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The deterministic pine wilt model with vital dynamics to determine the equilibria and their stability by considering nonlinear
incidence rates with horizontal transmission is analyzed. The complete global analysis for the equilibria of the model is discussed.
The explicit formula for the reproductive number is obtained and it is shown that the “disease-free” equilibrium always exists and
is globally asymptotically stable whenever 𝑅

0
≤ 1. Furthermore, the disease persists at an “endemic” level when the reproductive

number exceeds unity.

1. Introduction

Pine wilt, a fatal disease of commonly planted pines brought
on by the pinewood nematode (Bursaphelenchus xylophilus),
causes changes to ecosystem and destructs the variety of
ecosystem. Pine trees affected by pine wilt disease usually die
within few months. Symptoms of pine wilt disease normally
appear in late spring or summer. The most prominent
symptom is the lack of resin exudation from barks wounds.
The foliage becomes light grayish green, then becomes yellow,
and finally it becomes reddish brown. The tree succumbs to
the disease at this stage. The affected trees totally lack resin
and their wood becomes dry.

The long-horned pine sawyer beetles (Monochamus alter-
natus) are the main culprits for the spread of pinewood
nematodes from infected pines to healthy or stressed pines.
When new adult beetles emerge in spring, they locate a living
host tree to feed on the bark of the young branches and
transfer nematodes to the healthy trees through the feeding
wounds produced by these sawyers. This transmission is
referred to as primary transmission. The transmission of
the nematodes during egg-laying activities in freshly cut
timber or dying trees is referred to as secondary transmis-
sion. Nematodes, introduced during primary transmission,
migrate to the resin canals of their hosts and kill these cells
rendering them ineffective due to which a susceptible host

can wilt and die within weeks of being infested upon the
availability of favorable conditions to disease development.
The principle of the Bursaphelenchus xylophilus transmission
and disease dissemination is reviewed by Evans et al. [1].
Pine wilt particularly kills Scots pine within few weeks to few
months. Some other pine species as Austrian (Pinus nigra),
jack (P. banksiana), mogo (P. mugo), and red (P. resinosa)
pines are occasionally killed by pine wilt.

Mathematical modeling became a considerably impor-
tant tool in the study of epidemiology because it helps us
to understand the observed epidemiological patterns and
disease control and provides understanding of the underlying
mechanisms which influence the spread of disease and
may suggest control strategies. The incidence of a disease
is defined as new cases occurring per unit time. It plays
a vital role in mathematical epidemiology. The classical
epidemiological models are developed by the assumption of
bilinear incidence rate 𝛽𝑆𝐼 and the standard incidence rate
𝛽𝑆𝐼/𝑁, where 𝛽 is the transmission probability per contact
and 𝑆, 𝐼 are susceptible and infected individuals, respectively.
However, there are several reasons that require modification
in these incidence rates. For example, the assumption of
homogeneousmixingmay be invalid and in this case amodel
having a particular form of nonlinear transmission may be
incorporated for heterogeneous mixing and the necessary
population structure.
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The saturation effects may also require a nonlinear
incidence rate because if the proportion of the infected
population is high enough so that exposure to the disease
agent is virtually certain, then transmission rate may react
more slowly than linear in order to increase the number
of infected individuals. Capasso and Serio [2] who studied
the cholera epidemic spread in Bari in 1973 and introduced
the saturated incidence rate 𝑔(𝐼)𝑆 in the epidemic model
observed this effect. A variety of nonlinear incidence rates has
been utilized in epidemic models [3–7]. An epidemic model
with nonlinear incidence is proposed in [8], in which the
authors described the dynamics of diseases spread by vector
mosquitoes such as malaria, dengue, and yellow fever.

The incidence of pine wilt disease depends on bee-
tles’ density because pine sawyer beetles are the source of
transmission of pinewood nematode. This incidence may
approach its saturation level at very high beetle densities.The
adult female pine sawyer attempts to avert from erstwhile
oviposition scants. It approaches another tree before the
saturation point of oviposition is reached. Thus the isolation
of infected individuals results in the decrease in the number
of contacts between the susceptible and infected individuals
at high infective levels.These observations inspire to consider
nonlinearities in the incidence rates.

In this paper, based on the ideas posed in [9–11], a pine
wilt disease model considering a direct mode of transmission
as well as nonlinear incidence rate is formulated. The aim
of this paper is to establish stability properties of equilibria
and the threshold parameter 𝑅

0
that completely determines

the existence of endemic or disease-free equilibrium. If 𝑅
0
≤

1, the disease-free equilibrium is globally asymptotically
stable. If 𝑅

0
> 1, a unique endemic equilibrium exists

and is globally asymptotically stable. The rest of the paper
is organized as follows. In Section 2, the description of
the extended mathematical model is presented. Section 3
is devoted to the existence of equilibria. In Section 4, the
Lyapunov function theory is used to show global stability of
disease-free equilibrium and geometric approach is used to
prove global stability of endemic equilibrium in Section 5.
Discussions and simulations are done in Section 6.

2. Model Description

The pine population, with total population size denoted by
𝑁
ℎ
(𝑡), is subdivided into two mutually exclusive compart-

ments: susceptible pine trees 𝑆
ℎ
(𝑡) and infectious pine trees

𝐼
ℎ
(𝑡). Thus, 𝑁

ℎ
(𝑡) = 𝑆

ℎ
(𝑡) + 𝐼

ℎ
(𝑡). The emission of oleoresin

from susceptible host pines behaves like a physical barrier for
beetle oviposition. Beetles can oviposit on the infected pine
trees because these trees cease oleoresin. Since there are no
cures for pine wilt once a susceptible tree becomes infested
with pinewood nematodes, the recovered class 𝑅

ℎ
(𝑡) has not

been considered.
The total vector population at any time 𝑡 is denoted by

𝑁V(𝑡) = 𝑆V(𝑡) + 𝐼V(𝑡), where 𝑆V(𝑡) denotes the susceptible
adult beetles that do not have any pinewood nematode at
time 𝑡 and 𝐼V(𝑡) denotes the infected adult beetles carrying
pinewood nematode at time 𝑡 when they emerge from dead

pine trees. After emergence from the dead tree, beetles choose
a healthy tree for sufficient feeding and transmit nematodes
into the tree. These nematodes move through the feeding
wounds and approach the xylem of the tree.When beetles are
in oviposition they choose dying or dead tree and transmit
nematode when they lay eggs in slits in bark. Nematodes
enter these slits, feed on wood cells or fungi, and reproduce
themselves. Before beetle’s emergence from dead tree the
nematodes attach with the tracheae of its respiratory system.
The following assumptions are made in formulating the
mathematical model.

(i) The exploitation rate of pine trees infected with
Bursaphelenchus xylophilus is greater than the normal
and susceptible pine trees.

(ii) The susceptible beetles receive nematodes directly
from infectious ones through mating.

(iii) Adult beetles emerging from infected trees have
pinewood nematode.

(iv) The infected vectors transmit the nematode during
maturation feeding as well as via oviposition.

Under these assumptions, the vector-host model with non-
linear incidence can be described by the following system of
differential equations:

𝑑𝑆
ℎ

𝑑𝑡
= Π
ℎ
−

𝛿
1
𝑆
ℎ
𝐼V

1 + 𝛼
1
𝐼V
−
𝛿
2
𝜃𝑆
ℎ
𝐼V

1 + 𝛼
1
𝐼V
− 𝜇
ℎ
𝑆
ℎ
,

𝑑𝐼
ℎ

𝑑𝑡
=

𝛿
1
𝑆
ℎ
𝐼V

1 + 𝛼
1
𝐼V
+
𝛿
2
𝜃𝑆
ℎ
𝐼V

1 + 𝛼
1
𝐼V
− 𝜔𝐼
ℎ
,

𝑑𝑆V

𝑑𝑡
= ΠV −

𝛽
1
𝑆V𝐼ℎ

1 + 𝛼
2
𝐼
ℎ

− 𝛽
2
𝑆V𝐼V − 𝜇V𝑆V,

𝑑𝐼V

𝑑𝑡
=

𝛽
1
𝑆V𝐼ℎ

1 + 𝛼
2
𝐼
ℎ

+ 𝛽
2
𝑆V𝐼V − 𝜇V𝐼V,

(1)

where Π
ℎ
is the constant increase rate of pines, ΠV is the

constant input rate of vectors, and 𝜇V is the mortality rate
of vectors. The exploitation rate of susceptible pines is 𝜇

ℎ

whereas the isolation and felling rate of infected pines is
𝜔. The transmission between susceptible pines and infected
vectors occurs when infected beetles lay eggs on those dead
pines that die of natural causes or through the maturation
feeding of infected vectors; the incidence terms for these
transmissions are 𝛿

2
𝜃𝑆
ℎ
𝐼V/(1 + 𝛼1𝐼V) and 𝛿1𝑆ℎ𝐼V/(1 + 𝛼1𝐼V),

respectively. The parameter 𝜃 is the probability by which
susceptible pines die of natural causes and cease oleoresin
exudation without being infected by the nematode, and 𝛿

2

indicates the rate at which infected vectors transmit the
nematode via oviposition whereas 𝛿

1
denotes transmission

rate per contact duringmaturation feeding.The transmission
between susceptible vectors and infected hosts occurs when
adult beetles emerge from dead pine trees. This transmission
is denoted by 𝛽

1
𝑆V𝐼ℎ/(1 + 𝛼

2
𝐼
ℎ
), where 𝛽

1
is the rate at

which adult beetles carry the pinewood nematode when
they emerge from dead trees. The parameters 𝛼

1
and 𝛼

2

determine the level at which the infection is saturated. The
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beetles transmit nematodes directly through mating. The
incidence term for this transmission is 𝛽

2
𝑆V𝐼V, where 𝛽

2

is the transmission rate among beetles during mating. All
parameters are assumed to be positive.

The total dynamics of vector population satisfy the
following equation:

𝑑𝑁V

𝑑𝑡
= ΠV − 𝜇V𝑁V. (2)

This leads to𝑁V → ΠV/𝜇V as 𝑡 → ∞. Thus, the system (1) is
reduced to the following system of differential equations:

𝑑𝑆
ℎ

𝑑𝑡
= Π
ℎ
−

𝛿
1
𝑆
ℎ
𝐼V

1 + 𝛼
1
𝐼V
−
𝛿
2
𝜃𝑆
ℎ
𝐼V

1 + 𝛼
1
𝐼V
− 𝜇
ℎ
𝑆
ℎ
,

𝑑𝐼
ℎ

𝑑𝑡
=

𝛿
1
𝑆
ℎ
𝐼V

1 + 𝛼
1
𝐼V
+
𝛿
2
𝜃𝑆
ℎ
𝐼V

1 + 𝛼
1
𝐼V
− 𝜔𝐼
ℎ
,

𝑑𝐼V

𝑑𝑡
= 𝛽
1
(
ΠV

𝜇V
− 𝐼V)

𝐼
ℎ

1 + 𝛼
2
𝐼
ℎ

+ 𝛽
2
(
ΠV

𝜇V
− 𝐼V) 𝐼V − 𝜇V𝐼V.

(3)

Considering ecological significance, we study system (3) in
the closed set Ω = {(𝑆

ℎ
, 𝐼
ℎ
, 𝐼V) : Πℎ/𝜔 ≤ 𝑆

ℎ
+ 𝐼
ℎ
≤ Π
ℎ
/𝜇
ℎ
, 0 ≤

𝐼V ≤ ΠV/𝜇V}. It can be easily verified that Ω is positively
invariant with respect to (3).

3. Existence of Equilibria

The dynamics of the disease are described by the threshold
quantity 𝑅

0
which is called the reproduction number defined

as “the average number of secondary infections produced by
an infected individual in a completely susceptible popula-
tion.” It is one of the most useful threshold parameters that
characterizes mathematical problems related to infectious
diseases. This metric helps to determine whether or not an
infectious disease will spread through a population.The basic
reproduction number of model (3) is given by

𝑅
0
=
𝛽
2
ΠV

𝜇2V
+
𝛽
1
ΠV

𝜇2V

Π
ℎ

𝜇
ℎ
𝜔
(𝛿
1
+ 𝜃𝛿
2
) . (4)

Direct calculation shows that for𝑅
0
≤ 1, there is only disease-

free equilibrium 𝐸
0
(Π
ℎ
/𝜇
ℎ
, 0, 0) and for 𝑅

0
> 1, there is an

additional equilibrium𝐸
∗
(𝑆
∗

ℎ
, 𝐼
∗

ℎ
, 𝐼
∗

V )which is called endemic
equilibrium, with

𝑆
∗

ℎ
=
Π
ℎ
− 𝜔𝐼
∗

ℎ

𝜇
ℎ

,

𝐼
∗

ℎ
= (Π
ℎ
𝐼
∗

V [𝛿1 + 𝛿2𝜃 + (𝛿1𝛼1 + 𝛿2𝜃𝛼1) 𝐼
∗

V ])

× ([(𝛼
1
𝜇
ℎ
+ 𝛿
1
+ 𝛿
2
𝜃) 𝛼
1
𝜔𝐼
∗2

V

+ (𝛿
1
+ 𝛿
2
𝜃 + 2𝛼

1
𝜇
ℎ
) 𝜔𝐼
∗

V + 𝜔𝜇ℎ])
−1

,

(5)

and 𝐼∗V is the root of the following equation:

𝐴𝐼
∗3

V + 𝐵𝐼
∗2

V + 𝐶𝐼
∗

V + 𝐷 = 0, (6)

where,

𝐴 = Π
ℎ
𝜇V𝛼2𝛽2 (𝛼1𝛿1 + 𝜃𝛼1𝛿2) ,

𝐵 = 𝜃𝜔𝛼
1
𝛽
2
𝛿
2
𝜇V + 𝜃𝛼1𝛽1𝛿2Πℎ𝜇V

+ 𝜃𝛼
2
𝛽
2
𝛿
2
Π
ℎ
𝜇V + 𝜔𝛼1𝛼1𝛽2𝜇ℎ𝜇V,

𝐶 = 𝜔𝛽
2
𝜇
ℎ
𝜇V + 𝛼1𝛽1𝛿1ΠℎΠV + 𝜃𝛼1𝛽1𝛿2ΠℎΠV,

𝐷 = 𝜔𝜇
ℎ
𝜇
2

V (1 − 𝑅0) .

(7)

From (7), we see that 𝑅
0
> 1 if and only if 𝐷 < 0. Since 𝐴, 𝐵,

and𝐶 are always positive, therewill be zero or unique positive
endemic equilibrium accordingly as 𝑅

0
≤ 1 or 𝑅

0
> 1. Thus

we have the following theorem.

Theorem 1. System (3) always has the infection-free equi-
librium 𝐸

0
. If 𝑅

0
> 1, system (3) has a unique endemic

equilibrium 𝐸
∗
(𝑆
∗

ℎ
, 𝐼
∗

ℎ
, 𝐼
∗

V ) defined by (5) and (6).

4. Stability of Disease-Free Equilibrium

Here, we analyze stability of disease-free equilibrium
𝐸
0
(Π
ℎ
/𝜇
ℎ
, 0, 0) for system (3).The linearization of the system

(3) at 𝐸
0
results in the following characteristic equation:

(−𝜇
ℎ
− 𝜆) [𝜆

2
+ 𝜆(𝜔 + 𝜇V −

𝛽
2
ΠV

𝜇V
) + 𝜔𝜇V (1 − 𝑅0)] = 0.

(8)

The characteristic equation (8) has one eigenvalue −𝜇
ℎ
. The

other eigenvalues can be found by the equation

𝜆
2
+ 𝑎𝜆 + 𝑏 = 0, (9)

where 𝑎 = 𝜔 + 𝜇V − (𝛽2ΠV/𝜇V) and 𝑏 = 𝜔𝜇V(1 − 𝑅0).
We observe that the roots of the quadratic equation (9)

have negative real parts if 𝑅
0
< 1. If 𝑅

0
= 1, one root of

(9) is 0. This fact does not guarantee that all eigenvalues have
negative real parts. It will only be possible in case of real roots.
If 𝑅
0
> 1, one of the roots of (9) has positive real part. The

above discussion leads to the following theorem.

Theorem 2. The disease-free equilibrium of system (3) is
locally asymptotically stable in Ω if 𝑅

0
< 1 and it is unstable if

𝑅
0
> 1.

Now, we analyze the global behavior of the disease-free
equilibrium 𝐸

0
. The following theorem provides the global

property of the system.

Theorem 3. If 𝑅
0
≤ 1, then the infection-free equilibrium 𝐸

0

is globally asymptotically stable in the interior of Ω.

Proof. The following Lyapunov function is proposed to
establish the global stability of disease-free equilibrium:

𝐿 = 𝛽
1

ΠV

𝜔
𝐼
ℎ
+ 𝜇V𝐼V. (10)
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Taking the time derivative of 𝐿 along the solutions of (3), we
have

𝐿

= 𝛽
1

ΠV

𝜔
𝐼


ℎ
+ 𝜇V𝐼


V

= 𝛽
1

ΠV

𝜔
(
𝛿
1
𝑆
ℎ
𝐼V

1 + 𝛼
1
𝐼V
+
𝛿
2
𝜃𝑆
ℎ
𝐼V

1 + 𝛼
1
𝐼V
− 𝜔𝐼
ℎ
)

+ 𝜇V [𝛽1 (
ΠV

𝜇V
− 𝐼V)

𝐼
ℎ

1 + 𝛼
2
𝐼
ℎ

+ 𝛽
2
(
ΠV

𝜇V
− 𝐼V) 𝐼V − 𝜇V𝐼V]

≤ 𝛽
1

ΠV

𝜔
(𝛿
1
𝑆
ℎ
𝐼V + 𝛿2𝜃𝑆ℎ𝐼V − 𝜔𝐼ℎ)

+ 𝜇V [(𝛽1
ΠV

𝜇V

𝐼
ℎ

1 + 𝛼
2
𝐼
ℎ

− 𝛽
1

𝐼V𝐼ℎ

1 + 𝛼
2
𝐼
ℎ

)

+(𝛽
2

ΠV

𝜇V
𝐼V − 𝛽2𝐼V𝐼V)] − 𝜇

2

V𝐼V

< (𝛿
1
+ 𝛿
2
𝜃) 𝛽
1

ΠV

𝜔

Π
ℎ

𝜇
ℎ

𝐼V + 𝜇V𝛽2
ΠV

𝜇V
𝐼V − 𝜇

2

V𝐼V

− 𝛽
1
ΠV𝐼ℎ + 𝛽1ΠV𝐼ℎ − 𝜇V𝛽1𝐼V

𝐼
ℎ

1 + 𝛼
2
𝐼
ℎ

− 𝜇V𝛽2𝐼
2

V

= 𝐼V [𝜇
2

V (𝑅0 − 1) − 𝜇V𝛽1
𝐼
ℎ

1 + 𝛼
2
𝐼
ℎ

− 𝜇V𝛽2𝐼V] ≤ 0.

(11)

Thus 𝐿(𝑡) is negative if 𝑅
0
≤ 1. When 𝑅

0
< 1, the derivative

𝐿

= 0 if and only if 𝐼V = 0, while in the case 𝑅

0
= 1, the

derivative 𝐿 = 0 if and only if 𝐼
ℎ
= 0 or 𝐼V = 0. Consequently,

the largest compact invariant set in {(𝑆
ℎ
, 𝐼
ℎ
, 𝐼V ∈ Ω), 𝐿


=

0}, when 𝑅
0
≤ 1, is the singleton 𝐸

0
. Hence, by LaSalle’s

invariance principle [12], 𝐸
0
is globally asymptotically stable

inΩ. This completes the proof.

5. Stability of Endemic Equilibrium

In this section, we will discuss global stability of endemic
equilibrium 𝐸

∗ in the feasible regionΩ. This is done through
the geometrical approach applied by Li and Muldowney [13].
We summarize this approach below.

Consider a 𝐶1 map 𝑓 : 𝑥 → 𝑓(𝑥) from an open set 𝐷 ⊂

𝑅
𝑛 to 𝑅𝑛 such that each solution 𝑥(𝑡, 𝑥

0
) to the differential

equation

𝑥

= 𝑓 (𝑥) (12)

is uniquely determined by the initial value 𝑥(0, 𝑥
0
). We have

the following assumptions:

(𝐻
1
) 𝐷 is simply connected;

(𝐻
2
) there exists a compact absorbing set 𝐾 ⊂ 𝐷;

(𝐻
3
) Equation (12) has unique equilibrium 𝑥 in𝐷.

Let 𝑃 : 𝑥 → 𝑃(𝑥) be a nonsingular ( 𝑛2 ) × ( 𝑛2 ) matrix-valued
function which is𝐶1 in𝐷 and a vector norm | ⋅ | on𝑅𝑁, where

𝑁 = (
𝑛

2 ). Let 𝜇 be the Lozinskĭı measure with respect to the
| ⋅ |. Define a quantity 𝑞

2
as

𝑞
2
= lim sup
𝑡→∞

sup
𝑥0∈𝐾

1

𝑡
∫

𝑡

0

𝜇 (𝐵 (𝑥 (𝑠, 𝑥
0
))) 𝑑𝑠, (13)

where 𝐵 = 𝑃
𝑓
𝑃
−1
+ 𝑃𝐽
[2]
𝑃
−1, the matrix 𝑃

𝑓
is obtained by

replacing each entry 𝑝 of 𝑃 by its derivative in the direction
of 𝑓, (𝑝

𝑖𝑗
)
𝑓
, and 𝐽[2] is the second additive compound matrix

of the Jacobian matrix 𝐽 of (12).The following result has been
established by Li and Muldowney [13].

Theorem 4. Suppose that 𝐻
1
, 𝐻
2
, and 𝐻

3
hold; the unique

endemic equilibrium 𝐸
∗ is globally stable in Ω if 𝑞

2
< 0.

Obviously Ω is simply connected and 𝐸
∗ is a unique

endemic equilibrium for 𝑅
0
> 1 in Ω. To apply the result of

the above theorem for global stability of endemic equilibrium
𝐸
∗, we first prove the uniform persistence of (3) when the

threshold parameter 𝑅
0

> 1, by applying the acyclicity
theorem (see [14]).

Definition 5 (see [15]). The system (3) is uniformly persistent;
that is, there exists 𝑐 > 0 (independent of initial conditions),
such that lim inf

𝑡→∞
𝑆
ℎ

≥ 𝑐, lim inf
𝑡→∞

𝐼
ℎ

≥ 𝑐, and
lim inf

𝑡→∞
𝐼V ≥ 𝑐.

Let𝑋 be a locally compactmetric space withmetric 𝑑 and
letΩ be a closed nonempty subset of𝑋with boundaryΩ and
interior Ω∘. Clearly, Ω∘ is a closed subset of Ω. Let Φ

𝑡
be a

dynamical system defined on Ω. A set 𝐵 in 𝑋 is said to be
invariant if Φ(𝐵, 𝑡) = 𝐵. Define𝑀

𝜕
:= {𝑥 ∈ Ω : Φ(𝑡, 𝑥) ∈ Ω,

for all 𝑡 ≥ 0}.

Lemma 6 (see [14]). Assume that

(a) Φ
𝑡
has a global attractor;

(b) there exists 𝑀 = {𝑀
1
, . . . ,𝑀

𝑘
} of pairwise disjoint,

compact, and isolated invariant set on 𝜕Ω such that

(1) ⋃
𝑥∈𝑀𝜕

𝜔(𝑥) ⊆ ⋃
𝑘

𝑗=1
𝑀
𝑗
;

(2) no subsets of𝑀 form a cycle on 𝜕Ω;
(3) each𝑀

𝑗
is also isolated in Ω;

(4) 𝑊𝑠(𝑀
𝑗
) ∩ Ω

∘
= 𝜙 for each 1 ≤ 𝑗 ≤ 𝑘, where

𝑊
𝑠
(𝑀
𝑗
) is stable manifold of 𝑀

𝑗
. Then Φ

𝑡
is

uniformly persistent with respect to Ω.

Proof. We have Ω = {(𝑆
ℎ
, 𝐼
ℎ
, 𝐼V) : Π

ℎ
/𝜇
ℎ
≤ 𝑆
ℎ
+ 𝐼
ℎ
≤

Π
ℎ
/𝜔, 0 ≤ 𝐼V ≤ ΠV/𝜇V}, Ω

∘
= {(𝑆
ℎ
, 𝐼
ℎ
, 𝐼V) : 𝑆ℎ, 𝐼ℎ, 𝐼V > 0},

𝜕Ω = Ω/Ω
∘. Obviously, 𝑀

𝜕
= 𝜕Ω. Since Ω is bounded and

positively invariant there exists a compact set 𝑀 in which
all solutions of system (3) initiated in Ω ultimately enter and
remain forever. On 𝑆

ℎ
-axis we have 𝑆

ℎ
= Π
ℎ
− 𝜇
ℎ
𝑆
ℎ
which

means 𝑆
ℎ
→ Π
ℎ
/𝜇
ℎ
as 𝑡 → ∞. Thus 𝐸

0
is the only omega

limit point on 𝜕Ω; that is, 𝜔(𝑥) = 𝐸
0
for all 𝑥 ∈ 𝑀

𝜕
.

Furthermore 𝑀 = 𝐸
0
is a covering of Ω = ⋃

𝑥∈𝑀𝜕
𝜔(𝑥)

because all solutions initiated on the 𝑆
ℎ
-axis converge to 𝐸

0
.

Also 𝐸
0
is isolated and acyclic. This verifies that hypotheses
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(1) and (3) hold. When 𝑅
0
> 1, the “disease-free” equilibrium

(DFE)𝐸
0
is unstable from theorem (3) and also𝑊𝑠(𝑀) = 𝜕Ω.

Hypotheses (4) and (5) hold. There always admits a global
attractor due to ultimate boundedness of solutions.

The boundedness of Ω and the above lemma imply that
(3) has a compact absorbing set 𝐾 ⊂ Ω [15]. Now we will
prove that the quantity 𝑞

2
< 0. We choose a suitable vector

norm | ⋅ | in 𝑅3 and a 3 × 3matrix valued function

𝑃 (𝑥) =

[
[
[
[
[

[

1 0 0

0
𝐼
ℎ

𝐼V
0

0 0
𝐼
ℎ

𝐼V

]
]
]
]
]

]

. (14)

Obviously 𝑃 is 𝐶1 and nonsingular in the interior of Ω.
Linearizing system (3) about an endemic equilibrium 𝐸

∗

gives the following Jacobian matrix:

𝐽 =

[
[
[
[
[
[
[
[

[

−𝜇
ℎ
− 𝐼V

𝛿
1

1 + 𝛼
1
𝐼V
− 𝐼V𝜃

𝛿
2

1 + 𝛼
1
𝐼V

0 −𝑆
ℎ

𝛿
1

(1 + 𝛼
1
𝐼V)
2
− 𝑆
ℎ
𝜃

𝛿
2

(1 + 𝛼
1
𝐼V)
2

𝐼V
𝛿
1

1 + 𝛼
1
𝐼V
+ 𝐼V𝜃

𝛿
2

1 + 𝛼
1
𝐼V

−𝜔 𝑆
ℎ

𝛿
1

(1 + 𝛼
1
𝐼V)
2
+ 𝑆
ℎ
𝜃

𝛿
2

(1 + 𝛼
1
𝐼V)
2

0
𝛽
1

𝜇V(1 + 𝛼2𝐼ℎ)
2
(ΠV − 𝐼V𝜇V)

𝛽
2

𝜇V
(ΠV − 2𝐼V𝜇V) − 𝜇V − 𝐼ℎ

𝛽
1

1 + 𝛼
2
𝐼
ℎ

]
]
]
]
]
]
]
]

]

. (15)

The second additive compound matrix of 𝐽(𝐸∗) is given by

𝐽
[2]
=

[
[
[
[
[
[
[
[

[

𝑏
11

𝑆
ℎ

𝛿
1

(1 + 𝛼
1
𝐼V)
2
+ 𝑆
ℎ
𝜃

𝛿
2

(1 + 𝛼
1
𝐼V)
2
𝑆
ℎ

𝛿
1

(1 + 𝛼
1
𝐼V)
2
+ 𝑆
ℎ
𝜃

𝛿
2

(1 + 𝛼
1
𝐼V)
2

𝛽
1

𝜇V(1 + 𝛼2𝐼ℎ)
2
(ΠV − 𝐼V𝜇V) 𝑏

22
0

0 𝐼V
𝛿
1

1 + 𝛼
1
𝐼V
+ 𝐼V𝜃

𝛿
2

1 + 𝛼
1
𝐼V

𝑏
33

]
]
]
]
]
]
]
]

]

, (16)

where

𝑏
11
= −𝜇
ℎ
− 𝐼V

𝛿
1

1 + 𝛼
1
𝐼V
− 𝐼V𝜃

𝛿
2

1 + 𝛼
1
𝐼V
− 𝜔,

𝑏
22
= − 𝜇

ℎ
− 𝐼V

𝛿
1

1 + 𝛼
1
𝐼V
− 𝐼V𝜃

𝛿
2

1 + 𝛼
1
𝐼V

+
𝛽
2

𝜇V
(ΠV − 2𝐼V𝜇V) − 𝜇V − 𝐼ℎ

𝛽
1

1 + 𝛼
2
𝐼
ℎ

,

𝑏
33
= −𝜔 +

𝛽
2

𝜇V
(ΠV − 2𝐼V𝜇V) − 𝜇V − 𝐼ℎ

𝛽
1

1 + 𝛼
2
𝐼
ℎ

.

(17)

Thematrix𝐵 = 𝑃
𝑓
𝑃
−1
+𝑃𝐽
[2]
𝑃
−1 can be written in block form

as 𝐵 = ( 𝐵11 𝐵12
𝐵21 𝐵22

), with

𝐵
11
= −𝜇
ℎ
− 𝐼V

𝛿
1

1 + 𝛼
1
𝐼V
− 𝐼V𝜃

𝛿
2

1 + 𝛼
1
𝐼V
− 𝜔,

𝐵
12
= (

𝐼V

𝐼
ℎ

(𝑆
ℎ

𝛿
1

(1 + 𝛼
1
𝐼V)
2
+ 𝑆
ℎ
𝜃

𝛿
2

(1 + 𝛼
1
𝐼V)
2
) ,

𝐼V

𝐼
ℎ

(𝑆
ℎ

𝛿
1

(1 + 𝛼
1
𝐼V)
2
+ 𝑆
ℎ
𝜃

𝛿
2

(1 + 𝛼
1
𝐼V)
2
)) ,

𝐵
21
= (

𝐼
ℎ

𝐼V

𝛽
1

𝜇V(1 + 𝛼2𝐼ℎ)
2
(ΠV − 𝐼V𝜇V)

0

) ,

𝐵
22
= (

𝑀
22
+
𝐼


ℎ

𝐼
ℎ

−
𝐼


V

𝐼V
0

𝐼V
𝛿
1

1 + 𝛼
1
𝐼V
+ 𝐼V𝜃

𝛿
2

1 + 𝛼
1
𝐼V

𝑀
33
+
𝐼


ℎ

𝐼
ℎ

−
𝐼


V

𝐼V

),

(18)

where

𝑀
22
= − 𝜇

ℎ
− 𝐼V

𝛿
1

1 + 𝛼
1
𝐼V
− 𝐼V𝜃

𝛿
2

1 + 𝛼
1
𝐼V

+
𝛽
2

𝜇V
(ΠV − 2𝐼V𝜇V) − 𝜇V − 𝐼ℎ

𝛽
1

1 + 𝛼
2
𝐼
ℎ

,

𝑀
33
= −𝜔 +

𝛽
2

𝜇V
(ΠV − 2𝐼V𝜇V) − 𝜇V − 𝐼ℎ

𝛽
1

1 + 𝛼
2
𝐼
ℎ

.

(19)

Consider the norm in 𝑅
3 as |(𝑢, V, 𝑤)| = max(|𝑢|, |V| +

|𝑤|), where (𝑢, V, 𝑤) denotes the vector in 𝑅3. The Lozinskĭı
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measure with respect to this norm is defined as 𝜇(𝐵) ≤

sup(𝑔
1
, 𝑔
2
), where

𝑔
1
= 𝜇
1
(𝐵
11
) +

𝐵12
 , 𝑔

2
= 𝜇
1
(𝐵
22
) +

𝐵21
 . (20)

From system (3) we can write

𝐼


ℎ

𝐼
ℎ

=
𝐼V

𝐼
ℎ

(𝑆
ℎ

𝛿
1

1 + 𝛼
1
𝐼V
+ 𝑆
ℎ
𝜃

𝛿
2

1 + 𝛼
1
𝐼V
) − 𝜔,

𝐼


V

𝐼V
=
𝐼
ℎ

𝐼V

𝛽
1

𝜇V (1 + 𝛼2𝐼ℎ)
(ΠV − 𝜇V𝐼V) +

𝛽
2

𝜇V
(ΠV − 𝜇V𝐼V) − 𝜇V.

(21)

Since 𝐵
11
is a scalar, its Lozinskĭı measure with respect to

any vector norm in 𝑅1 will be equal to 𝐵
11
. Thus

𝐵
11
= − 𝜇

ℎ
− 𝐼V

𝛿
1

1 + 𝛼
1
𝐼V
− 𝐼V𝜃

𝛿
2

1 + 𝛼
1
𝐼V
− 𝜔,

𝐵12
 =

𝐼V

𝐼
ℎ

(𝑆
ℎ

𝛿
1

(1 + 𝛼
1
𝐼V)
2
+ 𝑆
ℎ
𝜃

𝛿
2

(1 + 𝛼
1
𝐼V)
2
) ,

(22)

and 𝑔
1
will become

𝑔
1
= − 𝜇

ℎ
− 𝐼V

𝛿
1

1 + 𝛼
1
𝐼V
− 𝐼V𝜃

𝛿
2

1 + 𝛼
1
𝐼V

− 𝜔 +
𝐼V

𝐼
ℎ

(𝑆
ℎ

𝛿
1

(1 + 𝛼
1
𝐼V)
2
+ 𝑆
ℎ
𝜃

𝛿
2

(1 + 𝛼
1
𝐼V)
2
)

𝑔
1
=
𝐼


ℎ

𝐼
ℎ

− 𝜇
ℎ
− 𝐼V

𝛿
1

1 + 𝛼
1
𝐼V
− 𝐼V𝜃

𝛿
2

1 + 𝛼
1
𝐼V
.

(23)

Also |𝐵
21
| = (𝐼

ℎ
/𝐼V)(𝛽1/𝜇V(1 + 𝛼2𝐼ℎ)

2
)(ΠV − 𝐼V𝜇V), |𝐵12|

and |𝐵
21
| are the operator norms of 𝐵

12
and 𝐵

21
which are

mapping from 𝑅
2 to 𝑅 and from 𝑅 to 𝑅2, respectively, and 𝑅2

is endowed with the 𝑙
1
norm. 𝜇

1
(𝐵
22
) is the Lozinskĭı measure

of 2 × 2matrix 𝐵
22
with respect to 𝑙

1
norm in 𝑅2. Consider

𝜇
1
(𝐵
22
) = sup{𝑀

22
+
𝐼


ℎ

𝐼
ℎ

−
𝐼


V

𝐼V
+ 𝐼V

𝛿
1

1 + 𝛼
1
𝐼V

+𝐼V𝜃
𝛿
2

1 + 𝛼
1
𝐼V
,𝑀
33
+
𝐼


ℎ

𝐼
ℎ

−
𝐼


V

𝐼V
}

= sup{−𝜇
ℎ
− 𝐼V

𝛿
1

1 + 𝛼
1
𝐼V
− 𝐼V𝜃

𝛿
2

1 + 𝛼
1
𝐼V

+
𝛽
2

𝜇V
(ΠV − 2𝐼V𝜇V) − 𝜇V − 𝐼ℎ

𝛽
1

1 + 𝛼
2
𝐼
ℎ

+
𝐼


ℎ

𝐼
ℎ

−
𝐼
ℎ

𝐼V

𝛽
1

𝜇V (1 + 𝛼2𝐼ℎ)
(ΠV − 𝜇V𝐼V)

−
𝛽
2

𝜇V
(ΠV − 𝜇V𝐼V) + 𝜇V + 𝐼V

𝛿
1

1 + 𝛼
1
𝐼V

+ 𝐼V𝜃
𝛿
2

1 + 𝛼
1
𝐼V
− 𝜔 +

𝛽
2

𝜇V
(ΠV − 2𝐼V𝜇V)

− 𝜇V − 𝐼ℎ
𝛽
1

1 + 𝛼
2
𝐼
ℎ

+
𝐼


ℎ

𝐼
ℎ

−
𝐼
ℎ

𝐼V

𝛽
1

𝜇V (1 + 𝛼2𝐼ℎ)
(ΠV − 𝜇V𝐼V)

−
𝛽
2

𝜇V
(ΠV − 𝜇V𝐼V) + 𝜇V} ,

𝜇
1
(𝐵
22
) =

𝐼


ℎ

𝐼
ℎ

−
𝛽
2

𝜇V
(𝐼V𝜇V)

−
𝐼
ℎ

𝐼V

𝛽
1

𝜇V (1 + 𝛼2𝐼ℎ)
(ΠV − 𝜇V𝐼V) − 𝛽1,

(24)

where

𝛽
1
= min{𝐼

ℎ

𝛽
1

1 + 𝛼
2
𝐼
ℎ

+ 𝜇
ℎ
, 𝜔 + 𝐼

ℎ

𝛽
1

1 + 𝛼
2
𝐼
ℎ

} . (25)

Hence 𝑔
2
≤ (𝐼


ℎ
/𝐼
ℎ
) − (𝛽

2
/𝜇V)(𝐼V𝜇V) − 𝛽1.

Thus

𝜇 (𝐵) = sup {𝑔
1
, 𝑔
2
}

≤ sup{
𝐼


ℎ

𝐼
ℎ

− 𝜇
ℎ
− 𝐼V

𝛿
1

1 + 𝛼
1
𝐼V

−𝐼V𝜃
𝛿
2

1 + 𝛼
1
𝐼V
,
𝐼


ℎ

𝐼
ℎ

−
𝛽
2

𝜇V
(𝐼V𝜇V) − 𝛽1} ,

𝜇 (𝐵) ≤
𝐼


ℎ

𝐼
ℎ

− 𝛽
2
,

(26)

where

𝛽
2
= min{𝜇

ℎ
+ 𝐼V

𝛿
1

1 + 𝛼
1
𝐼V
+ 𝐼V𝜃

𝛿
2

1 + 𝛼
1
𝐼V
,
𝛽
2

𝜇V
(𝐼V𝜇V) + 𝛽1} .

(27)

Since (3) is uniformly persistent when 𝑅
0
> 1, so for 𝑇 > 0

such that 𝑡 > 𝑇 implies 𝐼
ℎ
(𝑡) ≥ 𝑐, 𝐼V(𝑡) ≥ 𝑐 and (1/𝑡) log 𝐼ℎ(𝑡) <

𝛽
2
/2 for all (𝑆

ℎ
(0), 𝐼
ℎ
(0), 𝐼V(0)) ∈ 𝐾.

Thus

1

𝑡
∫

𝑡

0

𝜇 (𝐵) 𝑑𝑡 <
log 𝐼
ℎ
(𝑡)

𝑡
− 𝛽
2
< −

𝛽
2

2
, (28)

for all (𝑆
ℎ
(0), 𝐼
ℎ
(0), 𝐼V(0)) ∈ 𝐾, which further implies that

𝑞
2
< 0.Therefore all the conditions ofTheorem 4 are satisfied.

Hence unique endemic equilibrium𝐸
∗ is globally stable inΩ.
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Figure 1: The infected population for Π
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Figure 2: The effect of 𝜇V on infected pine trees forΠ
ℎ
= 0.22,ΠV =

0.32, 𝜇
ℎ
= 0.02, 𝜔 = 0.03, 𝜇V = 0.004, 0.0058, 0.09, 𝛽
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6. Discussions and Simulations

In this paper, pine wilt disease transmission model with
nonlinear incidence rates and horizontal transmission is
proposed and analyzed. The basic reproduction number,
𝑅
0
, of the model is obtained and with the help of this

reproduction number the asymptotic behavior of themodel is
discussed.The variation of infected hosts and infected vectors
is shown in Figure 1. It is not meaningful to consider the
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saturation level when transmission occurred during mating.
Thus bilinear incidence has been considered. By simple
calculation we see that
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Figure 5: The effect of 𝜔 on infected vectors for Π
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𝜕𝑅
0

𝜕𝜇V
= −

2

𝜔𝜇
ℎ
𝜇3V
ΠV (𝜔𝛽2𝜇ℎ + 𝛽1𝛿1Πℎ + 𝜃𝛽1𝛿2Πℎ) < 0,

𝜕𝑅
0

𝜕𝜔
= −

1

𝜔2

𝛽
1

𝜇
ℎ

Π
ℎ

𝜇2V
ΠV (𝛿1 + 𝜃𝛿2) < 0,

(29)

whichmeans that𝑅
0
is a decreasing function of 𝜇V and𝜔.The

question arises, which parameter is more crucial in order to
decrease the reproductive number? By using the definition
given in [8] and parameter values Π

ℎ
= 100, ΠV = 400,

𝛽
2
= 0.00034, 𝜇V = 0.00054, 𝛽

1
= 0.4, 𝜇

ℎ
= 0.000274,

𝜔 = 0.00137, 𝛿
1
= 0.01, 𝜃 = 0.00304, and 𝛿

2
= 0.01, we

see that the sensitivity index of the reproductive number with
respect to𝜇V is−2 andwith respect to𝜔 is−1. Itmeans that the
most sensitive parameter for𝑅

0
is 𝜇V. Increasing themortality

rate of Monochamus alternatus by 10% decreases 𝑅
0
by 20%.

Also, increasing the exploitation rate of infected pines by 10%
decreases 𝑅

0
by 10%. Thus control strategies, for example,

setting out beetle traps, setting vertical wood traps, and using
chemicals to kill sawyer beetles, by cutting down dead pine
trees and disposing of them before the emergence of beetles
can be useful for eradicating the disease.

The above mentioned measures are very effective to con-
trol pine wilt disease but they have not yet been practiced to
eradicate pine wilt disease ultimately because these measures
require more cost and labor and even entail danger of forest
fires due to which most owners of forests hesitate to use these
measures.

However, we can decrease the endemic level of the disease
by increasing the parameters 𝜇V and 𝜔. Figures 2, 3, 4, and
5 show different endemic levels of 𝐼V and 𝐼ℎ with respect to
the parameters 𝜇V and 𝜔. We see that by increasing these

parameters the infective levels of pine trees and vectors
decrease.
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