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By using the formula of the 𝜀-subdifferential for the sum of a convex function with a composition of convex functions, some
necessary and sufficient optimality conditions for a DC programming problem involving a composite function are obtained. As
applications, a composed convex optimization problem, a DC optimization problem, and a convex optimization problem with a
linear operator are examined at the end of this paper.

1. Introduction

Let 𝑋 and 𝑌 be two real locally convex Hausdorff topology
vector spaceswith their dual spaces𝑋∗ and𝑌∗, endowedwith
the weak∗ topologies 𝑤(𝑋∗, 𝑋) and 𝑤(𝑌∗, 𝑌), respectively.
Let 𝐾 ⊆ 𝑌 be a nonempty closed convex cone which defined
the partial order “≤

𝐾
” of 𝑌; namely,

𝑦
1
≤
𝐾
𝑦
2
⇐⇒ 𝑦

2
− 𝑦
1
∈ 𝐾, for any 𝑦

1
, 𝑦
2
∈ 𝑌. (1)

We attach an element∞
𝑌
∉ 𝑌 which is the greatest element

with respect to “≤
𝐾
” and let𝑌∙ = 𝑌∪{∞

𝑌
}.Then, for any𝑦 ∈

𝑌
∙, one has 𝑦≤

𝐾
∞
𝑌
and we define the following operations

on 𝑌∙:

𝑦 + (∞
𝑌
) = (∞

𝑌
) + 𝑦 = ∞

𝑌
, 𝑡 (∞

𝑌
) = ∞

𝑌
,

for any𝑦 ∈ 𝑌, 𝑡 ≥ 0.
(2)

Let 𝑓
1
, 𝑓
2
: 𝑋 → R := R ∪ {+∞} and 𝑔 : 𝑌 → R be proper,

convex, and lower semicontinuous functions, and let ℎ :

𝑋 → 𝑌
∙ be a proper, 𝐾-convex, and star 𝐾-lower semicon-

tinuous function such that ℎ(dom𝑓
1
∩ dom𝑓

2
) ∩ dom𝑔 ̸= 0.

Moreover, we assume that 𝑔 is a 𝐾-increasing function; that
is,

for any 𝑥, 𝑦 ∈ 𝑌 such that 𝑥≤
𝐾
𝑦, we have 𝑔 (𝑥) ≤ 𝑔 (𝑦) .

(3)

In this paper, we deal with a new class of DC programming
involving a composite function given in the following form:

inf
𝑥∈𝑋

{𝑓
1
(𝑥) − 𝑓

2
(𝑥) + 𝑔 ∘ ℎ (𝑥)} .

(𝑃)

The problem (𝑃) is very general in the sense that it includes,
as particular cases, many different problems as, for example, a
composed convex optimization problem, a DC optimization
problem, and a convex optimization problem with a linear
operator; see [1–12] and the references therein. The interest
of such a general problem is that it unifies all these partic-
ular problems in a convenient way. Moreover, many results
obtained for one of these problems can be extended with
suitable modifications to the problem (𝑃).

Recently, optimality conditions for global or local mini-
mizers of some special kinds of the problem (𝑃) have been
studied by many researchers; see [13–25] and the references
therein. Here, we specially mention the works on optimality
defined via subdifferential calculus due to [18, 24, 25]. By
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using a formula for the 𝜀-subdifferential of the sum of a
convex function with a composition of convex functions, Boţ
et al. [18] have obtained necessary and sufficient conditions
for the 𝜀-optimal solutions of composed convex optimization
problems. By using some suitable conditions and the notions
of strong subdifferential and epsilon-subdifferential, Guo
and Li [24] obtained necessary and sufficient optimality
conditions for an epsilon-weak Pareto minimal point and
an epsilon-proper Pareto minimal point of a DC vector
optimization problem. Fang and Zhao [25] introduced the
local and global KKT type conditions for a DC optimization
problem. Then, by using properties of the subdifferentials of
the involved functions, they obtained some sufficient and/or
necessary conditions for these two types of optimality con-
ditions. The purpose of this paper is to establish optimality
conditions for this optimization problem (𝑃). To do that,
by using the properties of the epigraph of the conjugate
functions, we first introduce some closedness conditions
and investigate some characterizations of these closedness
conditions via the formula of the 𝜀-subdifferential. Then, we
obtain some necessary and sufficient optimality conditions.
Moreover, at the end of this paper, we examine a composed
convex optimization problem, a DC optimization problem,
and a convex optimization problem with a linear operator.

The paper is organized as follows. In Section 2, we recall
some notions and give some preliminary results. In Section 3,
we obtain some optimality conditions for the problem (𝑃)

in terms of the subdifferentials and the 𝜀-subdifferentials of
the functions. In Section 4, we give some special cases of
our general results, which have been treated in the previous
papers.

2. Mathematical Preliminaries

Throughout this paper, let𝑋 and 𝑌 be two real locally convex
Hausdorff topology vector spaces. Let 𝐷 be a set in 𝑋; the
interior (resp., closure, convex hull, and convex cone hull) of
𝐷 is denoted by int𝐷 (resp., cl𝐷, co𝐷, and cone𝐷). Thus,
if 𝑊 ⊆ 𝑋

∗, then cl𝑊 denotes the weak∗ closure of 𝑊. We
shall adopt the convention that cone𝐷 = {0} when 𝐷 is an
empty set. Let 𝐷∗ = {𝑥∗ ∈ 𝑋∗ : ⟨𝑥∗, 𝑥⟩ ≥ 0, ∀𝑥 ∈ 𝑋} be the
dual cone of 𝐷. The indicator function 𝛿

𝐷
: 𝑋 → R of 𝑋 is

defined by

𝛿
𝐷
(𝑥) = {

0, if 𝑥 ∈ 𝐷,
+∞, if 𝑥 ∉ 𝐷.

(4)

The support function 𝜎
𝐷
: 𝑋
∗

→ R of𝐷 is defined by

𝜎
𝐷
(𝑥
∗

) = sup
𝑥∈𝐷

⟨𝑥
∗

, 𝑥⟩ . (5)

Let 𝑓 : 𝑋 → R be an extended real valued function. The
effective domain and the epigraph are defined by

dom𝑓 = {𝑥 ∈ 𝑋 : 𝑓 (𝑥) < +∞} , (6)

epi𝑓 = {(𝑥, 𝑟) ∈ 𝑋 ×R : 𝑓 (𝑥) ≤ 𝑟} , (7)

respectively. 𝑓 is said to be proper if and only if its effective
domain is nonempty and𝑓(𝑥) > −∞.The conjugate function
𝑓
∗

: 𝑋
∗

→ R of 𝑓 is defined by

𝑓
∗

(𝑥
∗

) = sup
𝑥∈𝑋

{⟨𝑥
∗

, 𝑥⟩ − 𝑓 (𝑥)} . (8)

Let 𝑥 ∈ dom𝑓. For any 𝜀 ≥ 0, the 𝜀-subdifferential of 𝑓 at 𝑥
is the convex set defined by

𝜕
𝜀
𝑓 (𝑥)

= {𝑥
∗

∈ 𝑋
∗

: 𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨𝑥
∗

, 𝑥 − 𝑥⟩ − 𝜀, ∀𝑥 ∈ 𝑋} .

(9)

When 𝑥 ∉ dom𝑓, we define that 𝜕
𝜀
𝑓(𝑥) = 0. If 𝜀 = 0, the

set 𝜕𝑓(𝑥) := 𝜕
0
𝑓(𝑥) is the classical subdifferential of convex

analysis. It is easy to prove that, for any 𝑥 ∈ dom𝑓 and 𝑥∗ ∈
𝑋
∗,

𝑓 (𝑥) + 𝑓
∗

(𝑥
∗

) ≤ ⟨𝑥
∗

, 𝑥⟩ + 𝜀 ⇐⇒ 𝑥
∗

∈ 𝜕
𝜀
𝑓 (𝑥) . (10)

Let 𝐸 be a convex set of 𝑋. The 𝜀-normal cone to 𝐸 at a
point 𝑥 ∈ 𝐸 is defined by 𝑁

𝜀
(𝐸, 𝑥) = {𝑥

∗

∈ 𝑋
∗

: ⟨𝑥
∗

, 𝑥 −

𝑥⟩ ≤ 𝜀, for any 𝑥 ∈ 𝐸}. If 𝜀 = 0, 𝑁
0
(𝐸, 𝑥) is the normal

cone 𝑁(𝐸, 𝑥) of convex analysis. Moreover, it is easy to see
that𝑁

𝜀
(𝐸, 𝑥) = 𝜕

𝜀
𝛿
𝐸
(𝑥).

Let 𝐴 : 𝑋 → 𝑌 be a linear continuous mapping. The
adjoint mapping 𝐴∗ : 𝑌∗ → 𝑋

∗ of 𝐴 is defined by

⟨𝐴
∗

𝑦
∗

, 𝑥⟩ = ⟨𝑦
∗

, 𝐴𝑥⟩, for any (𝑥, 𝑦∗) ∈ 𝑋 × 𝑌∗. (11)

The infimal function 𝐴𝑓 : 𝑌 → R of 𝑓 through 𝐴 is defined
by

𝐴𝑓 (𝑦) = inf {𝑓 (𝑥) : 𝑥 ∈ 𝑋,𝐴𝑥 = 𝑦} , for any 𝑦 ∈ 𝑌.
(12)

Let ℎ : 𝑋 → 𝑌
∙ be an extended vector valued function.

The domain and the𝐾-epigraph of ℎ are defined by

dom ℎ = {𝑥 ∈ 𝑋 : ℎ (𝑥) ∈ 𝑌} , (13)

epi
𝐾
ℎ = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 : 𝑦 ∈ ℎ (𝑥) + 𝐾} , (14)

respectively. ℎ is said to be proper if and only if dom ℎ ̸= 0. ℎ is
said to be a𝐾-convex function if and only if, for any 𝑥, 𝑦 ∈ 𝑋
and 𝑡 ∈ [0, 1], we have

ℎ (𝑡𝑥 + (1 − 𝑡) 𝑦) ≤
𝐾
𝑡ℎ (𝑥) + (1 − 𝑡) ℎ (𝑦) . (15)

For any subset𝑊 ⊆ 𝑌, we denote

ℎ
−1

(𝑊)

= {𝑥 ∈ 𝑋 : there exists 𝑦 ∈ 𝑊 such that ℎ (𝑥) = 𝑦} .
(16)

Moreover, let 𝜆 ∈ 𝐾∗. The function (𝜆ℎ) : 𝑋 → R is defined
by

(𝜆ℎ) (𝑥) = {

⟨𝜆, ℎ (𝑥)⟩ , if 𝑥 ∈ dom ℎ,
+∞, otherwise.

(17)

We say that ℎ is star 𝐾-lower semicontinuous if and only if
(𝜆ℎ) is lower semicontinuous, for any 𝜆 ∈ 𝐾∗.

Now, let us recall the following result which will be used
in the following section.



Abstract and Applied Analysis 3

Lemma 1 (see [26]). Let 𝑓
1
, 𝑓
2
: 𝑋 → R be proper, convex,

and lower semicontinuous functions. Then

(i) 𝑥 is a global optimal solution of inf
𝑥∈𝑋
{𝑓
1
(𝑥) − 𝑓

2
(𝑥)}

if and only if, for any 𝜀 ≥ 0, 𝜕
𝜀
𝑓
2
(𝑥) ⊂ 𝜕

𝜀
𝑓
1
(𝑥).

(ii) If 𝑥 is a local optimal solution of inf
𝑥∈𝑋
{𝑓
1
(𝑥)−𝑓

2
(𝑥)},

then 𝜕𝑓
2
(𝑥) ⊂ 𝜕𝑓

1
(𝑥).

3. Optimality Conditions for (𝑃)

In this section, we will employ the closedness qualification
condition to derive necessary optimality conditions as well as
necessary and sufficient optimality conditions for local and
global minimizers in DC programs of type (𝑃). Now, we first
recall the closedness qualification condition (CQC).

Definition 2 (see [3]). The problem (𝑃) is said to satisfy the
closedness qualification condition (CQC) if the set

epi𝑓∗
1
+ ⋃

𝜆∈dom𝑔∗
(epi (𝜆ℎ)∗ + (0, 𝑔∗ (𝜆)))

(CQC)

is weak∗ closed in the space𝑋∗ ×R.

The next lemma provides several characterizations of
the closedness qualification condition (CQC). Moreover, the
condition will be crucial in the sequel and it also deserves
some attention for its independent interest.

Lemma 3 (see [3]). The closedness qualification condition
(CQC) holds if and only if, for any 𝑥 ∈ dom𝑓

1
∩ ℎ
−1

(dom𝑔)
and any 𝜀 ≥ 0,

𝜕
𝜀
(𝑓
1
+ 𝑔 ∘ ℎ) (𝑥)

= ⋃

𝜀
1
,𝜀
2
,𝜀
3
≥0,

𝜀
1
+𝜀
2
+𝜀
3
=𝜀

{𝜕
𝜀
1

𝑓
1
(𝑥) + 𝜕

𝜀
2

(𝜆ℎ) (𝑥) : 𝜆 ∈ 𝐾
∗

∩ 𝜕
𝜀
3

𝑔 (ℎ (𝑥))} .

(18)

Taking 𝜀 = 0 in Lemma 3, we can easily obtain the
following subdifferential sum rule.

Corollary 4. If the closedness qualification condition (CQC)
holds, then, for any 𝑥 ∈ dom𝑓

1
∩ ℎ
−1

(dom𝑔),

𝜕 (𝑓
1
+ 𝑔 ∘ ℎ) (𝑥) = 𝜕𝑓

1
(𝑥) + ⋃

𝜆∈𝐾
∗
∩𝜕𝑔(ℎ(𝑥))

𝜕 (𝜆ℎ) (𝑥) . (19)

Now, by using the closedness qualification condition and
the 𝜀-subdifferential sum rule, we establish necessary and
sufficient optimality conditions for global optimal solution of
(𝑃).

Theorem 5. Let 𝑥 ∈ dom𝑓
1
∩ dom𝑓

2
∩ ℎ
−1

(dom𝑔). Suppose
that the closedness qualification condition (CQC) holds. Then,
𝑥 is a global optimal solution of (𝑃) if and only if, for any 𝜀 ≥ 0,
there exist 𝜀

1
, 𝜀
2
, 𝜀
3
≥ 0 and 𝜆 ∈ 𝐾∗ ∩ 𝜕

𝜀
3

𝑔(ℎ(𝑥)) such that

𝜕
𝜀
𝑓
2
(𝑥) ⊆ 𝜕

𝜀
1

𝑓
1
(𝑥) + 𝜕

𝜀
2

(𝜆ℎ) (𝑥) ,

𝜀
1
+ 𝜀
2
+ 𝜀
3
= 𝜀.

(20)

Proof. It is clear that (𝑃) can be rewritten as

inf
𝑥∈𝑋

{(𝑓
1
+ 𝑔 ∘ ℎ) (𝑥) − 𝑓

2
(𝑥)} . (21)

Then, by Lemma 1, 𝑥 is a global optimal solution of (𝑃) if and
only if, for any 𝜀 ≥ 0,

𝜕
𝜀
𝑓
2
(𝑥) ⊂ 𝜕

𝜀
(𝑓
1
+ 𝑔 ∘ ℎ) (𝑥) . (22)

Moreover, by Lemma 3, this is further equivalent to

𝜕
𝜀
𝑓
2
(𝑥)

⊆ ⋃

𝜀
1
,𝜀
2
,𝜀
3
≥0,

𝜀
1
+𝜀
2
+𝜀
3
=𝜀

{𝜕
𝜀
1

𝑓
1
(𝑥) + 𝜕

𝜀
2

(𝜆ℎ) (𝑥) : 𝜆 ∈ 𝐾
∗

∩ 𝜕
𝜀
3

𝑔 (ℎ (𝑥))} .

(23)

This means that, for any 𝜀 ≥ 0, there exist 𝜀
1
, 𝜀
2
, 𝜀
3
≥ 0 and

𝜆 ∈ 𝐾
∗

∩ 𝜕
𝜀
3

𝑔(ℎ(𝑥)) such that 𝜀
1
+ 𝜀
2
+ 𝜀
3
= 𝜀 and 𝜕

𝜀
𝑓
2
(𝑥) ⊂

𝜕
𝜀
1

𝑓
1
(𝑥) + 𝜕

𝜀
2

(𝜆ℎ)(𝑥). This completes the proof.

The following result establishes necessary optimality con-
ditions for local optimal solution of (𝑃).

Corollary 6. Let 𝑥 ∈ dom𝑓
1
∩dom𝑓

2
∩ℎ
−1

(dom𝑔). Suppose
that the closedness qualification condition (CQC) holds. If 𝑥
is a local optimal solution of (𝑃), then there exists 𝜆 ∈ 𝐾∗ ∩
𝜕𝑔(ℎ(𝑥)) such that

𝜕𝑓
2
(𝑥) ⊆ 𝜕𝑓

1
(𝑥) + 𝜕 (𝜆ℎ) (𝑥) . (24)

Proof. If 𝑥 is a local optimal solution of (𝑃), then, by
Lemma 1,

𝜕𝑓
2
(𝑥) ⊂ 𝜕 (𝑓

1
+ 𝑔 ∘ ℎ) (𝑥) . (25)

By Corollary 4,

𝜕𝑓
2
(𝑥) ⊆ 𝜕𝑓

1
(𝑥) + ⋃

𝜆∈𝐾
∗
∩𝜕𝑔(ℎ(𝑥))

𝜕 (𝜆ℎ) (𝑥) , (26)

which means that there exists 𝜆 ∈ 𝐾∗ ∩ 𝜕𝑔(ℎ(𝑥)) such that

𝜕𝑓
2
(𝑥) ⊆ 𝜕𝑓

1
(𝑥) + 𝜕 (𝜆ℎ) (𝑥) . (27)

This completes the proof.

4. The Special Cases

In this section, we will give some special cases of our general
results, which have been treated in the previous papers.

4.1. A Composed Convex Optimization Problem. When
𝑓
2
(𝑥) = 0, (𝑃) becomes the following composed convex

optimization problem:

inf
𝑥∈𝑋

{𝑓
1
(𝑥) + 𝑔 ∘ ℎ (𝑥)} . (𝑃

1
)

As some consequences of the results which have been
treated in Section 3, we obtain the following results for (𝑃

1
)

which was established in [18].
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Theorem 7. Let 𝑥 ∈ dom𝑓
1
∩ ℎ
−1

(dom𝑔). Suppose that the
closedness qualification condition (𝐶𝑄𝐶) holds. Then, 𝑥 is an
𝜀-optimal solution of (𝑃

1
) if and only if, for any 𝜀 ≥ 0, there

exist 𝜀
1
, 𝜀
2
, 𝜀
3
≥ 0 and 𝜆 ∈ 𝐾∗ ∩ 𝜕

𝜀
3

𝑔(ℎ(𝑥)) such that

0 ∈ 𝜕
𝜀
1

𝑓
1
(𝑥) + 𝜕

𝜀
2

(𝜆ℎ) (𝑥) ,

𝜀
1
+ 𝜀
2
+ 𝜀
3
= 𝜀.

(28)

Corollary 8. Let 𝑥 ∈ dom𝑓
1
∩ ℎ
−1

(dom𝑔). Suppose that the
closedness qualification condition (𝐶𝑄𝐶) holds. Then, 𝑥 is a
global optimal solution of (𝑃) if and only if there exists 𝜆 ∈
𝐾
∗

∩ 𝜕𝑔(ℎ(𝑥)) such that

0 ∈ 𝜕𝑓
1
(𝑥) + 𝜕 (𝜆ℎ) (𝑥) . (29)

4.2. A Constrained DCOptimization Problem. In this subsec-
tion, we consider the following DC optimization problem:

inf
𝑥∈𝑋,

ℎ(𝑥)∈−𝐾

{𝑓
1
(𝑥) − 𝑓

2
(𝑥)} .

(𝑃
2
)

Let 𝑔 = 𝛿
{−𝐾}

. Obviously, 𝑔 is a proper, convex, lower
semicontinuous, and 𝐾-increasing function. Then (𝑃

2
) can

be seen as a particular case of the problem (𝑃), since it can be
rewritten as

inf
𝑥∈𝑋

{𝑓
1
(𝑥) − 𝑓

2
(𝑥) + 𝛿

−𝐾
∘ ℎ} . (30)

Since𝑔∗ = 𝛿
𝐾
∗ , we obtain that dom𝑔∗ = 𝐾∗.Then, condition

(CQC) becomes

epi𝑓∗
1

+ ⋃

𝜆∈𝐾
∗

epi (𝜆ℎ)∗ is weak∗ closed in the space 𝑋∗ ×R.

(CQC)
1

Moreover, by (10), we obtain that, for any 𝑦 ∈ −𝐾, 𝜆 ∈

𝜕
𝜀
𝛿
{−𝐾}
(𝑦) if and only if 𝜆 ∈ 𝐾∗ and 0 ≤ ⟨𝜆, 𝑦⟩ + 𝜀. Then,

by Lemma 3, we get the following result.

Lemma 9. The closedness qualification condition (CQC)
1

holds if and only if, for any 𝑥 ∈ dom𝑓
1
∩ ℎ
−1

(−𝐾) and any
𝜀 ≥ 0,

𝜕
𝜀
(𝑓
1
+ 𝛿
−𝐾
∘ ℎ) (𝑥)

= ⋃

𝜀
1
,𝜀
2
,𝜀
3
≥0,

𝜀
1
+𝜀
2
+𝜀
3
=𝜀

{𝜕
𝜀
1

𝑓
1
(𝑥) + 𝜕

𝜀
2

(𝜆ℎ) (𝑥) : 𝜆 ∈ 𝐾
∗

,

0 ≤ ⟨𝜆, ℎ (𝑥)⟩ + 𝜀
3
} .

(31)

Taking 𝜀 = 0 in Lemma 9, we can easily obtain the
following subdifferential sum rule.

Corollary 10. If the closedness qualification condition (CQC)
1

holds, then, for any 𝑥 ∈ dom𝑓
1
∩ ℎ
−1

(−𝐾),

𝜕 (𝑓
1
+ 𝛿
−𝐾
∘ ℎ) (𝑥) = 𝜕𝑓

1
(𝑥) + ⋃

𝜆∈𝐾
∗

𝜕 (𝜆ℎ) (𝑥) . (32)

Similarly, by using Lemma 9 and Corollary 10, we obtain
the following results.

Theorem11. Let𝑥 ∈ dom𝑓
1
∩dom𝑓

2
∩ℎ
−1

(−𝐾). Suppose that
the closedness qualification condition (𝐶𝑄𝐶)

1
holds. Then, 𝑥 is

a global optimal solution of (𝑃
2
) if and only if, for any 𝜀 ≥ 0,

there exist 𝜀
1
, 𝜀
2
, 𝜀
3
≥ 0, 𝜆 ∈ 𝐾∗ and 0 ≤ ⟨𝜆, ℎ(𝑥)⟩ + 𝜀

3
such

that

𝜕
𝜀
𝑓
2
(𝑥) ⊆ 𝜕

𝜀
1

𝑓
1
(𝑥) + 𝜕

𝜀
2

(𝜆ℎ) (𝑥) ,

𝜀
1
+ 𝜀
2
+ 𝜀
3
= 𝜀.

(33)

Corollary 12. Let 𝑥 ∈ dom𝑓
1
∩ dom𝑓

2
∩ ℎ
−1

(−𝐾). Suppose
that the closedness qualification condition (𝐶𝑄𝐶)

1
holds. If 𝑥

is a local optimal solution of (𝑃
2
) then there exists 𝜆 ∈ 𝐾∗ such

that

𝜕𝑓
2
(𝑥) ⊆ 𝜕𝑓

1
(𝑥) + 𝜕 (𝜆ℎ) (𝑥) . (34)

4.3. A Convex Optimization Problem with a Linear Operator.
Let 𝑓
2
≡ 0 and ℎ(𝑥) = 𝐴𝑥, for any 𝑥 ∈ 𝑋, where 𝐴 : 𝑋 → 𝑌

is a linear continuous mapping. Taking 𝐾 = {0}, one has that
ℎ is a 𝐾-convex function and 𝐾∗ = 𝑌∗. So, the problem (𝑃)
becomes

inf
𝑥∈𝑋

{𝑓 (𝑥) + 𝑔 (𝐴 (𝑥))} . (𝑃
3
)

Since

(𝜆ℎ)
∗

(𝑝) = {

0, if 𝐴∗𝜆 = 𝑝,
+∞, otherwise,

(35)

we get

epi (𝜆ℎ)∗ = {(𝑝, 𝑟) ∈ 𝑋∗ ×R : 𝑝 = 𝐴∗𝜆, 𝑟 ≥ 0} . (36)

Then

epi𝑓∗ + ⋃

𝜆∈dom𝑔∗
(epi (𝜆ℎ)∗ + (0, 𝑔∗ (𝜆)))

= epi𝑓∗ + (𝐴∗ × idR) epi𝑔
∗

.

(37)

Thus, the condition (CQC) becomes in this special case

epi𝑓∗

+ (𝐴
∗

× idR) epi𝑔
∗ is weak∗ closed in the space 𝑋∗ ×R.

(RC
𝐴
)

Moreover, for any 𝜀 ≥ 0, it is easy to see that 𝜕
𝜀
(𝜆ℎ)(𝑥) = 𝐴

∗

𝜆.
Then, by Lemma 3, we get the following result.

Lemma 13. The closedness qualification condition (RC
𝐴
)

holds if and only if, for any 𝑥 ∈ dom𝑓
1
∩ 𝐴
−1

(dom(𝑔)) and
any 𝜀 ≥ 0,

𝜕
𝜀
(𝑓
1
+ 𝑔 ∘ 𝐴) (𝑥) = ⋃

𝜀
1
,𝜀
3
≥0,

𝜀
1
+𝜀
3
=𝜀

{𝜕
𝜀
1

𝑓
1
(𝑥) + 𝐴

∗

𝜕
𝜀
3

𝑔 (𝐴𝑥)} .

(38)
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Taking 𝜀 = 0 in Lemma 13, we can easily obtain the
following subdifferential sum rule.

Corollary 14. If the closedness qualification condition (RC
𝐴
)

holds, then, for any 𝑥 ∈ dom𝑓
1
∩ 𝐴
−1

(dom(𝑔)),

𝜕 (𝑓
1
+ 𝑔 ∘ 𝐴) (𝑥) = 𝜕𝑓

1
(𝑥) + 𝐴

∗

𝜕𝑔 (𝐴𝑥) . (39)

Similarly, by using Lemma 13 and Corollary 14, we obtain
the following results.

Theorem 15. Let 𝑥 ∈ dom𝑓
1
∩ 𝐴
−1

(dom(𝑔)). Suppose that
the closedness qualification condition (𝑅𝐶

𝐴
) holds. Then, 𝑥 is

a 𝜀-optimal solution of (𝑃
3
) if and only if, for any 𝜀 ≥ 0, there

exist 𝜀
1
, 𝜀
3
≥ 0, such that

0 ∈ 𝜕
𝜀
1

𝑓
1
(𝑥) + 𝐴

∗

𝜕
𝜀
3

𝑔 (𝐴𝑥) ,

𝜀
1
+ 𝜀
3
= 𝜀.

(40)

Corollary 16. Let 𝑥 ∈ dom𝑓
1
∩ 𝐴
−1

(dom(𝑔)). Suppose that
the closedness qualification condition (𝑅𝐶

𝐴
) holds.Then, 𝑥 is a

global optimal solution of (𝑃
3
) if and only if there exists 𝜆 ∈ 𝐾∗

such that

0 ∈ 𝜕𝑓
1
(𝑥) + 𝐴

∗

𝜕𝑔 (𝐴𝑥) . (41)
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