
= 0 if and only

if 𝐼V = 0, and in the case 𝑅
0
= 1, 𝑉󸀠 = 0 if and only if 𝐼V = 0

or 𝐸
ℎ
= 𝐼
ℎ
= 0. Hence, the largest compact invariant set in

{(𝐸
ℎ
, 𝐼
ℎ
, 𝐼V) ∈ Γ | 𝑉

󸀠
(𝑡) = 0} when 𝑅

0
≤ 1, is the singleton

{𝐸
0
}. By Lasalle’s Invariance Principle [21], then it implies that

𝐸
0
is globally asymptotically stable in Γ.

4. The Endemic Equilibrium and Its Stability

Here, we study the existence and stability of the endemic
equilibrium points. By straightforward computation, if 𝑅

0
>

1, then the host-vector model system (7) has a unique
endemic equilibrium given by 𝐸

∗
= (𝐸
∗

ℎ
, 𝐼
∗

ℎ
, 𝐼
∗

V ) in Γ, with

𝐸
∗

ℎ
=

𝜇
1

𝛽
𝐼
∗

ℎ
,

𝐼
∗

ℎ
=

𝜇
1
𝜇
2

2
(𝑅
0
− 1)

𝜇
1
(𝜇
2
𝑤 + 𝑚𝛾𝑏V) + 𝛼𝜙𝛾𝑏V

,

𝐼
∗

V =
𝛾𝑏V𝐼
∗

ℎ

𝜇
2
(𝑤𝐼
∗

ℎ
+ 𝜇
2
)
,

(16)

where

𝑤 = 𝛾 + 𝑛𝜇
2
. (17)

In order to investigate the stability of the endemic
equilibrium, the additive compound matrices approach as in
[22, 23] is used.Wewill linearize system (7) about an endemic
equilibrium 𝐸

∗ and get the following Jacobian matrix
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J (E∗) = (

−
𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
− (𝛽 + 𝜇

1
) −

𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V

𝛼𝜙 ((𝑎
ℎ
/𝜇
1
) − 𝐸
∗

ℎ
− 𝐼
∗

ℎ
)

(1 + 𝑚𝐼∗V )
2

𝛽 −𝜇
1

0

0
𝛾 ((𝑏/𝜇

2
) − 𝐼
∗

V )

(1 + 𝑛𝐼
∗

ℎ
)
2

−
𝛾𝐼
∗

ℎ

1 + 𝑛𝐼
∗

ℎ

− 𝜇
2

). (18)

From the Jacobian matrix 𝐽(𝐸
∗
), the second additive com-

pound matrix is given by

J[2] (E∗) =
(
(
(

(

−
𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
− (𝛽 + 2𝜇

1
) 0 −

𝛼𝜙 ((𝑎
ℎ
/𝜇
1
) − 𝐸
∗

ℎ
− 𝐼
∗

ℎ
)

(1 + 𝑚𝐼∗V )
2

𝛾 ((𝑏/𝜇
2
) − 𝐼
∗

V )

(1 + 𝑛𝐼
∗

ℎ
)
2

−
𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
−

𝛾𝐼
∗

ℎ

1 + 𝑛𝐼
∗

ℎ

− 𝛽 − 𝜇
1
− 𝜇
2

−
𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V

0 𝛽 −
𝛾𝐼
∗

ℎ

1 + 𝑛𝐼
∗

ℎ

− 𝜇
1
− 𝜇
2

)
)
)

)

. (19)

The following lemma stated and proved in McCluskey and
van den Driessche [24] is used to demonstrate the local
stability of endemic equilibrium point 𝐸∗.

Lemma 5. Let M be a 3 × 3 real matrix. If tr(𝑀), det(𝑀),
and det(𝑀[2]) are all negative, then all eigenvalues of M have
negative real part.

Using the above Lemma, we will study the stability of the
endemic equilibrium.

Theorem 6. If 𝑅
0

> 1, the endemic equilibrium 𝐸
∗ of the

model (7) is locally asymptotically stable in Γ.

Proof. From the Jacobian matrix 𝐽(𝐸
∗
), we have

tr (𝑀) = −(
𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
+ (𝛽 + 𝜇

1
) + 𝜇
1
+

𝛾𝐼
∗

ℎ

1 + 𝑛𝐼
∗

ℎ

+ 𝜇
2
) < 0.

(20)

Because

𝑎
ℎ

𝜇
1

− 𝐸
∗

ℎ
− 𝐼
∗

ℎ
=

(𝛽 + 𝜇
1
) (1 + 𝑚𝐼

∗

V ) 𝐸
∗

ℎ

𝛼𝜙𝐼∗V
,

𝐸
∗

ℎ
=

𝜇
1

𝛽
𝐼
∗

ℎ
,

𝑏V

𝜇
2

− 𝐼
∗

V =
(1 + 𝑛𝐼

∗

ℎ
) 𝜇
2
𝐼
∗

V

𝛾𝐼
∗

ℎ

.

(21)

From (21), it is easy to see that

𝛼𝜙 ((𝑎
ℎ
/𝜇
1
) − 𝐸
∗

ℎ
− 𝐼
∗

ℎ
)

(1 + 𝑚𝐼∗V )
2

×
𝛾 ((𝑏/𝜇

2
) − 𝐼
∗

V )

(1 + 𝑛𝐼
∗

ℎ
)
2

=
𝜇
1
𝜇
2
(𝛽 + 𝜇

1
)

(1 + 𝑚𝐼V) (1 + 𝑛𝐼
ℎ
) 𝛽

.

(22)

Thus,

det (𝐽 (𝐸∗))

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−
𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
− (𝛽 + 𝜇

1
) −

𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
−
𝛼𝜙 ((𝑎

ℎ
/𝜇
1
) − 𝐸
∗

ℎ
− 𝐼
∗

ℎ
)

(1 + 𝑚𝐼∗V )
2

𝛽 −𝜇
1

0

0
𝛾 ((𝑏/𝜇

2
) − 𝐼
∗

V )

(1 + 𝑛𝐼
∗

ℎ
)
2

−
𝛾𝐼
∗

ℎ

1 + 𝑛𝐼
∗

ℎ

− 𝜇
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= −(
𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
+ 𝛽 + 𝜇

1
)(𝜇
1
𝜇
2
+

𝜇
1
𝛾𝐼
∗

ℎ

1 + 𝑛𝐼
∗

ℎ

) − 𝛽[
𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
(

𝛾𝐼
∗

ℎ

1 + 𝑛𝐼
∗

ℎ

+ 𝜇
2
) −

𝜇
1
𝜇
2
(𝛽 + 𝜇

1
)

(1 + 𝑚𝐼∗V ) (1 + 𝑛𝐼
ℎ
) 𝛽

]

= −(
𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
+ 𝛽 + 𝜇

1
)(𝜇
1
𝜇
2
+

𝜇
1
𝛾𝐼
∗

ℎ

1 + 𝑛𝐼
∗

ℎ

) −
𝛼𝛽𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
(

𝛾𝐼
∗

ℎ

1 + 𝑛𝐼
∗

ℎ

+ 𝜇
2
) +

𝜇
1
𝜇
2
(𝛽 + 𝜇

1
)

(1 + 𝑚𝐼∗V ) (1 + 𝑛𝐼
∗

ℎ
)

= −
𝜇
1
𝛾𝐼
∗

ℎ

1 + 𝑛𝐼
∗

ℎ

(
𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
+ 𝛽 + 𝜇

1
) − 𝜇
1
𝜇
2

𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
− 𝜇
1
𝜇
2
(𝛽 + 𝜇

1
) −

𝛼𝛽𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
(

𝛾𝐼
∗

ℎ

1 + 𝑛𝐼
∗

ℎ

+ 𝜇
2
)
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+
𝜇
1
𝜇
2
(𝛽 + 𝜇

1
)

(1 + 𝑚𝐼∗V ) (1 + 𝑛𝐼
∗

ℎ
)
= −

𝜇
1
𝛾𝐼
∗

ℎ

1 + 𝑛𝐼
∗

ℎ

(
𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
+ 𝛽 + 𝜇

1
)

− 𝜇
1
𝜇
2

𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
−

𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
(

𝛾𝐼
∗

ℎ

1 + 𝑛𝐼
∗

ℎ

) + 𝜇
1
𝜇
2
(𝛽 + 𝜇

1
) (

1

(1 + 𝑚𝐼∗V ) (1 + 𝑛𝐼
∗

ℎ
)
− 1) < 0.

(23)

Computing directly the determinant of 𝐽[2](𝐸∗), we can get

det (𝐽[2] (𝐸∗))

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−
𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
− (𝛽 + 2𝜇

1
) 0 −

𝛼𝜙 ((𝑎
ℎ
/𝜇
1
) − 𝐸
∗

ℎ
− 𝐼
∗

ℎ
)

(1 + 𝑚𝐼∗V )
2

𝛾 ((𝑏V/𝜇2) − 𝐼
∗

V )

(1 + 𝑛𝐼
∗

ℎ
)
2

−
𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
−

𝛾𝐼
∗

ℎ

1 + 𝑛𝐼
∗

ℎ

− 𝛽 − 𝜇
1
− 𝜇
2

−
𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V

0 𝛽 −
𝛾𝐼
∗

ℎ

1 + 𝑛𝐼
∗

ℎ

− 𝜇
1
− 𝜇
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= −(
𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
+ 𝛽 + 2𝜇

1
)[(

𝛼𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
+

𝛾𝐼
∗

ℎ

1 + 𝑛𝐼
∗

ℎ

+ 𝛽 + 𝜇
1
+ 𝜇
2
)(

𝛾𝐼
∗

ℎ

1 + 𝑛𝐼
∗

ℎ

+ 𝜇
1
+ 𝜇
2
) +

𝛼𝛽𝜙𝐼
∗

V

1 + 𝑚𝐼∗V
]

−
𝛾 ((𝑏V/𝜇2) − 𝐼

∗

V )

(1 + 𝑛𝐼
∗

ℎ
)
2

(
𝛼𝛽𝜙 ((𝑎

ℎ
/𝜇
1
) − 𝐸
∗

ℎ
− 𝐼
∗

ℎ
)

(1 + 𝑚𝐼∗V )
2

) < 0.

(24)

Hence, by lemma, the endemic equilibrium 𝐸
∗ of the model

(7) is locally asymptotically stable in Γ.

5. Global Stability of the Endemic Equilibrium

We now prove the global stability of the endemic equilibrium
𝐸
∗, when the reproduction number 𝑅

0
is greater than the

unity. For this, first we will prove the following result.

Theorem 7. If 𝑅
0
> 1, then system (7) is uniformly persistent;

that is, there exists 𝑐 > 0 (independent of initial conditions),
such that lim inf

𝑡→∞
𝐸
ℎ
(𝑡) ≥ 𝑐, lim inf

𝑡→∞
𝐼
ℎ
(𝑡) ≥ 𝑐,

lim inf
𝑡→∞

𝐼V(𝑡) ≥ 𝑐.

Proof. Let 𝜋 be a semidynamical system (7) in (𝑅
+

0
)
3, Let 𝜒

be a locally compact metric space, and Γ
0

= {(𝐸
ℎ
, 𝐼
ℎ
, 𝐼V) ∈

Γ | 𝐼V = 0}. The set Γ
0
is a compact subset of Γ and Γ/Γ

0
is

positively invariant set of system (7). Let 𝑃 : 𝜒 → 𝑅
+

0
be

defined by 𝑃(𝐸
ℎ
, 𝐼
ℎ
, 𝐼V) = 𝐼V and set 𝑆 = {(𝐸

ℎ
, 𝐼
ℎ
, 𝐼V) ∈ Γ |

𝑃(𝐸
ℎ
, 𝐼
ℎ
, 𝐼V) < 𝜌}, where 𝜌 is sufficiently small so that 𝑅

0
(1 −

(𝜇
2
/𝑏V)𝜌)/(1 + 𝑛𝜌) > 1. Assume that there is a solution 𝑥 ∈ 𝑆

such that for each 𝑡 > 0, we have 𝑃(𝜋(𝑥, 𝑡)) < 𝑃(𝑥) < 𝜌. Let
us consider the following:

𝐿 (𝑡) =
𝑎
ℎ
𝛼𝛽𝜙 (1 − 𝛿

∗
)

𝜇
1
𝜇
2
(𝛽 + 𝜇

1
)
𝐼V + 𝐼
ℎ
, (25)

where 𝛿
∗

> 0 is a sufficiently small constant so that 𝑅
0
(1 −

(𝜇
2
/𝑏V)𝜌)(1 − 𝛿

∗
)/(1 + 𝑛𝜌) > 1. By a direct calculation, we

have

𝐿
󸀠
(𝑡) ≥ 𝜇

1
[
𝑎
ℎ
𝑏V𝛼𝛽𝛾𝜙 (1 − 𝛿

∗
) (1 − (𝜇

2
/𝑏V) 𝜌)

𝜇
2

1
𝜇
2

2
(𝛽 + 𝜇

1
) (1 + 𝑛𝜌)

− 1] 𝐼
ℎ

+
𝑎
ℎ
𝛼𝛽𝜙𝛿
∗

𝜇
1

𝐼V.

(26)

Let

𝛿 = min
{{{

{{{

{

𝜇
1
[
𝑎
ℎ
𝑏V𝛼𝛽𝛾𝜙 (1 − 𝛿

∗
) (1 − (𝜇

2
/𝑏V) 𝜌)

𝜇
2

1
𝜇
2

2
(𝛽 + 𝜇

1
) (1 + 𝑛𝜌)

− 1] ,

𝜇
2
(𝛽 + 𝜇

1
) 𝛿
∗

1 − 𝛿∗

}}}

}}}

}

> 0.

(27)

Thus, we have

𝐿
󸀠
(𝑡) ≥ 𝛿𝐿 (𝑡) . (28)

The above inequality (28) implies that 𝐿(𝑡) → ∞ as 𝑡 → ∞.
However, 𝐿(𝑡) is bounded on the set Γ. According toTheorem
1 in [25], we complete the proof of Theorem 7.
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Here, we use the geometrical approach of Li and Mul-
downey to investigate the global stability of the endemic
equilibrium 𝐸

∗ in the feasible region Ω. We have omitted
the detailed introduction of this approach and we refer the
interested readers to see [16]. For the applications of the Li
and Muldowney approach to host-vector models (see [26,
27]). We summarize this approach as follows.

Consider a 𝐶
1 map 𝑓 : 𝑥 󳨃→ 𝑓(𝑥) from an open set 𝐷 ⊂

𝑅
𝑛 to 𝑅

𝑛 such that each solution 𝑥(𝑡, 𝑥
0
) to the differential

equation

𝑥
󸀠
= 𝑓 (𝑥) (29)

is uniquely determined by the initial value 𝑥(0, 𝑥
0
). We have

the following assumptions:

(𝐻
1
) 𝐷 is simply connected;

(𝐻
2
) there exists a compact absorbing set 𝐾 ⊂ 𝐷;

(𝐻
3
) (29) has unique equilibrium 𝑥 in𝐷.

Let 𝑃 : 𝑥 󳨃→ 𝑃(𝑥) be a nonsingular (
𝑛

2 ) × (
𝑛

2 ) matrix-
valued function which is 𝐶1 in 𝐷 and a vector norm | ⋅ | on
𝑅
𝑁, where𝑁 = (

𝑛

2 ).

Let 𝜇 be the Lozinskĭı measure with respect to the | ⋅ |.
Define a quantity 𝑞

2
as

𝑞
2
= lim sup
𝑡→∞

sup
𝑥
0
∈𝐾

1

𝑡
∫

𝑡

0

𝜇 (𝐵 (𝑥 (𝑠, 𝑥
0
))) 𝑑𝑠, (30)

where 𝐵 = 𝑃
𝑓
𝑃
−1

+ 𝑃𝐽
[2]

𝑃
−1, the matrix 𝑃

𝑓
is obtained by

replacing each entry 𝑝 of 𝑃 by its derivative in the direction
of 𝑓, (𝑝

𝑖𝑗
)
𝑓
, and 𝐽

[2] is the second additive compound matrix
of the Jacobian matrix 𝐽 of (19).The following result has been
established in Li and Muldowney [16].

Theorem 8. Suppose that (𝐻
1
), (𝐻
2
), and (𝐻

3
) hold; then the

unique endemic equilibrium𝐸
∗ is globally stable inΩ if 𝑞

2
< 0.

We choose a suitable vector norm | ⋅ | in 𝑅
3 and a 3 × 3

matrix valued function

𝑃 (𝑥) = (

1 0 0

0
𝐸
ℎ

𝐼V
0

0 0
𝐸
ℎ

𝐼V

). (31)

Obviously, 𝑃 is 𝐶
1 and nonsingular in the interior of

Ω. Linearizing system (2) about an endemic equilibrium 𝐸
∗

gives the following Jacobian matrix:

𝐽 =
(
(
(

(

−
𝛼𝜙𝐼V

1 + 𝑚𝐼V
− (𝛽 + 𝜇

1
) −

𝛼𝜙𝐼V

1 + 𝑚𝐼V

𝛼𝜙

(1 + 𝑚𝐼V)
2
(
𝑎
ℎ

𝜇
1

− 𝐸
ℎ
− 𝐼
ℎ
)

𝛽 −𝜇
1

0

0
𝛾

(1 + 𝑛𝐼
ℎ
)
2
(
𝑏V

𝜇
2

− 𝐼V) −
𝛾𝐼
ℎ

1 + 𝑛𝐼
ℎ

− 𝜇
2

)
)
)

)

. (32)

The second additive compound matrix of 𝐽(𝐸∗) is given
by

𝐽
[2]

=

(
(
(
(

(

−
𝛼𝜙𝐼V

1 + 𝑚𝐼V
− (𝛽 + 𝜇

1
) − 𝜇
1

0 −
𝛼𝜙

(1 + 𝑚𝐼V)
2
(
𝑎
ℎ

𝜇
1

− 𝐸
ℎ
− 𝐼
ℎ
)

𝛾

(1 + 𝑛𝐼
ℎ
)
2
(
𝑏V

𝜇
2

− 𝐼V) −
𝛼𝜙𝐼V

1 + 𝑚𝐼V
− (𝛽 + 𝜇

1
) −

𝛾𝐼
ℎ

1 + 𝑛𝐼
ℎ

− 𝜇
2

−
𝛼𝜙𝐼V

1 + 𝑚𝐼V

0 𝛽 −𝜇
1
−

𝛾𝐼
ℎ

1 + 𝑛𝐼
ℎ

− 𝜇
2

)
)
)
)

)

.

(33)
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Thematrix𝐵 = 𝑃
𝑓
𝑃
−1

+𝑃𝐽
[2]

𝑃
−1 can be written in block form

as
𝐵 = (

𝐵
11

𝐵
12

𝐵
21

𝐵
22

) , (34)

where

𝐵
11

= −
𝛼𝜙𝐼V

1 + 𝑚𝐼V
− (𝛽 + 𝜇

1
) − 𝜇
1
,

𝐵
12

= (0 −
𝛼𝜙

(1 + 𝑚𝐼V)
2

𝐼V

𝐸
ℎ

(
𝑎
ℎ

𝜇
1

− 𝐸
ℎ
− 𝐼
ℎ
)) ,

𝐵
21

= (

𝛾

(1 + 𝑛𝐼
ℎ
)
2
(
𝑏V

𝜇
2

− 𝐼V)
𝐸
ℎ

𝐼V

0

) ,

𝐵
22

= (

𝐸
󸀠

ℎ

𝐸
ℎ

−
𝐼
󸀠

V

𝐼V
−

𝛼𝜙𝐼V

1 + 𝑚𝐼V
− (𝛽 + 𝜇

1
) −

𝛾𝐼
ℎ

1 + 𝑛𝐼
ℎ

− 𝜇
2

−
𝛼𝜙𝐼V

1 + 𝑚𝐼V

𝛽
𝐸
󸀠

ℎ

𝐸
ℎ

−
𝐼
󸀠

V

𝐼V
− 𝜇
1
−

𝛾𝐼
ℎ

1 + 𝑛𝐼
ℎ

− 𝜇
2

).

(35)

Consider the norm in 𝑅
3 as |(𝑢, V, 𝑤)| = max(|𝑢|, |V| +

|𝑤|) where (𝑢, V, 𝑤) denotes the vector in 𝑅
3. The Lozinskĭı

measure with respect to this norm is defined as 𝜇(𝐵) ≤

sup(𝑔
1
, 𝑔
2
), where

𝑔
1
= 𝜇
1
(𝐵
11
) +

󵄨󵄨󵄨󵄨𝐵12
󵄨󵄨󵄨󵄨 , 𝑔

2
= 𝜇
1
(𝐵
22
) +

󵄨󵄨󵄨󵄨𝐵21
󵄨󵄨󵄨󵄨 . (36)

From system (2), we can write

𝐸
󸀠

ℎ

𝐸
ℎ

=
𝛼𝜙

1 + 𝑚𝐼V

𝐼V

𝐸
ℎ

(
𝑎
ℎ

𝜇
1

− 𝐸
ℎ
− 𝐼
ℎ
) − (𝛽 + 𝜇

1
) ,

𝐼
󸀠

ℎ

𝐼
ℎ

= 𝛽
𝐸
ℎ

𝐼
ℎ

− 𝜇
1
,

𝐼
󸀠

V

𝐼V
=

𝛾

1 + 𝑛𝐼
ℎ

𝐼
ℎ

𝐼V
(
𝑏V

𝜇
2

− 𝐼V) − 𝜇
2
.

(37)

Since 𝐵
11
is a scalar, its Lozinskĭı measure with respect to any

vector norm in 𝑅
1 will be equal to 𝐵

11
. Thus,

𝐵
11

= −
𝛼𝜙𝐼V

1 + 𝑚𝐼V
− (𝛽 + 𝜇

1
) − 𝜇
1
,

󵄨󵄨󵄨󵄨𝐵12
󵄨󵄨󵄨󵄨 =

𝛼𝜙

(1 + 𝑚𝐼V)
2

𝐼V

𝐸
ℎ

(
𝑎
ℎ

𝜇
1

− 𝐸
ℎ
− 𝐼
ℎ
) ,

(38)

and 𝑔
1
will become

𝑔
1
= −

𝛼𝜙𝐼V

1 + 𝑚𝐼V
− (𝛽 + 𝜇

1
) − 𝜇
1

+
𝛼𝜙

(1 + 𝑚𝐼V)
2

𝐼V

𝐸
ℎ

(
𝑎
ℎ

𝜇
1

− 𝐸
ℎ
− 𝐼
ℎ
)

≤ −
𝛼𝜙𝐼V

1 + 𝑚𝐼V
− 𝜇
1

+
𝛼𝜙

(1 + 𝑚𝐼V)

𝐼V

𝐸
ℎ

(
𝑎
ℎ

𝜇
1

− 𝐸
ℎ
− 𝐼
ℎ
) − (𝛽 + 𝜇

1
)

≤
𝐸
󸀠

ℎ

𝐸
ℎ

−
𝛼𝜙𝐼V

1 + 𝑚𝐼V
− 𝜇
1
.

(39)

Also, |𝐵
21
| = (𝛾/(1+𝑛𝐼

ℎ
)
2
)((𝑏V/𝜇2)−𝐼V)(𝐸ℎ/𝐼V). |𝐵12| and |𝐵

21
|

are the operator norms of 𝐵
12

and 𝐵
21

which are mapping
from 𝑅

2 to 𝑅 and from 𝑅 to 𝑅
2, respectively, and 𝑅

2 is
endowed with the 𝑙

1
norm. 𝜇

1
(𝐵
22
) is the Lozinskĭı measure

of 2×2matrix 𝐵
22
with respect to 𝑙

1
norm in 𝑅

2.Consider the
following:

𝜇 (𝐵
22
) = sup{

𝐸
󸀠

ℎ

𝐸
ℎ

−
𝐼
󸀠

V

𝐼V
−

𝛼𝜙𝐼V

1 + 𝑚𝐼V
− 𝜇
1
−

𝛾𝐼
ℎ

1 + 𝑛𝐼
ℎ

− 𝜇
2
,

𝐸
󸀠

ℎ

𝐸
ℎ

−
𝐼
󸀠

V

𝐼V
+

𝛼𝜙𝐼V

1 + 𝑚𝐼V
− 𝜇
1
−

𝛾𝐼
ℎ

1 + 𝑛𝐼
ℎ

− 𝜇
2
} ,

=
𝐸
󸀠

ℎ

𝐸
ℎ

−
𝐼
󸀠

V

𝐼V
+

𝛼𝜙𝐼V

1 + 𝑚𝐼V
− 𝜇
1
−

𝛾𝐼
ℎ

1 + 𝑛𝐼
ℎ

− 𝜇
2
.

(40)



Abstract and Applied Analysis 9

Hence,

𝑔
2

=
𝐸
󸀠

ℎ

𝐸
ℎ

−
𝐼
󸀠

V

𝐼V
+

𝛼𝜙𝐼V

1 + 𝑚𝐼V
− 𝜇
1
−

𝛾𝐼
ℎ

1 + 𝑛𝐼
ℎ

− 𝜇
2
+

𝛾

(1 + 𝑛𝐼
ℎ
)
2
(
𝑏V

𝜇
2

− 𝐼V)
𝐸
ℎ

𝐼V

=
𝐸
󸀠

ℎ

𝐸
ℎ

−
𝐼
󸀠

V

𝐼V
+

𝛼𝜙𝐼V

1 + 𝑚𝐼V
− 𝜇
1
−

𝛾𝐼
ℎ

1 + 𝑛𝐼
ℎ

+
𝛾

(1 + 𝑛𝐼
ℎ
)
2
(
𝑏V

𝜇
2

− 𝐼V)
𝐸
ℎ

𝐼V
− 𝜇
2

=
𝐸
󸀠

ℎ

𝐸
ℎ

−
𝐼
󸀠

V

𝐼V
+

𝛼𝜙𝐼V

1 + 𝑚𝐼V
− 𝜇
1
−

𝛾𝐼
ℎ

1 + 𝑛𝐼
ℎ

+
𝛾

(1 + 𝑛𝐼
ℎ
)
2
(
𝑏V

𝜇
2

− 𝐼V)
𝐸
ℎ

𝐼V
+

𝐼
󸀠

V

𝐼V

−
𝛾

1 + 𝑛𝐼
ℎ

(
𝑏V

𝜇
2

− 𝐼V)
𝐼
ℎ

𝐼V

=
𝐸
󸀠

ℎ

𝐸
ℎ

+
𝛼𝜙𝐼V

1 + 𝑚𝐼V
− 𝜇
1
−

𝛾𝐼
ℎ

1 + 𝑛𝐼
ℎ

+
𝛾

(1 + 𝑛𝐼
ℎ
)
2
(
𝑏V

𝜇
2

− 𝐼V)
𝐸
ℎ

𝐼V
−

𝛾

1 + 𝑛𝐼
ℎ

(
𝑏V

𝜇
2

− 𝐼V)
𝐼
ℎ

𝐼V

=
𝐸
󸀠

ℎ

𝐸
ℎ

+
𝛼𝜙𝐼V

1 + 𝑚𝐼V
− 𝜇
1
−

𝛾𝐼
ℎ

1 + 𝑛𝐼
ℎ

+
𝛾

(1 + 𝑛𝐼
ℎ
)
2

𝐸
ℎ

𝐼V

𝑏V

𝜇
2

−
𝛾

(1 + 𝑛𝐼
ℎ
)
2
𝐸
ℎ
−

𝛾

1 + 𝑛𝐼
ℎ

𝐼
ℎ

𝐼V

𝑏V

𝜇
2

+
𝛾

1 + 𝑛𝐼
ℎ

𝐼
ℎ

=
𝐸
󸀠

ℎ

𝐸
ℎ

+
𝛼𝜙𝐼V

1 + 𝑚𝐼V
− 𝜇
1
+

𝛾

(1 + 𝑛𝐼
ℎ
)
2

𝐸
ℎ

𝐼V

𝑏V

𝜇
2

−
𝛾

(1 + 𝑛𝐼
ℎ
)
𝐸
ℎ
−

𝛾

1 + 𝑛𝐼
ℎ

𝐼
ℎ

𝐼V

𝑏V

𝜇
2

≤
𝐸
󸀠

ℎ

𝐸
ℎ

+
𝛼𝜙𝐼V

1 + 𝑚𝐼V
− 𝜇
1
+

𝛾

(1 + 𝑛𝐼
ℎ
)
2

𝐸
ℎ

𝐼V

𝑏V

𝜇
2

−
𝛾

(1 + 𝑛𝐼
ℎ
)
2
𝐸
ℎ
−

𝛾

(1 + 𝑛𝐼
ℎ
)
2

𝐼
ℎ

𝐼V

𝑏V

𝜇
2

≤
𝐸
󸀠

ℎ

𝐸
ℎ

+
𝛼𝜙𝐼V

1 + 𝑚𝐼V
− 𝜇
1
+

𝛾

(1 + 𝑛𝐼
ℎ
)
2

𝑎
ℎ

𝜇
1
𝐼V

𝑏V

𝜇
2

−
𝛾

(1 + 𝑛𝐼
ℎ
)
2
𝐸
ℎ
−

𝛾

(1 + 𝑛𝐼
ℎ
)
2

𝑐

𝐼V

𝑏V

𝜇
2

.

(41)

So,

𝑔
2
≤

𝐸
󸀠

ℎ

𝐸
ℎ

+
𝛼𝜙𝐼V

1 + 𝑚𝐼V
− 𝜇
1

+
𝛾

(1 + 𝑛𝐼
ℎ
)
2
𝐼V

𝑏V

𝜇
2

(
𝑎
ℎ

𝜇
1

− 𝑐) −
𝛾

(1 + 𝑛𝐼
ℎ
)
2
𝐸
ℎ

<
𝐸
󸀠

ℎ

𝐸
ℎ

+
𝛼𝜙𝐼V

1 + 𝑚𝐼V
− 𝜇
1

<
𝐸
󸀠

ℎ

𝐸
ℎ

+
𝛼𝜙𝐼V

𝑚
− 𝜇
1

<
𝐸
󸀠

ℎ

𝐸
ℎ

+
𝛼𝜙𝑀

𝑚
− 𝜇
1
,

(42)

if 𝜇
1
> 𝑎
ℎ
/𝑐 and𝑀 = 𝑏V/𝜇2.

Thus,

𝜇 (𝐵) = sup {𝑔
1
, 𝑔
2
} ≤

𝐸
󸀠

ℎ

𝐸
ℎ

−
𝜇
1

2
, (43)

if 𝜇
1
> 2𝛼𝜙𝑀/𝑚.
Since (2) is uniformly persistentwhen𝑅

0
> 1, so for𝑇 > 0

such that 𝑡 > 𝑇 implies that 𝐸
ℎ
(𝑡) ≥ 𝑐, 𝐼

ℎ
(𝑡) ≥ 𝑐, 𝐼V(𝑡) ≥ 𝑐, and

(1/𝑡) log 𝐼
ℎ
(𝑡) < 𝜇

1
/4 for all (𝑆

ℎ
(0), 𝐼
ℎ
(0), 𝐼V(0)) ∈ 𝐾. Thus,

1

𝑡
∫

𝑡

0

𝜇 (𝐵) 𝑑𝑡 <
log𝐸
ℎ
(𝑡)

𝑡
−

𝜇
1

2
<

−𝜇
1

4
, (44)

for all (𝑆
ℎ
(0), 𝐼
ℎ
(0), 𝐼V(0)) ∈ 𝐾. The condition (𝐻

3
) is satisfied

provided that 𝜇
1

> max{𝑎
ℎ
/𝑐, 2𝛼𝜙𝑀/𝑚}. Therefore, all the

conditions ofTheorem 7 are satisfied.Hence, unique endemic
equilibrium 𝐸

∗ is globally stable inΩ.

6. Discussion

Weknow that the basic reproduction number of themodel𝑅
0

is proportional to the total number of the host tree population
available as oviposition sites for the vector beetles and the
number of vector population and host infectious rates 𝛼 and
vector infectious rate 𝛽, respectively. The basic reproduction
number 𝑅

0
does not depend on 𝑚, 𝑛 definitely; numerical

simulations indicate that when the disease is endemic, the
steady state value of the exposed host 𝐸∗

ℎ
, infected host 𝐼∗

ℎ

decreases as m increases (see Figures 1 and 2), and the steady
state value of the infective vector 𝐼∗V decreases as 𝑛 increases
(see Figure 3). The numerical simulations are carried out
using 𝑆

ℎ
(0) = 300, 𝐸

ℎ
(0) = 30, 𝐼

ℎ
(0) = 20, 𝑆V(0) = 65, 𝐼V(0) =

20, 𝑎
ℎ

= 0.009041, 𝑏V = 0.002691, 𝛼 = 0.00166, 𝜙 = 0.2,
𝛽 = 0.057142, 𝛾 = 0.00305, 𝜇

1
= 0.0000301, 𝜇

2
= 0.011764,

𝑚
1

= 0.01, 𝑚
2

= 0.03, 𝑚
3

= 0.07, 𝑚
4

= 0.09, 𝑛 = 0.01,
𝑛
1
= 0.02, and 𝑛

2
= 0.03. Furthermore, from the expression

of the basic reproduction number, we can observe that more
effective control strategy seems to reduce the total number
of infection and the rates of transmission and decrease the
carrying capacity of the environment for vector beetles using
conventional controls, such as aerial spraying of pesticide
to kill pine sawyer adults, injection procedures and physical
treatment (chipping and burning), or chemical treatment of
wilt pines to kill their larvae.

This paper presents a host-vector model for pine wilt
disease with nonlinear incidence rate. The mathematical
analysis is carried out for a model for forest insect pests with
pinewilt disease.The global dynamics of themodel are shown
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Figure 1: Plot of the exposed host population.
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Figure 2: Plot of the infected host population.

to be determined by the basic reproduction number𝑅
0
. More

specifically, by constructing suitable Lyapunov function, we
proved that if 𝑅

0
≤ 1, then disease-free equilibrium 𝐸

0
is

globally asymptotically stable in Γ, and thus the disease always
dies out. If 𝑅

0
> 1, the unique endemic equilibrium 𝐸

∗

exists and is globally asymptotically stable, so that the disease
persists at the endemic equilibrium if it is initially present.
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