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A flat crack, Ω, is lying in a three-dimensional homogenous isotropic elastic solid subjected to shear loading. A mathematical
formulation is developed based on the mixed boundary values for Ω such that the problem of finding the resulting force can be
written in the form of hypersingular integral equation. Employing conformal mapping, the integral equation is transformed to a
similar equation over a circular region, 𝐷. By making a suitable representation of hypersingular integral equation, the problem is
reduced to solve a system of linear equations. Numerical solution for the shear stress intensity factors, maximum stress intensity,
and strain energy release rate is obtained. Our results give an excellent agreement to the existing asymptotic solutions.

1. Introduction

Crack problems play an important role in engineering
application due to the fact that the presence of cracks may
compromise the strength and toughness of structures. Hence,
great efforts [1–10] have been made in solving the crack
problems and it has been widely investigated since the
pioneer work by Sneddon [11] for a penny-shaped crack.
Integral transform method to the solution of a Fredholm
integral equation of second kind and numerical approach
was implemented by Kassir [12, 13] in solving the rectangular
crack problem, while the classic collocation and Galerkin
methods were applied by Ioakimidis [14] for solving the
plane crack problem subjected to normal load, whereas a
perturbation analysis and the complex potential method [15]
were performed by Cotterell and Rice [16] to obtain the stress
intensity factors for the curved and kinked crack subject to
arbitrary tractions in an explicit and simple form. Recently,
Wu [17] proposed the dual boundary element method to
solve the antiplane crack problem, whilst Georgiadis and
Gourgiotis [18] advocated distributed dislocation technique
in solving crack problems within Cosserat elasticity with
constrained rotations. Motivated by the work of Lazzarin and

Zappalorto [19], Lazzarin et al. [20] investigated the stress
fields close to a rectangular hole in a plate of finite thickness.

Ioakimidis [21] introduced the concept of finite-part
integrals and derived the hypersingular integral equation for
a flat crack subjected to tensile pressure, where the unknown
function is the crack displacement discontinuity while the
right-hand terms are the applied tractions on the crack faces.
This equation can be numerically solved effectively by using
the Gaussian quadrature rules for finite-part integral. Hence,
this concept had been advocated widely for the solution of
crack problem and some of them can be found in [22–26].

In this paper, the epicycloid crack problem is formulated
into solving the hypersingular integral equation numerically
for finding the stress intensity factors, maximum stress
intensity and energy release rate for the crack subject to shear
loading. Our computational results agree with the existing
asymptotic solution.

2. Statement of Problem and Basic Equations

Consider an arbitrary shaped crack, Ω, embedded in three-
dimensional unbounded isotropic elastic body, Γ. Let the
Cartesian coordinate (𝑥, 𝑦, 𝑧) with origin 𝑂 and Ω lie in the

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 213478, 12 pages
http://dx.doi.org/10.1155/2014/213478

http://dx.doi.org/10.1155/2014/213478


2 Journal of Applied Mathematics

z

Ω

𝜏yz 𝜏yz

𝜏xz

𝜏xz

x

y

Γ

Figure 1: Stresses acting on a plane.

plane 𝑧 = 0. Assume that𝑂 is a point inΩ and the body force
is absent. Let the crack edges be deformed by the application
of equal and opposite constant shear stresses in the 𝑥 and 𝑦

directions, 𝑞
𝑥
(𝑥, 𝑦) and 𝑞

𝑦
(𝑥, 𝑦), and it is assumed that the

𝑧 direction is traction-free; see Figure 1. Hence, in view of
the shear load, the entire plane must be free from the normal
stress; that is,

𝜏
𝑧𝑧

= 0 for 𝑧 = 0. (1)

Thus, the stress field can be found by considering the half-
space, 𝑧 ≥ 0, subject to the following mixed boundary
condition on its surface 𝑧 = 0:

𝜏
𝑥𝑧

=
𝜇

1 − ]
𝑞
𝑥
(𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω,

𝜏
𝑦𝑧

=
𝜇

1 − ]
𝑞
𝑦
(𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω,

𝑢
𝑥
(𝑥, 𝑦, 𝑧) = 𝑢

𝑦
(𝑥, 𝑦, 𝑧) = 0, (𝑥, 𝑦) ∈ Γ \ Ω,

(2)

where 𝜏
𝑧𝑧
, 𝜏
𝑥𝑧
, and 𝜏

𝑦𝑧
denote the stress tensor, 𝜇 is shear

modulus, and ] is Poisson’s ratio and the usual regularity
requirements at the location away from the crack region,

𝑢
𝑖
(𝑥, 𝑦, 𝑧) = 𝑂(

1

𝑅
) , 𝜏

𝑖𝑗
(𝑥, 𝑦, 𝑧) = 𝑂(

1

𝑅
) , (3)

where 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧, 𝑅 → ∞, 𝑅 = √(𝑥 − 𝑥
0
)
2

+ (𝑦 − 𝑦
0
)
2, 𝑢
𝑖

are displacement vectors and 𝜏
𝑖𝑗
is given by

𝜏
𝑖𝑗
= 𝑐
𝑖𝑗𝑘𝑙

𝜕𝑢
𝑙

𝜕𝑥
𝑘

; 𝑘, 𝑙 = 𝑥, 𝑦, 𝑧, (4)

where 𝑐
𝑖𝑗𝑘𝑙

are the material moduli defined by

𝑐
𝑖𝑗𝑘𝑙

= 𝜆𝛿
𝑖𝑗
𝛿
𝑘𝑙
+ 𝜇 (𝛿

𝑖𝑘
𝛿
𝑗𝑙
+ 𝛿
𝑖𝑙
𝛿
𝑗𝑘
) , (5)

where ] = 𝜆/2(𝜆 + 𝜇). The 𝛿
𝑖𝑗
is the Kronecker delta, defined

as 1 if 𝑖 = 𝑗 and 0 if 𝑖 ̸= 𝑗. And (5) must satisfy Hooke’s law
linear elasticity symmetry conditions:

𝑐
𝑖𝑗𝑘𝑙

= 𝑐
𝑗𝑖𝑘𝑙

= 𝑐
𝑘𝑙𝑖𝑗

= 𝑐
𝑖𝑗𝑙𝑘

. (6)

The displacement vector, 𝑢
𝑖
, is represented by Somigliana

formula [27, 28]:

𝑢
𝑚
(𝑥
0
, 𝑦
0
) = ∫
Ω

[𝑢
𝑖
(𝑥, 𝑦)]

𝐹

∑

𝑖𝑗𝑚

((𝑥, 𝑦) ; (𝑥
0
, 𝑦
0
)) 𝑛
𝑗
𝑑Ω, (7)

where the component of Green function is
𝐹

∑

𝑖𝑗𝑚

((𝑥, 𝑦) ; (𝑥
0
, 𝑦
0
)) = 𝑐
𝑖𝑗𝑘𝑙

𝜕

𝜕𝑥
𝑘

𝐺
𝐹

𝑙𝑚
((𝑥, 𝑦) ; (𝑥

0
, 𝑦
0
)) , (8)

8𝜋𝜇𝐺
𝐹

𝑖𝑗
((𝑥, 𝑦) ; (𝑥

0
, 𝑦
0
)) =

1

8𝜋𝜇
(
2

𝑅
𝛿
𝑖𝑗
−

1

2 (1 − V)
𝜕
2

𝑅

𝜕𝑥
𝑖
𝜕𝑥
𝑗

) ,

(9)

and [𝑢
𝑖
(𝑥, 𝑦)] is the displacement discontinuity in 𝑢

𝑖
across

the crack,
[𝑢
𝑖
(𝑥, 𝑦)] = lim

(𝑥0 ,𝑦0)→ (𝑥,𝑦)∈Ω
+

𝑢
𝑖
(𝑥
0
, 𝑦
0
)

− lim
(𝑥0 ,𝑦0)→ (𝑥,𝑦)∈Ω

−

𝑢
𝑖
(𝑥
0
, 𝑦
0
) ,

(10)

where 𝑛
𝑗
is the unit normal vector, which is assumed to point

intoΩ. Equation (9) is known as Kelvin’s point-load solution.
Substitute (5) and (9) into (7) and perform the integration by
parts with respect to 𝑥 and 𝑦, yielding a system of Cauchy
principle-value integral equations [29]:

𝑞
𝑥
(𝑥
0
, 𝑦
0
) =

−1

4𝜋
−∫
Ω

{𝛼
𝜕

𝜕𝑥
(
1

𝑅
) + 𝛽

𝜕

𝜕𝑦
(
1

𝑅
)}𝑑Ω,

𝑞
𝑦
(𝑥
0
, 𝑦
0
) =

−1

4𝜋
−∫
Ω

{𝛼
𝜕

𝜕𝑦
(
1

𝑅
) − 𝛽

𝜕

𝜕𝑥
(
1

𝑅
)}𝑑Ω

(11)

for (𝑥
0
, 𝑦
0
) ∈ Ω, where

𝛼 =
𝜕 [𝑢
𝑥
]

𝜕𝑥
+

𝜕 [𝑢
𝑦
]

𝜕𝑦
, 𝛽 = (1 − ]) (

𝜕 [𝑢
𝑥
]

𝜕𝑦
−

𝜕 [𝑢
𝑦
]

𝜕𝑥
) .

(12)

The resulting boundary terms which involved [𝑢
𝑥
(𝑥, 𝑦)] and

[𝑢
𝑦
(𝑥, 𝑦)] are evaluated at the crack edge, assuming that there

are no tractions applied onto the boundary. Consequently,
[𝑢
𝑥
(𝑥, 𝑦)] and [𝑢

𝑦
(𝑥, 𝑦)] are zero; that is, these equations are

to be solved subject to

[𝑢
𝑥
(𝑥, 𝑦)] = 0, [𝑢

𝑦
(𝑥, 𝑦)] = 0 for (𝑥, 𝑦) ∈ 𝜕Ω, (13)

where 𝜕Ω is the boundary of Ω. Integrating (11) by parts
and using condition (13) and making use of the relationship
between Cauchy principle-value integral and hypersingular
integral equations [30, 31],

𝑑

𝑑𝑥
−∫

𝑏

𝑎

𝑓 (𝑡)

(𝑥 − 𝑡)
𝑑𝑡 = −∫×

𝑏

𝑎

𝑓(𝑡)

(𝑥 − 𝑡)
2
𝑑𝑡, 𝑡 ∈ (𝑎, 𝑏) , (14)

yield [29, 32]

𝑞
𝑥
(𝑥
0
, 𝑦
0
)

=
1

8𝜋
∫×
Ω

(2 − ] + 3] cos 2Θ) [𝑢
𝑥
] + 3] sin 2Θ [𝑢

𝑦
]

8𝜋𝑅3
𝑑Ω,

(15)
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𝑞
𝑦
(𝑥
0
, 𝑦
0
)

=
1

8𝜋
∫×
Ω

3] sin 2Θ [𝑢
𝑥
] + (2 − ] − 3] cos 2Θ) [𝑢

𝑦
]

𝑅3
𝑑Ω,

(16)

and the angle Θ is defined by 𝑥 − 𝑥
0
= 𝑅 cosΘ and 𝑦 − 𝑦

0
=

𝑅 sinΘ. The cross on the integral of (15) and (16) means the
hypersingular, and itmust be interpreted as aHadamardfinite
part integral [31, 33, 34]. Multiplying (16) with complex 𝑗 and
adding to (15) lead to

𝑞 (𝑥
0
, 𝑦
0
) =

1

8𝜋
∫×
Ω

(2 − ]) 𝑤 (𝑥, 𝑦) + 3]𝑒2𝑗Θ𝑤 (𝑥, 𝑦)

𝑅3
𝑑Ω,

(𝑥
0
, 𝑦
0
) ∈ Ω,

(17)

where 𝑞(𝑥
0
, 𝑦
0
) = 𝑞
𝑥
(𝑥
0
, 𝑦
0
) + 𝑗𝑞

𝑦
(𝑥
0
, 𝑦
0
), 𝑤(𝑥, 𝑦) = [𝑢

𝑥
] +

𝑗[𝑢
𝑦
] is the unknown crack opening displacement, and the

bar denotes the conjugation of 𝑤(𝑥, 𝑦) = [𝑢
𝑥
]−𝑗[𝑢

𝑦
] and 𝑗

2

=

−1. Equation (17) is to be solved subject to 𝑤 = 0 on 𝜕Ω and
can be used for general crack problems under shear loading
which is equivalent to those equations obtained in [27, 35].
Suppose the constant shear stress is applied on opposite crack
surfaces at 𝑥 direction, and then the general solution of (17)
can be reduced into a single hypersingular integral equation:

𝑞 (𝑥
0
, 𝑦
0
) =

1

8𝜋
∫×
Ω

2 − ] + 3]𝑒2𝑗Θ

𝑅3
𝑤 (𝑥, 𝑦) 𝑑Ω,

(𝑥
0
, 𝑦
0
) ∈ Ω.

(18)

3. Conformal Mapping and Epicycloid Cracks

Suppose thatΩ is a penny-shaped crack, with radius 𝑎 so that
the crack occupies the region

Ω = {(𝑟, 𝜃) : 0 ≤ 𝑟 < 𝑎, −𝜋 ≤ 𝜃 < 𝜋} , (19)

where 𝑟 and 𝜃 are polar coordinates, 𝑥 = 𝑟 cos 𝜃, and 𝑦 =

𝑟 sin 𝜃.
Now, let Ω be a simply connected domain in the 𝑧-plane

defined as

Ω = {(𝑟 ⋅ 𝜃) : 0 ≤ 𝑟 < 𝜌 (𝜃) , −𝜋 ≤ 𝜃 < 𝜋} (20)

whose boundary has the polar equation 𝑟 = 1 + 𝑐𝜌(𝜃), where
𝜌(𝜃) is bounded and piecewise continuous and 𝑐 is a small
positive parameter. Define 𝜁 = 𝑠𝑒

𝑖𝜙 with |𝜁| < 1 such that the
circular unit disc,𝐷, is defined as

𝐷 ≡ {(𝑠, 𝜙) : 0 ≤ 𝑠 < 1, −𝜋 ≤ 𝜙 < 𝜋} . (21)

Using the properties of Riemann Mapping theorem [36], a
circular disc𝐷 is mapped conformally ontoΩ by

𝑧 = 𝑎𝑓 (𝜁) for 𝜁
 < 1, (22)

where 𝜁 = 𝜉 + 𝑖𝜂 = 𝑠𝑒
𝑖𝜙, 𝜁
0
= 𝜉
0
+ 𝑖𝜂
0
= 𝑠
0
𝑒
𝑖𝜙0 , 𝑥 = 𝑎𝑢(𝜉, 𝜂),

and 𝑦 = 𝑎V(𝜉, 𝜂). Let

𝑤 (𝑥 (𝜁) , 𝑦 (𝜁)) = 𝑎

𝑓


(𝜁)


−1/2

𝑒
𝑗𝛿

𝑊(𝜉, 𝜂) ,

𝑞 (𝑥 (𝜁
0
) , 𝑦 (𝜁

0
)) = 𝑎


𝑓


(𝜁
0
)


−3/2

𝑒
𝑗𝛿0𝑄 (𝜉

0
, 𝜂
0
) ,

(23)

and the analytic function 𝑓 in (22) is known to exist for any
simply connected domainΩ. Further, we assume that |𝑓(𝜁)|
is nonzero and bounded for all |𝜁| < 1. Define 𝑆,Φ, 𝛿, and 𝛿

0

as

𝑆𝑒
𝑖Φ

= 𝜁 − 𝜁
0
, 𝑓



(𝜁) =

𝑓


(𝜁)

𝑒
𝑖𝛿

,

𝑓


(𝜁
0
) =


𝑓


(𝜁
0
)

𝑒
𝑖𝛿0 .

(24)

Let 𝑧 − 𝑧
0
= 𝑎(𝑓(𝜁) − 𝑓(𝜁

0
)) = 𝑅𝑒

𝑖Θ such that, for small 𝑆,
𝑅 ≃ 𝑎𝑆|𝑓



(𝜁
0
)| and Θ ≃ Φ + 𝛿

0
.

A similar integral equation with (18) can be obtained by
substituting (23) and (24) into (18); that is,

𝑄 (𝜉
0
, 𝜂
0
) =

2 − ] + 3]𝑒2𝑗Θ

8𝜋
∫×
𝐷

𝑊(𝜉, 𝜂)

𝑆3
𝑑𝜉 𝑑𝜂

+
2 − ]
8𝜋

−∫
𝐷

𝑊(𝜉, 𝜂)𝐾
(1)

(𝜁, 𝜁
0
) 𝑑𝜉 𝑑𝜂

+
3]
8𝜋

∫
𝐷

𝑊(𝜉, 𝜂)𝐾
(2)

(𝜁, 𝜁
0
)𝑑𝜉 𝑑𝜂; (𝜉

0
, 𝜂
0
) ∈ 𝐷,

(25)

where𝐾(1)(𝜁, 𝜁
0
) and𝐾

(2)

(𝜁, 𝜁
0
) are Cauchy type singular and

weak singular kernel, respectively [29]:

𝐾
(1)

(𝜁, 𝜁
0
) =


𝑓


(𝜁)


3/2
𝑓


(𝜁
0
)


3/2

𝑓 (𝜁) − 𝑓 (𝜁
0
)


3
𝑒
𝑗(𝛿−𝛿0) −

1

𝜁 − 𝜁
0



3
,

𝐾
(2)

(𝜁, 𝜁
0
) =


𝑓


(𝜁)


3/2
𝑓


(𝜁
0
)


3/2

𝑓 (𝜁) − 𝑓 (𝜁
0
)


3
𝑒
𝑗(2Θ−𝛿−𝛿0)−

1

𝜁 − 𝜁
0



3
𝑒
2𝑗Φ

.

(26)

This transformed hypersingular integral equation (25) over a
circular disc𝐷 is solved subject to𝑊 = 0 on 𝑠 = 1.

4. Numerical Treatment

Define

𝐴
𝑛

𝑘
(𝑠, 𝜙) = 𝑠

|𝑛|

𝐶
|𝑛|+(1/2)

2𝑘+1
(√1 − 𝑟2) 𝑒

𝑗𝑛𝜙

,

𝐿
𝑚

ℎ
(𝑠, 𝜙) = 𝑠

|𝑚|

𝐶
|𝑚|+(1/2)

2ℎ+1
(√1 − 𝑟2) cos𝑚𝜙

(27)

such that the orthogonal polynomials 𝐴𝑛
𝑘
(𝑠, 𝜙) and 𝐿

𝑚

ℎ
(𝑠, 𝜙)

are satisfying the following relationship [37, Page 1054,
8.939.8]:

∫
Ω

𝐴
𝑛

𝑘
(𝑠, 𝜙) 𝐿

𝑚

ℎ
(𝑠, 𝜙)

𝑠𝑑 𝑠𝑑 𝜙

√1 − 𝑠2
= 𝐵
𝑛

𝑘
𝛿
𝑘ℎ
𝛿
𝑚𝑛

, (28)
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Figure 2: The domain of 𝑓(𝜁) with various𝑚 and 𝑐.

Table 1: Numerical convergence for the sliding mode stress intensity factor,𝐾
2
(𝜙), for𝑚 = 1 when 𝑐 = 0.1.

𝑁 𝐾
2
(0.00) 𝐾

2
(𝜋/4) 𝐾

2
(𝜋/2) 𝐾

2
(3𝜋/4) 𝐾

2
(𝜋)

0 1.0423𝐸 − 03 7.5379𝐸 − 04 6.9319𝐸 − 20 −8.6663𝐸 − 04 −1.2782𝐸 − 03

1 1.4538 0.9883 6.7158𝐸 − 17 −1.6978 −0.9411

2 1.3545 0.8915 6.7071𝐸 − 17 −0.9971 −0.9427

3 1.3333 0.8914 6.4321𝐸 − 15 −0.9716 −0.9426

4 1.3191 0.8637 −0.1194 −0.9709 −1.2468

5 1.3191 0.8637 −0.1194 −0.9709 −1.2468

6 1.3191 0.8637 −0.1194 −0.9709 −1.2468

where the respective weight function is𝑤(𝑠) = (1− 𝑠)
−1/2 and

𝐵
𝑛

𝑘

=

{{{{

{{{{

{

𝜋
2

Γ (2𝑘 + 2)

(2𝑘 + (3/2)) (2𝑘 + 1)![Γ (1/2)]
2
, 𝑛 = 0

𝜋
2

Γ (2𝑘 + 2𝑛 + 2)

22𝑛+1 (2𝑘 + 𝑛 + (3/2)) (2𝑘 + 1)![Γ (𝑛 + (1/2))]
2
, 𝑛 ̸= 0.

(29)

Write𝑊(𝜉, 𝜂) as a finite sum

𝑊(𝜉, 𝜂) =

𝑁1

∑

𝑛=−𝑁1

𝑁2

∑

𝑘=0

𝑠
|𝑛|

𝑊
𝑛

𝑘
𝐶
|𝑛|+(1/2)

2𝑘+1
(√1 − 𝑠2) 𝑒

𝑗𝑛𝜙

. (30)

Substituting (30) into (25) yields

∑

𝑛,𝑘

F
𝑛

𝑘
(𝑠
0
, 𝜙
0
)𝑊
𝑛

𝑘
= 𝑄 (𝜉

0
(𝑠
0
, 𝜙
0
) , 𝜂
0
(𝑠
0
, 𝜙
0
)) , (31)

where

F
𝑛

𝑘
(𝑠
0
, 𝜙
0
) = −𝐸

𝑛

𝑘

(2 − ] + 3]𝑒2𝑗Θ)𝐴𝑛
𝑘
(𝑠
0
, 𝜙
0
)

2√1 − 𝑠
2

0

+
2 − ]
8𝜋

∫
𝐷

𝐴
𝑛

𝑘
(𝑠, 𝜙)𝐾

(1)

(𝜁, 𝜁
0
) 𝑑𝜉 𝑑𝜂

+
3]
8𝜋

∫
𝐷

𝐴
𝑛

𝑘
(𝑠, 𝜙)𝐾

(2)

(𝜁, 𝜁
0
) 𝑑𝜉 𝑑𝜂;

0 ≤ 𝑠 ≤ 1, 0 ≤ 𝜙 < 2𝜋.

(32)

The following formula [38] is useful in deriving (31):

1

4𝜋
∫×
Ω

𝐴
𝑛

𝑘
(𝑠, 𝜙)

𝑅3
𝑑Ω = −𝐸

𝑛

𝑘

𝐴
𝑛

𝑘
(𝑠
0
, 𝜙
0
)

√1 − 𝑠
2

0

, (33)

where

𝐸
𝑛

𝑘
=

Γ (|𝑛| + 𝑘 + (3/2)) Γ (𝑘 + (3/2))

(|𝑛| + 𝑘)!𝑘!
. (34)
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Table 2: Numerical convergence for the sliding mode stress intensity factor,𝐾
2
(𝜙), for𝑚 = 1 when 𝑐 = 0.45.

𝑁 𝐾
2
(0.00) 𝐾

2
(𝜋/4) 𝐾

2
(𝜋/2) 𝐾

2
(3𝜋/4) 𝐾

2
(𝜋)

0 5.9156𝐸 − 04 4.3514𝐸 − 04 4.35045𝐸 − 20 −6.7348𝐸 − 04 −1.2782𝐸 − 03

1 0.0000 1.0959 3.1941𝐸 − 19 −8.7363𝐸 − 03 −3.3449𝐸 − 02

2 1.7569 1.0959 6.3681𝐸 − 17 −1.3444 −0.3384

3 1.7624 1.0930 6.3681𝐸 − 17 −1.3489 −0.3143

4 1.5604 1.0945 6.3681𝐸 − 17 −1.3511 −1.3057

5 1.4613 0.9940 6.3681𝐸 − 17 −1.3518 −1.3020

6 1.4609 0.9812 6.3681𝐸 − 17 −1.3518 −1.3002

7 1.4011 0.8127 −0.6744 −1.3517 −1.3993

9 1.3610 0.8115 −0.6744 −1.7515 −1.2989

10 1.2030 0.8029 −0.6317 −1.9999 −1.4986

11 1.1948 0.7846 −0.6000 −1.1489 −1.2984

12 1.1849 0.7796 −0.5913 −1.1317 −1.1983

13 1.1782 0.6912 −0.5410 −1.1245 −1.1203

14 1.1782 0.5680 −0.5302 −1.0982 −1.1782

15 1.1782 0.5680 −0.5302 −1.0982 −1.1782

17 1.1782 0.5680 −0.5302 −1.0982 −1.1782

16 1.1782 0.5680 −0.5302 −1.0982 −1.1782

Table 3: Numerical convergence for the tearing mode stress intensity factor, 𝐾
3
(𝜙), for𝑚 = −2 when 𝑐 = 0.1.

𝑁 𝐾
3
(0.00) 𝐾

3
(𝜋/4) 𝐾

3
(𝜋/2) 𝐾

3
(3𝜋/4) 𝐾

3
(𝜋)

0 0.0000 −6.330𝐸 − 04 −9.5075𝐸 − 04 −7.2780𝐸 − 04 −1.3145𝐸 − 19

1 0.0000 −0.7174 −0.9211 −0.5854 −9.6785𝐸 − 17

2 0.0000 −0.5440 −0.9199 −0.5854 −9.6951𝐸 − 17

3 0.0000 −0.5200 −0.8775 −0.200 −1.04460𝐸 − 16

4 0.0000 −0.5200 −0.8775 −0.5200 −1.04460𝐸 − 16

5 0.0000 −0.5200 −0.8775 −0.5200 −1.04460𝐸 − 16

6 0.0000 −0.5200 −0.8775 −0.5200 −1.04460𝐸 − 16

To determine the unknown coefficients,𝑊𝑛
𝑘
, multiply (31) by

𝐿
𝑚

ℎ
(𝑠
0
, 𝜙
0
) and integrate over𝐷 and using (28), leads to

∑

𝑛,𝑘

𝑊
𝑛

𝑘
(−

2 − ] + 3]𝑒2𝑗Θ

2
𝛿
ℎ𝑘
𝛿
|𝑚||𝑛|

+
1

8𝜋
∫
𝐷

𝐿
𝑚

ℎ
(𝜁
0
) ∫
𝐷

𝐴
𝑛

𝑘
(𝜁)

× [(2 − ]) 𝐾(1) (𝜁, 𝜁
0
)

+ 3]𝐾(2) (𝜁, 𝜁
0
)] 𝑑𝜁 𝑑𝜁

0
)

= ∫
𝐷

𝑄 (𝜁
0
) 𝐿
𝑚

ℎ
(𝜁
0
) 𝑑𝜁
0
; −𝑁

1
≤ 𝑚 ≤ 𝑁

1
, 0 ≤ ℎ ≤ 𝑁

2

(35)

with the following notations:

𝜁
0
= 𝜁
0
(𝑠
0
, 𝜙
0
) , 𝑑𝜁

0
= 𝑠
0
𝑑𝑠
0
𝑑𝜙
0
,

𝑄 (𝜁
0
) = 𝑄 (𝜉

0
, 𝜂
0
) = 𝑄 (𝑠

0
cos𝜙
0
, 𝑠
0
sin𝜙
0
) .

(36)

In evaluating the multiple integral in (35), we have used the
Gaussian quadrature and trapezoidal formulas for the radial
and angular directions with appropriate choice of collocation
points (𝑠, 𝜙) and (𝑠

0
, 𝜙
0
). This effort leads to the (2𝑁

1
+

1)(𝑁
2
+ 1) × (2𝑁

1
+ 1)(𝑁

2
+ 1) system of linear equations,

𝐴𝑤 = 𝑏 for the unknown coefficients of 𝑊𝑛
𝑘
, where 𝐴 =

(𝑎
𝑖𝑗
) is a square matrix and 𝑤 and 𝑏 are vectors, and, solved

numerically using LAPACK routine F07ASF (ZGETRS) in
Numerical Algorithms Group (NAG).

5. Stress Intensity Factors, Maximum Stress
Intensity, and Energy Release Rate

The sliding mode,𝐾
2
(𝜙), and the tearing mode,𝐾

3
(𝜙), stress

intensity factors are defined as [39, 40]

𝐾
𝑗
(𝜙) = lim

𝑟→𝑎

√
2𝜋

𝑎 − 𝑟
𝑉
𝑗
𝑤 (𝑥, 𝑦) ; 𝑗 = 2, 3, (37)

where𝑉
𝑗
are constants.The maximum stress intensity,𝑀(𝜙),

is defined as

𝑀(𝜙) = √[𝐾
2
(𝜙)]
2

+ [𝐾
3
(𝜙)]
2 (38)
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2 at different 𝑐.

while the energy release rate, 𝐺(𝜙), by Irwin’s relation sub-
jected to shear loading is calculated from stress intensity
factors and defined as

𝐺 (𝜙) =

(1 − ]2)
𝐸

[𝐾
2
(𝜙)]
2

+
(1 + ])

𝐸
[𝐾
3
(𝜙)]
2

, (39)

where 𝐸, Young’s modulus, is a measurement of the stiffness
of an isotropic elastic material and the relationship between
𝐸, ], and 𝜇 is

] =
𝐸

2𝜇
− 1. (40)



Journal of Applied Mathematics 7

M

Present (work)

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

𝜙

Gao [40]

(a) 𝑐 = 0.1

M

Gao [40]
Present (work)

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

𝜙

(b) 𝑐 = 0.3

Figure 5: The𝑀(𝜙) for 𝑓(𝜁) = 𝜁 + 𝑐𝜁
2 at different 𝑐.

Present (work)

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

𝜙

G

0.0015

0.0014

0.0013

0.0012

0.0011

0.0010

0.0009

0.0008

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0

Gao [40]

(a) 𝑐 = 0.1

Present (work)

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

𝜙

G

0.0015

0.0014

0.0013

0.0012

0.0011

0.0010

0.0009

0.0008

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0

Gao [40]

(b) 𝑐 = 0.3

Figure 6: The 𝐺(𝜙) for 𝑓(𝜁) = 𝜁 + 𝑐𝜁
2 at different 𝑐.

Let 𝑎(𝜙) = |𝑓(𝑒
𝑖𝜙

)| and 𝑟 = |𝑓(𝑠𝑒
𝑖𝜙

)|, followed by substituting
(30) into (37), which leads to

𝐾
𝑗
(𝜙) = 𝑉

𝑗
lim
𝑠→1
−

√
2𝜋

1 − 𝑠


𝑓


(𝜁)


−1

∑

𝑛,𝑘

𝑊
𝑛

𝑘
𝐴
𝑛

𝑘
(𝑠, 𝜙) ; 𝑗 = 2, 3,

(41)

where |𝑓(𝑒𝑖𝜙)−𝑓(𝑠𝑒
𝑖𝜙

)| = (1−𝑠)|𝑓


(𝑒
𝑖𝜙

)| as 𝑠 → 1. Introduce

𝑌
𝑛

𝑘
(𝜙) = 𝐷

|𝑛|+1/2

2𝑘+1
(0) cos (𝑛𝜙) ,

𝐶
|𝑛|+1/2

2𝑘+1
(√1 − 𝑠2) = √1 − 𝑠2𝐷

|𝑛|+1/2

2𝑘+1
(√1 − 𝑠2) ,

(42)
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Figure 7: The 𝐾
2
(𝜙),𝐾

3
(𝜙),𝑀(𝜙), and 𝐺(𝜙) for 𝑓(𝜁) = 𝜁 + 𝑐𝜁

3 at 𝑐 = 0.1.

where𝐷𝜆
𝑚
(𝑥) is defined recursively by

𝑚𝐷
𝜆

𝑚
(𝑥) = 2 (𝑚 + 𝜆 − 1) 𝑥𝐷

𝜆

𝑚−1
(𝑥)

− (𝑚 + 2𝜆 − 2)𝐷
𝜆

𝑚−2
(𝑥) ; 𝑚 = 2, 3, 4, . . . ,

(43)

with 𝐷
𝜆

0
(𝑥) = 2𝜆 and 𝐷

𝜆

1
(𝑥) = 2𝜆𝑥. Substituting (42) into

(41) yields

𝐾
𝑗
(𝜙) = 2√𝜋𝑉

𝑗


𝑓


(𝑒
𝑖𝜙

)


−1

∑

𝑛,𝑘

𝑊
𝑛

𝑘
𝑌
𝑛

𝑘
(𝜙) , (44)

where the unknown coefficients,𝑊𝑛
𝑘
, are obtained from (35).
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Figure 8: The 𝐾
2
(𝜙), 𝐾

3
(𝜙),𝑀(𝜙), and 𝐺(𝜙) for 𝑓(𝜁) = 𝜁 + 𝑐𝜁

3 at various 𝑐.

6. Results and Discussion

Consider the conformal mapping [15]

𝑓 (𝜁) = 𝜁 + 𝑐𝜁
𝑚+1

, (45)

where𝑚 is an integer and 𝑐must satisfy −(1/𝑚) ≤ 𝑐 ≤ (1/𝑚).
The domain is circular if 𝑐 = 0 and has a smooth, regular
boundary for 0 ≤ (𝑚 + 1)|𝑐| < 1. As (𝑚 + 1)|𝑐| → 1,

one or more cusps develop; see Figure 2 for various 𝑐 and𝑚,
respectively.

Tables 1, 2, and 3 show that our numerical scheme
converges rapidly at a different point of the crack with only
a small value of 𝑁 = 𝑁

1
= 𝑁
2
used. Tables 1 and 2 show

numerical scheme for 𝐾
2
(𝜙) for 𝑚 = 1 with 𝑐 = 0.1 and

𝑐 = 0.45, respectively. Based on these two tables, it is evident
that the convergence of stress intensity factors becomes slow
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Figure 9: The 𝐾
2
(𝜙),𝐾

3
(𝜙),𝑀(𝜙), and 𝐺(𝜙) for 𝑓(𝜁) = 𝜁 + 0.1𝜁

4 at various ] with 𝜇 = 1.

as 𝑐 increases, whilst Table 3 presents the numerical scheme
for𝐾
3
(𝜙), for𝑚 = −2 with 𝑐 = 0.1.

Figures 3, 4, 5, and 6 display the comparison of asymptotic
and numerical solutions for 𝐾

2
(𝜙) and 𝐾

3
(𝜙) stress intensity

factors, maximum stress intensity, 𝑀(𝜙), and strain energy
release rate, 𝐺(𝜙), respectively, for 𝑚 = 1 at 𝑐 = 0.1 and
𝑐 = 0.3. As demonstrated in these figures, our results seem
to agree with those obtained by Gao [40] except at the cusps.
As the cusps become sharper, the analytical result by Gao

[40] does not work, and this gives rise to the difference
between our andGao’s [40] result. It can be seen that the stress
intensity factors have local extremal values when the crack
front is at cos(𝜙) = ±1 or sin(𝜙) = ±1. Figure 7 presents the
comparison of asymptotic and numerical solutions for𝐾

2
(𝜙)

and 𝐾
3
(𝜙) stress intensity factors, maximum stress intensity,

𝑀(𝜙), and strain energy release rate, 𝐺(𝜙), respectively, for
𝑚 = 2 at 𝑐 = 0.1. Figure 8 shows the variations of 𝐾

2
, 𝐾
3
,

𝑀, and 𝐺 against 𝜙 for various of 𝑐 ≤ 0.3. Similar behavior
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can be observed for the solution of 𝐾
2
(𝜙), 𝐾

3
(𝜙), 𝑀(𝜙), and

𝐺(𝜙), for a different parameter of ] for 𝑓(𝜁)+0.1𝜁
4, displayed

in Figure 9.

7. Conclusion

The present work dealt with the epicycloid crack with the
application of shear loading in fracture mechanics. To this
end, the numerical solution for the stresses in such specimens
is derived, based on the solution of the hypersingular integral
equation, and the conformalmapping technique is adopted to
transform the hypersingular integral equation over a circular
region such that the equation is reduced into a system of
linear equations and solved for the unknown coefficients.
The stress intensity factors, maximum stress intensity, and
strain energy release rate for the epicycloid crack subject to
shear load are presented graphically.The proposedmodel and
the obtained numerical results are in good agreement when
compared to Gao [40].
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