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We study the one-dimensional bipolar nonisentropic Euler-Poisson equations which can model various physical phenomena, such
as the propagation of electron and hole in submicron semiconductor devices, the propagation of positive ion and negative ion in
plasmas, and the biological transport of ions for channel proteins. We show the existence and large time behavior of global smooth
solutions for the initial value problem, when the difference of two particles’ initial mass is nonzero, and the far field of two particles’
initial temperatures is not the ambient device temperature. This result improves that of Y.-P. Li, for the case that the difference of
two particles’ initial mass is zero, and the far field of the initial temperature is the ambient device temperature.

1. Introduction

In this paper we study the following 1D bipolar nonisentropic
Euler-Poisson equations:
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where 𝑛
𝑖
> 0, 𝑗

𝑖
, 𝑇
𝑖
, (𝑖 = 1, 2), and 𝐸 denote the particle

densities, current densities, temperatures, and the electric
field, respectively, and 𝑇∗ > 0 stands for the ambient device
temperature. The system (1) models various physical phe-
nomena, such as the propagation of electron and hole in sub-
micron semiconductor derives, the propagation of positive
ion and negative ion in plasmas, and the biological transport
of ions for channel proteins. When the temperature 𝑇

𝑖
(𝑖 =

1, 2) is the function of the density 𝑛
𝑖
(𝑖 = 1, 2), the system

(1) reduces to the isentropic bipolar Euler-Poisson equations.
For more details on the bipolar isentropic and nonisentropic
Euler-Poisson equations (hydrodynamic models), we can see
[1–3] and so forth.

Due to their physical importance,mathematical complex-
ity, and wide rang, of applications, many results concerning
the existence and uniqueness of (weak, strong, or smooth)
solutions for the bipolar Euler-Poisson equations can be
found in [4–14] and the references cited therein. However,
the study of the corresponding nonisentropic bipolar Euler-
Poisson equation is very limited in the literature. In [15]
Li investigated the global existence and nonlinear diffusive
waves of smooth solutions for the initial value problem of
the one-dimensional nonisentropic bipolar hydrodynamic
model when the difference of two particles’ initial mass is
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zero, and the far field of two particles’ initial temperatures is
the ambient device temperature. We also mention that there
are some results about the relaxation limit and quasineutral
limit of the bipolar Euler-Poisson system see [16–19]. In this
paper, we will show the existence and large time behavior of
global smooth solutions for the initial value problem of (1),
when the difference of two particles’ initial mass is nonzero
and the far field of the initial temperatures is not the ambient
device temperature. We now prescribe the following initial
data:
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electric field as 𝑥 = −∞; that is,

𝐸 (−∞, 𝑡) = 0. (3)

Thenonlinear diffusive phenomena both in smooth andweak
senses were also observed for the bipolar isentropic and
nonisentropic by Gasser et al. [4], Huang and Li [5], and Li
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This implies, from the last equation of (1), that
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Throughout this paper, the diffusion waves are always
denoted by (𝑛, 𝑗)(𝑥/√1 + 𝑡). 𝐶 denotes the generic positive
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Now we state our main results as follows.

Theorem 1. Let (𝜙
𝑖0
, 𝜓
𝑖0
, 𝜃
𝑖0
)(𝑖 = 1, 2) ∈ 𝐻

3
(R) × 𝐻

2
(R) ×

𝐻
3
(R), and set 𝛿 := |𝑗

1+
|+|𝑗
1−
|+|𝑗
2+
|+|𝑗
2−
|+|𝑇
1+
−𝑇
∗
|+|𝑇
1−
−

𝑇
∗
|+|𝑇
2+
−𝑇
∗
|+|𝑇
2−
−𝑇
∗
|+|𝑛
+
−𝑛
−
| andΦ

0
:= ‖(𝜙

10
, 𝜙
20
)‖
3
+

‖(𝜓
10
, 𝜓
20
)‖
2
+ ‖(𝜃
10
, 𝜃
20
)‖
3
. Then, there is a 𝛿

0
> 0 such that if

Φ
0
+𝛿 ≤ 𝛿

0
the solutions (𝑛

1
, 𝑛
2
, 𝑗
1
, 𝑗
2
, 𝜃
1
, 𝜃
2
, 𝐸) of IVP (1)–(3)

uniquely and globally exist and satisfy

𝑛
1
− 𝑛
1
− 𝑛, 𝑛
2
− 𝑛
2
− 𝑛

∈ 𝐶 ([0, +∞) ,𝐻
2
(R)) ∩ 𝐶

1
([0, +∞) ,𝐻

1
(R)) ,

𝑗
1
− 𝑗
1
− 𝑗, 𝑗
2
− 𝑗
2
− 𝑗

∈ 𝐶 ([0, +∞) ,𝐻
2
(R)) ∩ 𝐶

1
([0, +∞) ,𝐻

1
(R)) ,

𝑇
1
−
̂
𝑇
1
− 𝑇
∗
, 𝑇
2
−
̂
𝑇
2
− 𝑇
∗

∈ 𝐶 ([0, +∞) ,𝐻
3
(R)) ∩ 𝐶

1
([0, +∞) ,𝐻

1
(R)) ,

𝐸 − 𝐸 ∈ 𝐶 ([0, +∞) ,𝐻
3
(R))

∩ 𝐶
1
([0, +∞) ,𝐻

2
(R)) ∩ 𝐶

2
([0, +∞) ,𝐻

1
(R)) .

(9)

Moreover, it holds that

2

∑

𝑘=0

(1 + 𝑡)
𝑘+1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
𝑘

𝑥
(𝑛
1
− 𝑛
1
− 𝑛, 𝑇

1
−
̂
𝑇
1
− 𝑇
∗
,

𝑛
2
− 𝑛
2
− 𝑛, 𝑇

2
−
̂
𝑇
2
− 𝑇
∗
) (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+

2

∑

𝑘=0

(1 + 𝑡)
𝑘+2󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
(𝑗
1
− 𝑗
1
− 𝑗, 𝑗
2
− 𝑗
2
− 𝑗) (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ (1 + 𝑡)
3󵄩󵄩
󵄩
󵄩
󵄩
𝜕
3

𝑥
(𝑇
1
−
̂
𝑇
1
− 𝑇
∗
, 𝑇
2
−
̂
𝑇
2
− 𝑇
∗
) (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝐶 (𝛿 + Φ
0
) ,



Abstract and Applied Analysis 3

󵄩
󵄩
󵄩
󵄩
(𝑛
1
− 𝑛
1
− 𝑛
2
+ 𝑛
2
) (𝑡)

󵄩
󵄩
󵄩
󵄩

2

1

+

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑗
1
− 𝑗
1
− 𝑗
2
+ 𝑗
2
) (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

1

+

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇
1
−
̂
𝑇
1
− 𝑇
2
+
̂
𝑇
2
) (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐸 − 𝐸) (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

2

≤ 𝐶 (Φ
0
+ 𝛿) 𝑒

−𝛼𝑡
,

(10)

for some constant 𝛼 > 0.

Remark 2. It is more important and interesting that we
should discuss the existence and large time behavior of global
smooth solution for the bipolar nonisentropic Euler-Poisson
system with the general ambient device temperature func-
tions, instead of the constant ambient device temperature,
as in [20]. Moreover, we also should consider the similar
problem for the corresponding multi-dimensional bipolar
non-isentropic Euler-Poisson systems. These are left for the
forthcoming future.

The rest of this paper is arranged as follows. In Section 2,
we make some necessary preliminaries. That is, we first give
some well-known results on the diffusion waves and one key
inequality will be used later; then we trickly construct the
correction functions to delete the gaps between the solutions
and the diffusion waves at the far field. We reformulate the
original problem in terms of a perturbed variable and state
local-in-time existence of classical solutions in Section 3.
Section 4 is used to establish the uniformly a priori estimate
and to show the global existence of smooth solutions, while
we prove the algebraic convergence rate of smooth solutions
in Section 5.

2. Some Preliminaries

In this section, we state the nonlinear diffusive wave and
then construct the correction functions. First of all, we list
some known results concerning the self-similar solution of
the nonlinear parabolic equation (4). Let us recall that the
nonlinear parabolic equation

𝑛
𝑡
− (𝑛𝑇

∗
)
𝑥𝑥
= 0,

𝑛 󳨀→ 𝑛
±
, as 𝑥 󳨀→ ±∞,

(11)

possesses a unique self-similar solution 𝑛(𝑥, 𝑡) ≜ 𝑛(𝜉), 𝜉 =

𝑥/√1 + 𝑡, which is increasing if 𝑛
−
< 𝑛
+
and decreasing if

𝑛
−

> 𝑛
+
. The corresponding Darcy law is 𝑗 := −(𝑛𝑇

∗
)
𝑥

satisfying 𝑗 → 0 as 𝑥 → ±∞.

Lemma 3 (see [4, 15, 21] ). For the self-similar solution of (11),
it holds
󵄨
󵄨
󵄨
󵄨
𝑛 (𝜉) − 𝑛

+

󵄨
󵄨
󵄨
󵄨𝜉>0

+
󵄨
󵄨
󵄨
󵄨
𝑛 (𝜉) − 𝑛

−

󵄨
󵄨
󵄨
󵄨𝜉<0

,

≤ 𝐶
󵄨
󵄨
󵄨
󵄨
𝑛
+
− 𝑛
−

󵄨
󵄨
󵄨
󵄨
𝑒
−]0𝜉
2

,

󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
𝑘

𝑥
𝜕
𝑙

𝑡
𝑛 (𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶
󵄨
󵄨
󵄨
󵄨
𝑛
+
− 𝑛
−

󵄨
󵄨
󵄨
󵄨
(1 + 𝑡)

−(𝑘+2𝑙)/2
𝑒
−]0𝜉
2

𝑘 + 𝑙 ≥ 1, 𝑘, 𝑙 ≥ 0,

∫

0

−∞

󵄨
󵄨
󵄨
󵄨
𝑛 (𝑥, 𝑡) − 𝑛

−

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 + ∫

+∞

0

󵄨
󵄨
󵄨
󵄨
𝑛 (𝑥, 𝑡) − 𝑛

+

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥

≤ 𝐶
󵄨
󵄨
󵄨
󵄨
𝑛
+
− 𝑛
−

󵄨
󵄨
󵄨
󵄨

2

(1 + 𝑡)
1/2
,

∫

R

󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
𝑘

𝑥
𝜕
𝑙

𝑡
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥

≤ 𝐶
󵄨
󵄨
󵄨
󵄨
𝑛
+
− 𝑛
−

󵄨
󵄨
󵄨
󵄨

2

(1 + 𝑡)
(1/2)−2𝑙−𝑘

, 𝑘 + 𝑙 ≥ 1,

(12)

where ]
0
> 0 is a constant.

Next, we construct the gap function, which will be
used in Sections 3 and 4. First of all, motivated by [6,
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−
(𝑡) = 𝐸(−∞, 𝑡) = 0. Solving these
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O.D.E and noticing (13), there exists some constant 0 < 𝛽
0
<

1/2 such that

𝑛
𝑖
(±∞, 𝑡) = 𝑛

±
, 𝑖 = 1, 2,

󵄨
󵄨
󵄨
󵄨
𝑗
𝑖
(+∞, 𝑡)

󵄨
󵄨
󵄨
󵄨
= 𝑂 (1) 𝑒

−𝛽0𝑡
, 𝑖 = 1, 2,

𝑗
𝑖
(−∞, 𝑡) = 𝑂 (1) 𝑒

−𝑡
, 𝑖 = 1, 2,

𝑇
𝑖
(±∞, 𝑡) = 𝑇

∗
+ (𝑇
𝑖±
− 𝑇
∗
) 𝑒
−𝑡
+ 𝑂 (1) 𝑒

−𝛽0𝑡
, 𝑖 = 1, 2,

|𝐸 (+∞, 𝑡)| = 𝑂 (1) 𝑒
−𝛽0𝑡

,

𝐸 (−∞, 𝑡) = 0.

(18)

Obviously, there are some gaps between 𝑗
𝑖
(±∞, 𝑡) and

𝑗(±∞, 𝑡), 𝑇
𝑖
(±∞, 𝑡) and 𝑇∗, and 𝐸(+∞, 𝑡) and 𝐸 ≡ 0, which

lead to 𝑗
𝑖
(𝑥, 𝑡)−𝑗(𝑥, 𝑡), 𝑇

𝑖
(𝑥, 𝑡)−𝑇

∗
, 𝐸(𝑥, 𝑡) ∉ 𝐿

2
(R). To delete

these gaps, we need to introduce the correction functions
(𝑛
1
, 𝑛
2
, 𝑗
1
, 𝑗
2
,
̂
𝑇
1
,
̂
𝑇
2
, 𝐸)(𝑥, 𝑡). As those done in [6, 22], we

can construct these gap functions. That is, we can choose
(𝑛
1
, 𝑛
2
, 𝑗
1
, 𝑗
2
, 𝐸)(𝑥, 𝑡), which solve the system

𝑛
1𝑡
+ 𝑗
1𝑥
= 0,

𝑗
1𝑡
= ̆𝑛𝐸 − 𝑗

1
,

𝑛
2𝑡
+ 𝑗
2𝑥
= 0,

𝑗
2𝑡
= − ̆𝑛𝐸 − 𝑗

2
,

𝐸
𝑥
= 𝑛
1
− 𝑛
2
,

(19)

with 𝑗
𝑖
(𝑥, 𝑡) → 𝑗

±

𝑖
(𝑡) as 𝑥 → ±∞, 𝐸(𝑥, 𝑡) → 0 as

𝑥 → −∞, and 𝐸(𝑥, 𝑡) → 𝐸
+
(𝑡) as 𝑥 → +∞. Here,

̆𝑛(𝑥) = 𝑛
−
+ (𝑛
+
− 𝑛
−
) ∫

𝑥+2𝐿0

−∞
𝑚
0
(𝑦)𝑑𝑦 with𝑚

0
(𝑥) ≥ 0, 𝑚

0
∈

𝐶
∞

0
(R), supp𝑚

0
⊆ [−𝐿

0
, 𝐿
0
], and ∫

+∞

−∞
𝑚
0
(𝑦)𝑑𝑦 = 1.

Moreover, we take ̂𝑇
𝑖
(𝑥, 𝑡) =

̂
𝑇
−

𝑖
(𝑡)(1 − 𝑔(𝑥)) +

̂
𝑇
+

𝑖
(𝑡)𝑔(𝑥)(𝑖 =

1, 2) with 𝑔(𝑥) = ∫

𝑥

−∞
𝑚
0
(𝑦) 𝑑𝑦, which together with (17)

implies

𝜕

𝜕𝑡

̂
𝑇
𝑖
(𝑥, 𝑡) = −

̂
𝑇
𝑖
(𝑥, 𝑡) +

1

3

(

𝑗
−

𝑖
(𝑡)

𝑛
−

)

2

(1 − 𝑔 (𝑥))

+

1

3

(

𝑗
+

𝑖
(𝑡)

𝑛
+

)

2

𝑔 (𝑥)

=: −
̂
𝑇
𝑖
(𝑥, 𝑡) + 𝑆

𝑖
(𝑥, 𝑡) , 𝑖 = 1, 2.

(20)

In conclusion, we have constructed the required correc-
tion functions (𝑛

1
, 𝑛
2
, 𝑗
1
, 𝑗
2
,
̂
𝑇
1
,
̂
𝑇
2
, 𝐸) which satisfy

𝑛
1𝑡
+ 𝑗
1𝑥
= 0,

𝑗
1𝑡
= ̆𝑛𝐸 − 𝑗

1
,

𝑛
2𝑡
+ 𝑗
2𝑥
= 0,

𝑗
2𝑡
= − ̆𝑛𝐸 − 𝑗

2
,

̂
𝑇
𝑖𝑡
= −

̂
𝑇
𝑖
+ 𝑆
𝑖
(𝑥, 𝑡) ,

𝐸
𝑥
= 𝑛
1
− 𝑛
2
,

with
{
{
{
{

{
{
{
{

{

𝑗
𝑖
(𝑥, 𝑡) → 𝑗

±

𝑖
(𝑡) , as 𝑥 → ±∞,

̂
𝑇
𝑖
(𝑥, 𝑡) → 𝑇

±

𝑖
(𝑡) − 𝑇

∗
, as 𝑥 → ±∞,

𝐸 (𝑥, 𝑡) → 0, as 𝑥 → −∞,

𝐸 (𝑥, 𝑡) → 𝐸
+
(𝑡) , as 𝑥 → +∞.

(21)

Since these details can be found in [6, 22], we
only give the following decay time-exponentially of
(𝑛
1
, 𝑛
2
, 𝑗
1
, 𝑗
2
,
̂
𝑇
1
,
̂
𝑇
2
, 𝐸)(𝑥, 𝑡).

Lemma 4. There exist positive constants 𝐶 and ] < 1/2

independent of 𝑡, such that

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑛
𝑖
, 𝑗
𝑖
,
̂
𝑇
𝑖
, 𝐸)(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
(R)

≤ 𝐶𝛿𝑒
−]𝑡
, 𝑖 = 1, 2, (22)

and supp 𝑛
𝑖
= supp𝑚

0
⊆ [−𝐿

0
, 𝐿
0
], 𝑖 = 1, 2.

3. Reformulation of Original Problem

In this section, we first reformulate the original problem in
terms of the perturbed variables. Setting for 𝑖 = 1, 2,

(𝜑
𝑖
, 𝜓
𝑖
, 𝜃
𝑖
,H) (𝑥, 𝑡)

:= (∫

𝑥

−∞

[𝑛
𝑖
(𝜉, 𝑡) − 𝑛

𝑖
(𝜉, 𝑡) − 𝑛 (𝜉 + 𝑥

0
, 𝑡)] 𝑑𝜉,

𝑗
𝑖
(𝑥, 𝑡) − 𝑗

𝑖
(𝑥, 𝑡) − 𝑗 (𝑥 + 𝑥

0
, 𝑡) , 𝑇
𝑖
(𝑥, 𝑡)

−
̂
𝑇
𝑖
(𝑥, 𝑡) − 𝑇

∗
, 𝐸 (𝑥, 𝑡) − 𝐸 (𝑥, 𝑡)) ,

(23)

then from (1), (11), and (21), we have for 𝑖 = 1, 2,

𝜑
𝑖𝑡
+ 𝜓
𝑖
= 0,
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𝜓
𝑖𝑡
+ (

(−𝜑
𝑖𝑡
+ 𝑗
𝑖
+ 𝑗)

2

𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛

+ (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

× (𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
) − 𝑛𝑇

∗
)

𝑥

= (−1)
𝑖−1

(𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)H

+ (−1)
𝑖−1

(𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛 − ̆𝑛) 𝐸

− 𝜓
𝑖
+ (𝑛𝑇

∗
)
𝑡𝑥
,

𝜃
𝑖𝑡
+

−𝜑
𝑖𝑡
+ 𝑗
𝑖
+ 𝑗

𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛

(𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)
𝑥

+

2

3

(

−𝜑
𝑖𝑡
+ 𝑗
𝑖
+ 𝑗

𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛

)

𝑥

(𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

−

2

3 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

(𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)
𝑥𝑥

= [

1

3

(

−𝜑
𝑖𝑡
+ 𝑗
𝑖
+ 𝑗

𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛

)

2

− 𝑆
𝑖
(𝑥, 𝑡)] − 𝜃

𝑖
,

H = 𝜑
1
− 𝜑
2
,

(24)

with the initial data (𝜑
𝑖
, 𝜓
𝑖
, 𝜃
𝑖
)(𝑥, 0) = (𝜑

10
, 𝜓
𝑖0
, 𝜃
𝑖0
)(𝑥), 𝑖 =

1, 2. Further, we have

𝜑
1𝑡𝑡
+ 𝜑
1𝑡
− ((𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
) 𝜑
1𝑥
+ 𝑛𝜃
1
)
𝑥
+ (𝜑
1𝑥
+ 𝑛
1
+ 𝑛)H

= −𝑓
1
+ 𝑔
1𝑥
− (𝑛𝑇

∗
)
𝑡𝑥
,

𝜑
2𝑡𝑡
+ 𝜑
2𝑡
− ((𝜃
2
+
̂
𝑇
2
+ 𝑇
∗
) 𝜑
2𝑥
+ 𝑛𝜃
1
)
𝑥
− (𝜑
2𝑥
+ 𝑛
2
+ 𝑛)H

= 𝑓
2
+ 𝑔
2𝑥
− (𝑛𝑇

∗
)
𝑡𝑥
,

𝜃
1𝑡
+ 𝜃
1
−

2

3 (𝜑
1𝑥
+ 𝑛
1
+ 𝑛)

𝜃
1𝑥𝑥

−

2

3

(𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
) (

𝜑
1𝑡

𝜑
1𝑥
+ 𝑛
1
+ 𝑛

)

𝑥

= 𝐺
1
,

𝜃
2𝑡
+ 𝜃
2
−

2

3 (𝜑
2𝑥
+ 𝑛
2
+ 𝑛)

𝜃
2𝑥𝑥

−

2

3

(𝜃
2
+
̂
𝑇
2
+ 𝑇
∗
) (

𝜑
2𝑡

𝜑
2𝑥
+ 𝑛
2
+ 𝑛

)

𝑥

= 𝐺
2
,

(25)

with the initial data

𝜑
𝑖
(𝑥, 0) = 𝜑

𝑖0
(𝑥) ,

𝜑
𝑖𝑡
(𝑥, 0) = −𝜓

𝑖0
(𝑥) ,

𝜃
𝑖
(𝑥, 0) = 𝜃

𝑖0
(𝑥) ,

𝑖 = 1, 2.

(26)

Here

𝑓
𝑖
= (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛 − ̆𝑛) 𝐸 − ((𝜃

𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
) 𝑛
𝑖
+ 𝑛

̂
𝑇
𝑖
)
𝑥
,

𝑔
𝑖
=

(−𝜑
𝑖𝑡
+ 𝑗
𝑖
+ 𝑗)

2

𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛

,

𝐺
𝑖
= −

−𝜑
𝑖𝑡
+ 𝑗
𝑖
+ 𝑗

𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛

(𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)
𝑥

−

2

3

(

𝑗
𝑖
+ 𝑗

𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛

)

𝑥

(𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

−

2

3

(

𝑗
𝑖
+ 𝑗

𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛

)

𝑥

(𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
) − 𝑆
𝑖
(𝑥, 𝑡) .

(27)

By the standard iterationmethods (see [23]), we can prove
the local existence of classical solutions of the IVP (25) and
(26). Here for the sake of clarity, we only state result and omit
the proof.

Lemma 5. Suppose that (𝜑
𝑖0
, −𝜓
𝑖0
, 𝜃
𝑖0
) ∈ 𝐻

3
(R) × 𝐻

2
(R) ×

𝐻
3
(R) for 𝑖 = 1, 2. Then there is a 𝐶

1
> 0 such that if

󵄩
󵄩
󵄩
󵄩
(𝜑
10
, 𝜃
10
, 𝜑
20
, 𝜃
20
)
󵄩
󵄩
󵄩
󵄩

2

3
+
󵄩
󵄩
󵄩
󵄩
(𝜓
10
, 𝜓
20
)
󵄩
󵄩
󵄩
󵄩

2

2
≤ 𝐶
1
, (28)

then there is a positive number 𝑇
0

such that the ini-
tial value problems (25) and (26) have a unique solu-
tion (𝜑

1
, 𝜃
1
, 𝜑
2
, 𝜃
2
) satisfying 𝜑

𝑖
∈ 𝐶([0, 𝑇

0
];𝐻
3
(R)) ∩
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𝐶
1
([0, 𝑇
0
];𝐻
2
(R)) ∩ 𝐶

2
([0, 𝑇
0
]; 𝐻1(R)), 𝜃

𝑖
∈ 𝐶([0, 𝑇

0
];

𝐻
3
(R)) ∩ 𝐶1([0, 𝑇

0
];𝐻
1
(R))(𝑖 = 1, 2), and

󵄩
󵄩
󵄩
󵄩
(𝜑
1
, 𝜃
1
, 𝜑
2
, 𝜃
2
) (⋅, 𝑡)

󵄩
󵄩
󵄩
󵄩

2

3
+
󵄩
󵄩
󵄩
󵄩
(𝜑
1𝑡
, 𝜑
2𝑡
) (⋅, 𝑡)

󵄩
󵄩
󵄩
󵄩

2

2

+
󵄩
󵄩
󵄩
󵄩
(𝜃
1𝑡
, 𝜃
2𝑡
) (⋅, 𝑡)

󵄩
󵄩
󵄩
󵄩

2

1

≤ 𝐶,

(29)

for some positive constant 𝐶.

To end this section, we also derive

H
𝑡𝑡
+H
𝑡
+ 2𝑛H − (𝑛 (𝜃

1
− 𝜃
2
) + (𝜃

1
+
̂
𝑇
1
+ 𝑇
∗
)H
𝑥
)
𝑥

= ℎ
1𝑥
− ℎ
2
− ℎ
3
+ ℎ
4𝑥
,

(30)

(𝜃
1
− 𝜃
2
)
𝑡
+ (𝜃
1
− 𝜃
2
) −

2

3 (𝜑
1𝑥
+ 𝑛
1
+ 𝑛)

(𝜃
1
− 𝜃
2
)
𝑥𝑥

−

2 (𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
)

3 (𝜑
1𝑥
+ 𝑛
1
+ 𝑛)

H
𝑡𝑥

= 𝐺
3
,

(31)

where

ℎ
1
:= (𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
) (𝑛
1
− 𝑛
2
) + (𝜑

2𝑥
+ 𝑛
2
) (𝜃
1
− 𝜃
2
)

+ (𝜑
2𝑥
+ 𝑛
2
+ 𝑛) (

̂
𝑇
1
−
̂
𝑇
2
) ,

ℎ
2
:= (𝜑
1𝑥
+ 𝜑
2𝑥
+ 𝑛
1
+ 𝑛
2
)H,

ℎ
3
:= [𝜑
1𝑥
+ 𝜑
2𝑥
+ 𝑛
1
+ 𝑛
2
+ 2 (𝑛 − ̆𝑛)] 𝐸,

ℎ
4
:=

(−𝜑
1𝑡
+ 𝑗
1
+ 𝑗)

2

𝜑
1𝑥
+ 𝑛
1
+ 𝑛

−

(−𝜑
2𝑡
+ 𝑗
2
+ 𝑗)

2

𝜑
2𝑥
+ 𝑛
2
+ 𝑛

,

𝐺
3

:= 𝐺
1
− 𝐺
2
+ [

2

3 (𝜑
1𝑥
+ 𝑛
1
+ 𝑛)

−

2

3 (𝜑
2𝑥
+ 𝑛
2
+ 𝑛)

] 𝜃
2𝑥𝑥

+ [

2 (𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
)

3 (𝜑
1𝑥
+ 𝑛
1
+ 𝑛)

−

2 (𝜃
2
+
̂
𝑇
2
+ 𝑇
∗
)

3 (𝜑
2𝑥
+ 𝑛
2
+ 𝑛)

]𝜑
2𝑡𝑥

−

2 (𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
)

3(𝜑
1𝑥
+ 𝑛
1
+ 𝑛)
2
𝜑
1𝑡
H
𝑥𝑥
−

2 (𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
)

3(𝜑
1𝑥
+ 𝑛
1
+ 𝑛)
2
𝑛
1𝑥
H
𝑡

+ [

2 (𝜃
2
+
̂
𝑇
2
+ 𝑇
∗
)

3(𝜑
2𝑥
+ 𝑛
2
+ 𝑛)
2
𝜑
2𝑡
−

2 (𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
)

3(𝜑
1𝑥
+ 𝑛
1
+ 𝑛)
2
𝜑
1𝑡
]

× (𝜑
2𝑥
+ 𝑛)
𝑥

− [

2 (𝜃
2
+
̂
𝑇
2
+ 𝑇
∗
)

3(𝜑
2𝑥
+ 𝑛
2
+ 𝑛)
2
𝑛
1𝑥
−

2 (𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
)

3(𝜑
1𝑥
+ 𝑛
1
+ 𝑛)
2
𝑛
2𝑥
]𝜑
2𝑡
.

(32)

4. Global Existence of Smooth Solutions

In this section we mainly prove global existence of smooth
solutions for the initial value problems (25) and (26). To begin
with, we focus on the a priori estimates of (𝜑

1
, 𝜃
1
, 𝜑
2
, 𝜃
2
). For

this purpose, letting 𝑇 ∈ (0, +∞), we define

𝑋 (𝑇)

= {(𝜑
𝑖
, 𝜑
𝑖𝑡
, 𝜃
𝑖
, 𝜃
𝑖𝑡
) : 𝜕
𝑗

𝑡
𝜑
𝑖
∈ 𝐶 ([0, 𝑇] ;𝐻

3−𝑗
(R)) ,

𝜃
𝑖
∈ 𝐶 ([0, 𝑇] ;𝐻

3
(R)) , 𝜃

𝑖𝑡
∈ 𝐶 ([0, 𝑇] ;𝐻

1
(R)) ,

𝑖 = 1, 2, 𝑗 = 0, 1} ,

(33)

with the norm

𝑁(𝑇)
2
= max
0≤𝑡≤𝑇

{
󵄩
󵄩
󵄩
󵄩
(𝜑
1
, 𝜑
2
, 𝜃
1
, 𝜃
2
) (𝑡)

󵄩
󵄩
󵄩
󵄩

2

3
+
󵄩
󵄩
󵄩
󵄩
(𝜑
1𝑡
, 𝜑
2𝑡
) (𝑡)

󵄩
󵄩
󵄩
󵄩

2

2

+
󵄩
󵄩
󵄩
󵄩
(𝜃
1𝑡
, 𝜃
2𝑡
) (𝑡)

󵄩
󵄩
󵄩
󵄩

2

1
} .

(34)

Let 𝑁(𝑇)2 ≤ 𝜀
2, where 𝜀 is sufficiently small and will be

determined later. Then, by Sobolev inequality, we have for
𝑖 = 1, 2,

󵄩
󵄩
󵄩
󵄩
(𝜑
𝑖
, 𝜑
𝑖𝑥
, 𝜑
𝑖𝑥𝑥
, 𝜃
𝑖
, 𝜃
𝑖𝑥
, 𝜃
𝑖𝑡
, 𝜃
𝑖𝑥𝑥
, 𝜑
𝑖𝑡
, 𝜑
𝑖𝑡𝑥
) (𝑡)

󵄩
󵄩
󵄩
󵄩𝐿
∞ ≤ 𝐶𝜀. (35)

Clearly, there exists a positive constant 𝑐
1
, 𝑐
2
such that

0 <

1

𝑐
1

≤ 𝑛
𝑖
= 𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛 ≤ 𝑐

1
,

0 <

1

𝑐
2

≤ 𝑇
𝑖
= 𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
≤ 𝑐
2
,

𝑖 = 1, 2.

(36)

Further, from (24)
7
, we also have 𝜕𝑗

𝑡
H ∈ 𝐶(0, 𝑇;𝐻

2−𝑗
(R))

and

󵄩
󵄩
󵄩
󵄩
(H,H

𝑥
,H
𝑡
)(𝑡)

󵄩
󵄩
󵄩
󵄩𝐿
∞ ≤ 𝐶𝜀. (37)

Nowwe first establish the following basic energy estimate.
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Lemma 6. Let (𝜑
1
, 𝜃
1
, 𝜑
2
, 𝜃
2
)(𝑥, 𝑡) ∈ 𝑋(𝑇) be the solution of

the initial value problem (25) and (26). If 𝛿 + 𝜀 ≪ 1, then it
holds that for 0 < 𝑡 < 𝑇,

2

∑

𝑖=0

󵄩
󵄩
󵄩
󵄩
(𝜑
𝑖
, 𝜑
𝑖𝑥
, 𝜑
𝑖𝑡
, 𝜃
𝑖
) (⋅, 𝑡)

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

H (⋅, 𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ ∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

H (⋅, 𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑑𝜏

+

2

∑

𝑖=1

∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
(𝜑
𝑖𝑥
, 𝜑
𝑖𝑡
, 𝜃
𝑖
, 𝜃
𝑖𝑥
) (⋅, 𝜏)

󵄩
󵄩
󵄩
󵄩

2

𝑑𝜏 ≤ 𝐶 (Φ
0
+ 𝛿) .

(38)

Proof. Multiplying (25)
1
and (25)

2
by 𝜑
1
and 𝜑

2
, respectively,

and integrating them over R by parts, we have for 𝑖 = 1, 2,

𝑑

𝑑𝑡

∫

R

(𝜑
𝑖
𝜑
𝑖𝑡
+

1

2

𝜑
2

𝑖
)𝑑𝑥 + ∫

R

(𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
) 𝜑
2

𝑖𝑥
𝑑𝑥

+ (−1)
𝑖−1

∫

R

(𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛) H𝜑

𝑖
𝑑𝑥 − ∫

R

𝜑
2

𝑖𝑡
𝑑𝑥

= −∫

R

𝑛𝜃
𝑖
𝜑
𝑖𝑥
𝑑𝑥 + ∫

R

(𝑛𝑇
∗
)
𝑡
𝜑
𝑖𝑥
𝑑𝑥

+ (−1)
𝑖
∫

R

𝑓
𝑖
𝜑
𝑖
𝑑𝑥 − ∫

R

𝑔
𝑖
𝜑
𝑖𝑥
𝑑𝑥.

(39)

Using Cauchy-Schwartz’s inequality, and Lemmas 3 and 4, we
have

− ∫

R

𝑛𝜃
𝑖
𝜑
𝑖𝑥
𝑑𝑥 + ∫

R

(𝑛𝑇
∗
)
𝑡
𝜑
𝑖𝑥
𝑑𝑥

≤ 𝜅∫

R

𝜑
2

𝑖𝑥
𝑑𝑥 + 𝐶∫

R

(𝜃
2

𝑖
+ 𝑛
2

𝑡
) 𝑑𝑥,

(40)

where and in the subsequent 𝜅 > 0 is some proper small
constant, and

(−1)
𝑖
∫

R

𝑓
𝑖
𝜑
𝑖
𝑑𝑥 ≤ 𝐶𝜀∫

R

𝜑
2

𝑖𝑥
𝑑𝑥 + 𝐶𝛿

2
(1 + 𝑡)

1/4
𝑒
−]𝑡
, (41)

where we also used the facts

∫

R

(𝑛 − ̆𝑛)
2
𝑑𝑥 ≤ 𝐶𝛿

2
(1 + 𝑡)

1/2 (42)

which can be proved from the construction of ̆𝑛(𝑥) → 𝑛
±
,

as 𝑥 → ±∞, and the property of the diffusion wave 𝑛((𝑥 +
𝑥
0
)/√(1 + 𝑡)). Similarly, we can show

− ∫

R

𝑔
𝑖
𝜑
𝑖𝑥
𝑑𝑥

= −∫

R

(−𝜑
𝑖𝑡
+ 𝑗
𝑖
+ 𝑗)

2

𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛

𝜑
𝑖𝑥
𝑑𝑥

≤ 𝐶 (𝛿 + 𝜀) ∫

R

(𝜑
2

𝑖𝑥
+ 𝜑
2

𝑖𝑡
) 𝑑𝑥 + 𝐶𝛿∫

R

𝑛
2

𝑥
𝑑𝑥 + 𝐶𝛿

2
𝑒
−]𝑡
,

(43)

which together with (39)–(41) implies,

𝑑

𝑑𝑡

∫

R

(𝜑
𝑖
𝜑
𝑖𝑡
+

1

2

𝜑
2

𝑖
)𝑑𝑥 + ∫

R

[(𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
) − 𝜅] 𝜑

2

𝑖𝑥
𝑑𝑥

− ∫

R

𝜑
2

𝑖𝑡
𝑑𝑥 + (−1)

𝑖−1
∫

R

(𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)H𝜑

𝑖
𝑑𝑥

≤ 𝐶 (𝛿 + 𝜀) ∫

R

(𝜑
2

𝑖𝑥
+ 𝜑
2

𝑖𝑡
) 𝑑𝑥

+ 𝐶∫

R

(𝜃
2

𝑖
+ 𝑛
2

𝑡
+ 𝑛
2

𝑥
) 𝑑𝑥 + 𝐶𝛿

2
𝑒
−]1𝑡

,

(44)

where 0 < ]
1
< ]. Moreover, for the coupled term with the

electric field, we have

∫

R

((𝜑
1𝑥
+ 𝑛
1
+ 𝑛)H𝜑

1
− (𝜑
2𝑥
+ 𝑛
2
+ 𝑛)H𝜑

2
) 𝑑𝑥

≥ ∫

R

𝑛H
2
𝑑𝑥 − 𝐶𝜀∫

R

(H
2
+ 𝜑
2

1𝑥
+ 𝜑
2

2𝑥
) 𝑑𝑥 − 𝐶𝛿

2
𝑒
−]𝑡
.

(45)

Next, multiplying (25)
1
and (25)

2
by 𝜑
1𝑡
and 𝜑

2𝑡
, respec-

tively, and integrating their sum over R by parts, we have

𝑑

𝑑𝑡

∫

R

(

1

2

𝜑
2

𝑖𝑡
+

1

2

(𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
) 𝜑
2

𝑖𝑥
)𝑑𝑥

+ ∫

R

(𝜑
2

𝑖𝑡
+ 𝑛𝜃
𝑖
𝜑
𝑖𝑡𝑥
+ (−1)

𝑖−1
(𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)H𝜑

𝑖𝑡
) 𝑑𝑥

= (−1)
𝑖
∫

R

𝑓
𝑖
𝜑
𝑖𝑡
𝑑𝑥 + ∫

R

𝑔
𝑖𝑥
𝜑
𝑖𝑡
𝑑𝑥

− ∫

R

[(𝑛𝑇
∗
)
𝑡𝑥
𝜑
𝑖𝑡
−

1

2

(𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)
𝑡
𝜑
2

𝑖𝑥
] 𝑑𝑥.

(46)

Using Schwartz’s inequality, (42), and Lemmas 3 and 4, we
have

− ∫

R

[(𝑛𝑇
∗
)
𝑡𝑥
𝜑
𝑖𝑡
−

1

2

(𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)
𝑡
𝜑
2

𝑖𝑥
] 𝑑𝑥

+ (−1)
𝑖−1

∫

R

𝑓
𝑖
𝜑
𝑖𝑡
𝑑𝑥

≤ 𝜅∫

R

𝜑
2

𝑖𝑡
𝑑𝑥 + 𝐶 (𝛿 + 𝜀) ∫

R

(𝜑
2

𝑖𝑡
+ 𝜑
2

𝑖𝑥
) 𝑑𝑥

+ 𝐶∫

R

𝑛
2

𝑡𝑥
𝑑𝑥 + 𝐶𝛿

2
(1 + 𝑡)

1/4
𝑒
−]𝑡
.

(47)

Since

𝑔
𝑖𝑥
= −

(−𝜑
𝑖𝑡
+ 𝑗
𝑖
+ 𝑗)

2

(𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)
2
𝜑
𝑖𝑥𝑥

−

2 (−𝜑
𝑖𝑡
+ 𝑗
𝑖
+ 𝑗)

(𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

𝜑
𝑖𝑥𝑡

+ 𝑂 (1) [(𝜑
𝑖𝑡
+ 𝑗
𝑖
+ 𝑗) (𝑛

𝑖
+ 𝑛)
𝑡
+ (𝑗
𝑖
+ 𝑗)

2

(𝑛
𝑖
+ 𝑛)
𝑥

+ (𝑛
𝑖
+ 𝑛)
𝑥
𝜑
2

𝑖𝑡
] ,

(48)
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we obtain, after integration by parts, that

∫

R

𝑔
𝑖𝑥
𝜑
𝑖𝑡
𝑑𝑥

≤

𝑑

𝑑𝑡

∫

R

(−𝜑
𝑖𝑡
+ 𝑗
𝑖
+ 𝑗)

2

2(𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)
2
𝜑
2

𝑖𝑥
𝑑𝑥

+ 𝐶 (𝛿 + 𝜀) ∫

R

(𝜑
2

𝑖𝑡
+ 𝜑
2

𝑖𝑥
) 𝑑𝑥

+ 𝐶𝛿∫

R

(𝑛
2

𝑡
+ 𝑛
4

𝑥
) 𝑑𝑥 + 𝐶𝛿

2
𝑒
−]𝑡
,

(49)

where we have used
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(

(−𝜑
𝑖𝑡
+ 𝑗
𝑖
+ 𝑗)

2

(𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)
2
)

𝑥

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞

,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(

(−𝜑
𝑖𝑡
+ 𝑗
𝑖
+ 𝑗)

2

(𝜑i𝑥 + 𝑛𝑖 + 𝑛)
2
)

𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞

≤ 𝐶 (𝛿 + 𝜀) ,

(50)

with the aid of |𝜑
𝑖𝑡𝑡
| < 𝐶|𝜑

𝑖𝑥𝑥
+𝜑
𝑖𝑥𝑡
+𝜑
𝑖𝑥
+𝜑
𝑖𝑡
+𝜑
𝑖
+ 𝜃
𝑖
+ 𝜃
𝑖𝑥
+

𝑛
𝑥𝑡
|+𝐶𝛿

2
𝑒
−]𝑡. Putting the above inequality into (46), we have

𝑑

𝑑𝑡

∫

R

[

[

1

2

𝜑
2

𝑖𝑡
+

1

2

(𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
) 𝜑
2

𝑖𝑥
−

(−𝜑
𝑖𝑡
+ 𝑗
𝑖
+ 𝑗)

2

2(𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)
2
𝜑
2

𝑖𝑥
]

]

𝑑𝑥

+ (1 − 𝜅) ∫

R

𝜑
2

𝑖𝑡
𝑑𝑥 + (−1)

𝑖−1
∫

R

(𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)H𝜑

𝑖𝑡
𝑑𝑥

+ ∫

R

𝑛𝜃
𝑖
𝜑
𝑖𝑡𝑥

𝑑𝑥

≤ 𝐶 (𝛿 + 𝜀) ∫

R

(𝜑
2

𝑖𝑡
+ 𝜑
2

𝑖𝑥
) 𝑑𝑥

+ 𝐶∫

R

(𝑛
2

𝑡𝑥
+ 𝑛
2

𝑡
+ 𝑛
4

𝑥
) 𝑑𝑥 + 𝐶𝛿

2
𝑒
−]1𝑡

.

(51)

On the other hand, we have

∫

R

((𝜑
1𝑥
+ 𝑛
1
+ 𝑛)H𝜑

1𝑡
− (𝜑
2𝑥
+ 𝑛
2
+ 𝑛)H𝜑

2𝑡
) 𝑑𝑥

≥

𝑑

𝑑𝑡

∫

R

1

2

𝑛H
2
𝑑𝑥 − ∫

R

1

2

𝑛
𝑡
H
2
𝑑𝑥

− 𝐶𝜀∫

R

(𝜑
2

1𝑥
+ 𝜑
2

1𝑡
+ 𝜑
2

2𝑥
+ 𝜑
2

2𝑡
) 𝑑𝑥 − 𝐶𝛿𝑒

−]𝑡
.

(52)

Finally, multiplying (25)l (𝑙 = 3, 4) by (3𝑛(𝜑
𝑖𝑥
+ 𝑛
𝑖
+

𝑛)/2(𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
))𝜃
𝑖
(𝑖 = 1, 2) and integrating the resultant

equation by parts over R, we have

𝑑

𝑑𝑡

∫

R

3𝑛 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

4 (𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

𝜃
2

𝑖
𝑑𝑥

+ ∫

R

[

3𝑛 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

2 (𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

𝜃
2

𝑖
+

𝑛

𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
𝜃
2

𝑖𝑥
]𝑑𝑥,

− ∫

R

𝑛𝜃
𝑖
𝜑
𝑖𝑡𝑥
𝑑𝑥 = ∫

R

(

3𝑛 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

4 (𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

)

𝑡

𝜃
2

𝑖
𝑑𝑥

− ∫

R

(

𝑛

𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

𝑥

𝜃
𝑖
𝜃
𝑖𝑥
𝑑𝑥

− ∫

R

𝑛𝜃
𝑖

𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛

𝜑
𝑖𝑡
(𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)
𝑥
𝑑𝑥

+ ∫

R

𝐺
𝑖

3𝑛 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

2 (𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

𝜃
𝑖
𝑑𝑥.

(53)

Nowwe estimate the term of the right hand side of (53), using
Cauchy-Schwartz’s inequality and Lemmas 3 and 4. First,
with the help of the following equality 𝑗

𝑖
= (1 − 𝑔(𝑥))𝑗

−

𝑖
(𝑡) +

𝑔(𝑥)𝑗
+

𝑖
(𝑡) (see [6, 22]), we have

∫

R

3𝑛 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

2 (𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

(

𝑗
2

𝑖

3(𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)
2
− 𝑆
𝑖
(𝑥, 𝑡)) 𝜃

𝑖
𝑑𝑥

= {∫

−𝐿0

−∞

+∫

+∞

𝐿0

+∫

𝐿0

−𝐿0

}

3𝑛 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

2 (𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

× (

𝑗
2

𝑖

3(𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)
2
− 𝑆
𝑖
(𝑥, 𝑡)) 𝜃

𝑖
𝑑𝑥

= ∫

−𝐿0

−∞

3𝑛 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

2 (𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

𝜃
𝑖
𝑗
2

𝑖
(

1

3𝑛
2

𝑖

−

1

3𝑛
2

−

)𝑑𝑥

+ ∫

+∞

𝐿0

3𝑛 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

2 (𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

× 𝜃
𝑖
𝑗
2

𝑖
(

1

3𝑛
2

𝑖

−

1

3𝑛
2

+

) 𝑑𝑥

+ ∫

𝐿0

−𝐿0

3𝑛 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

2 (𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

𝜃
𝑖

× [

𝑗
2

𝑖

3𝑛
2

𝑖

−

(1 − 𝑔 (𝑥))

3𝑛
2

−

(𝑗
−
(𝑡))

2

−

𝑔 (𝑥)

3𝑛
2

+

(𝑗
+
(𝑡))

2

]𝑑𝑥

≤ 𝐶𝛿∫

R

(𝜑
2

𝑖𝑥
+ 𝜃
2

𝑖
) 𝑑𝑥 + 𝐶𝛿

2
𝑒
−]𝑡

∫

−𝐿0

−∞

(𝑛 − 𝑛
−
)
2

𝑑𝑥

+ 𝐶𝛿
2
𝑒
−]𝑡

∫

+∞

L0
(𝑛 − 𝑛

+
)
2

𝑑𝑥 + 𝐶𝛿
2
𝑒
−]𝑡

≤ 𝐶𝛿∫

R

(𝜑
2

𝑖𝑥
+ 𝜃
2

𝑖
) 𝑑𝑥 + 𝐶𝛿

2
(1 + 𝑡)

1/2
𝑒
−]𝑡
, (54)

which implies

∫

R

3𝑛 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

2 (𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

(

(−𝜑
𝑖𝑡
+ 𝑗
𝑖
+ 𝑗)

2

3(𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)
2
− 𝑆
𝑖
(𝑥, 𝑡)) 𝜃

𝑖
𝑑𝑥

= ∫

R

3𝑛 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

2 (𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

(

𝜑
2

𝑖𝑡

3𝑛
2

𝑖

−

2𝜑
𝑖𝑡
(𝑗
𝑖
+ 𝑗)

3𝑛
2

𝑖

)𝜃
𝑖
𝑑𝑥



Abstract and Applied Analysis 9

+ ∫

R

3𝑛 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

2 (𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

𝑗

2

+ 2𝑗
𝑖
𝑗

3𝑛
2

𝑖

𝜃
𝑖
𝑑𝑥

+ ∫

R

3𝑛 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

2 (𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

𝜃
𝑖
(

𝑗
2

𝑖

3𝑛
2

𝑖

− 𝑆
𝑖
(𝑥, 𝑡)) 𝑑𝑥

≤ 𝐶 (𝛿 + 𝜀) ∫

R

(𝜑
2

𝑖𝑥
+ 𝜑
2

𝑖𝑡
+ 𝜃
2

𝑖
) 𝑑𝑥

+ 𝐶𝛿∫

R

𝑛
2

𝑥
𝑑𝑥 + 𝐶𝛿

2
(1 + 𝑡)

1/2
𝑒
−]𝑡
.

(55)

From the definition of 𝐺
𝑖
(𝑖 = 1, 2), and using Schwartz’s

inequality, we have

∫

R

𝐺
𝑖

3𝑛 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

2 (𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

𝜃
𝑖
𝑑𝑥

≤ 𝜅∫

R

𝜃
2

𝑖
𝑑𝑥 + 𝐶 (𝛿 + 𝜀) ∫

R

(𝜃
2

𝑖
+ 𝜃
2

𝑖𝑥
+ 𝜑
2

𝑖𝑥
+ 𝜑
2

𝑖𝑡
) 𝑑𝑥

+ 𝐶∫

R

(𝑛
2

𝑥
+ 𝑛
2

𝑥𝑥
) 𝑑𝑥 + 𝐶𝛿

2
𝑒
−]2𝑡

,

(56)

with ]
1
< ]
2
< ]. And using Schwartz’s inequality and

Lemma 3 yields

∫

R

(

3𝑛 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

4 (𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

)

𝑡

𝜃
2

𝑖
𝑑𝑥

− ∫

R

(

𝑛

𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

𝑥

𝜃
𝑖
𝜃
𝑖𝑥
𝑑𝑥

≤ 𝐶 (𝛿 + 𝜀) ∫

R

(𝜃
2

𝑖
+ 𝜃
2

𝑖𝑥
) 𝑑𝑥,

− ∫

R

𝑛𝜃
𝑖

𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛

𝜑
𝑖𝑡
(𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)
𝑥
𝑑𝑥

≤

𝑑

𝑑𝑡

∫

R

𝑛𝜃
𝑖

2 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

𝜑
2

𝑖𝑥
𝑑𝑥

+ 𝐶 (𝛿 + 𝜀) ∫

R

(𝜃
2

𝑖
+ 𝜑
2

𝑖𝑥
+ 𝜑
2

𝑖𝑡
) 𝑑𝑥.

(57)

Putting the above inequalities into (53) yields

𝑑

𝑑𝑡

∫

R

[

3𝑛 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

4 (𝜃
1
+
̂
𝑇
𝑖
+ 𝑇
∗
)

𝜃
2

𝑖
−

𝑛𝜃
𝑖

2 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

𝜑
2

𝑖𝑥
]𝑑𝑥

+ ∫

R

[(

3𝑛 (𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛)

2 (𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
)

− 𝜅)𝜃
2

𝑖
+

𝑛

𝜃
𝑖
+
̂
𝑇
𝑖
+ 𝑇
∗
𝜃
2

𝑖𝑥
]𝑑𝑥

− ∫

R

𝑛𝜃
𝑖
𝜑
𝑖𝑡𝑥

𝑑𝑥

≤ 𝐶 (𝛿 + 𝜀) ∫

R

(𝜃
2

𝑖
+ 𝜃
2

𝑖𝑥
+ 𝜑
2

𝑖𝑡
+ 𝜑
2

𝑖𝑥
) 𝑑𝑥

+ 𝐶∫

R

(𝑛
2

𝑥
+ 𝑛
2

𝑥𝑥
) 𝑑𝑥 + 𝐶𝛿

2
𝑒
−]2𝑡

.

(58)

Combining (44), (45), (51), (52), and (58), we can obtain (38);
this completes the proof.

Further, in the completely similar way, we can show the
following.

Lemma 7. Let (𝜑
1
, 𝜃
1
, 𝜑
2
, 𝜃
2
)(𝑥, 𝑡) ∈ 𝑋(𝑇) be the solution of

the initial value problems (25) and (26); then it holds that for
0 < 𝑡 < 𝑇,
2

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
(𝜑
𝑖𝑥
, 𝜑
𝑖𝑥𝑥
, 𝜑
𝑖𝑡𝑥
, 𝜑
𝑖𝑡𝑡
, 𝜃
𝑖𝑥
, 𝜃
𝑖𝑡
, 𝜃
𝑖𝑥𝑥
) (⋅ , 𝑡)

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
H
𝑥
(⋅ , 𝑡)

󵄩
󵄩
󵄩
󵄩

2

+ ∫

𝑡

0

(

2

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
(𝜑
𝑖𝑥𝑥
, 𝜑
𝑖𝑡𝑥
, 𝜑
𝑖𝑡𝑡
, 𝜃
𝑖𝑥
, 𝜃
𝑖𝑡
, 𝜃
𝑖𝑥𝑥
, 𝜃
𝑖𝑡𝑥
, 𝜃
𝑖𝑥𝑥𝑥

) (⋅ , 𝜏)
󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
H
𝑥
(⋅, 𝜏)

󵄩
󵄩
󵄩
󵄩

2

) 𝑑𝜏

≤ 𝐶 (Φ
0
+ 𝛿) ,

2

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
(𝜑
𝑖𝑥𝑥
, 𝜑
𝑖𝑥𝑥𝑥

, 𝜑
𝑖𝑡𝑥𝑥

, 𝜑
𝑖𝑡𝑡𝑥
, 𝜃
𝑖𝑥𝑥
, 𝜃
𝑖𝑡𝑥
, 𝜃
𝑖𝑥𝑥𝑥

)(⋅ , 𝑡)
󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
H
𝑥𝑥
(⋅, 𝑡)

󵄩
󵄩
󵄩
󵄩

2

+∫

𝑡

0

(

2

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
(𝜑
𝑖𝑥𝑥
, 𝜑
𝑖𝑥
, 𝜑
𝑖𝑡𝑥
, 𝜃
𝑖𝑥𝑥
, 𝜃
𝑖𝑡𝑥
, 𝜃
𝑖𝑥𝑥𝑥

) (⋅ , 𝜏)
󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
H
𝑥𝑥
(⋅ , 𝜏)

󵄩
󵄩
󵄩
󵄩

2

) 𝑑𝜏

≤ 𝐶 (Φ
0
+ 𝛿) ,

(59)

provided that 𝜀 + 𝛿 ≪ 1.

Based on the local existence given in Lemma 5 and the
a priori estimates given in Lemmas 6 and 7, by the standard
continuity argument, we can prove the global existence of the
unique solutions of the IVP (25) and (26).

Theorem 8. Under the assumption of Theorem 1, the classical
solution (𝜑

1
, 𝜃
1
, 𝜑
2
, 𝜃
2
,H)(𝑥, 𝑡) of the solutions of the IVP (25)

and (26) exist globally in time if Φ
0
+ 𝛿 is small enough.

Moreover, one has
󵄩
󵄩
󵄩
󵄩
(𝜑
1
, 𝜃
1
, 𝜑
2
, 𝜃
2
) (⋅ , 𝑡)

󵄩
󵄩
󵄩
󵄩

2

3
+
󵄩
󵄩
󵄩
󵄩
(𝜑
1𝑡
, 𝜑
2𝑡
,H (⋅ , 𝑡))

󵄩
󵄩
󵄩
󵄩

2

2

+
󵄩
󵄩
󵄩
󵄩
(𝜃
1𝑡
, 𝜃
2𝑡
) (⋅ , 𝑡)

󵄩
󵄩
󵄩
󵄩

2

1

+ ∫

𝑡

0

(
󵄩
󵄩
󵄩
󵄩
(𝜑
1𝑥
, 𝜑
1𝑡
, 𝜑
2𝑥
, 𝜑
2𝑡
,H)(⋅ , 𝜏)

󵄩
󵄩
󵄩
󵄩

2

2
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+
󵄩
󵄩
󵄩
󵄩
(𝜃
1
, 𝜃
2
) (⋅ , 𝜏)

󵄩
󵄩
󵄩
󵄩

2

4
+
󵄩
󵄩
󵄩
󵄩
(𝜃
1𝑡
, 𝜃
2𝑡
) (⋅ , 𝜏)

󵄩
󵄩
󵄩
󵄩

2

2
) 𝑑𝜏

≤ 𝐶 (
󵄩
󵄩
󵄩
󵄩
(𝜑
10
, 𝜃
10
, 𝜑
20
, 𝜃
20
)
󵄩
󵄩
󵄩
󵄩

2

3
+
󵄩
󵄩
󵄩
󵄩
(𝜓
10
, 𝜓
20
)
󵄩
󵄩
󵄩
󵄩

2

2
+ 𝛿) , 𝑡 > 0,

󵄩
󵄩
󵄩
󵄩
(𝜑
1
, 𝜃
1
, 𝜑
2
, 𝜃
2
) (⋅ , 𝑡)

󵄩
󵄩
󵄩
󵄩

2

3
+
󵄩
󵄩
󵄩
󵄩
(𝜑
1𝑡
, 𝜑
2𝑡
,H (⋅ , 𝑡))

󵄩
󵄩
󵄩
󵄩

2

2

+
󵄩
󵄩
󵄩
󵄩
(𝜃
1𝑡
, 𝜃
2𝑡
) (⋅ , 𝑡)

󵄩
󵄩
󵄩
󵄩

2

1
󳨀→ 0, 𝑡 󳨀→ ∞.

(60)

5. The Algebraic Decay Rates

In this section, we prove the time-decay rate of smooth
solutions (𝜑

1
, 𝜃
1
, 𝜑
2
, 𝜃
2
) of (25) with the initial data

(𝜑
10
, −𝜓
10
, 𝜃
10
, 𝜑
20
, −𝜓
20
, 𝜃
20
). For this aim, using the idea

of [4, 15, 24], we first prove the exponential decay of H and
𝜃
1
− 𝜃
2
to zero then obtain the algebraic convergence of

(𝜑
1
, 𝜃
1
, 𝜑
2
, 𝜃
2
). Due to Theorem 8, we know that the global

smooth solutions (𝜑
1
, 𝜃
1
, 𝜑
2
, 𝜃
2
) satisfy

󵄩
󵄩
󵄩
󵄩
(𝜑
1
, 𝜃
1
, 𝜑
2
, 𝜃
2
)
󵄩
󵄩
󵄩
󵄩

2

3
+
󵄩
󵄩
󵄩
󵄩
(𝜑
1𝑡
, 𝜑
2𝑡
,H)

󵄩
󵄩
󵄩
󵄩

2

2
+
󵄩
󵄩
󵄩
󵄩
(𝜃
1𝑡
, 𝜃
2𝑡
,H
𝑡
)
󵄩
󵄩
󵄩
󵄩

2

1

≤ 𝐶 (Φ
0
+ 𝛿) ,

(61)

which leads to, in terms of Sobolev embedding theorem, that

󵄩
󵄩
󵄩
󵄩
(𝜑
1
, 𝜑
2
, 𝜑
1𝑥
, 𝜑
2𝑥
, 𝜑
1𝑥𝑥

, 𝜑
2𝑥𝑥

, 𝜑
1𝑡
, 𝜑
1𝑡𝑥
, 𝜑
2𝑡
, 𝜑
2𝑡𝑥
,

𝜃
1
, 𝜃
1𝑥
, 𝜃
1𝑥𝑥

, 𝜃
2
, 𝜃
2𝑥
, 𝜃
2𝑥𝑥

,H,H
𝑥
,H
𝑡
)
󵄩
󵄩
󵄩
󵄩𝐿
∞
(R)

≤ 𝐶 (Φ
0
+ 𝛿) .

(62)

Further, by (25), we also have

󵄩
󵄩
󵄩
󵄩
(𝜑
1𝑡𝑡
, 𝜑
2𝑡𝑡
, 𝜃
1𝑡
, 𝜃
2𝑡
)
󵄩
󵄩
󵄩
󵄩𝐿
∞
(R)

≤ 𝐶 (Φ
0
+ 𝛿) . (63)

Lemma 9. Let (𝜑
1
, 𝜃
1
, 𝜑
2
, 𝜃
2
) be the global classical solutions

of IVP (25) and (26) satisfying Φ
0
+ 𝛿 ≪ 1. Then it holds for

H and 𝜃
1
− 𝜃
2
that for 𝑡 > 0,

󵄩
󵄩
󵄩
󵄩
(H,H

𝑥
,H
𝑡
,H
𝑥𝑥
,H
𝑡𝑥
, 𝜃
1
− 𝜃
2
,

(𝜃
1
− 𝜃
2
)
𝑥
, (𝜃
1
− 𝜃
2
)
𝑥𝑥
) (⋅ , 𝑡)

󵄩
󵄩
󵄩
󵄩

≤ 𝐶 (Φ
0
+ 𝛿) 𝑒

−𝛾0𝑡
.

(64)

Proof. Multiplying (30) byH and integrating it by parts over
R, we obtain

𝑑

𝑑𝑡

∫

R

(HH
𝑡
+

1

2

H
2
)𝑑𝑥 − ∫

R

H
2

𝑡
𝑑𝑥 + ∫

R

2𝑛H
2
𝑑𝑥

+ ∫

R

(𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
)H
2

𝑥
𝑑𝑥

= −∫

R

𝑛 (𝜃
1
− 𝜃
2
)H
𝑥
𝑑𝑥

+ ∫

R

(ℎ
1𝑥
− ℎ
2
− ℎ
3
+ ℎ
4𝑥
)H 𝑑𝑥.

(65)

Using Cauchy-Schwartz’s inequality, Lemmas 3 and 4, (62),
and (63), we have

− ∫

R

𝑛 (𝜃
1
− 𝜃
2
)H
𝑥
𝑑𝑥 + ∫

R

ℎ
1𝑥
H 𝑑𝑥

≤ 𝜅∫

R

H
2

𝑥
𝑑𝑥 + 𝐶∫

R

(𝜃
1
− 𝜃
2
)
2

𝑑𝑥 + 𝐶𝛿𝑒
−]𝑡
,

− ∫

R

(ℎ
2
+ ℎ
3
)H 𝑑𝑥 ≤ 𝐶 (Φ

0
+ 𝛿)∫

R

H
2
𝑑𝑥 + 𝐶𝛿𝑒

−]1𝑡
.

(66)

Moreover, noticing that

ℎ
4𝑥
= −

𝑗
2

1

𝑛
2

1

H
𝑥𝑥
−

2𝑗
1

𝑛
1

H
𝑡𝑥
+ 𝑂 (1) (𝑛

1𝑥
+ 𝑛
2𝑥
+ 𝑗
1𝑥
+ 𝑗
2𝑥
)

+ 𝑂 (1) (𝜑
2𝑥𝑥

+ 𝜑
2𝑡𝑥

+ 𝑛
𝑥
+ 𝑗
𝑥
+ 𝑛
2𝑥
+ 𝑗
2𝑥
)

× (H
𝑥
+H
𝑡
+ 𝑛
1
+ 𝑛
2
+ 𝑗
1
+ 𝑗
2
) ,

(67)

then

∫

R

ℎ
4𝑥
H 𝑑𝑥

≤ 𝐶 (Φ
0
+ 𝛿)∫

R

(H
2
+H
2

𝑥
+H
2

𝑡
) 𝑑𝑥 + 𝐶𝛿𝑒

−]𝑡
.

(68)

Therefore, we have

𝑑

𝑑𝑡

∫

R

(HH
𝑡
+

1

2

H
2
)𝑑𝑥 − ∫

R

H
2

𝑡
𝑑𝑥 + 2∫

R

𝑛H
2
𝑑𝑥

+ ∫

R

[(𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
) − 𝜅]H

2

𝑥
𝑑𝑥

≤ 𝐶 (Φ
0
+ 𝛿)∫

R

(H
2
+H
2

𝑥
+H
2

𝑡
) 𝑑𝑥

+ 𝐶∫

R

(𝜃
1
− 𝜃
2
)
2

𝑑𝑥 + 𝐶𝛿𝑒
−]1t

.

(69)

While multiplying (30) by H
𝑡
and integrating the resultant

equation by parts over R, similarly, we can show

𝑑

𝑑𝑡

∫

R

(

1

2

H
2

𝑡
+ 𝑛H

2
+ (

1

2

(𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
) −

𝑗
2

1

𝑛
2

1

)H
2

𝑥
)𝑑𝑥

+ ∫

R

H
2

𝑡
𝑑𝑥 + ∫

R

𝑛 (𝜃
1
− 𝜃
2
)H
𝑡𝑥
𝑑𝑥

≤ 𝐶 (Φ
0
+ 𝛿)

× ∫

R

((𝜃
1
− 𝜃
2
)
2

+ (𝜃
1
− 𝜃
2
)
2

𝑥
+H
2
+H
2

𝑥
+H
2

𝑡
) 𝑑𝑥

+ 𝐶𝛿𝑒
−]1𝑡

.

(70)



Abstract and Applied Analysis 11

Next, multiplying (31) by (3𝑛(𝜑
1𝑥
+ 𝑛
1
+ 𝑛)/2(𝜃

1
+
̂
𝑇
1
+

𝑇
∗
))(𝜃
1
− 𝜃
2
) and integrating the resultant equation by parts

over R, we get

𝑑

𝑑𝑡

∫

R

3𝑛 (𝜑
1𝑥
+ 𝑛
1
+ 𝑛)

4 (𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
)

(𝜃
1
− 𝜃
2
)
2

𝑑𝑥

+ ∫

R

(

3𝑛 (𝜑
1𝑥
+ 𝑛
1
+ 𝑛)

2 (𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
)

(𝜃
1
− 𝜃
2
)
2

+

𝑛

𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
(𝜃
1
− 𝜃
2
)
2

𝑥
)𝑑𝑥

− ∫

R

𝑛 (𝜃
1
− 𝜃
2
)H
𝑡𝑥
𝑑𝑥

= ∫

R

(

3𝑛 (𝜑
1𝑥
+ 𝑛
1
+ 𝑛)

4 (𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
)

)

𝑡

(𝜃
1
− 𝜃
2
)
2

𝑑𝑥

− ∫

R

(

𝑛

𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
)

𝑥

(𝜃
1
− 𝜃
2
) (𝜃
1
− 𝜃
2
)
𝑥
𝑑𝑥

+ ∫

R

𝐺
3

3𝑛 (𝜑
1𝑥
+ 𝑛
1
+ 𝑛)

2 (𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
)

(𝜃
1
− 𝜃
2
) 𝑑𝑥

≤ 𝐶 (Φ
0
+ 𝛿)

× ∫

R

((𝜃
1
− 𝜃
2
)
2

+ (𝜃
1
− 𝜃
2
)
2

𝑥
+H
2

𝑥
+H
2

𝑡
) 𝑑𝑥

+ 𝐶 (Φ
0
+ 𝛿) 𝑒

−]2𝑡
,

(71)

where in the last inequality, we have used

∫

R

(

3𝑛 (𝜑
1𝑥
+ 𝑛
1
+ 𝑛)

4 (𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
)

)

𝑡

(𝜃
1
− 𝜃
2
)
2

𝑑𝑥

− ∫

R

(

𝑛

𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
)

𝑥

(𝜃
1
− 𝜃
2
) (𝜃
1
− 𝜃
2
)
𝑥
𝑑𝑥

≤ 𝐶 (Φ
0
+ 𝛿)∫

R

((𝜃
1
− 𝜃
2
)
2

+ (𝜃
1
− 𝜃
2
)
2

𝑥
) 𝑑𝑥,

(72)

∫

R

𝐺
3

3𝑛 (𝜑
1𝑥
+ 𝑛
1
+ 𝑛)

2 (𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
)

(𝜃
1
− 𝜃
2
) 𝑑𝑥

≤ 𝐶 (Φ
0
+ 𝛿)∫

R

((𝜃
1
− 𝜃
2
)
2

+ (𝜃
1
− 𝜃
2
)
2

𝑥
+H
2

𝑥
+H
2

𝑡
)

+ 𝐶 (Φ
0
+ 𝛿) 𝑒

−]2𝑡
,

(73)

with the aid of

2

∑

𝑖=1

(−1)
𝑖−1

∫

R

((

−𝜑
𝑖𝑡
+ 𝑗
𝑖
+ 𝑗

𝜑
𝑖𝑥
+ 𝑛
𝑖
+ 𝑛

)

2

− 𝑆
𝑖
(𝑥, 𝑡))

×

3𝑛 (𝜑
1𝑥
+ 𝑛
1
+ 𝑛)

2 (𝜃
1
+
̂
𝑇
1
+ 𝑇
∗
)

(𝜃
1
− 𝜃
2
) 𝑑𝑥

≤ 𝐶 (Φ
0
+ 𝛿)∫

R

((𝜃
1
− 𝜃
2
)
2

+H
2

𝑥
+H
2

𝑡
) 𝑑𝑥

+ 𝐶 (Φ
0
+ 𝛿) 𝑒

−]2𝑡
.

(74)

Combine (69), (70), and (71), and choose proper positive
constant 𝜆

1
and Λ

1
such that

𝜆
1
× (70) + Λ

1
× ((71) + (72))

∼ H
2

𝑡
+H
2
+H
2

𝑥
+ (𝜃
1
− 𝜃
2
)
2

.

(75)

Then, we have

𝑑

𝑑𝑡

󵄩
󵄩
󵄩
󵄩
(H
𝑡
,H,H

𝑥
, (𝜃
1
− 𝜃
2
)) (⋅, 𝜏)

󵄩
󵄩
󵄩
󵄩

2

+ 𝐶
󵄩
󵄩
󵄩
󵄩
(H
𝑡
,H,H

𝑥
, (𝜃
1
− 𝜃
2
) , (𝜃
1
− 𝜃
2
)
𝑥
) (⋅, 𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝐶 (Φ
0
+ 𝛿) 𝑒

−]2𝑡
,

(76)

which, together with Gronwall’s inequality, yields

󵄩
󵄩
󵄩
󵄩
(H,H

𝑥
,H
𝑡
, (𝜃
1
− 𝜃
2
)) (⋅, 𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝐶 (Φ
0
+ 𝛿) 𝑒

−𝛾1𝑡
, (77)

for some positive constants 𝛾
1
and 𝐶. In the completely same

way, treating ∫
R
𝜆
2
(30)
𝑥
H
𝑥
+Λ
2
((30)
𝑥
H
𝑡𝑥
+ (31)

𝑥
(3𝑛(𝜑
1𝑥
+

𝑛
1
+ 𝑛)/2(𝜃

1
+
̂
𝑇
1
+ 𝑇
∗
))(𝜃
1
− 𝜃
2
)
𝑥
)𝑑𝑥 for proper positive

constants 𝜆
2
and Λ

2
, we can show

󵄩
󵄩
󵄩
󵄩
(H
𝑥
,H
𝑥𝑥
,H
𝑡𝑥
, (𝜃
1
− 𝜃
2
)
𝑥
(⋅, 𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝐶 (Φ
0
+ 𝛿) 𝑒

−𝛾2𝑡
, (78)

for some constant 𝛾
2
.

Moreover, from (30), (77), and (78), we obtain
󵄩
󵄩
󵄩
󵄩
H
𝑡𝑡

󵄩
󵄩
󵄩
󵄩

2

≤ 𝐶 (Φ
0
+ 𝛿) 𝑒

−𝛾3𝑡
, (79)

for 𝛾
3
= min{𝛾

1
, 𝛾
2
}. Finally, by ∫

R
(31)
𝑡
(𝜃
1
− 𝜃
2
)
𝑡
𝑑𝑥 and

using (77)–(79), there is a positive constant 𝛾
4
such that

󵄩
󵄩
󵄩
󵄩
(𝜃
1
− 𝜃
2
)
𝑡

󵄩
󵄩
󵄩
󵄩

2

≤ 𝐶 (Φ
0
+ 𝛿) 𝑒

−𝛾4𝑡
, (80)

while from (31) and (77)–(80), we have
󵄩
󵄩
󵄩
󵄩
(𝜃
1
− 𝜃
2
)
𝑥𝑥

󵄩
󵄩
󵄩
󵄩

2

≤ 𝐶 (Φ
0
+ 𝛿) 𝑒

−𝛾5𝑡
, (81)

with 𝛾
5
= min{𝛾

3
, 𝛾
4
}. Combination of (77)–(80) and (81)

yields (64). This completes the proof.

In the following, using the idea of [4, 15], we turn to derive
the time-decay rate of (𝜑

1
, 𝜃
1
, 𝜑
2
, 𝜃
2
) by which we are able

to obtain the algebraical decay rate of (𝜑
1
, 𝜃
1
, 𝜑
2
, 𝜃
2
) in large

time.
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Lemma 10. Let (𝜑
1
, 𝜃
1
, 𝜑
2
, 𝜃
2
) be the global classical solution

of the IVP (25) and (26)with initial data satisfyingΦ
0
+𝛿 ≪ 1.

If it holds for (𝜑
1
, 𝜑
2
, 𝜃
1
, 𝜃
2
) (𝑡 > 0) that

3

∑

𝑘=0

(1 + 𝑡)
𝑘󵄩󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
(𝜑
1
, 𝜑
2
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

2

∑

𝑘=0

(1 + 𝑡)
𝑘+2󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
(𝜑
1𝑡
, 𝜑
2𝑡
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

1

∑

𝑘=0

(1 + 𝑡)
𝑘+2󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
(𝜃
1𝑡
, 𝜃
2𝑡
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

2

∑

𝑘=0

(1 + 𝑡)
𝑘+1󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
(𝜃
1
, 𝜃
2
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ (1 + 𝑡)
3󵄩󵄩
󵄩
󵄩
󵄩
𝜕
3

𝑥
(𝜃
1
, 𝜃
2∗
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

≪ 1,

(82)

then one has
3

∑

𝑘=0

(1 + 𝑡)
𝑘󵄩󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
(𝜑
1
, 𝜑
2
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

3

∑

𝑘=1

∫

𝑡

0

(1 + 𝜏)
𝑘󵄩󵄩
󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
(𝜑
1
, 𝜑
2
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑑𝜏

+

2

∑

𝑘=0

(1 + 𝑡)
𝑘+1󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
(𝜃
1
, 𝜃
2
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

2

∑

𝑘=0

∫

𝑡

0

((1 + 𝜏)
𝑘+1󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
(𝜃
1
, 𝜃
2
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ (1 + 𝜏)
3󵄩󵄩
󵄩
󵄩
󵄩
𝜕
3

𝑥
(𝜃
1𝑡
, 𝜃
2𝑡
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

) 𝑑𝜏

≤ 𝐶 (Φ
0
+ 𝛿) ,

2

∑

𝑘=0

(1 + 𝑡)
𝑘+2󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
(𝜑
1𝑡
, 𝜑
2𝑡
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

2

∑

𝑘=0

∫

𝑡

0

(1 + 𝜏)
𝑘+2󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
(𝜑
1𝜏
, 𝜑
2𝜏
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑑𝜏

+

1

∑

𝑘=0

(1 + 𝑡)
𝑘+2󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
(𝜃
1𝑡
, 𝜃
2𝑡
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ (1 + 𝑡)
3󵄩󵄩
󵄩
󵄩
󵄩
𝜕
3

𝑥
(𝜃
1𝑡
, 𝜃
2𝑡
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ ∫

𝑡

0

(

1

∑

𝑘=0

(1 + 𝜏)
𝑘+2󵄩󵄩

󵄩
󵄩
󵄩
𝜕
𝑘

𝑥
(𝜃
1
, 𝜃
2
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ (1 + 𝜏)
3󵄩󵄩
󵄩
󵄩
󵄩
𝜕
3

𝑥
(𝜃
1𝜏
, 𝜃
2𝜏
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

)𝑑𝜏

≤ 𝐶 (Φ
0
+ 𝛿) .

(83)

Since the proof is similar as that in [15], we can omit the
details.
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