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We mainly study the exponents of convergence of zeros and poles of difference and divided difference of transcendental
meromorphic solutions for certain difference Painlevé III equations.

1. Introduction and Main Results

In this paper, we use the basic notions of Nevanlinna’s theory
(see [1, 2]). In addition, we use the notations o(w) to denote
the order of growth of the meromorphic function w(z),
Mw) and A(1/w), respectively, to denote the exponents of
convergence of zeros and poles of w(z). The quantity §(a, w)
is called the deficiency of the value a to w(z). Furthermore, we
denote by S(r, w) any quantity satistying S(r, w) = o(T'(r, w))
for all r outside of a set with finite logarithmic measure, and
by

S (w) = {& meromorphic: T (r,a) = S(r,w)} (1)

the field of small functions with respect to w. A meromorphic
solution w of a difference (or differential) equation is called
admissible if all coefficients of the equation are in §'(w).

At the beginning of the last century, Painlevé, Gambier,
and Fuchs classified a large number of second order differ-
ential equations in terms of a characteristic which is now
known as the Painlevé property [3-6]. They are proven to
be integrable by using inverse scattering transform technique,
for instance [7].

Recently, a number of papers (such as [8-12]) focus on
complex difference equations and difference analogues of
Nevanlinna’s theory. Ablowitz et al. [13] considered discrete
equations as delay equations in the complex plane which

enabled them to utilize complex analytic methods. They
looked at difference equations of the type

w(z+1)+w(z-1)=R(z,w), 2)

where R is rational in both of its arguments. It is shown that
if (2) has at least one nonrational finite order meromorphic
solution, then deg, R < 2.

Recently, Halburd and Korhonen [14] considered (2),
where the coefficients of R(z, w) are in §'(w) and got Theorem
A.

Theorem A. If (2) has an admissible meromorphic solution of
finite ordet, where R(z, w) is rational and irreducible in w and
meromorphic in z, then either w satisfies a difference Riccati
equation
1
wesn) . PEFDU@ ra@) o
w(z) +p(2)

where p(z),q(z) € S(w), or (2) can be transformed to one of
the following equations:

wiz+)+w@)+w(z-1)=

wiz+)-wE@) +wz-1)= mz+(-)'m Kk, (4b)

w(z)
2 + Ty

U)(Z+1)+LU(Z—1)=W

+ 775, (4¢)
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2
wz+)+w(z-1) = ”i;)'cl wfzz), (4d)
w(z+1)+w(z-1):%, (de)
w(z+1)+w(z—1):% (4f)
w(z+1)+w(z—1)=5)((z)), (4g)
w(z+)+w(z-1)=px)w(z)+q(z), (4h)

where m, k., € S(w) are arbitrary finite order periodic
functions with period k.

Equations (4a), (4c), and (4d) are known as difference
Painlevé I equations, while (4f) is often viewed as difference
Painlevé II equation. Equations (4b) and (4e) are slight
variations of (4a) and (4f), respectively.

In 2010, Chen and Shon [15] researched the properties of
finite order meromorphic solutions of difference Painlevé I
and II equations. They mainly discussed the existence and
the forms of rational solutions and value distribution of
transcendental meromorphic solutions.

For difference Painlevé I1I equations, we recall the follow-
ing.

Theorem B (see [16]). Assume that equation
w(z+1)w(z-1)=R(z,w) (5)

has an admissible meromorphic solution w of hyperorder less
than one, where R(z,w) is rational and irreducible in w and
meromorphic in z; then either w satisfies a difference Riccati
equation

a(Z)w(z) + P (z)

wEr) = @

(6)

where a(z), f(z),y(z) € S(w) are algebroid functions, or (5)
can be transformed to one of the following equations:

n(2)w’ (2) = A (2)w(z) + u(2)
(w(2) = 1) (w(2) -7 (2))

wiz+)w(z-1) =

>

(7a)
2
wztDwe-1)= 1AV E-AQwE o)
w(z)-1
wiz+hwe-1)= 1AW =A@
w(z)-1
wiz+DwiEz-1)=hkEw"(z). (7d)

In (7a), the coefficients satisfy Kz(z)pt(z +Du(z-1) = yz(z),
AMz + Du(z) = k(2)AMz — Du(z + 1), k(2)AMz + 2)AM(z - 1) =
k(z — 1)AMz)A(z + 1), and one of the following:
D n=1Lv(z+1)v(z-1)=1,x(z) = v(z);
2)nz+1)=nz-1)=vz),xk=1.
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In (7b), n(z)n(z+1) = Land Mz+2)A(z—1) = AM(2)Mz+1). In
(7¢), the coefficients satisfy one of the following:

() n = 1 and either AM(z) = Mz + 1)A(z - 1) or Mz +
3)A(z - 3) = Mz +2)AMz - 2);

2) Mz+1DMz-1) = Mz +2)Mz-2),1(z+ DMz +1) =
Mz +2)n(z - 1),5(2)n(z - 1) = n(z +2)n(z - 3);

(3) n(z + 2)n(z - 2) = n(2)n(z — 1), AM(z) = n(z - 1);

(4) Mz + 3)Mz - 3) = Az + 2)Mz - 2)M=z), n(z2)Mz) =
n(z +2)n(z - 2).

In (7d), h(z) € S(w) andm € Z, |m| < 2.

Zhang and Yang [17] investigated difference Painlevé III
equations (7a)-(7d) with constant coeflicients and obtained
the following results.

Theorem C. If w is a nonconstant meromorphic solution of
difference equation (7d), where m = -2,-1,0,1 and h is a
nonzero constant, then

(i) w cannot be a rational function;
(ii) Mw) = 1(w) = a(w), where T(w) denotes the exponent

of convergence of fixed points of w.

Theorem D. If w is a nonconstant meromorphic solution of
difference equation (7d), where m = 2 and h is a nonzero
constant, then

(i) w has no nonzero Nevanlinna exceptional value;

(ii) w cannot be a rational function;

(iii) T(w) = o(w).

In Theorems C and D, & is defined as a nonzero constant.
A natural question to ask is what can we say on meromorphic
solutions of (7a)-(7d) if h is a nonconstant meromorphic
function? In this paper, we answer this question. In the
following theorems, we study the properties of difference and

divide difference of transcendental meromorphic solutions of

(7a)-(7d).

Theorem 1. Suppose that h(z) is a nonconstant rational
function. If w(z) is a transcendental meromorphic solution
with finite order of equation

wiz+Dw(Ez-1)=h(z), (8)
set Aw(z) = w(z + 1) — w(z). Then

(i) w has no Nevanlinna exceptional value;

(i) MAw) = AMl/Aw) = ow),MAw/w) =
M1/ (Aw/w)) = o(w).

Example 2. The function w(z) = 2(e' ™7 — 1)/(£7P7 1 1)
is a meromorphic solution of difference equation

wiEz+)wEz-1)=(z+1)(z-1), 9)
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where h(z) = (z + 1)(z — 1). By calculation, this solution
satisfies

€™+ (i—1)(2z +1)™P7 — 1

A = - - ,
w(z) (ie™7 + 1) (/2= + 1) 0
Aw(z) @™ +(i-1)(2z+1) ™7 -1
w(@) | z(id®D7 4 1) (é@z 1)
Thus,
Maw =2 (=) =ow =1,
Aw
(11)

A<%>=A<ﬁ>=a(w)=l.

Theorem 3. Suppose that h(z) is a nonconstant rational
function. If w(z) is a transcendental meromorphic solution
with finite order of equation

wiz+D)w(z-1)=h()w(z)), (12)
then

(i) w has no Nevanlinna exceptional value;

(ii)) MAw) = Ml/Aw) = ow), MAw/w) =
M1/ (Aw/w)) = o(w).

From the following proof of Theorem 3, we have the
following.

Remark 4. If w(z) is an admissible meromorphic solution
with finite order of (12), then T'(r, Aw/w) = T(r, w) + S(r, w).

Example 5. The function w(z) = ztan(nz/6) tan((nz/6) —
(71/6)) is a meromorphic solution of difference equation

2

we+Dwe-1)=->"Lu), (13)

where h(z) = —(z*-1)/=. By calculation, this solution satisfies

Aw (z) = tan(ﬁ) 2sin (nz/3) + V3(2z + 1)

6 2 cos (mz/3) -1
Aw(z) t(@_z)Zsin(ﬂz/3)+\/§(22+l)
w(z) <0 6 6 z(2cos(nz/3) - 1)

>

Thus,

A(Aw)zk(ﬁ):a(w): 1,

A(%)zk(ﬁ)za(w):l.

Theorem 6. Suppose that h(z) is a nonconstant rational
Sfunction. If w(z) is a transcendental meromorphic solution
with finite order of equation

wiEz+DHwEz-1N)w(z)=h(z)), (16)

(15)

then

(i) w has no Nevanlinna exceptional value;

(i) MAw) = Ml/Aw) = ow), MAw/w)
M1/ (Aw/w)) = o(w).

Theorem 7. Suppose that h(z) is a nonconstant rational
function. If w(z) is a transcendental meromorphic solution
with finite order of equation

wiEz+)wEz-1D)w (z) =h(z), (17)
then

(i) w has no Nevanlinna exceptional value;

(i) MAw) = Ml/Aw) =
M1/ (Aw/w)) = o(w).

o(w), MAw/w) =

From the following proof of Theorem 7, we see the
following.

Remark 8. If w(z) is an admissible meromorphic solution
with finite order of (17), then T'(r, Aw/w) = 2T (r, w)+S(r, w).

Example 9. The function w(z) = z(e™ - 1)/(¢™ + 1) is a
meromorphic solution of difference equation

wiEz+DwE-)uw*(z)=2z" -2 (18)
where h(z) = z* - 2°. By calculation, this solution satisfies

€ 4 (4z +2) €™ + 1

Aw(z) = ei2nz _ | >
5 . (19)
Aw (z) _ e+ (4z+2)e™ + 1
w(2) z(e™ - 1)2
Thus,
A (Aw) = A(ﬁ) —ow) =1,
(20)

)»(%U):)»(m):a(w):l.

From the following proofs of Theorems 1-7, we point out
the following.

Remark 10. Suppose that h(z) is a meromorphic function
satisfying h(z + 1) # h(z). If w(z) is an admissible
meromorphic solution with finite order of (7d), where m =
-2,-1,0, 1, then Theorems 1-7 still hold.

Equations (7a)-(7c) and w(z + w(z — 1) = h(z)w?(z)
can be discussed similarly; we omit it in the present paper.

2. Lemmas for the Proofs of Theorems

Lemma 11 (see [9]). Let f(z) be a meromorphic function of
finite order and let ¢ be a nonzero complex constant. Then

m (” f;fz(:;) ) Hm <r’ f{z(i)c) > =S(nf). @




Lemma12 (see [9]). Let f(z) be a meromorphic function with
order 0 = 0(f),0 < 00, and let n be a fixed nonzero complex
number, then for each € > 0, we have

T(r,f(z+n)=T(r.f(2)) +O (TU*Hs) +O (logr).
(22)

Lemma13 (see [9]). Let f(z) be a meromorphic function with
exponent of convergence of poles A(1/f) = A < oo, and
let n# 0 be fixed. Then for each e (0 < € < 1),

N(r,f(z+n))=N(r, f(2))+O (r)H”) +O(logr).
(23)
Lemmas 11 and 12 show the following.

Lemma 14. Let ¢ be a nonzero constant and let f(z) be a finite
order meromorphic function. Then

N<r,ﬁ>:N(r,%>+S(r,f). (24)

Lemma 15 (Valiron-Mohon’ko [18]). Let f(z) be a meromor-
phic function. Then for all irreducible rational functions in f,

a, () f@)"+---+ay(2)
b, (2) f(2)" +---+ by (2)

with meromorphic coefficients a;(z),b;(z) being small with
respect to f, the characteristic function of R(z, f(z)) satisfies

T(r,R(z, f(2))) = max{m,n} T (r, f)+S(r, f). (26)

Lemma 16 (see [10, 11]). Let w be a transcendental meromor-
phic solution with finite order of difference equation

R(z, f(2)) = (25)

P(z,w) =0, (27)

where P(z,w) is a difference polynomial in w(z). If P(z,a) #
0 for a meromorphic function a € S(w), then

m(r,wl_a>=8(r,w). (28)

Lemma 17 (see [11]). Let f be a transcendental meromorphic
solution with finite order o of a difference equation of the form

U(z f)P(z f) =Q(z f), (29)

whereU(z, f), P(z, f), and Q(z, f) are difference polynomials
such that the total degree deg U(z, f) = nin f(z) and its
shifts and deg ;Q(z, f) < n.If U(z, f) contains just one term of
maximal total degree in f(z) and its shifts, then for each e > 0,

m(r,P(z, f)) =0 (raiHs) +S(r, f). (30)

3. Proofs of Theorems

Proof of Theorem 1. (i) Set P(z,w) = w(z + Nw(z — 1) -
h(z) = 0. Since h(z) is a nonconstant rational function, for
any a € C, weknow P(z,a) = a*—h(z) £ 0. Lemma 16 gives
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m(r,1/(w — a)) = S(r,w), which follows N(r,1/(w — a)) =
T(r,w) + S(r,w). Thus, §(a, w) = 0.
From (8), we have that

wEZz+2w(z)=h(z+1). (31)
Applying Lemma 17 to (31), we know
m (r, w) = S (r) w) 5 (32)

which implies N(r, w) = T'(r, w)+S(r, w). Thus, §(co, w) = 0.
Therefore, for any a € C U {00}, 6(a, w) = 0. So, w has no
Nevanlinna exceptional value.
(ii) First, we prove that A(Aw/w) = A(1/(Aw/w)) = o(w).
By (8) and Lemma 12, we obtain

2T (r,w(z) =T (r, u})lz((zz))> + 0 (logr)
3 wEz+)w(z-1)
= T(r, e ) + O (logr)
w(z+1) w(z)
<7 (s w() >+T<r’w(z—1>>
+ 0O (logr) (33)
B w(z+1) w(z+1)
-7 w() )+s( w () )
+ 0O (logr)
< 2T (r, wfuz(;“)l) ) +S(rw(2)).
Hence,
T (r,w(z)) < T(r, wiz(;l)) +S(r,w(z))
Aw (2) (34)
w(z
= T(T’,m) +S(T,LU(Z)).

From (34) and Lemmas 11 and 12, we deduce that

N(n )= (n ) ()
- T(r,A—w>+S(r,w) > T (rw) + S (r, ).
w

(35)

Thus, A(1/(Aw/w)) = o(w), that is, A(1/(Aw/w)) = o(w).
By (8) and (31), we know

w(z+2) w(z)  h(z+1)
wiz+DwiEz-1)  h(z) (36)
Set
9(2) = “’f(;l). (37)

Thus, (36) can be written as g(z + 1)g(z — 1) = h(z + 1)/h(z).
Set P (z, g) := g(z+1)g(z—1)—(h(z+1)/h(z)) = 0. Since h(z)
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is a nonconstant rational function, h(z) cannot be a periodic
function. Then Pi(z,1) = 1 — (h(z + 1)/h(z)) # 0. Since
P/(z,1) # 0, by (37) and Lemmas 12 and 16, we have

1 3 _ w(z+1)
m<r,g(z)_l>—S(r,g(Z))—S(r, w(z) > (38)

<S(r,w(z)).
Thus,

(" @) =" @)
"Pawewe) T "\ wer ) jwe) -1

1
m<r, 7= 1> =S(r,w(z)).
(39)

By (34) and (39), we have

¥ dia) 7))

= T(r,A—w) +S(r,w)>T (r,w) +S(r,w).
w
(40)
Then, M(Aw/w) > o(w), that is, A(Aw/w) = o(w).
Next, we prove A(Aw) = A(1/Aw) = o(w). By (8),
Aw () +Aw(z-1)= (w(z+1)—-w(z))
+t(w(z)-w(z-1))
=w(z+1)-w(z-1)
(41)
_ __h(@
swl+D w(z+1)

_w(z+1)-h(2)
B wEz+l)

Applying Lemmas 12 and 15 to (41), we have
2T (r,w (2)) = 2T (r,w(z+ 1)) + S(r,w (2))

=T<r,

=T(rAw(z)+Aw(z-1)) +S(r,w(2))

wz(z+1)—h(z)
w(z+1)

) +S(r,w(z))
<T(rAw )+ T (r,Aw(z-1))+S(r,w(z))
=2T (r,Aw(2)) + S (r, Aw (2)) + S (r, w (2))

< 2T (r,Aw (2)) + S (r,w (2)) .
(42)

Hence,
T(r,w(z)) <T(r,Aw(z)) +S(r,w(z)). (43)

Obviously, it follows from (32) and Lemma 11 that

m(r,Aw)Sm(r,A—w>+m(r,w):S(r,w). (44)
w

Together with (43), we have

N (r,Aw) =T (r,Aw) +S(r,w) > T (r,w) + S (r,w),

(45)

which yields A(1/Aw) > o(w). That is, A(1/Aw) = o(w).

Seta = 01in (i). By (39), we obtain

( 1 ) ( 1 1 ) < 1 ) < 1 >
m(r,— |=m|r,——— ) <m|r,—— | +m|r,—
Aw T Aw/w w Aw/w w

(46)

=S(r,w).

Combining this with (43), we have

1
(50
=T(r,Aw)+S(r,w) >T (r,w) +S(r,w).
(47)

N<r,$) =T (r, Aw) —

Then AM(Aw) > o(w), that is, A(Aw) = o(w). O
Proof of Theorem 3. (i) By (12) and Lemma 11, we see that

h(z)w(2) >

wz+Hw(z-1)

(

m(r h@)w’ (2)
(o
(

m(r,w(z)) = m| r,w(z)

w(z+1)w(z—l)> =Shw),

w(z+1)w(z—l)>

my\r,

"(raw)

w(z) h(z)w(z)
: wEz+Hw(z-1)\
"M T e v e )=sew.
(48)
Hence,
N@,w(z) =T (r,w(z))+S(r,w), (49)
N<r, ! ) =T (r,w(z))+S(r,w). (50)
w(z)
So, 6(0, w) = §(co, w) =
Set

Pz,w):=w(z+1)w(z-1)-h(z)w(z) =0. (51)
Since h(z) is a nonconstant rational function, for any a €
C \ {0}, we have P(z,a) = a* — ah(z) # 0. Lemma 16 gives
m(r,1/(w — a)) = S(r,w), which follows N(r,1/(w — a)) =
T(r,w)+S(r, w). Thus, §(a, w) = 0. Combining with §(0, w) =
6(co,w) = 0, we know w has no Nevanlinna exceptional
value.

(ii) First, we prove A(Aw) = A(1/Aw) = o(w). Since w(z +
1) = w(z) + Aw(z), w(z — 1) = w(z) - Aw(z - 1), by (12), we
have

(w(2) + Aw (2)) (w (2) - Aw (z - 1)) = h (D) w(z); (52)



that is,

(AMw((z)-Aw(z-1)w(z) - Aw(z) Aw(z-1)
(53)
=0 (2)+h@E@) w).

Let z, be a zero of w(z), not pole of h(z). From (52), z, is
a zero of w(z) + Aw(z) or w(z) — Aw(z — 1). Since w(z,) = 0,
then z, must be a zero of Aw(z) or Aw(z — 1). Thus, by (50)
and Lemma 14, we obtain

T(r,w(z))zN(r >+S(r,w)

L
Tw(z)

1 1
SN(“mwm)+N<“Aw@—n>

+ N (r,h(z)) + S (r,w)
(54)

1
=2N <7", m) + S(T’, Aw (Z))
+ 0O (logr) + S(r,w)

S2N<r, >+S(r,w).

_r
Aw (z)
Hence, 0(w) < A(Aw), that is, A(Aw) = o(w).

If z, is a pole of w(z) with multiplicity k, not pole of h(z),
then z, is a pole of ~w?(z) + h(z)w(z) with multiplicity 2k.
From (53), one of Aw(z) and Aw(z — 1) must have the pole z,
with multiplicity not less than k. Thus, by (49) and Lemma 13,
we get

T(r,w(z)) = N(r,w(z)) +S(r,w)
< N, Aw(z))+ N (r,Aw(z - 1))
+ N (r,h(z))+S(r,w)
(55)
= 2N (r,Aw (2)) + S (r, Aw (2))
+ 0O (logr) +S(r,w)
< 2N (r,Aw(z)) + S (r,w).

Hence, 0(w) < A(1/Aw), that is, A(1/Aw) = o(w).
Next, we prove that A(Aw/w) = A(1/(Aw/w)) = o(w). By
(12), we have

Aw(z) w(z+1)-w(2) _ w(z+1) B

w(z) w(z) w(z) !
(56)
_ h(2) B _h()-w(z-1)
Twk-1)  w(z-1)

From (56) and Lemmas 11 and 12, we deduce that

M) ) )

= T<r,Aw—(Z)) +S(r,w(2))

w(z)
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_ _h®
- T<r’w(z— 1)
=T (r,w(z-1)+S(r,w(z))

- 1> +S(r,w(2))

=T(r,w()+S(rw(z).
(57)

Thus, A(1/(Aw/w)) = o(w).

Since h(z) is a nonconstant rational function, /4(z) cannot
be a periodic function. Thus, by (51), P(z, h(z + 1)) = h(z +
2)h(z)-h(z)h(z+1) = h(z)(h(z+2)-h(z+1)) # 0.Lemma 16
gives m(r, 1/(w(z) — h(z + 1))) = S(r, w(z)), which follows

1

N(r, m) = T(r,LU(Z)) +S(7’,U)(Z)) . (58)

By (56), if z, is a common zero of h(z) — w(z — 1) and w(z —
1), then z, must be a zero of h(z). Thus, by (56), (58), and
Lemma 14, we have

V(r e ) 2N (ree o)

(i)

(59)
:N(“m> i

+ 0O (logr) +S(r,w(z))
=T(r,w(z))+S(rw(z).

Hence, M(Aw/w) = o(w), that is, A(Aw/w) = o(w). L]

Proof of Theorem 6. (i) Set P(z, w) := w(z + L)w(z — Nw(z) -
h(z) = 0. Since h(z) is a nonconstant rational function, for
any a € C, we have P(z,a) = a®-h(z) # 0. Lemma 16 shows
m(r,1/(w — a)) = S(r,w), which yields N(r, 1/(w — a)) =
T(r,w) + S(r,w). Thus, §(a, w) = 0.

We see from (16) and Lemma 17 that

m(r,w) =S (r,w), (60)

which follows N(r, w) = T(r, w) + S(r, w); thus, 6(co, w) = 0.
Therefore, for any a € C U {00}, 8(a, w) = 0. So, w has no
Nevanlinna exceptional value.
(ii) First, we prove A(1/(Aw/w)) = AM(1/Aw) = o(w). By
(16) and Lemma 12, we have

3T (r,w(z) =T (r, 53(2) > + 0O (logr)
B wz+Hw(z-1)
= T(r, @ w@ >+O(logr)
w(z+1) w(z)
<r(n o) (et )
+0 (logr)
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+ 0 (logr)

we+ )

w(z)

w(z+1)

w(z)

S2T<r, >+S(r,w(z)).
(61)

Thus,

H

T <r, Aw (z)> _
w(z)

>

< w(z+1)
r,

w(z)

>+ O(1)
(62)

T(r,w(z))+S((r,w).

N W

We deduce from (62) and Lemmas 11 and 12 that

)12 ()
= T(r,A—w>+S(r,w) > ET(T,w)+5(”xw)-
» 2

(63)

Then A(1/(Aw/w)) = o(w). So, A(1/(Aw/w)) = o(w).
By (62), we obtain

T (r, Aw) = T<r, A—ww> > T<r, A_w) - T (r,w)
w w
(64)
> %T(r,w) +S(r,w).
By (60), (64), and Lemma 11, we have
N (r,Aw) = T (r, Aw) — m (r, Aw)

> T(r,Aw)—m(r,%) -m(r,w)

(65)
=T (r,Aw) + S (r,w)

> %T(r,w)+S(r,w).

Then A(1/Aw) > o(w), that is, A(1/Aw) = o(w).
Next, we prove that A(Aw) = MAw/w) = o(w). By (16),
we know

wEz+dwk@)w(z+1)=h(z+1). (66)

By this and (16), we have

w(z+2) w(z) w(z+1) h(z+1) 67)
wiEz+)wiEz-1) w)  hz)
Set
_w(z+1)
g(z) = v (68)

Substituting (68) into (67), we have g(z + 1)g(z — 1)g(z) =
h(z + 1)/h(z). Set P|(z, g) := g(z + 1)g(z — 1)g(z) — (h(z +

1)/h(z)) = 0. Since h(z) is a nonconstant rational function,
h(z) cannot be a periodic function. Thus, P, (z,1) = 1 - (h(z +
1)/h(z)) # 0. By this and by (68) and Lemmas 12 and 16, we
obtain

1
m<r’g(z)—l> =S(r,g(2) =S(r,
< S(r,w(z)).

w(z+1)
w(z)

) (69)

That is,

WW) ) m(“ (w(z+ 1)1/w(z>)— 1)

1
m<r, 7= 1) =S(r,w(z)).
(70)

By (62) and (70), we have

1 Aw 1
N<r, Aw/w) = T<r,7)—m<r, Awjw
=T<r,A—w) +S(r,w) = éT(r,w)+S(r,w).
w 2 1)

>+O(1)

Thus, A(Aw/w) > o(w), that is, A(Aw/w) = o(w).
Seta = 0in (i). By (70), we have

m(r,ﬁ) =m(r,m$> Sm<r,@)+m<r,$>

=S(r,w).

Thus, by (64),
N(r, L) =T (r,Aw) — m(r, L)
Aw Aw
=T (r,Aw) +S(r,w) > %T(r,w) +S(r,w).
(73)
Hence, A(Aw) > o(w)), that is, A(Aw) = o(w). O
Proof of Theorem 7. The proof of (i) is similar to the proof of

(i) in Theorem 6; we omit it here.
(ii) We conclude from (17) and Lemmas 12 and 15 that

h(z)
wt(z)

= T(r, >+O(logr)

=T (r’ wa(uz(;l) ) wr (T’ w?”z(f)n )

+0 (logr)

4T (r,w(2)) =T (r > + 0O (logr)

wz+Hw(z-1)
w(z) w(z)




+ 0 (logr)
< AT (r,w (2)) +S(r,w (2)).
(74)
Thus,
T<r)Aw_(Z)) = T(i’,w) +0(1)
w(z) w(2) (75)

=2T (r,w(2)) +S(r,w(z)).
By (75) and Lemma 11, we know

N<r,A—w>:T<r,A—w>—m<r,A—w>
w w w

T(r,A—w> +S(r,w) =2T (r,w) + S (r,w).
w

(76)
Therefore, A(1/(Aw/w)) = o(w).
By (17), we know
wE+2wE w (z+1)=h(z+1). (77)
By this and (17), we have
w(z+2) w(z) <w(z+1)>2_h(z+1) (78)
wiz+)wiEz-1)\ w(k) T h(z)
Set
_w(z+1)
9(@)=— "~ @ (79)

Then (78) can be written as g(z + 1)g(z - I)gz(z) = h(z +

1)/h(z). Set P(z, g) := g(z+1)g(z—1)g*(z)— (h(z+1)/h(2)) =
0. Since h(z) is a nonconstant rational function, h(z) cannot
be a periodic function. Thus, P(z, 1) = 1-(h(z+1)/h(z)) # 0.
Since P(z,1) # 0, by Lemmas 12 and 16, we have

1
m<r,m> =S(r,g(2)) =S(1’,

<S(r,w(z)),

w(z+1)
w(z)

) (80)

thus,

m(“W) ) ’"(r’ (w(z+ 1)1/w(z)>—1>

= m<r, ﬁ) =S(r,w(z)).
(81)
By this and (75), we have

1 Aw 1
N(r, Aw/w) - T(“?) —m(r, Aw/w>
= T(r,A—w) +S(r,w) =2T (r,w) + S (r,w) .
w

(82)
Then A(Aw/w) = o(w). O
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We see from (76) that
N (r, Aw) = N(r, A—ww> > N(r, A_w> —N(r, l)
w w w
> N(r,A—w)—T(r,w) (83)
w

=T(r,w)+S(r,w).

We deduce from (82) that
N(r,i>=N<r,;l>2N<r, ! >—N(r,w)
Aw Aw/ww Aw/w

> N(r,ﬁ) - T (r,w)

=T(r,w)+S(r,w).

(84)

The last two inequalities show A(1/Aw) > o(w) and AM(Aw) >
o(w), respectively. Thus, A(Aw) = AM(1/Aw) = o(w).
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