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We define new subclasses of meromorphic 𝑝-valent functions by using certain differential operator. Combining the differential
operator and certain integral operator, we introduce a general 𝑝-valent meromorphic function. Then we prove the sufficient
conditions for the function in order to be in the new subclasses.

1. Introduction

LetΣ𝑝 denote the class ofmeromorphic functions of the form

𝑓 (𝑧) =
1

𝑧𝑝
+

∞

∑

𝑛=𝑝+1

𝑎𝑛𝑧
𝑛

(𝑝 ∈ N = {1, 2, . . .}) , (1)

which are analytic and 𝑝-valent in the punctured unit disc:

U
∗
= {𝑧 ∈ C : 0 < |𝑧| < 1} = U − {0} . (2)

A function 𝑓 ∈ Σ𝑝 is said to be in the class Σ⋆
𝑝
(𝛿) of mer-

omorphic𝑝-valent starlike of order 𝛿 (0 ≤ 𝛿 < 𝑝) if it satisfies
the following inequality:

−R(
𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
) > 𝛿. (3)

For 𝑓 ∈ Σ𝑝, Saif and Kılıçman [1] introduced the linear
operatorD𝑘

𝜆
, as follows:

D𝜆𝑓 (𝑧) = (1 + 𝑝𝜆) 𝑓 (𝑧) + 𝜆𝑧𝑓
󸀠
(𝑧) , 𝜆 ≥ 0,

D
0

𝜆
𝑓 (𝑧) = 𝑓 (𝑧) ,

D
1

𝜆
𝑓 (𝑧) = D𝜆𝑓 (𝑧) ,

D
2

𝜆
𝑓 (𝑧) = D𝜆 (D

1

𝜆
𝑓 (𝑧)) ,

(4)

and in general, for 𝑘 = 0, 1, 2, . . ., we can write

D
𝑘

𝜆
𝑓 (𝑧) =

1

𝑧𝑝
+

∞

∑

𝑛=𝑝+1

(1 + 𝑝𝜆 + 𝑛𝜆)
𝑘
𝑎𝑛𝑧
𝑛
,

(𝑘 ∈ N0 = N ∪ {0} , 𝑝 ∈ N) .

(5)

It is easy to see that, for 𝑓 ∈ Σ𝑝, we have

𝜆𝑧(D
𝑘

𝜆
𝑓 (𝑧))

󸀠

= D
𝑘+1

𝜆
𝑓 (𝑧) − (1 + 𝑝𝜆)D

𝑘

𝜆
𝑓 (𝑧) ,

(𝑘 ∈ N0, 𝑝 ∈ N) .

(6)

Meromorphically multivalent functions have been exten-
sively studied by several authors; see, for example, Uralegaddi
and Somanatha [2, 3], Liu and Srivastava [4, 5], Mogra [6, 7],
Srivastava et al. [8], Aouf et al. [9, 10], Joshi and Srivastava
[11], Owa et al. [12], and Kulkarni et al. [13].

Now, for 𝑓 ∈ Σ𝑝, we define the following new subclasses.

Definition 1. Let a function 𝑓 ∈ Σ𝑝 be analytic in U∗. Then 𝑓
is in the class Σ𝑝𝑆𝑘(𝛿, 𝑏, 𝜆) if, and only if, 𝑓 satisfies

R{𝑝 −
1

𝑏
(
D𝑘+1
𝜆
𝑓 (𝑧)

D𝑘
𝜆
𝑓 (𝑧)

− 1)} > 𝛿, (7)

where 𝛿 ∈ [0, 𝑝), 𝑏 ∈ C \ {0}, 𝜆 ≥ 0, 𝑘 ∈ N0.
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From (6), one can see that (7) is equivalent to

R
{

{

{

𝑝 −
𝜆

𝑏
(
𝑧(D𝑘
𝜆
𝑓 (𝑧))

󸀠

D𝑘
𝜆
𝑓 (𝑧)

+ 𝑝)
}

}

}

> 𝛿. (8)

Remark 2. In Definition 1, if we set
(i) 𝑘 = 0 and 𝑝 = 𝜆 = 1, then we have [14, Definition 1.1];
(ii) 𝑘 = 0 and 𝑝 = 𝜆 = 𝑏 = 1, then we have Σ⋆

𝑝
(𝛿), the

class of meromorphic 𝑝-valent starlike of order 𝛿;
(iii) 𝑘 = 1 and 𝑝 = 𝜆 = 1, then we have [14, Definition 1.7].

Definition 3. Let a function 𝑓 ∈ Σ𝑝 be analytic inU∗. Then 𝑓
is in the class Σ𝑝𝑈𝑆𝑘(𝛼, 𝛿, 𝑏, 𝜆) if, and only if, 𝑓 satisfies

R{𝑝 −
1

𝑏
(
D𝑘+1
𝜆
𝑓 (𝑧)

D𝑘
𝜆
𝑓 (𝑧)

− 1)}

> 𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑏
(
D𝑘+1
𝜆
𝑓 (𝑧)

D𝑘
𝜆
𝑓 (𝑧)

− 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝛿,

(9)

where 𝛼 ≥ 0, 𝛿 ∈ [−1, 𝑝), 𝑏 ∈ C \ {0}, 𝜆 ≥ 0, 𝑘 ∈ N0.

Inequality (9) is equivalent to

R
{

{

{

𝑝 −
𝜆

𝑏
(
𝑧(D𝑘
𝜆
𝑓 (𝑧))

󸀠

D𝑘
𝜆
𝑓 (𝑧)

+ 𝑝)
}

}

}

> 𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆

𝑏
(
𝑧(D𝑘
𝜆
𝑓 (𝑧))

󸀠

D𝑘
𝜆
𝑓 (𝑧)

+ 𝑝)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝛿.

(10)

Remark 4. In Definition 3, if we set
(i) 𝑘 = 0 and 𝑝 = 𝜆 = 1, then we have [14, Definition 1.3];
(ii) for 𝑘 = 1 and 𝑝 = 𝜆 = 1, then we have [14, Definition

1.8].

Definition 5. Let a function 𝑓 ∈ Σ𝑝 be analytic inU∗. Then 𝑓
is in the class Σ𝑝𝑆𝐻𝑘(𝛼, 𝑏, 𝜆), if, and only if, 𝑓 satisfies
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝 −
1

𝑏
(
D𝑘+1
𝜆
𝑓 (𝑧)

D𝑘
𝜆
𝑓 (𝑧)

− 1) − 2𝛼 (√2 − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< √2R{𝑝 −
1

𝑏
(
D𝑘+1
𝜆
𝑓 (𝑧)

D𝑘
𝜆
𝑓 (𝑧)

− 1)} + 2𝛼 (√2 − 1) ,

(11)

where 𝛼 > 0, 𝑏 ∈ C \ {0}, 𝜆 ≥ 0, 𝑘 ∈ N0.

Inequality (11) is equivalent to
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝 −
𝜆

𝑏
(
𝑧(D𝑘
𝜆
𝑓 (𝑧))

󸀠

D𝑘
𝜆
𝑓 (𝑧)

+ 𝑝) − 2𝛼 (√2 − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< √2R
{

{

{

𝑝 −
𝜆

𝑏
(
𝑧(D𝑘
𝜆
𝑓 (𝑧))

󸀠

D𝑘
𝜆
𝑓 (𝑧)

+ 𝑝)
}

}

}

+ 2𝛼 (√2 − 1) .

(12)

Remark 6. In Definition 5, if we set

(i) 𝑘 = 0 and 𝑝 = 𝜆 = 1, then we have [14, Definition 1.5];
(ii) for 𝑘 = 1 and 𝑝 = 𝜆 = 1, then we have [14, Definition

1.9].

Recently, Mohammed and Darus [15] introduced the
following 𝑝-valent meromorphic function:

𝐺 (𝑧) = 𝑧F
󸀠

𝑝,𝛾
1
,...,𝛾
𝑛

(𝑧) + (𝑝 + 1)F𝑝,𝛾
1
,...,𝛾
𝑛
(𝑧) , (13)

where F𝑝,𝛾
1
,...,𝛾
𝑛

is the integral operator introduced and
studied by the authors [15, 16] and defined by

F𝑝,𝛾
1
,...,𝛾
𝑛
(𝑧) =

1

𝑧𝑝+1
∫

𝑧

0

(𝑢
𝑝
𝑓1 (𝑢))

𝛾
1

⋅ ⋅ ⋅ (𝑢
𝑝
𝑓𝑛 (𝑢))

𝛾
𝑛

𝑑𝑢,

(14)

where

𝑛, 𝑝 ∈ N, 𝑗 ∈ {1, 2, 3, . . . , 𝑛} , 𝛾𝑗 > 0. (15)

For 𝑝 = 1 we obtain [17]. It is clear that

𝐺 (𝑧) =
1

𝑧𝑝
(𝑧
𝑝
𝑓1 (𝑧))

𝛾
1

⋅ ⋅ ⋅ (𝑧
𝑝
𝑓𝑛 (𝑧))

𝛾
𝑛

. (16)

By using the differential operator given by (4), we intro-
duce the following 𝑝-valent meromorphic function.

Definition 7. Let 𝑘 ∈ N0, 𝑙 = (𝑙1, . . . , 𝑙𝑛) ∈ N𝑛
0
and 𝛾𝑗 >

0, 1 ≤ 𝑗 ≤ 𝑛. One defines the𝑝-valentmeromorphic function
𝐼𝑘,𝑛,𝑙,𝛾:Σ

𝑛

𝑝
→ Σ𝑝,

𝐼𝑘,𝑛,𝑙,𝛾 (𝑓1, . . . , 𝑓𝑛) = Φ, (17)

D
𝑘

𝜆
Φ (𝑧) =

1

𝑧𝑝
[(𝑧
𝑝
D
𝑙
1

𝜆
𝑓1 (𝑧))

𝛾
1

⋅ ⋅ ⋅ (𝑧
𝑝
D
𝑙
𝑛

𝜆
𝑓𝑛 (𝑧))

𝛾
𝑛

] ,

(18)

where 𝑓1, . . . , 𝑓𝑛 ∈ Σ𝑝, and D𝜆 is the differential operator
given by (4).

Remark 8. If we set 𝜆 = 1, 𝑘 = 0, and 𝑙1 = ⋅ ⋅ ⋅ = 𝑙𝑛 = 0, then
we have the 𝑝-valent meromorphic function given by (13).

2. Main Results

To prove our main results, we need the following lemma.

Lemma 9. For the 𝑝-valent meromorphic function 𝐼𝑘,𝑛,𝑙,𝛾(𝑓1,
. . . , 𝑓𝑛) = Φ given by (18), one has

−
𝜆𝑧(Dk

𝜆
Φ (𝑧))

󸀠

D𝑘
𝜆
Φ (𝑧)

= −

𝑛

∑

𝑗=1

𝛾𝑗

D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

+ 𝑝𝜆 +

𝑛

∑

𝑗=1

𝛾𝑗. (19)

Proof. From (18), we have

𝑧
𝑝
D
𝑘

𝜆
Φ (𝑧) = [(𝑧

𝑝
D
𝑙
1

𝜆
𝑓1 (𝑧))

𝛾
1

⋅ ⋅ ⋅ (𝑧
𝑝
D
𝑙
𝑛

𝜆
𝑓𝑛 (𝑧))

𝛾
𝑛

] .

(20)
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Differentiating (20) logarithmically and then by simple com-
putation, we get

𝑧(D𝑘
𝜆
Φ (𝑧))

󸀠

D𝑘
𝜆
Φ (𝑧)

=

𝑛

∑

𝑗=1

𝛾𝑗(

𝑧(D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧))

󸀠

+ 𝑝D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

) − 𝑝.

(21)

From (6), we obtain

(D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧))

󸀠

=
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧) − (1 + 𝑝𝜆)D

𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

𝜆𝑧
. (22)

Then using (22) on the right-hand side of (21), one gets

𝑧(D𝑘
𝜆
Φ (𝑧))

󸀠

D𝑘
𝜆
Φ (𝑧)

=

𝑛

∑

𝑗=1

𝛾𝑗(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

𝜆D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

−
1

𝜆
) − 𝑝. (23)

Multiplying (23) by 𝜆 yields that

𝜆𝑧(D𝑘
𝜆
Φ (𝑧))

󸀠

D𝑘
𝜆
Φ (𝑧)

=

𝑛

∑

𝑗=1

𝛾𝑗(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1) − 𝑝𝜆, (24)

or, equivalently, we can write that

−
𝜆𝑧(D𝑘

𝜆
Φ (𝑧))

󸀠

D𝑘
𝜆
Φ (𝑧)

= −

𝑛

∑

𝑗=1

𝛾𝑗

D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑖 (𝑧)

+ 𝑝𝜆 +

𝑛

∑

𝑗=1

𝛾𝑗, (25)

which is the desired result.

Our first theorem is as follows.

Theorem 10. Let 𝛼𝑗 ≥ 0, 𝛿𝑗 ∈ [−1, 𝑝), 𝛼𝑗 + 𝛿𝑗 ≥ 0, (1 ≤ 𝑗 ≤
𝑛) and 𝑏 ∈ C \ {0}, 𝜆 ≥ 0. Suppose that

𝑛

∑

𝑗=1

𝛾𝑗 (
𝑝 − 𝛿𝑗

𝛼𝑗 + 1
) ≤ 𝑝. (26)

If 𝑓𝑗 ∈ Σ𝑝𝑈𝑆𝑙
𝑗

(𝛼𝑗, 𝛿𝑗, 𝑏, 𝜆) (1 ≤ 𝑗 ≤ 𝑛), then the function
D𝑘
𝜆
Φ(𝑧) defined by (18) is in the class Σ𝑝𝑆𝑘(𝜇, 𝑏, 𝜆), where

𝜇 = 𝑝 −

𝑛

∑

𝑗=1

𝛾𝑗 (
𝑝 − 𝛿𝑗

𝛼𝑗 + 1
) . (27)

Proof. Since 𝑓𝑗 ∈ Σ𝑝𝑈𝑆𝑙
𝑗

(𝛼𝑗, 𝛿𝑗, 𝑏, 𝜆) (1 ≤ 𝑗 ≤ 𝑛), by (9), we
have

R
{

{

{

𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)
}

}

}

>
𝑝𝛼𝑗 + 𝛿𝑗

1 + 𝛼𝑗
. (28)

By (19), we get

−
𝜆𝑧(D𝑘

𝜆
Φ (𝑧))

󸀠

D𝑘
𝜆
Φ (𝑧)

− 𝑝𝜆 = −

𝑛

∑

𝑗=1

𝛾𝑗(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1) . (29)

This is equivalent to

𝑝 −
𝜆

𝑏
(
𝑧(D𝑘
𝜆
Φ (𝑧))

󸀠

D𝑘
𝜆
Φ (𝑧)

+ 𝑝)

= 𝑝 −
1

𝑏

𝑛

∑

𝑗=1

𝛾𝑗(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)

=

𝑛

∑

𝑗=1

𝛾𝑗
[

[

𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)]

]

+ 𝑝 − 𝑝

𝑛

∑

𝑗=1

𝛾𝑗.

(30)

From (28) together with (30), we can get

R
{

{

{

𝑝 −
𝜆

𝑏
(
𝑧(D𝑘
𝜆
Φ (𝑧))

󸀠

D𝑘
𝜆
Φ (𝑧)

+ 𝑝)
}

}

}

=

𝑛

∑

𝑗=1

𝛾𝑗R
[

[

𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)]

]

+𝑝 − 𝑝

𝑛

∑

𝑗=1

𝛾𝑗

>

𝑛

∑

𝑗=1

𝛾𝑗 (
𝑝𝛼𝑗 + 𝛿𝑗

1 + 𝛼𝑗
) − 𝑝

𝑛

∑

𝑗=1

𝛾𝑗 + 𝑝

= 𝑝 −

𝑛

∑

𝑗=1

𝛾𝑗 (
𝑝 − 𝛿𝑗

1 + 𝛼𝑗
) .

(31)

Hence, we obtain D𝑘
𝜆
Φ(𝑧) ∈ Σ𝑝𝑆𝑘(𝜇, 𝑏, 𝜆), where 𝜇 = 𝑝 −

∑
𝑛

𝑗=1
𝛾𝑗((𝑝 − 𝛿𝑗)/(𝛼𝑗 + 1)).

Corollary 11. Let 𝛼𝑗 ≥ 0, 𝛿𝑗 ∈ [−1, 𝑝), 𝛼𝑗 +𝛿𝑗 ≥ 0, (1 ≤ 𝑗 ≤
𝑛), and 𝑏 ∈ C \ {0}, 𝜆 ≥ 0. Suppose that

𝑛

∑

𝑗=1

𝛾𝑗 (
𝑝 − 𝛿𝑗

𝛼𝑗 + 1
) ≤ 𝑝. (32)

If 𝑓𝑗 ∈ Σ𝑝𝑈𝑆𝑙
𝑗

(𝛼𝑗, 𝛿𝑗, 𝑏, 1) (1 ≤ 𝑗 ≤ 𝑛), then the function
D𝑘
𝜆
Φ(𝑧), defined by (18), is in the class Σ𝑝𝑆𝑘+1(𝜇, 𝑏, 1), where

𝜇 is defined as in (27).

Proof. In Theorem 10, we consider 𝜆 = 1.

By Corollary 11, we easily get the following.

Corollary 12. Let 𝛼𝑗 ≥ 0, 𝛿𝑗 ∈ [−1, 𝑝), 𝛼𝑗 + 𝛿𝑗 ≥ 0, (1 ≤ 𝑗 ≤
𝑛), and 𝑏 ∈ C \ {0}, 𝜆 ≥ 0. Suppose that

𝑛

∑

𝑗=1

𝛾𝑗 (
𝑝 − 𝛿𝑗

𝛼𝑗 + 1
) ≤ 𝑝. (33)

If 𝑓𝑗 ∈ Σ𝑝𝑈𝑆𝑙
𝑗

(𝛼𝑗, 𝛿𝑗, 𝑏, 1) (1 ≤ 𝑗 ≤ 𝑛), then the function
D𝑘
𝜆
Φ(𝑧), defined by (18), is in the class Σ𝑝𝑆𝑘+1(0, 𝑏, 1).



4 Abstract and Applied Analysis

Now, we prove a sufficient condition for the functionD𝑘
𝜆

Φ(𝑧) defined by (18) to belong to the class Σ𝑝𝑈𝑆𝑘(𝛼, 𝛿, 𝑏, 𝜆).

Theorem 13. Let 𝛼 ≥ 0, 𝛿 ∈ [−1, 𝑝), 𝛼 + 𝛿 ≥ 0 (1 ≤ 𝑗 ≤ 𝑛),
and 𝑏 ∈ C \ {0}, 𝜆 ≥ 0. Suppose that

𝑛

∑

𝑗=1

𝛾𝑗 ≤ 1. (34)

If 𝑓𝑗 ∈ Σ𝑝𝑈𝑆𝑙
𝑗

(𝛼, 𝛿, 𝑏, 𝜆) (1 ≤ 𝑗 ≤ 𝑛), then the function D𝑘
𝜆

Φ(𝑧) defined by (18) is in the class Σ𝑝𝑈𝑆𝑘(𝛼, 𝛿, 𝑏, 𝜆).

Proof. Since 𝑓𝑗 ∈ Σ𝑝𝑈𝑆𝑙
𝑗

(𝛼, 𝛿, 𝑏, 𝜆) (1 ≤ 𝑗 ≤ 𝑛), by (9), we
have

R
{

{

{

𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓 (𝑧)

D
𝑙
𝑗

𝜆
𝑓 (𝑧)

− 1)
}

}

}

> 𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝛿.

(35)

On the other hand, from (19), we obtain the following:

𝑝 −
𝜆

𝑏
(
𝑧(D𝑘
𝜆
Φ (𝑧))

󸀠

D𝑘
𝜆
Φ (𝑧)

+ 𝑝)

=

𝑛

∑

𝑗=1

𝛾𝑗
[

[

𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)]

]

+ 𝑝 − 𝑝

𝑛

∑

𝑗=1

𝛾𝑗.

(36)

Considering (10) with the above equality, we find

R
{

{

{

𝑝 −
𝜆

𝑏
(
𝑧(D𝑘
𝜆
𝑓 (𝑧))

󸀠

D𝑘
𝜆
𝑓 (𝑧)

+ 𝑝)
}

}

}

− 𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆

𝑏
(
𝑧(D𝑘
𝜆
𝑓 (𝑧))

󸀠

D𝑘
𝜆
𝑓 (𝑧)

+ 𝑝)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

− 𝛿

= 𝑝 − 𝑝

𝑛

∑

𝑗=1

𝛾𝑗 +

𝑛

∑

𝑗=1

𝛾𝑗R
[

[

𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)]

]

− 𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

𝛾𝑗
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

− 𝛿

≥ 𝑝 − 𝑝

𝑛

∑

𝑗=1

𝛾𝑗 +

𝑛

∑

𝑗=1

𝛾𝑗R
[

[

𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)]

]

− 𝛼

𝑛

∑

𝑗=1

𝛾𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

− 𝛿

>𝑝 − 𝑝

𝑛

∑

𝑗=1

𝛾𝑗 +

𝑛

∑

𝑗=1

𝛾𝑗
[

[

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝛿]

]

− 𝛼

𝑛

∑

𝑗=1

𝛾𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

− 𝛿

= (𝑝 − 𝛿)(1 −

𝑛

∑

𝑗=1

𝛾𝑗) ≥ 0.

(37)

The proof is complete.

Corollary 14. Let 𝛼 ≥ 0, 𝛿 ∈ [−1, 𝑝), 𝛼 + 𝛿 ≥ 0 (1 ≤ 𝑗 ≤ 𝑛),
and 𝑏 ∈ C \ {0}. Suppose that

𝑛

∑

𝑗=1

𝛾𝑗 ≤ 1. (38)

If 𝑓𝑗 ∈ Σ𝑝𝑈𝑆𝑙
𝑗

(𝛼, 𝛿, 𝑏, 1) (1 ≤ 𝑗 ≤ 𝑛), then the function
D𝑘
𝜆
Φ(𝑧) defined by (18) is in the class Σ𝑝𝑈𝑆𝑘+1(𝛼, 𝛿, 𝑏, 1).

Proof. In Theorem 13, we consider that 𝜆 = 1

Next, for the function D𝑘
𝜆
Φ defined by (18) to belong to

the class Σ𝑝𝑆𝐻𝑘(𝛼, 𝑏, 𝜆), we have the following result.

Theorem 15. Let 𝛼 ≥ 0, 𝜆 ≥ 0, and 𝑏 ∈ C \ {0}. Suppose that

𝑛

∑

𝑗=1

𝛾𝑗 ≤ 1. (39)

If 𝑓𝑗 ∈ Σ𝑝𝑆𝐻𝑙
𝑗

(𝛼, 𝑏, 𝜆), then the functionD𝑘
𝜆
Φ(𝑧) ∈ Σ𝑝𝑆𝐻𝑘(𝛼,

𝑏, 𝜆).

Proof. Since 𝑓𝑗 ∈ Σ𝑝𝑆𝐻𝑙
𝑗

(𝛼, 𝑏, 𝜆), by (11), we have

√2R
{

{

{

𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)
}

}

}

+ 2𝛼 (√2 − 1)

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1) − 2𝛼 (√2 − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 0.

(40)
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Combining (12), (30), and the above inequality, we obtain

√2R
{

{

{

𝑝 −
𝜆

𝑏
(
𝑧(D𝑘
𝜆
𝑓 (𝑧))

󸀠

D𝑘
𝜆
𝑓 (𝑧)

+ 𝑝)
}

}

}

+ 2𝛼 (√2 − 1)

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝 −
𝜆

𝑏
(
𝑧(D𝑘
𝜆
𝑓 (𝑧))

󸀠

D𝑘
𝜆
𝑓 (𝑧)

+ 𝑝) − 2𝛼 (√2 − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= √2R
{

{

{

𝑛

∑

𝑗=1

𝛾𝑗
[

[

𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)]

]

+𝑝 − 𝑝

𝑛

∑

𝑗=1

𝛾𝑗

}

}

}

+ 2𝛼 (√2 − 1)

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

𝛾𝑗
[

[

𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)]

]

+𝑝 − 𝑝

𝑛

∑

𝑗=1

𝛾𝑗 − 2𝛼 (
√2 − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

𝑛

∑

𝑗=1

𝛾𝑗

{

{

{

√2R(𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1))

+2𝛼 (√2 − 1)
}

}

}

− 2𝛼 (√2 − 1)

𝑛

∑

𝑗=1

𝛾𝑗

+ √2(𝑝 − 𝑝

𝑛

∑

𝑗=1

𝛾𝑗) + 2𝛼 (
√2 − 1)

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

𝛾𝑗

{

{

{

(𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1))

−2𝛼 (√2 − 1)
}

}

}

+2𝛼 (√2 − 1)

𝑛

∑

𝑗=1

𝛾𝑗 − 2𝛼 (
√2 − 1) + 𝑝 − 𝑝

𝑛

∑

𝑗=1

𝛾𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

𝑛

∑

𝑗=1

𝛾𝑗

{

{

{

√2R(𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1))

+2𝛼 (√2 − 1)
}

}

}

+ [√2𝑝 + 2𝛼 (√2 − 1)](1 −

𝑛

∑

𝑗=1

𝛾𝑗)

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

𝛾𝑗

{

{

{

(𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1))

−2𝛼 (√2 − 1)
}

}

}

+ [𝑝 − 2𝛼 (√2 − 1)](1 −

𝑛

∑

𝑗=1

𝛾𝑗)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(41)

which is

≥

𝑛

∑

𝑗=1

𝛾𝑗

{

{

{

√2R(𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1))

+2𝛼 (√2 − 1)
}

}

}

+ [√2𝑝 + 2𝛼 (√2 − 1)](1 −

𝑛

∑

𝑗=1

𝛾𝑗)

−

𝑛

∑

𝑗=1

𝛾𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{

{

{

(𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1))

−2𝛼 (√2 − 1)
}

}

}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−
󵄨󵄨󵄨󵄨󵄨
𝑝 − 2𝛼 (√2 − 1)

󵄨󵄨󵄨󵄨󵄨
(1 −

𝑛

∑

𝑗=1

𝛾𝑗)

=

𝑛

∑

𝑗=1

𝛾𝑗

{

{

{

√2R[

[

𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)]

]

+ 2𝛼 (√2 − 1)

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1) − 2𝛼 (√2 − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}

}

}

+ [√2𝑝 + 2𝛼 (√2 − 1) −
󵄨󵄨󵄨󵄨󵄨
𝑝 − 2𝛼 (√2 − 1)

󵄨󵄨󵄨󵄨󵄨
]

× (1 −

𝑛

∑

𝑗=1

𝛾𝑗)

> [√2𝑝 + 2𝛼 (√2 − 1) −
󵄨󵄨󵄨󵄨󵄨
𝑝 − 2𝛼 (√2 − 1)

󵄨󵄨󵄨󵄨󵄨
]

× (1 −

𝑛

∑

𝑗=1

𝛾𝑗) ,

(42)
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and finally

>(1 −

𝑛

∑

𝑗=1

𝛾𝑗)min {(√2 − 1) (𝑝 + 4𝛼) , 𝑝 (√2 + 1)} ≥ 0.

(43)

Hence, by (12), we haveD𝑘
𝜆
Φ(𝑧) ∈ Σ𝑝𝑆𝐻𝑘(𝛼, 𝑏, 𝜆).

Corollary 16. Let 𝛼 ≥ 0 and 𝑏 ∈ C \ {0}. Suppose that

𝑛

∑

𝑗=1

𝛾𝑗 ≤ 1. (44)

If 𝑓𝑗 ∈ Σ𝑝𝑆𝐻𝑙
𝑗

(𝛼, 𝑏, 1), then the function D𝑘
𝜆
Φ(z) defined by

(18) is in the class Σ𝑝𝑆𝐻𝑘+1(𝛼, 𝑏, 1).

Proof. InTheorem 15, we consider 𝜆 = 1.

Finally, we end this paper by the following theorem and
its consequence.

Theorem 17. Let 𝛼 ≥ 0, 𝜆 ≥ 0, and 𝑏 ∈ C \ {0}. Suppose that

(𝑝 + √2𝛼 (√2 − 1))

𝑛

∑

𝑗=1

𝛾𝑗 < 𝑝. (45)

If 𝑓𝑗 ∈ Σ𝑝𝑆𝐻𝑙
𝑗

(𝛼, 𝑏, 𝜆), then the function D𝑘
𝜆
Φ(𝑧) defined by

(18) is in the class Σ𝑝𝑆𝐻𝑘(0, 𝑏, 𝜆).

Proof. Since 𝑓𝑗 ∈ Σ𝑝𝑆𝐻𝑙
𝑗

(𝛼, 𝑏, 𝜆), by (11), we have

√2R
{

{

{

𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)
}

}

}

+ 2𝛼 (√2 − 1)

>

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1) − 2𝛼 (√2 − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(46)

Considering this inequality and (30), we obtain

√2R
{

{

{

𝑝 −
𝜆

𝑏
(
𝑧(D𝑘
𝜆
𝑓 (𝑧))

󸀠

D𝑘
𝜆
𝑓 (𝑧)

+ 𝑝)
}

}

}

= √2R
{

{

{

𝑛

∑

𝑗=1

𝛾𝑗
[

[

𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)]

]

+𝑝 − 𝑝

𝑛

∑

𝑗=1

𝛾𝑗

}

}

}

=

𝑛

∑

𝑗=1

𝛾𝑗

{

{

{

√2R[

[

𝑝 −
1

𝑏
(
D
𝑙
𝑗
+1

𝜆
𝑓𝑗 (𝑧)

D
𝑙
𝑗

𝜆
𝑓𝑗 (𝑧)

− 1)]

]

+ 2𝛼 (√2 − 1)
}

}

}

+√2𝑝(1 −

𝑛

∑

𝑗=1

𝛾𝑗) − 2𝛼 (
√2 − 1)

𝑛

∑

𝑗=1

𝛾𝑗

> √2𝑝(1 −

𝑛

∑

𝑗=1

𝛾𝑗) − 2𝛼 (
√2 − 1)

𝑛

∑

𝑗=1

𝛾𝑗

= √2(𝑝 − (𝑝 + √2𝛼 (√2 − 1))

𝑛

∑

𝑗=1

𝛾𝑗) > 0.

(47)

Hence, we haveD𝑘
𝜆
Φ(𝑧) ∈ Σ𝑝𝑆𝐻𝑘(0, 𝑏, 𝜆).

Corollary 18. Let 𝛼 ≥ 0 and 𝑏 ∈ C \ {0}. Suppose that

(𝑝 + √2𝛼 (√2 − 1))

𝑛

∑

𝑗=1

𝛾𝑗 < 𝑝. (48)

If 𝑓𝑗 ∈ Σ𝑝𝑆𝐻𝑙
𝑗

(𝛼, 𝑏, 1), then the function D𝑘
𝜆
Φ(𝑧) defined by

(18) is in the class Σ𝑝𝑆𝐻𝑘+1(0, 𝑏, 1).

Proof. In Theorem 17, we consider that 𝜆 = 1.

For other work that we can look at regarding differential
and integral operators, see [14, 18–24].
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