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We present a perturbation result for generators of 𝐶
0
-semigroups which can be considered as an operator theoretic version of the

Weiss-Staffans perturbation theorem for abstract linear systems.The results are illustrated by applications to theDesch-Schappacher
and the Miyadera-Voigt perturbation theorems and to unbounded perturbations of the boundary conditions of a generator.

1. Introduction

In his classic [1] “Perturbation Theory for Linear Operators”,
Kato addresses, among others, the following general problem.

Given (unbounded) operators 𝐴 and 𝑃 on a Banach space
𝑋, how should one define their “sum” 𝐴 + 𝑃 and which
properties of 𝐴 are preserved under the perturbation by 𝑃?

In the present paper we study this problem in the context
of operator semigroups. Given the generator 𝐴 of a 𝐶

0
-

semigroup on 𝑋, for which operators 𝑃 is the (in a suitable
way defined) sum 𝐴 + 𝑃 again a generator?

Numerous results are known in this field (see, e.g., [2,
Sections III.1–3 and related notes]), but no unifying and
general theory is yet available.

Our aim is to go a step towards a more systematic pertur-
bation theory for such generators. To this end we choose the
following setting. For the generator𝐴with domain𝐷(𝐴) ⊂ 𝑋

consider perturbations

𝑃 : 𝐷 (𝑃) ⊂ 𝑋 󳨀→ 𝑋
𝐴

−1
, (1)

where 𝑋𝐴

−1
is the extrapolated space associated with 𝐴 (see

[2, Section II.5.a]). The sum is then defined as 𝐴
𝑃

:=

(𝐴
−1
+ 𝑃)|

𝑋
; that is,

𝐴
𝑃
𝑥 := 𝐴

−1
𝑥 + 𝑃𝑥

for 𝑥 ∈ 𝐷 (𝐴
𝑃
) := {𝑧 ∈ 𝐷 (𝑃) : 𝐴

−1
𝑧 + 𝑃𝑧 ∈ 𝑋} .

(2)

For which𝑃 remains𝐴
𝑃
a generator on𝑋?The bounded per-

turbation theorem ([2, Section III.1]), theDesch-Schappacher

([2, Section III.3.a]), and the Miyadera-Voigt theorems ([2,
Section III.3.c]) give somewell-known answers in these cases.

It seems that the Weiss-Staffans theorem on the well-
posedness of perturbed linear systems (cf. [3, Theorems 6.1
and 7.2] and [4, Sections 7.1 and 7.4]) is a general result in
this direction. In the present paper we formulate and prove
this result in a purely operator theoretic way avoiding, in
particular, notions like abstract linear systems and Lebesgue-
or Yosida-extensions.

More precisely (here we use the notation of Weiss, cf.
[3]), the classical Weiss-Staffans theorem starts from an
abstract linear system, that is, a quadruple (T , Φ, Ψ, F) of
operator families verifying a set of functional equations (for
the precise definition see [3, Definition 5.1]). It then shows
that for an admissible feedback operator𝐾 (cf. [3, Definition
3.5]) there exists a unique corresponding closed-loop system
(T𝐾

, Φ
𝐾
, Ψ

𝐾
, F𝐾). Moreover, it relates the generating opera-

tors (𝐴, 𝐵, 𝐶,𝐷) and (𝐴𝐾
, 𝐵

𝐾
, 𝐶

𝐾
, 𝐷

𝐾
) of these two systems.

Since here T and T𝐾 are 𝐶
0
-semigroups with generators

𝐴 and 𝐴
𝐾, respectively, this result implicitly contains a

perturbation theorem for generators of 𝐶
0
-semigroups.

However, to apply this theorem to a perturbed operator
𝐴

𝑃
as appearing in (2) one first has to construct an abstract

linear system with appropriate generating operators and
a suitable admissible feedback operator incorporating the
unperturbed generator𝐴 and the perturbation 𝑃. This makes
it quite cumbersome to formulate and to apply the Weiss-
Staffans theorem as a perturbation result for generators.
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For this reason we start directly from a triple (𝐴, 𝐵, 𝐶) of
operators and then give conditions in terms of the semigroup
generated by 𝐴 and the operators 𝐵 and 𝐶 implying that
𝐴

𝑃
for 𝑃 = 𝐵𝐶 generates a 𝐶

0
-semigroup. Even though in

our approach it is not necessary, it is nevertheless helpful
to interpret the perturbed generator as the state operator
of a control system with feedback in order to give some
motivation for the various definitions of “admissibility.” For
this reason in the sequel we use some common terminology
from control theory.

More precisely, choose two Banach spaces 𝑋 and 𝑈

called state- and observation-/control space, respectively. (We
assume that the observation and control spaces coincide.
This is no restriction of generality and somewhat simplifies
the presentation.) On these spaces consider the following
operators:

(i) 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋, called the state operator (of the
unperturbed system);

(ii) 𝐵 ∈ L(𝑈,𝑋
𝐴

−1
), called the control operator;

(iii) 𝐶 ∈ L(𝑍, 𝑈), called the observation operator,

where 𝐴 is the generator of a 𝐶
0
-semigroup (𝑇(𝑡))

𝑡≥0
on 𝑋.

Moreover,𝐷(𝐶) = 𝑍 is a Banach space such that

𝑋
𝐴

1

𝑐

󳨅→ 𝑍
𝑐

󳨅→ 𝑋, (3)

where “ c
󳨅→” denotes a continuous linear injection and 𝑋

𝐴

1

is the domain 𝐷(𝐴) equipped with the graph norm. Then
consider the linear control system

Σ (𝐴, 𝐵, 𝐶)

{{

{{

{

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) , 𝑡 ≥ 0,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) , 𝑡 ≥ 0,

𝑥 (0) = 𝑥
0
.

(4)

The solution of Σ(𝐴, 𝐵, 𝐶) is formally given by the variation
of parameters formula

𝑥 (𝑡) = 𝑇 (𝑡) 𝑥
0
+ ∫

𝑡

0

𝑇
−1
(𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠. (5)

Closing this system by putting 𝑢(𝑡) = 𝑦(𝑡), one formally
obtains the perturbed abstract Cauchy problem

𝑥̇ (𝑡) = (𝐴
−1
+ 𝐵𝐶) 𝑥 (𝑡) , 𝑡 ≥ 0,

𝑥 (0) = 𝑥
0
,

(6)

which is well-posed in 𝑋 if and only if 𝐴
𝑃
for 𝑃 := 𝐵𝐶 ∈

L(𝑍,𝑋
𝐴

−1
) is a generator on𝑋 (cf. [2, Section II.6]).

Before elaborating this idea, we give a short summary of
this paper.

Section 2 is dedicated to the notions of admissibility
for control, observation, feedback, and pairs of operators.
In Section 3 we state and prove the main results, that is,
Theorems 10 and 14. In Section 4 we show how the Desch-
Schappacher and Miyadera-Voigt theorems easily follow
fromTheorem 14 and give an application to the perturbation
of the boundary condition of a generator in the spirit of
Greiner [5].

2. Admissibility

Being only interested in the generator property of 𝐴 + 𝑃 for
some perturbation 𝑃, we can in the sequel assume without
loss of generality that the growth bound𝜔

0
(𝐴) < 0 and hence

0 ∈ 𝜌 (𝐴) . (7)

Taking 𝐶 = 0 in the system Σ(𝐴, 𝐵, 𝐶) and considering the
initial value 𝑥

0
= 0 it is natural to ask that for every control

function 𝑢 ∈ 𝐿
𝑝
([0, 𝑡

0
], 𝑈) one obtains a state 𝑥(𝑡

0
) ∈ 𝑋 for

some/all 𝑡
0
> 0. Hence formula (5) is leading to the following

definition (cf. [6, Definition 4.1], see also [7]).

Definition 1. The control operator 𝐵 ∈ L(𝑈,𝑋
𝐴

−1
) is called 𝑝-

admissible for some 1 ≤ 𝑝 < +∞ if there exists 𝑡
0
> 0 such

that

∫

𝑡0

0

𝑇
−1
(𝑡
0
− 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠 ∈ 𝑋, ∀𝑢 ∈ 𝐿

𝑝
([0, 𝑡

0
] , 𝑈) . (8)

Note that (8) becomes less restrictive for growing 𝑝 ∈

[1, +∞).

Remark 2. The range condition (8) in the previous definition
means that the operatorB

𝑡0
: 𝐿

𝑝
([0, 𝑡

0
], 𝑈) → 𝑋

𝐴

−1
given by

B
𝑡0
𝑢 := ∫

𝑡0

0

𝑇
−1
(𝑡
0
− 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠,

𝑢 ∈ 𝐿
𝑝
([0, 𝑡

0
] , 𝑈)

(9)

has range rg(B
𝑡0
)⊆𝑋. Since obviouslyB

𝑡0
∈L(𝐿

𝑝
([0, 𝑡

0
], 𝑈),

𝑋
𝐴

−1
), the closed graph theorem implies that for admissible

𝐵 the controllability mapB
𝑡0
belongs toL(𝐿

𝑝
([0, 𝑡

0
], 𝑈), 𝑋).

On the other hand, using integration by parts, it follows that
for every 𝑢 ∈ 𝑊

1,𝑝
([0, 𝑡

0
], 𝑈)

∫

𝑡0

0

𝑇
−1
(𝑡
0
− 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

= 𝐴
−1

−1
(𝑇

−1
(𝑡
0
) 𝐵𝑢 (0) − 𝐵𝑢 (𝑡

0
)

+∫

𝑡0

0

𝑇
−1
(𝑡
0
− 𝑠) 𝐵𝑢

󸀠
(𝑠) 𝑑𝑠) ∈ 𝑋.

(10)

Since𝑊1,𝑝
([0, 𝑡

0
], 𝑈) is dense in 𝐿𝑝([0, 𝑡

0
], 𝑈), this shows that

the range condition (8) is equivalent to the existence of some
𝑀 ≥ 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡0

0

𝑇
−1
(𝑡
0
− 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑋

≤ 𝑀 ⋅ ‖𝑢‖𝑝, ∀𝑢 ∈ 𝑊
1,𝑝

([0, 𝑡
0
] , 𝑈) .

(11)

Next, considerΣ(𝐴, 𝐵, 𝐶)with𝐵 = 0.Then it is reasonable
to ask that every initial value 𝑥

0
∈ 𝐷(𝐴) gives rise to an

observation 𝑦(⋅) = 𝐶𝑇(⋅)𝑥
0
∈ 𝐿

𝑝
([0, 𝑡

0
], 𝑈) for some/all

𝑡
0
> 0 which also depends continuously on 𝑥

0
. This yields

the following definition (cf. [8, Definition 6.1], see also [7]).
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Definition 3. The observation operator𝐶 ∈ L(𝑍, 𝑈) is called
𝑝-admissible for some 1 ≤ 𝑝 < +∞ if there exist 𝑡

0
> 0 and

𝑀 ≥ 0 such that

∫

𝑡0

0

‖𝐶𝑇 (𝑠) 𝑥‖
𝑝

𝑈
𝑑𝑠 ≤ 𝑀 ⋅ ‖𝑥‖

𝑝

𝑋
, ∀𝑥 ∈ 𝐷 (𝐴) . (12)

Note that (12) becomes more restrictive for growing 𝑝 ∈

[1, +∞).

Remark 4. Thenorm condition (12) in the previous definition
combined with the denseness of 𝐷(𝐴) ⊂ 𝑋 implies that
there exists an observability map C

𝑡0
∈ L(𝑋, 𝐿

𝑝
([0, 𝑡

0
], 𝑈))

satisfying 󵄩󵄩󵄩󵄩󵄩C𝑡0

󵄩󵄩󵄩󵄩󵄩
≤ 𝑀 such that

(C
𝑡0
𝑥) (𝑠) = 𝐶𝑇 (𝑠) 𝑥, ∀𝑥 ∈ 𝐷 (𝐴) , 𝑠 ∈ [0, 𝑡

0
] . (13)

Finally, consider the system Σ(𝐴, 𝐵, 𝐶) with (possibly
nonzero) 𝑝-admissible control and observation operators 𝐵
and 𝐶. The following compatibility condition is needed to
proceed (cf. [9, Section II.A]). For more information and
several related conditions see [10, Theorem 5.8] and [4,
Definition 5.1.1]. Recall that 𝑍 = 𝐷(𝐶).

Definition 5. The triple (𝐴, 𝐵, 𝐶) (or the system Σ(𝐴, 𝐵, 𝐶)) is
called compatible if for some 𝜆 ∈ 𝜌(𝐴) we have

rg (𝑅 (𝜆, 𝐴
−1
) 𝐵) ⊂ 𝑍. (14)

If the inclusion (14) holds for some 𝜆 ∈ 𝜌(𝐴), then it holds
for all 𝜆 ∈ 𝜌(𝐴) by the resolvent identity.Moreover, the closed
graph theorem implies that the operator

𝐶𝑅 (𝜆, 𝐴
−1
) 𝐵 ∈ L (𝑈) , ∀𝜆 ∈ 𝜌 (𝐴) . (15)

Consider now a compatible control system Σ(𝐴, 𝐵, 𝐶) with
initial value 𝑥

0
= 0. Then the input-output map of Σ(𝐴, 𝐵, 𝐶)

which maps a control 𝑢(⋅) to the corresponding observation
𝑦(⋅) by (5) is formally given by

𝑢 (⋅) 󳨃󳨀→ 𝑦 (⋅) = 𝐶∫

⋅

0

𝑇
−1
(⋅ − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠. (16)

Of course, the right-hand side does not in general make sense
for arbitrary 𝑢 ∈ 𝐿

𝑝
([0, 𝑡

0
], 𝑈) since the integral might give

values ∉ 𝑍 = 𝐷(𝐶). However, if

𝑢 ∈ 𝑊
2,𝑝

0
([0, 𝑡

0
] , 𝑈)

:= {𝑢 ∈ 𝑊
2,𝑝

([0, 𝑡
0
] , 𝑈) : 𝑢 (0) = 𝑢

󸀠
(0) = 0} ,

(17)

then integrating by parts twice and using (14) one obtains

∫

𝑟

0

𝑇
−1 (𝑟 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

= −𝐴
−1

−1
(−𝐵𝑢 (𝑟) + 𝐴

−1

−1
𝐵𝑢

󸀠
(𝑟)

−∫

𝑟

0

𝑇 (𝑟 − 𝑠) 𝐴
−1

−1
𝐵𝑢

󸀠󸀠
(𝑠) 𝑑𝑠) ∈ 𝑍.

(18)

At this point it is reasonable to ask that the input-output map
is continuous. This gives rise to the following definition.

Definition 6. The pair (𝐵, 𝐶) ∈ L(𝑈,𝑋
𝐴

−1
) ×L(𝑍, 𝑈) (or the

system Σ(𝐴, 𝐵, 𝐶)) is called jointly 𝑝-admissible for some 1 ≤
𝑝 < +∞ if 𝐵 is a 𝑝-admissible control operator and 𝐶 is a
𝑝-admissible observation operator and there exist 𝑡

0
> 0 and

𝑀 ≥ 0 such that

∫

𝑡0

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐶∫

𝑟

0

𝑇
−1
(𝑟 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑈

𝑑𝑟

≤ 𝑀 ⋅ ‖𝑢‖
𝑝

𝑝
, ∀𝑢 ∈ 𝑊

2,𝑝

0
([0, 𝑡

0
] , 𝑈) .

(19)

Remark 7. If Σ(𝐴, 𝐵, 𝐶) is jointly 𝑝-admissible, then there
exists a bounded input-output map

F
𝑡0
∈ L (𝐿

𝑝
([0, 𝑡

0
] , 𝑈)) , such that

(F
𝑡0
𝑢) (⋅) = 𝐶∫

⋅

0

𝑇
−1
(⋅ − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠,

∀𝑢 ∈ 𝑊
2,𝑝

0
([0, 𝑡

0
] , 𝑈) .

(20)

We need a further definition.

Definition 8. An operator 𝐹 ∈ L(𝑈) is called a 𝑝-admissible
feedback operator for some 1 ≤ 𝑝 < +∞ if there exists 𝑡

0
> 0

such that Id − 𝐹F
𝑡0
∈ L(𝐿

𝑝
([0, 𝑡

0
], 𝑈)) is invertible.

Note that 𝐹 = Id ∈ L(𝑈) is admissible if 󵄩󵄩󵄩󵄩󵄩F𝑡0

󵄩󵄩󵄩󵄩󵄩
< 1. For

further reference we summarize some of the previous notions
in a single notation.

Definition 9. Let 𝐴 be the generator of a 𝐶
0
-semigroup on

a Banach space 𝑋, 𝐵 ∈ L(𝑈,𝑋
𝐴

−1
) and 𝐶 ∈ L(𝑍, 𝑈) for a

Banach space 𝑍 satisfying 𝑋𝐴

1

𝑐

󳨅→ 𝑍
𝑐

󳨅→ 𝑋. Then 𝑃 := 𝐵𝐶 ∈

L(𝑍,𝑋
𝐴

−1
) is called a Weiss-Staffans perturbation for 𝐴 if for

some 1 ≤ 𝑝 < ∞ the following hold:

(i) (𝐴, 𝐵, 𝐶) is a compatible triple;

(ii) 𝐵 is a 𝑝-admissible control operator;

(iii) 𝐶 is a 𝑝-admissible observation operator;

(iv) (𝐵, 𝐶) is a 𝑝-admissible pair;

(v) Id ∈ L(𝑈) is a 𝑝-admissible feedback operator.

3. The Weiss-Staffans Perturbation Theorem

In this section we state and prove the main results of this
paper. These results can be considered as purely operator
theoretic versions of perturbation theorems for abstract
linear systems due toWeiss [3,Theorems 6.1 and 7.2 (1994)] in
theHilbert space case and Staffans [4,Theorems 7.1.2 and 7.4.5
(2005)] for Banach spaces. In particular, our approach avoids
the use of the notions of abstract linear systems and Lebesgue
extensions which are not needed if one is only interested in
generators. For related results see also [11] and [12, Theorems
4.2 and 4.3].
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Theorem 10. Assume that 𝑃 = 𝐵𝐶 ∈ L(𝑍,𝑋
𝐴

−1
) is a Weiss-

Staffans perturbation for𝐴.Thismeans that there exist 1 ≤ 𝑝 <

+∞, 𝑡
0
> 0 and𝑀 ≥ 0 such that

(i) 𝑟𝑔(𝑅 (𝜆, 𝐴
−1
) 𝐵) ⊂ 𝑍, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜆 ∈ 𝜌 (𝐴) ,

(ii) ∫

𝑡0

0

𝑇
−1
(𝑡
0
− 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠 ∈ 𝑋, ∀𝑢 ∈ 𝐿

𝑝
([0, 𝑡

0
] , 𝑈) ,

(iii) ∫

𝑡0

0

‖𝐶𝑇 (𝑠) 𝑥‖
𝑝

𝑈
𝑑𝑠 ≤ 𝑀 ⋅ ‖𝑥‖

𝑝

𝑋
, ∀𝑥 ∈ 𝐷 (𝐴) ,

(iv) ∫

𝑡0

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐶∫

𝑟

0

𝑇
−1 (𝑟 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑈

𝑑𝑟 ≤ 𝑀 ⋅ ‖𝑢‖
𝑝

𝑝

∀𝑢 ∈ 𝑊
2,𝑝

0
([0, 𝑡

0
] , 𝑈) ,

(v) 1 ∈ 𝜌 (F
𝑡0
) , 𝑤ℎ𝑒𝑟𝑒 F

𝑡0
∈ L (𝐿

𝑝
([0, 𝑡

0
] , 𝑈))

(21)

is given by (20). Then

𝐴
𝐵𝐶

:= (𝐴
−1
+ 𝐵𝐶)

󵄨󵄨󵄨󵄨𝑋
,

𝐷 (𝐴
𝐵𝐶
) := {𝑥 ∈ 𝑍 : (𝐴

−1
+ 𝐵𝐶) 𝑥 ∈ 𝑋} ,

(22)

generates a 𝐶
0
-semigroup (𝑆(𝑡))

𝑡≥0
on the Banach space 𝑋.

Moreover, the perturbed semigroup (𝑆(𝑡))
𝑡≥0

verifies the vari-
ation of parameters formula

𝑆 (𝑡) 𝑥 = 𝑇 (𝑡) 𝑥 + ∫

𝑡

0

𝑇
−1
(𝑡 − 𝑠) ⋅ 𝐵𝐶 ⋅ 𝑆 (𝑠) 𝑥 𝑑𝑠

∀𝑡 ≥ 0, 𝑥 ∈ 𝐷 (𝐴
𝐵𝐶
) .

(23)

For the proof we extend the controllability-, observa-
bility-, and input-output maps introduced in Remarks 2, 4,
and 7 onR

+
as follows. Recall that by assumption 𝜔

0
(𝐴) < 0.

Lemma 11. Let (𝐴, 𝐵, 𝐶) be compatible and (𝐵, 𝐶) jointly 𝑝-
admissible for some 1 ≤ 𝑝 < +∞. Then there exist

(i) a strongly continuous, uniformly bounded family
(B

𝑡
)
𝑡≥0

⊂ L(𝐿
𝑝
([0, +∞), 𝑈), 𝑋);

(ii) a bounded operatorC
∞
∈ L(𝑋, 𝐿

𝑝
([0, +∞), 𝑈));

(iii) a bounded operatorF
∞
∈ L(𝐿

𝑝
([0, +∞), 𝑈)),

such that

B
𝑡
𝑢 = ∫

𝑡

0

𝑇
−1
(𝑡
0
− 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠, ∀𝑢 ∈ 𝐿

𝑝
([0, +∞) , 𝑈) ,

(C
∞
𝑥) (𝑠) = 𝐶𝑇 (𝑠) 𝑥, ∀𝑥 ∈ 𝐷 (𝐴) , 𝑠 ∈ [0, +∞) ,

(F
∞
𝑢) (⋅) = 𝐶∫

⋅

0

𝑇
−1
(⋅ − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

∀𝑢 ∈ 𝑊
2,𝑝

0
([0, +∞) , 𝑈) .

(24)

Proof. The assertion for (B
𝑡
)
𝑡≥0

was proved in [13, Corollary
3.16]. The assertion for C

∞
was shown in [13, Lemma 3.9].

Finally, the assertion forF
∞
follows from [13, Remark 3.23].

For 𝜇 ≥ 0 we indicate in the sequel the controllability-,
observability-, and input-output maps associated with the
triple (𝐴 − 𝜇, 𝐵, 𝐶) with the superscript “𝜇”, for example,

(F
𝜇

∞
𝑢) (⋅) = 𝐶∫

⋅

0

𝑒
−𝜇(⋅−𝑠)

𝑇
−1
(⋅ − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠,

∀𝑢 ∈ 𝑊
2,𝑝

0
([0, +∞) , 𝑈) .

(25)

Lemma 12 gives a condition such that the invertibility of 𝐼 −
F

𝑡0
(see condition (v) of Theorem 10) implies the one of 𝐼 −

F𝜇

∞
for 𝜇 sufficiently large.

Lemma 12. Let the assumptions of Theorem 10 be satisfied. If
for 𝜇 ≥ 0

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇 (𝑡

0
) +B

𝑡0
(1 −F

𝑡0
)
−1

C
𝑡0

󵄩󵄩󵄩󵄩󵄩󵄩
< 𝑒

𝜇𝑡0 (26)

holds, then 1 ∈ 𝜌(F𝜇

∞
).

Proof. Inspired by [14, (2.6)] and the proof of [15, Proposition
2.1] consider for 𝑛 ∈ N the surjective isometry (denote by V𝑇
the transposed vector of a vector V)

𝐽 : 𝐿
𝑝
([0, 𝑛𝑡

0
] , 𝑈) 󳨀→

𝑛

∏

𝑘=1

𝐿
𝑝
([0, 𝑡

0
] , 𝑈) ,

𝑢 󳨃󳨀→ (𝑢
1
, . . . , 𝑢

𝑛
)
𝑇
,

(27)

where 𝑢
𝑘
: [0, 𝑡

0
] → 𝑈, 𝑢

𝑘
(𝑠) := 𝑢((𝑘 − 1)𝑡

0
+ 𝑠), and

󵄩󵄩󵄩󵄩󵄩
(𝑢

1
, . . . , 𝑢

𝑛
)
𝑇󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
:= ∑

𝑛

𝑘=1

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩

𝑝.
ThenF

𝑛𝑡0
is isometrically isomorphic to the matrix

𝐽F
𝑛𝑡0
𝐽
−1

=

(
(
(
(
(
(

(

F
𝑡0

0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

C
𝑡0
𝑇(𝑡

0
)
0
B

𝑡0
F

𝑡0
0 d

...

C
𝑡0
𝑇(𝑡

0
)
1
B

𝑡0
C

𝑡0
B

𝑡0
d d d

...
... d d d 0 0

... d C
𝑡0
B

𝑡0
F

𝑡0
0

C
𝑡0
𝑇(𝑡

0
)
𝑛−2

B
𝑡0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ C
𝑡0
𝑇 (𝑡

0
)B

𝑡0
C

𝑡0
B

𝑡0
F

𝑡0

)
)
)
)
)
)

)

. (28)
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Since by assumption 1 −F
𝑡0
is invertible, 1 −F

𝑛𝑡0
is invert-

ible as well and

𝐽(1 −F
𝑛𝑡0
)
−1

𝐽
−1

=

(
(
(
(
(
(

(

G 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

GC
𝑡0
(𝑇 (𝑡

0
) +B

𝑡0
GC

𝑡0
)
0

B
𝑡0
G G 0 d

...

GC
𝑡0
(𝑇 (𝑡

0
) +B

𝑡0
GC

𝑡0
)
1

B
𝑡0
G GC

𝑡0
B

𝑡0
G d d d

...
... d d d 0 0

... d GC
𝑡0
B

𝑡0
G G 0

GC
𝑡0
(𝑇 (𝑡

0
) +B

𝑡0
GC

𝑡0
)
𝑛−2

B
𝑡0
G ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ GC

𝑡0
(𝑇 (𝑡

0
) +B

𝑡0
GC

𝑡0
)B

𝑡0
G GC

𝑡0
B

𝑡0
G G

)
)
)
)
)
)

)

,

(29)

where we put G := (1 − F
𝑡0
)
−1. By Lemma A.1 applied to

𝐽(1 −F
𝑛𝑡0
)
−1
𝐽
−1 one obtains the estimate

󵄩󵄩󵄩󵄩󵄩󵄩
(1 −F

𝑛𝑡0
)
−1󵄩󵄩󵄩󵄩󵄩󵄩

≤ ‖G‖ +
󵄩󵄩󵄩󵄩󵄩
GC

𝑡0

󵄩󵄩󵄩󵄩󵄩
⋅
󵄩󵄩󵄩󵄩󵄩
B

𝑡0
G
󵄩󵄩󵄩󵄩󵄩

⋅

𝑛−1

∑

𝑙=1

󵄩󵄩󵄩󵄩󵄩
(𝑇 (𝑡

0
) +B

𝑡0
GC

𝑡0
)
󵄩󵄩󵄩󵄩󵄩

𝑙−1

.

(30)

This shows that 󵄩󵄩󵄩󵄩󵄩(1 −F
𝑛𝑡0
)
−1󵄩󵄩󵄩󵄩󵄩

remains bounded as 𝑛 → +∞

if (26) holds for 𝜇 = 0.
If the estimate (26) only holds for some 𝜇 > 0, consider

the triple (𝐴 − 𝜇, 𝐵, 𝐶). Let 𝑀
𝜀𝜇

∈ L(𝐿
𝑝
([0, 𝑡

0
], 𝑈)) be the

multiplication operator defined by

(𝑀
𝜀𝜇
𝑢) (𝑠) := 𝑒

𝜇𝑠
⋅ 𝑢 (𝑠) , 𝑢 ∈ 𝐿

𝑝
([0, 𝑡

0
] , 𝑈) . (31)

Then𝑀
𝜀𝜇
is invertible with inverse𝑀

𝜀−𝜇
and a simple compu-

tation shows that
B

𝜇

𝑡0
= 𝑒

−𝜇𝑡0B
𝑡0
𝑀

𝜀𝜇
,

C
𝜇

𝑡0
= 𝑀

−1

𝜀𝜇
C

𝑡0
,

F
𝜇

𝑡0
= 𝑀

−1

𝜀𝜇
F

𝑡0
𝑀

𝜀𝜇
.

(32)

By similarity this implies that 1 ∈ 𝜌(F
𝜇

𝑡0
). Hence, repeating

the above reasoning for (𝐴 − 𝜇, 𝐵, 𝐶) one obtains from (30)
that 󵄩󵄩󵄩󵄩󵄩(1 −F

𝜇

𝑛𝑡0
)
−1󵄩󵄩󵄩󵄩󵄩

remains bounded as 𝑛 → +∞ if
󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝜇𝑡0𝑇 (𝑡

0
) +B

𝜇

𝑡0
(1 −F

𝜇

𝑡0
)
−1

C
𝜇

𝑡0

󵄩󵄩󵄩󵄩󵄩󵄩
< 1. (33)

Since by (32) one has

𝑒
−𝜇𝑡0𝑇 (𝑡

0
) +B

𝜇

𝑡0
(1 −F

𝜇

𝑡0
)
−1

C
𝜇

𝑡0

= 𝑒
−𝜇𝑡0 (𝑇 (𝑡

0
) +B

𝑡0
(1 −F

𝑡0
)
−1

C
𝑡0
) ,

(34)

the estimates (33) and (26) are equivalent. Summing up this
shows that (26) implies that

𝐾 := sup
𝑛∈N

󵄩󵄩󵄩󵄩󵄩󵄩
(1 −F

𝜇

𝑛𝑡0
)
−1󵄩󵄩󵄩󵄩󵄩󵄩

< +∞. (35)

Using this fact we finally show that 1 ∈ 𝜌(F𝜇

∞
). Observe first

that (1 −F𝜇

∞
)𝑢 = 0 for some 𝑢 ∈ 𝐿

𝑝
([0, +∞), 𝑈) implies that

(1 − F
𝜇

𝑛𝑡0
)(𝑢|

[0,𝑛𝑡0]
) = 0 for every 𝑛 ∈ N. Since (1 − F

𝜇

𝑛𝑡0
) is

injective for every 𝑛 ∈ N, this gives that 𝑢 = 0; that is, 1−F𝜇

∞

is injective.
To show surjectivity fix some V ∈ 𝐿

𝑝
([0, +∞), 𝑈) and

define for 𝑛 ∈ N

𝑢
𝑛
:= (1 −F

𝜇

𝑛𝑡0
)
−1

(V|
[0,𝑛𝑡0]

) ∈ 𝐿
𝑝
([0, 𝑛𝑡

0
] , 𝑈) ; (36)

that is, 𝑢
𝑛
is the unique solution in 𝐿

𝑝
([0, 𝑛𝑡

0
], 𝑈) of the

equation

(1 −F
𝜇

𝑛𝑡0
) 𝑢 = V|

[0,𝑛𝑡0]
. (37)

However, for 𝑚 ≥ 𝑛 one has (F
𝜇

𝑚𝑡0
𝑢
𝑚
)|
[0,𝑛𝑡0]

=

F
𝜇

𝑛𝑡0
(𝑢

𝑚
|
[0,𝑛𝑡0]

); hence also 𝑢
𝑚
|
[0,𝑛𝑡0]

∈ 𝐿
𝑝
([0, 𝑛𝑡

0
], 𝑈) solves

(37). This implies that

𝑢
𝑚

󵄨󵄨󵄨󵄨[0,𝑛𝑡0]
= 𝑢

𝑛
. (38)

Thus one can define
𝑢 (𝑠) := lim

𝑛→+∞
𝑢
𝑛
(𝑠) , 𝑠 ∈ [0, +∞) . (39)

Since by (35) it follows that 󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩 ≤ 𝐾 ⋅ ‖V‖ for all 𝑛 ∈ N,

Fatou’s lemma implies that 𝑢 ∈ 𝐿
𝑝
([0, +∞), 𝑈). Moreover, by

construction
((1 −F

𝜇

∞
) 𝑢)

󵄨󵄨󵄨󵄨[0,𝑛𝑡0]
= (1 −F

𝜇

𝑛𝑡0
) 𝑢

𝑛
= V|

[0,𝑛𝑡0]

∀𝑛 ∈ N,

(40)

which implies (1 − F𝜇

∞
)𝑢 = V. Since V ∈ 𝐿

𝑝
([0, 𝑡

0
], 𝑈) was

arbitrary, this shows that 1−F𝜇

∞
is surjective. Hence 1−F𝜇

∞

is bijective and therefore 1 ∈ 𝜌(F𝜇

∞
) as claimed.

Next we show that the invertibility of Id−F𝜇

∞
implies for

sufficiently large 𝜆 the invertibility of the “transfer function”
Id − 𝐶𝑅(𝜆, 𝐴

−1
)𝐵 of the system Σ(𝐴, 𝐵, 𝐶) with feedback

𝑢(𝑡) = 𝑦(𝑡). In the following the Laplace transform of a
function 𝑢 is denoted by

(L𝑢) (𝜆) := 𝑢̂ (𝜆) := ∫

+∞

0

𝑒
−𝜆𝑟

𝑢 (𝑟) 𝑑𝑟. (41)
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Lemma 13. Assume that 1 ∈ 𝜌(F𝜇

∞
) for some 𝜇 ≥ 0. Then

1 ∈ 𝜌(𝐶𝑅(𝜆, 𝐴
−1
)𝐵) for all 𝜆 ∈ C satisfying Re 𝜆 > 𝜇 and

L ((𝐼𝑑 −F
𝜇

∞
)
−1
𝑢) (𝜆) = (𝐼𝑑 − 𝐶𝑅 (𝜆, 𝐴

−1
) 𝐵)

−1
⋅ 𝑢̂ (𝜆)

∀𝑢 ∈ 𝐿
𝑝
([0, +∞) , 𝑈) .

(42)

Proof. Assume first that 𝜇 = 0. Then it is well known
that F

∞
= F𝜇

∞
is shift invariant (cf. [16]); that is, F

∞

commutes with the right shift. Then also G := Id − F
∞

∈

L(𝐿
𝑝
([0, +∞), 𝑈)) is shift invariant and by [16,Theorem 2.3]

and [13, Lemma 3.19] one obtains for 𝑢 ∈ 𝐿
𝑝
([0, +∞), 𝑈)

(̂G𝑢) (𝜆) = (Id − 𝐶𝑅 (𝜆, 𝐴
−1
) 𝐵) ⋅ 𝑢̂ (𝜆) , Re 𝜆 > 0. (43)

Let R := G−1
∈ L(𝐿

𝑝
([0, +∞), 𝑈)). Then clearly the right

shift also commutes with R; that is, this operator is shift
invariant as well. Hence again by [16, Theorem 2.3] there
exists 𝑅(𝜆) ∈ L(𝑈) such that

(̂R𝑢) (𝜆) = 𝑅 (𝜆) ⋅ 𝑢̂ (𝜆) , Re 𝜆 > 0,

𝑢 ∈ 𝐿
𝑝
([0, +∞) , 𝑈) .

(44)

Summing up one obtains for all 𝑢 ∈ 𝐿
𝑝
([0, +∞), 𝑈)

𝑢̂ (𝜆) = ̂(RG𝑢) (𝜆) = 𝑅 (𝜆) ⋅ (̂G𝑢) (𝜆)

= 𝑅 (𝜆) ⋅ (Id − 𝐶𝑅 (𝜆, 𝐴
−1
) 𝐵)

⋅ 𝑢̂ (𝜆) = ̂(GR𝑢) (𝜆)

= (Id − 𝐶𝑅 (𝜆, 𝐴
−1
) 𝐵) ⋅ (̂R𝑢) (𝜆)

= (Id − 𝐶𝑅 (𝜆, 𝐴
−1
) 𝐵) ⋅ 𝑅 (𝜆) ⋅ 𝑢̂ (𝜆) .

(45)

Taking 𝑢(𝑠) = 𝑒
−𝑠V for some V ∈ 𝑈, this implies

1

1 + 𝜆
⋅ V = 𝑅 (𝜆) ⋅ (Id − 𝐶𝑅 (𝜆, 𝐴

−1
) 𝐵) ⋅

1

1 + 𝜆
⋅ V

= (Id − 𝐶𝑅 (𝜆, 𝐴
−1
) 𝐵) ⋅ 𝑅 (𝜆) ⋅

1

1 + 𝜆
⋅ V,

Re 𝜆 > 0.

(46)

Hence 𝑅(𝜆) = (Id − 𝐶𝑅(𝜆, 𝐴
−1
)𝐵)

−1.
If 𝜇 > 0, then by the same reasoning applied to F𝜇

∞
one

obtains that

1 ∈ 𝜌 (𝐶𝑅 (𝜆, 𝐴
−1
− 𝜇) 𝐵)

= 𝜌 (𝐶𝑅 (𝜆 + 𝜇, 𝐴
−1
) 𝐵) , ∀Re 𝜆 > 0.

(47)

Clearly this implies our claim in case 𝜇 > 0 and the proof is
complete.

We are now well prepared to prove the main result of this
section.

Proof of Theorem 10. The idea of the proof is to define an
operator family (𝑆(𝑡))

𝑡≥0
⊂ L(𝑋) and then to verify that it

is a 𝐶
0
-semigroup with generator 𝐴

𝐵𝐶
.

To this end, assume that the condition (26) in Lemma 12
holds for 𝜇 = 0.Then Id−F

∞
is invertible and one can define

for 𝑡 ≥ 0

𝑆 (𝑡) := 𝑇 (𝑡) +B
𝑡
(Id −F

∞
)
−1
C

∞
∈ L (𝑋) . (48)

Since (𝑇(𝑡))
𝑡≥0

and (B
𝑡
)
𝑡≥0

are both strongly continuous and
uniformly bounded, the same holds for (𝑆(𝑡))

𝑡≥0
. We proceed

and compute the Laplace transform of 𝑆(⋅)𝑥 : [0, +∞) → 𝑋

for 𝑥 ∈ 𝑋. Since

𝑆 (⋅) 𝑥 = 𝑇 (⋅) 𝑥 + 𝑇
−1
(⋅) 𝐵 ∗ (1 −F

∞
)
−1
C

∞
𝑥, (49)

the convolution theorem for the Laplace transform (or [13,
Lemma 3.12]) and Lemma 13 imply for every 𝑥 ∈ 𝑋 and
Re 𝜆 > 0

L (𝑆 (⋅) 𝑥) (𝜆) = 𝑅 (𝜆, 𝐴) 𝑥 + 𝑅 (𝜆, 𝐴
−1
) 𝐵

⋅L ((1 −F
∞
)
−1
C

∞
𝑥) (𝜆)

= 𝑅 (𝜆, 𝐴) 𝑥 + 𝑅 (𝜆, 𝐴
−1
) 𝐵

⋅ (Id − 𝐶𝑅 (𝜆, 𝐴
−1
) 𝐵)

−1

⋅ 𝐶𝑅 (𝜆, 𝐴) 𝑥 =: 𝑄 (𝜆) 𝑥.

(50)

We now show that 𝑄(𝜆) = 𝑅(𝜆, 𝐴
𝐵𝐶
). First note that by the

compatibility condition (14) one has

rg (𝑄 (𝜆)) ⊂ 𝐷 (𝐴) + 𝑍 = 𝑍 = 𝐷 (𝐶) . (51)

Moreover,

(𝜆 − 𝐴
−1
− 𝐵𝐶) ⋅ 𝑄 (𝜆)

= Id − 𝐵𝐶𝑅 (𝜆, 𝐴) + 𝐵 ⋅ Id

⋅ (Id − 𝐶𝑅 (𝜆, 𝐴
−1
) 𝐵)

−1

⋅ 𝐶𝑅 (𝜆, 𝐴) − 𝐵 ⋅ 𝐶𝑅 (𝜆, 𝐴
−1
) 𝐵

⋅ (Id − 𝐶𝑅 (𝜆, 𝐴
−1
) 𝐵)

−1
𝐶𝑅 (𝜆, 𝐴) = Id.

(52)

This implies that 𝑄(𝜆) is a right inverse and rg(𝑄(𝜆)) ⊂

𝐷(𝐴
𝐵𝐶
). To show that it is also a left inverse take 𝑥 ∈

𝐷(𝐴
𝐵𝐶
) ⊂ 𝑍 = 𝐷(𝐶). Then we obtain

𝑄 (𝜆) ⋅ (𝜆 − 𝐴
−1
− 𝐵𝐶) 𝑥

= 𝑥 − 𝑅 (𝜆, 𝐴
−1
) 𝐵𝐶𝑥 + 𝑅 (𝜆, 𝐴

−1
)

⋅ 𝐵(Id − 𝐶𝑅 (𝜆, 𝐴
−1
) 𝐵)

−1
⋅ Id

⋅ 𝐶𝑥 − 𝑅 (𝜆, 𝐴
−1
) ⋅ 𝐵(Id − 𝐶𝑅 (𝜆, 𝐴

−1
) 𝐵)

−1

⋅ 𝐶𝑅 (𝜆, 𝐴
−1
) 𝐵 ⋅ 𝐶𝑥 = 𝑥,

(53)
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and hence it follows that 𝑄(𝜆) = 𝑅(𝜆, 𝐴
𝐵𝐶
) as claimed.

Summing up we showed that (𝑆(𝑡))
𝑡≥0

⊂ L(𝑋) is a strongly
continuous family with Laplace transform 𝑅(𝜆, 𝐴

𝐵𝐶
). By [17,

Theorem 3.1.7] this implies that (𝑆(𝑡))
𝑡≥0

is a 𝐶
0
-semigroup

with generator 𝐴
𝐵𝐶
.

To verify the variation of parameters formula (23) one
first notes that by Lemma 13 and the explicit representation
of 𝑅(𝜆, 𝐴

𝐵𝐶
) in (50) one has for all 𝑥 ∈ 𝐷(𝐴

𝐵𝐶
) and Re 𝜆 >

𝜇 = 0 that

L ((1 −F
∞
)
−1
C

∞
(⋅) 𝑥) (𝜆) = L (𝐶𝑆 (⋅) 𝑥) (𝜆) . (54)

By the uniqueness of the Laplace transform this implies that

(1 −F
∞
)
−1
C

∞ (⋅) 𝑥 = 𝐶𝑆 (⋅) 𝑥, (55)

and the assertion follows from the definition of (𝑆(𝑡))
𝑡≥0

in
(49).

Now assume that (26) only holds for some 𝜇 > 0. Then
repeating the same reasoning for the triple (𝐴 − 𝜇, 𝐵, 𝐶) one
concludes as before that (𝐴 − 𝜇)

𝐵𝐶
= ((𝐴 − 𝜇)

−1
+ 𝐵𝐶)|

𝑋
=

𝐴
𝐵𝐶
−𝜇 is a generator. Clearly this implies that𝐴

𝐵𝐶
generates

a strongly continuous semigroup (𝑆(𝑡))
𝑡≥0

. Moreover, one
obtains that the pair of rescaled semigroups (𝑒−𝜇𝑡𝑇(𝑡))

𝑡≥0
and

(𝑒
−𝜇𝑡

𝑆(𝑡))
𝑡≥0

verify the variation of parameters formula (23)
which implies that this formula holds for the pair (𝑇(𝑡))

𝑡≥0

and (𝑆(𝑡))
𝑡≥0

as well.

As already remarked in the introduction, with increasing
𝑝 ∈ [1, +∞) the 𝑝-admissibility of the control and observa-
tion operator becomes weaker and stronger, respectively.

Assuming that the input-output map maps 𝐿𝛼 to 𝐿
𝛽 for

some (the main cases we have in mind are 𝛼 < 𝑝 = 𝛽 < +∞

and 1 < 𝛼 = 𝑝 < 𝛽) 1 ≤ 𝛼 ≤ 𝑝 ≤ 𝛽 < +∞ satisfying
𝛼 < 𝛽, one can drop the invertibility condition 1 ∈ 𝜌(F

𝑡0
) in

Theorem 10 (and sometimes even the compatibility condition
(14), cf. Remark 15).

Theorem 14. Assume that conditions (i)–(iii) in Theorem 10
are satisfied.Moreover, suppose there exist 1 ≤ 𝛼 ≤ 𝑝 ≤ 𝛽 < ∞

with 𝛼 < 𝛽, 𝑝 > 1, and𝑀 ≥ 0 such that

(iv 󸀠
) ∫

𝑡0

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐶∫

𝑟

0

𝑇
−1
(𝑟 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽

𝑈

𝑑𝑟 ≤ 𝑀 ⋅ ‖𝑢‖
𝛽

𝛼

∀𝑢 ∈ 𝑊
2,𝛼

0
([0, 𝑡

0
] , 𝑈) .

(56)

Then 𝐴
𝐵𝐶

given by (22) generates a 𝐶
0
-semigroup (𝑆(𝑡))

𝑡≥0

on the Banach space 𝑋 verifying the variation of parameters
formula (23).

Proof. By Theorem 10 it suffices to show that 1 ∈ 𝜌(F
𝑡1
) for

some 𝑡
1
> 0. By assumption the operator

𝐹
𝑡
: 𝑊

2,𝛼

0
([0, 𝑡] , 𝑈) ⊂ 𝐿

𝛼
([0, 𝑡] , 𝑈) 󳨀→ 𝐿

𝛽
([0, 𝑡] , 𝑈) ,

𝐹
𝑡
𝑢 := 𝐶∫

⋅

0

𝑇
−1 (⋅ − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

(57)

has a bounded extension 𝐹
𝑡
∈ L(𝐿

𝛼
([0, 𝑡], 𝑈), 𝐿

𝛽
([0, 𝑡], 𝑈))

for every 𝑡 ∈ (0, 𝑡
0
]. We distinguish 2 cases and use in both of

them Jensen’s inequality as follows:

‖𝑢‖𝑟 ≤ 𝑡
(1/𝑟)−(1/𝑠)

⋅ ‖𝑢‖𝑠, (58)

for 1 ≤ 𝑟 < 𝑠 ≤ +∞ and 𝑢 ∈ 𝐿
𝑠
([0, 𝑡], 𝑈) ⊂ 𝐿

𝑟
([0, 𝑡], 𝑈).

Case 𝛼 < 𝑝.Then 𝐹
𝑡
belongs toL(𝐿

𝛼
([0, 𝑡], 𝑈), 𝐿

𝑝
([0, 𝑡], 𝑈))

with norm (denote the norm of a bounded linear operator
𝐹 : 𝐿

𝑟
→ 𝐿

𝑠 by ‖𝐹‖𝑟𝑠)
󵄩󵄩󵄩󵄩𝐹𝑡

󵄩󵄩󵄩󵄩𝛼𝑝
≤
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑡0

󵄩󵄩󵄩󵄩󵄩𝛼𝑝
. This implies, by (58)

for 𝑟 = 𝛼 and 𝑠 = 𝑝, that

󵄩󵄩󵄩󵄩𝐹𝑡𝑢
󵄩󵄩󵄩󵄩𝑝

≤
󵄩󵄩󵄩󵄩𝐹𝑡

󵄩󵄩󵄩󵄩𝛼𝑝
⋅ ‖𝑢‖𝛼 ≤ 𝑡

(1/𝛼)−(1/𝑝)
⋅
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑡0

󵄩󵄩󵄩󵄩󵄩𝛼𝑝
⋅ ‖𝑢‖𝑝. (59)

Case 𝑝 < 𝛽. In this case, 𝐹
𝑡
∈ L(𝐿

𝑝
([0, 𝑡], 𝑈), 𝐿

𝛽
([0, 𝑡], 𝑈))

with norm 󵄩󵄩󵄩󵄩𝐹𝑡
󵄩󵄩󵄩󵄩𝑝𝛽

≤
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑡0

󵄩󵄩󵄩󵄩󵄩𝑝𝛽
. This implies, by (58) for 𝑟 = 𝑝

and 𝑠 = 𝛽, that

󵄩󵄩󵄩󵄩𝐹𝑡𝑢
󵄩󵄩󵄩󵄩𝑝

≤ 𝑡
(1/𝑝)−(1/𝛽)

⋅
󵄩󵄩󵄩󵄩𝐹𝑡𝑢

󵄩󵄩󵄩󵄩𝛽

≤ 𝑡
(1/𝑝)−(1/𝛽)

⋅
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑡0

󵄩󵄩󵄩󵄩󵄩𝑝𝛽
⋅ ‖𝑢‖𝑝.

(60)

Hence in both cases, considering F
𝑡

:= 𝐹
𝑡
|
𝐿
𝑝
([0,𝑡],𝑈)

∈

L(𝐿
𝑝
([0, 𝑡], 𝑈)), one concludes that there exists 𝑡

1
> 0 such

that 󵄩󵄩󵄩󵄩󵄩F𝑡1

󵄩󵄩󵄩󵄩󵄩
< 1 which implies 1 ∈ 𝜌(F

𝑡1
).

Remark 15. Assume as in Theorem 14 that 1 ≤ 𝛼 ≤ 𝑝 ≤ 𝛽 ≤

+∞ with 𝛼 < 𝛽 and 1 < 𝑝 < +∞. If there exist 𝑡
0
> 0 and a

dense subspace𝐷 ⊂ 𝐿
𝛼
([0, 𝑡

0
], 𝑈) such that for every 𝑢 ∈ 𝐷

(i) ∫𝑟
0
𝑇
−1
(𝑟 − 𝑠)𝐵𝑢(𝑠) 𝑑𝑠 ∈ 𝑍 for almost all 0 < 𝑟 ≤ 𝑡

0
;

(ii) the map [0, 𝑡
0
] ∋ 𝑟 󳨃→ 𝐶∫

𝑟

0
𝑇
−1
(𝑟 − 𝑠)𝐵𝑢(𝑠) 𝑑𝑠 is in

𝐿
𝛽
([0, 𝑡

0
], 𝑈);

(iii) there exists𝑀 ≥ 0 such that

∫

𝑡0

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐶∫

𝑟

0

𝑇
−1
(𝑟 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛽

𝑈

𝑑𝑟

≤ 𝑀 ⋅ ‖𝑢‖
𝛽

𝛼
, ∀𝑢 ∈ 𝐷,

(61)

then also the compatibility condition (14) is satisfied.
To verify this assertion define 𝐹

𝑡
: 𝐷 ⊂ 𝐿

𝛼
([0, 𝑡], 𝑈) →

𝐿
𝛽
([0, 𝑡], 𝑈) as in (57) with 𝑊

2,𝛼

0
([0, 𝑡], 𝑈) replaced by the

space 𝐷. By assumption, 𝐹
𝑡
has a unique bounded extension

𝐹
𝑡
: 𝐿

𝛼
([0, 𝑡], 𝑈) → 𝐿

𝛽
([0, 𝑡], 𝑈). As above take F

𝑡
:=

𝐹
𝑡
|
𝐿
𝑝
([0,𝑡],𝑈)

∈ L(𝐿
𝑝
([0, 𝑡], 𝑈)). Then, by Hölder’s inequality

(or (58) for 𝑟 = 1 and 𝑠 = 𝛽), one obtains for every V ∈ 𝑈

(define (𝑓 ⊗ 𝑥)(𝑠) := 𝑓(𝑠) ⋅ 𝑥 for all 𝑠 ∈ [0, 𝑡
0
] where
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𝑓 : [0, 𝑡
0
] → C is a scalar function; moreover, by 1 denote

the constant one function on the interval [0, 𝑡
0
])

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
∫

𝑡

0

(F
𝑡
1 ⊗ V) (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
1

𝑡
∫

𝑡

0

󵄩󵄩󵄩󵄩(F𝑡
1 ⊗ V) (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠 =

1

𝑡
⋅
󵄩󵄩󵄩󵄩𝐹𝑡1 ⊗ V󵄩󵄩󵄩󵄩1

≤
1

𝑡
⋅ 𝑡

1−(1/𝛽)
⋅
󵄩󵄩󵄩󵄩𝐹𝑡1 ⊗ V󵄩󵄩󵄩󵄩𝛽

≤ 𝑡
−1/𝛽

⋅
󵄩󵄩󵄩󵄩𝐹𝑡

󵄩󵄩󵄩󵄩𝛼𝛽
⋅ ‖1 ⊗ V‖𝛼

≤ 𝑡
(1/𝛼)−(1/𝛽)

⋅
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑡0

󵄩󵄩󵄩󵄩󵄩𝛼𝛽
⋅ ‖V‖𝑈 󳨀→ 0, as 𝑡 󳨀→ 0

+
.

(62)

By [10,Theorem 5.8] in theHilbert space case or [4,Theorems
5.6.4 and 5.6.5] in the general case this convergence implies
the compatibility condition (14).

4. Applications

We now give some applications of our abstract results. First
we show thatTheorem 14 can be considered as a simultaneous
generalization of the Desch-Schappacher and the Miyadera-
Voigt perturbation theorems.Moreover, we generalize a result
of Greiner concerning the perturbation of the boundary
conditions of a generator.

4.1. The Desch-Schappacher Perturbation Theorem. The fol-
lowing result was proved in [18, Theorem 5, Proposition 8];
see also [2, Corollary III.3.4] and [19, Corollary 5.5.1].

Theorem 16 (see [18]). Assume that for 𝐵 ∈ L(𝑋,𝑋
𝐴

−1
) there

exist 1 ≤ 𝑝 < +∞, 𝑡
0
> 0, and𝑀 ≥ 0 such that

∫

𝑡0

0

𝑇
−1
(𝑡
0
− 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠 ∈ 𝑋, ∀𝑢 ∈ 𝐿

𝑝
([0, 𝑡

0
] , 𝑋) . (63)

Then (𝐴
𝐵
, 𝐷(𝐴

𝐵
)) given by

𝐴
𝐵
𝑥 := (𝐴

−1
+ 𝐵) 𝑥,

𝐷 (𝐴
𝐵
) := {𝑥 ∈ 𝑋 : (𝐴

−1
+ 𝐵) 𝑥 ∈ 𝑋} ,

(64)

is the generator of a 𝐶
0
-semigroup (𝑆(𝑡))

𝑡≥0
on 𝑋.

Remark that one could consider the condition (63) also
for 𝑝 = ∞ or 𝑢 ∈ 𝐶([0, 𝑡

0
], 𝑈). However, in this case one

needs an additional norm estimate to ensure that condition
(v) in Theorem 10 is satisfied (cf. [2, Corollary III.3.3.]).
Moreover, note that in a certain sense theDesch-Schappacher
theoremdepends only on the range but not on the “size” of the
perturbation 𝐵. In particular, if 𝐵 satisfies the assumption of
Theorem 16, then also 𝐵𝐹 satisfies it for every 𝐹 ∈ L(𝑋).

Proof of Theorem 16. Let 𝑈 = 𝑍 = 𝑋 and 𝐶 = Id. Then by
assumption𝐵 ∈ L(𝑋,𝑋

𝐴

−1
) is a𝑝-admissible control operator

and conditions (i)–(iii) in Theorem 10 are clearly satisfied.

We will prove that (ii) implies condition (iv󸀠) from
Theorem 14. To this end we first verify that the function

[0, 𝑡
0
] ∋ 𝑟 󳨃󳨀→ V (𝑟) := ∫

𝑟

0

𝑇
−1
(𝑟 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠 ∈ 𝑋 (65)

is continuous for every 𝑢 ∈ 𝐿
𝑝
([0, 𝑡

0
], 𝑋). For such 𝑢 define

𝑢
𝑡
: [0, 𝑡

0
] → 𝑈 by

𝑢
𝑡
(𝑠) := {

0 if 0 ≤ 𝑠 ≤ 𝑡
0
− 𝑡

𝑢 (𝑠 − 𝑡
0
+ 𝑡) if 𝑡

0
− 𝑡 < 𝑠 ≤ 𝑡

0
;

(66)

that is, 𝑢
𝑡
is just the right translation of 𝑢 by 𝑡

0
− 𝑡. Then 𝑢

𝑡
∈

𝐿
𝑝
([0, 𝑡

0
], 𝑋) and using Remark 2 one obtains from V(𝑟) =

B
𝑡0
𝑢
𝑟
that for 𝑟

0
, 𝑟

1
∈ [0, 𝑡

0
]

󵄩󵄩󵄩󵄩V (𝑟0) − V (𝑟
1
)
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
B

𝑡0
(𝑢

𝑟0
− 𝑢

𝑟1
)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
B

𝑡0

󵄩󵄩󵄩󵄩󵄩
⋅
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑟0
− 𝑢

𝑟1

󵄩󵄩󵄩󵄩󵄩𝑝

󳨀→ 0, as 𝑟
1
󳨀→ 𝑟

0
,

(67)

where the last step follows from the strong continuity of the
nilpotent right translation semigroup on 𝐿

𝑝
([0, 𝑡

0
], 𝑋). Next

define the operator

𝐹
𝑡0
: 𝐿

𝑝
([0, 𝑡

0
] , 𝑋) 󳨀→ 𝐶 ([0, 𝑡

0
] , 𝑋) ,

(𝐹
𝑡0
𝑢) (𝑟) := ∫

𝑟

0

𝑇
−1
(𝑟 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠,

𝑟 ∈ [0, 𝑡
0
] .

(68)

The operator 𝐹
𝑡0
is well-defined. Moreover, the estimate

󵄩󵄩󵄩󵄩󵄩
(𝐹

𝑡0
𝑢) (𝑟)

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
B

𝑡0

󵄩󵄩󵄩󵄩󵄩
⋅
󵄩󵄩󵄩󵄩𝑢𝑟

󵄩󵄩󵄩󵄩𝑝
≤
󵄩󵄩󵄩󵄩󵄩
B

𝑡0

󵄩󵄩󵄩󵄩󵄩
⋅ ‖𝑢‖𝑝

∀𝑢 ∈ 𝐿
𝑝
([0, 𝑡

0
] , 𝑋) , 𝑟 ∈ [0, 𝑡

0
] ,

(69)

shows that 𝐹
𝑡0
∈ L(𝐿

𝑝
([0, 𝑡

0
], 𝑋), 𝐶([0, 𝑡

0
], 𝑋)) ⊂ L(𝐿

𝑝
([0,

𝑡
0
], 𝑋), 𝐿

𝛽
([0, 𝑡

0
], 𝑋)) for all 𝛽 ≥ 1. Choosing 𝛽 > 𝑝 this

implies condition (iv󸀠) and hence the proof is complete.

Remark 17. The proofs of Theorems 14 and 16 imply the
following: if𝐵 ∈ L(𝑈,𝑋

𝐴

−1
) is a𝑝-admissible control operator

for some 1 ≤ 𝑝 < +∞ then for every bounded 𝐶 ∈ L(𝑋,𝑈)

the triple (𝐴, 𝐵, 𝐶) is compatible and jointly 𝑝-admissible.
Moreover, in this case every 𝐹 ∈ L(𝑈) is a 𝑝-admissible
feedback operator for the system Σ(𝐴, 𝐵, 𝐶).

4.2. The Miyadera-Voigt Perturbation Theorem. As another
application we consider the following version of the
Miyadera-Voigt perturbation theorem (cf. [20, 21], see also
[2, Corollary III.3.16] and [19, Theorem 5.4.2]).

Theorem 18 (see [20, 21]). Assume that for 𝐶 ∈ L(𝑋
𝐴

1
, 𝑋)

there exist 1 < 𝑝 < +∞, 𝑡
0
> 0, and𝑀 ≥ 0 such that

∫

𝑡0

0

‖𝐶𝑇 (𝑠) 𝑥‖
𝑝

𝑋
𝑑𝑠 ≤ 𝑀 ⋅ ‖𝑥‖

𝑝

𝑋
, ∀𝑥 ∈ 𝐷 (𝐴) . (70)
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Then (𝐴
𝐶
, 𝐷(𝐴

𝐶
)) given by

𝐴
𝐶
𝑥 := (𝐴 + 𝐶) 𝑥,

𝐷 (𝐴
𝐶
) := 𝐷 (𝐴) ,

(71)

is the generator of a 𝐶
0
-semigroup on 𝑋.

Observe that one could consider condition (70) also for
𝑝 = 1. However, in this case one needs 𝑀 < 1 to ensure
that condition (v) inTheorem 10 is satisfied (cf. [2, Corollary
III.3.16]).Moreover, note that in a certain sense theMiyadera-
Voigt Theorem 18 (for 𝑝 > 1) depends only on the domain
but not on the “size” of the perturbation 𝐶. In particular, if 𝐶
satisfies the assumption ofTheorem 18, then also 𝐹𝐶 satisfies
it for every 𝐹 ∈ L(𝑋).

Proof of Theorem 18. Let 𝑈 = 𝑋, 𝑍 = 𝑋
𝐴

1
, and 𝐵 = Id. Then,

by assumption, 𝐶 ∈ L(𝑍,𝑋) is a 𝑝-admissible observation
operator and conditions (i)–(iii) in Theorem 10 are clearly
satisfied. We will show that condition (iii) implies condition
(iv󸀠) from Theorem 14. To this end fix 0 ≤ 𝛾 < 𝛿 ≤ 𝑡

0
and

𝑥 ∈ 𝐷(𝐴). Then for 𝑢 = 1
[𝛾,𝛿]

⊗ 𝑥 one obtains

𝐶∫

𝑟

0

𝑇 (𝑟 − 𝑠) 𝑢 (𝑠) 𝑑𝑠

= 𝐶𝐴
−1
∫

𝑟

𝛾

1
[𝛾,𝛿]

(𝑠) ⋅ 𝑇 (𝑟 − 𝑠) 𝐴𝑥 𝑑𝑠

= ∫

𝑟

𝛾

1
[𝛾,𝛿]

(𝑠) ⋅ 𝐶𝑇 (𝑟 − 𝑠) 𝑥 𝑑𝑠.

(72)

Using (72), condition (iii), the triangle and Hölder’s inequal-
ity for 𝑓 ∈ 𝐿

1
(𝑎, 𝑏) and 𝑝 ≥ 1

∫

𝑡0

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐶∫

𝑟

0

𝑇 (𝑟 − 𝑠) 𝑢 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑋

𝑑𝑟

≤ ∫

𝑡0

𝛾

(∫

𝑟

𝛾

1
[𝛾,𝛿]

(𝑠) ⋅ ‖𝐶𝑇 (𝑟 − 𝑠) 𝑥‖𝑋 𝑑𝑠)

𝑝

𝑑𝑟

= ∫

𝛿

𝛾

(∫

𝑟

𝛾

‖𝐶𝑇 (𝑟 − 𝑠) 𝑥‖𝑋 𝑑𝑠)

𝑝

𝑑𝑟

+ ∫

𝑡0

𝛿

(∫

𝛿

𝛾

‖𝐶𝑇 (𝑟 − 𝑠) 𝑥‖𝑋 𝑑𝑠)

𝑝

𝑑𝑟

≤ ∫

𝛿

𝛾

(𝑟 − 𝛾)
𝑝−1

∫

𝑟

𝛾

‖𝐶𝑇 (𝑟 − 𝑠) 𝑥‖
𝑝

𝑋
𝑑𝑠 𝑑𝑟

+ ∫

𝑡0

𝛿

∫

𝛿

𝛾

(𝛿 − 𝛾)
𝑝−1

‖𝐶𝑇 (𝑟 − 𝑠) 𝑥‖
𝑝

𝑋
𝑑𝑠 𝑑𝑟

≤ ∫

𝛿

𝛾

(𝑟 − 𝛾)
𝑝−1

𝑀 ⋅ ‖𝑥‖
𝑝

𝑋
𝑑𝑟

+ ∫

𝛿

𝛾

(𝛿 − 𝛾)
𝑝−1

∫

𝑡0

𝛿

‖𝐶𝑇 (𝑟 − 𝑠) 𝑥‖
𝑝

𝑋
𝑑𝑟 𝑑𝑠

≤
𝑀

𝑝
⋅ (𝛿 − 𝛾)

𝑝
⋅ ‖𝑥‖

𝑝

𝑋

+ ∫

𝛿

𝛾

(𝛿 − 𝛾)
𝑝−1

𝑀 ⋅ ‖𝑥‖
𝑝

𝑋
𝑑𝑠

= 𝑀(1 +
1

𝑝
) ⋅ (𝛿 − 𝛾)

𝑝
⋅ ‖𝑥‖

𝑝

𝑋

=: 𝐾
𝑝
⋅ (𝛿 − 𝛾)

𝑝
⋅ ‖𝑥‖

𝑝

𝑋
.

(73)

Let now 𝑢 = ∑
𝑛

𝑘=1
1
[𝛾𝑘,𝛿𝑘]

⊗ 𝑥
𝑘
∈ 𝐿

1
([0, 𝑡

0
], 𝑋) be a step

function where the intervals [𝛾
𝑘
, 𝛿

𝑘
] ⊂ [0, 𝑡

0
] are pairwise

disjoint and 𝑥
𝑘
∈ 𝐷(𝐴) for 𝑘 = 1, . . . , 𝑛. Then from (73) one

obtains

(∫

𝑡0

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐶∫

𝑟

0

𝑇 (𝑟 − 𝑠) 𝑢 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑋

𝑑𝑟)

1/𝑝

≤ 𝐾 ⋅

𝑛

∑

𝑘=1

(𝛿
𝑘
− 𝛾

𝑘
) ⋅
󵄩󵄩󵄩󵄩𝑥𝑘

󵄩󵄩󵄩󵄩𝑋
= 𝐾 ⋅ ‖𝑢‖1.

(74)

Since the step functions having values in 𝐷(𝐴) are dense in
𝐿
1
([0, 𝑡

0
], 𝑋), this implies condition (iv󸀠) for 𝛼 = 1 and 𝛽 = 𝑝.

This completes the proof.

Remark 19. The proofs of Theorems 14 and 18 imply the
following: if 𝐶 ∈ L(𝑍, 𝑈) is a 𝑝-admissible observation
operator for some 1 ≤ 𝑝 < +∞ then for every bounded
𝐵 ∈ L(𝑈,𝑋) the triple (𝐴, 𝐵, 𝐶) is compatible and jointly
𝑝-admissible. Moreover, if 𝑝 > 1 then in addition every
𝐹 ∈ L(𝑈) is a 𝑝-admissible feedback operator for the system
Σ(𝐴, 𝐵, 𝐶).

4.3. Perturbing the Boundary Conditions of a Generator.
In this section we show how Theorem 10 can be used to
generalize significantly the approach by Greiner in [5] to
perturbations of boundary conditions of a generator. To
explain the general setup we consider the following:

(i) two Banach spaces (in this section denote the ele-
ments of 𝑋 by 𝑓 instead of 𝑥) 𝑋 and 𝜕𝑋, the latter
called “boundary space”;

(ii) a closed, densely defined “maximal” operator (“max-
imal” concerns the size of the domain, e.g., a differ-
ential operator without boundary conditions) 𝐴

𝑚
:

𝐷(𝐴
𝑚
) ⊆ 𝑋 → 𝑋;

(iii) the Banach space [𝐷(𝐴
𝑚
)] := (𝐷(𝐴

𝑚
), ‖⋅‖𝐴𝑚

) where
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐴𝑚

:=
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐴𝑚
𝑓
󵄩󵄩󵄩󵄩 is the graph norm;

(iv) two “boundary” operators 𝐿,Φ ∈ L([𝐷(𝐴
𝑚
)], 𝜕𝑋).

Then define two restrictions 𝐴,𝐴Φ
⊂ 𝐴

𝑚
by

𝐷(𝐴) := {𝑓 ∈ 𝐷 (𝐴
𝑚
) : 𝐿𝑓 = 0} = ker 𝐿,

𝐷 (𝐴
Φ
) := {𝑓 ∈ 𝐷 (𝐴

𝑚
) : 𝐿𝑓 = Φ𝑓} .

(75)
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In many applications 𝑋, 𝜕𝑋, and 𝐷(𝐴
𝑚
) are function spaces

and 𝐿 is a “trace-type” operator which restricts a function
in 𝐷(𝐴

𝑚
) to (a part of) the boundary of its domain. Hence

one can consider 𝐴Φ with boundary condition 𝐿𝑓 = Φ𝑓 as a
perturbation of the operator 𝐴 with abstract “Dirichlet type”
boundary condition 𝐿𝑓 = 0.

In order to treat this setupwithin our frameworkwemake
the following assumptions:

(i) the operator 𝐴 generates a strongly continuous semi-
group (𝑇(𝑡))

𝑡≥0
on𝑋;

(ii) the boundary operator 𝐿 : 𝐷(𝐴
𝑚
) → 𝜕𝑋 is sur-

jective.

Under these assumptions the following lemma, shown by
Greiner [5, Lemma 1.2], is the key to write 𝐴Φ as a Weiss-
Staffans perturbation of 𝐴.

Lemma 20. Let the above assumptions (i) and (ii) be satisfied.
Then for each 𝜆 ∈ 𝜌(𝐴) the operator 𝐿|ker(𝜆−𝐴𝑚) is invertible
and 𝐷

𝜆
:= (𝐿|ker(𝜆−𝐴𝑚))

−1
: 𝜕𝑋 → ker(𝜆 − 𝐴

𝑚
) ⊆ 𝑋 is

bounded.

Using this so-called Dirichlet operator 𝐷
𝜆
one obtains

the following representation of 𝐴Φ where for simplicity we
assume that 𝐴 is invertible.

Lemma 21. If 0 ∈ 𝜌(𝐴), then

𝐴
Φ
= (𝐴

−1
− 𝐴

−1
𝐷

0
⋅ Φ)

󵄨󵄨󵄨󵄨𝑋
; (76)

that is, 𝐴Φ
= 𝐴

𝐵𝐶
for 𝑈 := 𝜕𝑋, 𝑍 := [𝐷(𝐴

𝑚
)], and

𝐵 := −𝐴
−1
𝐷

0
∈ L (𝑈,𝑋

𝐴

−1
) ,

𝐶 := Φ ∈ L (𝑍, 𝑈) .

(77)

Proof. Denote the operator on the right-hand side of (76) by
𝐴
Φ. Then

𝑓 ∈ 𝐷(𝐴
Φ
) ⇐⇒ 𝑓 − 𝐷

0
Φ𝑓 ∈ 𝐷 (𝐴)

⇐⇒ 𝐿𝑓 = 𝐿𝐷
0
Φ𝑓 = Φ𝑓

⇐⇒ 𝑓 ∈ 𝐷(𝐴
Φ
) .

(78)

Moreover, for 𝑓 ∈ 𝐷(𝐴
Φ
) we have

𝐴
Φ
𝑓 = 𝐴 (𝑓 − 𝐷

0
Φ𝑓) = 𝐴

𝑚
(𝑓 − 𝐷

0
Φ𝑓) = 𝐴

𝑚
𝑓

= 𝐴
Φ
𝑓,

(79)

as claimed.

We mention that in [5, Theorem 2.1] the operator Φ ∈

L(𝑋,𝑈) is bounded and the assumptions imply that 𝐴
−1
𝐷

0

is a 1-admissible control operator. Hence in this case 𝐴Φ is a
generator by the Desch-Schappacher theorem.

By using Theorem 10 one can now deal also with
unboundedΦ.

Corollary 22. Assume that for some 1 ≤ 𝑝 < +∞ the pair
(𝐴

−1
𝐷

0
, Φ) is jointly 𝑝-admissible and that 𝐼𝑑 ∈ L(𝜕𝑋) is a

𝑝-admissible feedback operator for𝐴. Then𝐴Φ is the generator
of a 𝐶

0
-semigroup on 𝑋.

Proof. One only has to show the compatibility condition (14).
This, however, immediately follows from

rg (𝑅 (𝜆, 𝐴
−1
) 𝐵) = rg ((Id − 𝜆𝑅 (𝜆, 𝐴))𝐷

0
)

⊂ ker (𝐴
𝑚
) + 𝐷 (𝐴) ⊆ 𝐷 (𝐴

𝑚
)

= 𝑍.

(80)

Remark 23. We note that in [22, Theorem 4.1] the authors
study a similar problem in the context of regular linear
systems.

As a simple but typical example for the previous corollary
consider the space𝑋 := 𝐿

𝑝
[0, 1] and the first derivative𝐴

𝑚
:=

𝑑/𝑑𝑠 with domain 𝐷(𝐴
𝑚
) := 𝑊

1,𝑝
[0, 1] (c.f. [5, Example

1.1.(c)]). As boundary space choose 𝜕𝑋 = C, as boundary
operator the point evaluation 𝐿 = 𝛿

1
and as perturbation

some Φ ∈ (𝑊
1,𝑝

[0, 1])
󸀠

. This gives rise to the differential
operators 𝐴,𝐴Φ

⊂ 𝑑/𝑑𝑠 with domains

𝐷(𝐴) := {𝑓 ∈ 𝑊
1,𝑝

[0, 1] : 𝑓 (1) = 0} ,

𝐷 (𝐴
Φ
) := {𝑓 ∈ 𝑊

1,𝑝
[0, 1] : 𝑓 (1) = Φ𝑓} .

(81)

Then clearly the assumptions (i) and (ii) made above are
satisfied; in particular 𝐴 generates the nilpotent left-shift
semigroup given by

(𝑇 (𝑡) 𝑓) (𝑠) = {
𝑓 (𝑠 + 𝑡) if 𝑠 + 𝑡 ≤ 1,

0 else.
(82)

However,𝐴Φ is not always a generator. For example ifΦ = 𝛿
1
,

then 𝐴Φ
= 𝐴

𝑚
and 𝜎(𝐴Φ

) = C; hence 𝐴Φ is not a generator.
Thus one needs an additional assumption onΦ.

Definition 24. A bounded linear functionalΦ : 𝐶[0, 1] → C

has little mass in 𝑟 = 1 if there exist 𝑞 < 1 and 𝛿 > 0 such that
󵄨󵄨󵄨󵄨Φ𝑓

󵄨󵄨󵄨󵄨 ≤ 𝑞 ⋅
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

, (83)

for every 𝑓 ∈ 𝐶[0, 1] satisfying supp𝑓 ⊂ [1 − 𝛿, 1].

Note that 𝑊1,𝑝
[0, 1]

𝑐

󳨅→ 𝐶[0, 1] and hence (𝐶 [0, 1])
󸀠
⊂

[𝐷 (𝐴
𝑚
)]

󸀠. Now the following holds.

Corollary 25. If Φ ∈ (𝐶 [0, 1])
󸀠 has little mass in 𝑟 = 1, then

for all 1 ≤ 𝑝 < +∞ the operator 𝐴Φ is the generator of a
strongly continuous semigroup on 𝐿𝑝[0, 1].



Abstract and Applied Analysis 11

Proof. By Corollary 22 it suffices to show that for the triple
(𝐴, 𝐴

−1
𝐷

0
, Φ) the conditions (ii)–(v) of Theorem 10 are

satisfied. To this end, note that 0 ∈ 𝜌(𝐴) and that theDirichlet
operator 𝐷

0
: C → 𝐿

𝑝
[0, 1] is given by 𝐷

0
𝛼 = 𝛼 ⋅ 1 where

1(𝑠) = 1 for all 𝑠 ∈ [0, 1].
(ii) By Remark 2 it suffices to verify estimate (11) where we

may assume that 𝑢 ∈ 𝑊
1,𝑝

0
[0, 𝑡

0
] for some 0 < 𝑡

0
≤ 1. Using

integration by parts and [23, Theorem 4.2] we conclude that
(for a function 𝑔 defined on an interval denote in the sequel
by 𝑔 its extension to R by the value 0)

∫

𝑡0

0

𝑇
−1
(𝑡
0
− 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

= −∫

𝑡0

0

𝑇
−1
(𝑡
0
− 𝑠)𝐴

−1
𝐷

0
𝑢 (𝑠) 𝑑𝑠

= 𝐷
0
𝑢 (𝑡

0
) − ∫

𝑡0

0

𝑇 (𝑡
0
− 𝑠)𝐷

0
𝑢
󸀠
(𝑠) 𝑑𝑠

= 𝑢 (𝑡
0
) ⋅ 1 − ∫

𝑡0

0

(𝑇 (𝑡
0
− 𝑠) 1) ⋅ 𝑢

󸀠
(𝑠) 𝑑𝑠

= 𝑢 (𝑡
0
) ⋅ 1 − ∫

𝑡0

max{0,⋅+𝑡0−1}
𝑢
󸀠
(𝑠) 𝑑𝑠

= 𝑢 (max {0, ⋅ + 𝑡
0
− 1}) = 𝑢̃ (⋅ + 𝑡

0
− 1) .

(84)

This implies 󵄩󵄩󵄩󵄩󵄩
B

𝑡0
𝑢
󵄩󵄩󵄩󵄩󵄩𝑋

=
󵄩󵄩󵄩󵄩󵄩
B

𝑡0
𝑢
󵄩󵄩󵄩󵄩󵄩𝑝

≤ ‖𝑢‖𝑝 for all 𝑢 ∈

𝑊
1,𝑝

0
[0, 𝑡

0
] which shows (ii).

(iii) By the Riesz-Markov representation theorem there
exists a regular complex Borel measure 𝜇 on [0, 1] such that

Φ𝑓 = ∫

1

0

𝑓 (𝑟) 𝑑𝜇 (𝑟) , ∀𝑓 ∈ 𝐶 [0, 1] . (85)

Using Fubini’s theorem and Hölder’s inequality one obtains
for 0 < 𝑡

0
≤ 1 and 𝑓 ∈ 𝐷(𝐴)

∫

𝑡0

0

󵄨󵄨󵄨󵄨𝐶𝑇 (𝑠) 𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑠

= ∫

𝑡0

0

󵄨󵄨󵄨󵄨󵄨
Φ𝑓 (⋅ + 𝑠)

󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑠

≤ ∫

𝑡0

0

(∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑟 + 𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 (𝑟))

𝑝

𝑑𝑠

≤ ∫

𝑡0

0

(
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 [0, 1])

𝑝−1
⋅ ∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑟 + 𝑠)

󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 (𝑟) 𝑑𝑠

=
󵄩󵄩󵄩󵄩𝜇
󵄩󵄩󵄩󵄩

𝑝−1
⋅ ∫

1

0

∫

𝑡0

0

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑟 + 𝑠)

󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑠 𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 (𝑟)

≤
󵄩󵄩󵄩󵄩𝜇
󵄩󵄩󵄩󵄩

𝑝
⋅
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑝

𝑝
,

(86)

where 󵄩󵄩󵄩󵄩𝜇
󵄩󵄩󵄩󵄩 :=

󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 [0, 1] (which coincides with ‖Φ‖∞). This

proves (iii).
(iv) From (84) one obtains for 0 < 𝑡

0
≤ 1 and 𝑢 ∈

𝑊
1,𝑝

0
[0, 𝑡

0
] by similar arguments as in (iii)

∫

𝑡0

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐶∫

𝑟

0

𝑇
−1
(𝑟 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑟

= ∫

𝑡0

0

|Φ𝑢̃ (⋅ + 𝑟 − 1)|
𝑝
𝑑𝑟

= ∫

𝑡0

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

1−𝑟

𝑢 (𝑠 + 𝑟 − 1) 𝑑 𝜇 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑟

≤ ∫

𝑡0

0

(
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 [1 − 𝑟, 1])

𝑝−1

⋅ ∫

1

1−𝑟

|𝑢 (𝑠 + 𝑟 − 1)|
𝑝
𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 (𝑠) 𝑑𝑟

≤ (
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 [1 − 𝑡

0
, 1])

𝑝−1

⋅ ∫

1

1−𝑡0

∫

1

1−𝑠

|𝑢 (𝑠 + 𝑟 − 1)|
𝑝
𝑑𝑟 𝑑

󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 (𝑠)

≤ (
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 [1 − 𝑡

0
, 1])

𝑝
⋅ ‖𝑢‖

𝑝

𝑝
.

(87)

This shows (iv).
(v) Since by assumption Φ has little mass in 𝑟 = 1, it

follows that 󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 [1 − 𝑡

0
, 1] < 1 for sufficiently small 𝑡

0
> 0.

Hence from estimate (87) and the denseness of 𝑊1,𝑝

0
[0, 𝑡

0
]

in 𝐿
𝑝
[0, 𝑡

0
] it follows that 󵄩󵄩󵄩󵄩󵄩F𝑡0

󵄩󵄩󵄩󵄩󵄩
≤

󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 [1 − 𝑡

0
, 1] < 1 for

0 < 𝑡
0
≤ 1 sufficiently small. This implies 1 ∈ 𝜌(F

𝑡0
) as

claimed.

Remarks. (i) Corollary 25 could be easily generalized (with
essentially the same proof) to the first derivative on
𝐿
𝑝
([0, 1],C𝑛

). One could even go further and prove a similar
result on 𝐿

𝑝
([0, 1], 𝐸) for a (possibly infinite dimensional)

Banach space 𝐸 provided the boundary operator Φ has a
representation as a Riemann-Stieltjes integral as in (85). See
also [22, Example 5.1].

(ii) In most cases the admissibility of the identity as a
feedback operator is verified by showing that 󵄩󵄩󵄩󵄩󵄩F𝑡0

󵄩󵄩󵄩󵄩󵄩
< 1 for

sufficiently small 𝑡
0
> 0. Choosing Φ = 𝛼𝛿

1
, by (84), one

obtainsF
𝑡0
= 𝛼Id for all 𝑡

0
> 0; hence 1 ∈ 𝜌(F

𝑡0
) if and only

if 𝛼 ̸= 1. This provides an example where our perturbation
theorem is applicable even if 󵄩󵄩󵄩󵄩󵄩F𝑡0

󵄩󵄩󵄩󵄩󵄩
> 1 for all 𝑡

0
> 0. Note

that for 𝛼 = 1 one obtains 𝐴Φ
= 𝐴

𝑚
; hence in this case 𝐴Φ

cannot be a generator.

Appendix

Estimating the 𝑝-Norm of a Triangular
Toeplitz Matrix

For the proof of Lemma 12 one needed the following result.

Lemma A.1. For a Banach space 𝑋 endow X := 𝑋
𝑛, 𝑛 ∈ N,

with the 𝑝-norm

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑥

1
, . . . , 𝑥

𝑛
)
𝑇
󵄩󵄩󵄩󵄩󵄩󵄩𝑝

:= (

𝑛

∑

𝑘=1

󵄩󵄩󵄩󵄩𝑥𝑘
󵄩󵄩󵄩󵄩

𝑝
)

1/𝑝

, (A.1)
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for some 1 ≤ 𝑝 ≤ +∞. Moreover, let 𝑇
0
, . . . , 𝑇

𝑛−1
∈ L(𝑋).

Then the norm of the Toeplitz operator matrix

T := (𝑇
𝑗−𝑖
)
𝑛

𝑖,𝑗=1

=

(
(
(
(
(

(

𝑇
0

0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

𝑇
1

𝑇
0

0 d
...

𝑇
2

𝑇
1

d d d
...

... d d d 0 0

... d 𝑇
1
𝑇
0

0

𝑇
𝑛−1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑇
2
𝑇
1
𝑇
0

)
)
)
)
)

)
𝑛×𝑛

∈ L (X) ,

(A.2)

can be estimated as

‖T‖ ≤

𝑛−1

∑

𝑗=0

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩
. (A.3)

Proof. Let X=(𝑥1 ,...,𝑥𝑛)
𝑇
∈X. Then one can estimate

‖TX‖𝑝 = (

𝑛

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑗

∑

𝑖=1

𝑇
𝑗−𝑖
𝑥
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

)

1/𝑝

≤ (

𝑛

∑

𝑗=1

(

𝑗

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑗−𝑖

󵄩󵄩󵄩󵄩󵄩
⋅
󵄩󵄩󵄩󵄩𝑥𝑖

󵄩󵄩󵄩󵄩)

𝑝

)

1/𝑝

= (

𝑛

∑

𝑗=1

(((
󵄩󵄩󵄩󵄩𝑇0

󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑇1

󵄩󵄩󵄩󵄩 , . . . ,
󵄩󵄩󵄩󵄩𝑇𝑛−1

󵄩󵄩󵄩󵄩)

∗ (
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑥2

󵄩󵄩󵄩󵄩 , . . . ,
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩)) (𝑗))
𝑝
)

1/𝑝

=
󵄩󵄩󵄩󵄩(
󵄩󵄩󵄩󵄩𝑇0

󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑇1

󵄩󵄩󵄩󵄩 , . . . ,
󵄩󵄩󵄩󵄩𝑇𝑛−1

󵄩󵄩󵄩󵄩)

∗ (
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑥2

󵄩󵄩󵄩󵄩 , . . . ,
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑝

≤
󵄩󵄩󵄩󵄩(
󵄩󵄩󵄩󵄩𝑇0

󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑇1

󵄩󵄩󵄩󵄩 , . . . ,
󵄩󵄩󵄩󵄩𝑇𝑛−1

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩1

⋅
󵄩󵄩󵄩󵄩(
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑥2

󵄩󵄩󵄩󵄩 , . . . ,
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑝

=

𝑛−1

∑

𝑗=0

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩
⋅ ‖X‖𝑝,

(A.4)

where the second last step follows from Young’s inequality
applied to the convolution of sequences.
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