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The problem of 𝐻
∞

control performance analysis of continuous-time systems with random abrupt changes is concerned in
this paper. By employing an augmented multiple mode-dependent Lyapunov-Krasovskii functional and using some integral
inequalities, new sufficient conditions are obtained relating to finite-time bounded and an𝐻

∞
performance index. The finite-time

𝐻
∞
control performance problem is solved and desired controller is given to ensure the system trajectory stays within a prescribed

bound during a given time interval. At last, two numerical examples are provided to show that our results are less conservative than
the existing ones.

1. Introduction

It is well known that Markovian jump systems were intro-
ducedwhen the physicalmodels are always subject to random
changes, which can be also regarded as a special class of
hybrid systems because of the structures are subject to
random abrupt changes [1]. In the recent years, there are
a lot of people towards to Markovian jump systems for its
widely applications, for example, target tracking, robotics,
manufacturing systems, aircraft control, and power systems
[2–4].Markovian jump systems are regarded as a special class
of stochastic systems which switches from one to another at
different time in the finite operation modes. Many important
topics have been studied forMarkovian jumping systems such
as stability, control synthesis, stabilization, and filter design
[5–7].

On the other hand, time delay is very common in prac-
tical dynamical systems, for example, networked control sys-
tems, chemical processes, communication systems, and so
on [8–20]. Therefore, during the past two decades, various
research topics have been considered for Markovian jump
systems with time-varying delays [8–14]. It worth pointing
out that when time delay is small enough in linearMarkovian
jump systems, the delay-dependent criteria are always less
conservative than delay-independent ones. Over the past few

years, for Markovian jump systems, many important topics
related to delay-dependent have been extensively studied [14,
15].

Generally speaking, finite-time stability is investigated to
address these transient performances of control systems in
finite-time interval. Up to now, the concept of finite-time
stability has been revisited with different systems, and many
important results are obtained for finite-time stability and
finite-time boundedness [21–26]. However, to the best of
authors’ knowledge, the stochastic finite-time𝐻

∞
control for

Markovian jump systems has not been fully studied. There is
some room for next investigation due to the fact that analysis
methods in existing references seem still conservative.

The major contribution of this paper is that we introduce
a newly Lyapunov-Krasovskii functional forMarkovian jump
system. Some sufficient conditions are obtained to ensure
the finite-time stability and bounded of the closed-loop
Markovian jump systems. Compared with traditional meth-
ods of MJSs, it is shown the less conservative results can be
obtained and the desired𝐻

∞
control performance is obtained

by employing mode-dependent Lyapunov functional instead
of mode-independent Lyapunov functional. The finite-time
bounded criterion can be dealt with in the terms of LMIs.
Finally, the effectiveness of the developed techniques is also
illustrated by two numerical examples.
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2. Preliminaries

Given the probability space (Ω, 𝐹, 𝑃), where Ω, 𝐹, and 𝑃

represent the sample space, the algebra of events, and the
probability measure defined on 𝐹, respectively, the following
Markovian jump systems over the probability space (Ω, 𝐹, 𝑃)

are considered:

�̇� (𝑡) = 𝐴
𝑟
𝑡

𝑥 (𝑡) + 𝐴
𝜏𝑟
𝑡

𝑥 (𝑡 − 𝜏
𝑟
𝑡

(𝑡)) + 𝐵
𝑟
𝑡

𝑢 (𝑡) + 𝐷
𝑟
𝑡

𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶
𝑟
𝑡

𝑥 (𝑡) + 𝐶
𝜏𝑟
𝑡

𝑥 (𝑡 − 𝜏
𝑟
𝑡

(𝑡)) + 𝐹
𝑟
𝑡

𝜔 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 = [−ℎ, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 represents the state vector of Markovian
jump system, 𝑢(𝑡) ∈ R𝑚 is the control input, 𝑧(𝑡) ∈ R𝑞

denotes the controlled output and𝜑(𝑡), 𝑡 = [−ℎ, 0], where 𝑟
0
∈

N is initial condition. 𝜔(𝑘) ∈ R𝑞 denotes the disturbance
input which satisfies

∫

𝑇

0

𝜔
⊺

(𝑡) 𝜔 (𝑡) 𝑑𝑡 ≤ 𝑑. (2)

Firstly, taking value on the finite setN = {1, 2, . . . , 𝑁}, let
the random form process {𝑟

𝑡
, 𝑡 ≥ 0} be the stochastic process

with transition rate matrix Ω = {𝜋
𝑖𝑗
}, 𝑖, 𝑗 ∈ N and let the

transition probabilities also be denoted as follows:

Pr (𝑟
𝑡+Δ

= 𝑗 | 𝑟
𝑡
= 𝑖) = 𝜌

𝑖𝑗
+ 𝜋

𝑖𝑗
Δ + 𝑜 (Δ) , (3)

where


𝑖𝑗
=

{

{

{

0, if 𝑖 ̸= 𝑗

1 if 𝑖 = 𝑗,

(4)

and Δ > 0, 𝜋
𝑖𝑗

≥ 0, for 𝑖 ̸= 𝑗, denotes the mode 𝑖 in time 𝑡 to
time 𝑡 + Δ with mode 𝑗,

−𝜋
𝑖𝑖
=

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜋
𝑖𝑗

(5)

for eachmode 𝑖 ∈ N, lim
Δ→0

+

(𝑜(Δ)/Δ) = 0. 𝜏
𝑖
(𝑡) denotes the

time-varying delay, which satisfies

0 < 𝜏
𝑖
(𝑡) ≤ ℎ

𝑖
< ∞,

̇𝜏
𝑖
(𝑡) ≤ 𝜇

𝑖
,

(6)

where ℎ = max{ℎ
𝑖
, 𝑖 ∈ N} is the given upper bound of time-

varying delays 𝜏
𝑖
(𝑡) and 𝜇 = max{𝜇

𝑖
, 𝑖 ∈ N} is the given upper

bound of ̇𝜏
𝑖
(𝑡). All the matrices are known matrices with the

appropriate dimension.

In this paper, the objective is to design a state feedback
controller as follows:

𝑢 (𝑡) = 𝐾
𝑖
𝑥 (𝑡) , (7)

where𝐾
𝑖
is the controller gains to be designed.

Definition 1. System (1) is said to be finite-time bounded with
respect to (𝑐

1
, 𝑐
2
, 𝑇, 𝑅, 𝑑), if condition (2) and the following

inequality hold:

sup
−ℎ≤𝜐≤0

E {𝑥
⊺

(𝜐) 𝑅𝑥 (𝜐) , �̇�
⊺

(𝜐) 𝑅�̇� (𝜐)} ≤ 𝑐
1

⇒ E {𝑥
⊺

(𝑡) 𝑅𝑥 (𝑡)} < 𝑐
2
, ∀𝑡 ∈ [0, 𝑇] ,

(8)

where 𝑐
2
> 𝑐

1
≥ 0 and 𝑅 > 0.

Definition 2 (see [8]). Considering system (1) with the
stochastic Lyapunov function 𝑉(𝑥

𝑡
, 𝑟
𝑡
), we get the weak

infinitesimal operator as follows:

£𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡) = lim

Δ𝑡→0

1

Δ𝑡

[E {𝑉 (𝑥
𝑡+Δ𝑡

, 𝑟
𝑡+Δ𝑡

, 𝑡 + Δ𝑡)}

−𝑉 (𝑥
𝑡
, 𝑖, 𝑡)]

=

𝜕

𝜕𝑡

𝑉 (𝑥
𝑡
, 𝑖, 𝑡) +

𝜕

𝜕𝑥

𝑉 (𝑥
𝑡
, 𝑖, 𝑡) �̇� (𝑡, 𝑖)

+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑉 (𝑥

𝑡
, 𝑗, 𝑡) .

(9)

Definition 3. Given a constant scalar 𝑇 > 0 and for all
admissible𝜔(𝑡) given in condition (2), if theMarkovian jump
system (1) is finite-time stochastic bounded and controller
outputs satisfy condition (7) with attenuation 𝛾 > 0,

E{∫

𝑇

0

𝑧
⊺

(𝑡) 𝑧 (𝑡) 𝑑𝑡} ≤ 𝛾
2

𝑒
𝜂𝑇

E{∫

𝑇

0

𝜔
⊺

(𝑡) 𝜔 (𝑡) 𝑑𝑡} .

(10)

The Markovian jump system (1) is called the finite-time
stochastic bounded with a disturbance attenuation 𝛾.

Lemma 4 (see [27]). Let 𝑓
𝑖
: R𝑚

→ R(𝑖 = 1, 2, . . . , 𝑁)

have positive values in an open subset D of R𝑚. Then, the
reciprocally convex combination of 𝑓

𝑖
overD satisfies

min
{𝛽𝑖|𝛽𝑖>0,∑𝑖 𝛽𝑖=1}

∑

𝑖

1

𝛽
𝑖

𝑓
𝑖
(𝑡) = ∑

𝑖

𝑓
𝑖
(𝑡) +max

𝑔
𝑖,𝑗
(𝑡)

∑

𝑖 ̸= 𝑗

𝑔
𝑖,𝑗

(𝑡)

subject to {𝑔
𝑖,𝑗

: R
𝑚

→ R, 𝑔
𝑗,𝑖

(𝑡) = 𝑔
𝑖,𝑗

(𝑡) ,

[

𝑓
𝑖
(𝑡) 𝑔

𝑖,𝑗
(𝑡)

𝑔
𝑖,𝑗

(𝑡) 𝑓
𝑗
(𝑡)

] ≥ 0} .

(11)
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Lemma 5. For any constant matrix 𝑀 ∈ R𝑚×𝑚 with 𝑀 > 0,
scalars 𝑎 < 𝑏 ≤ 0, vector function 𝑥 : [𝑎, 𝑏] → R𝑚, such that
the integrals in the following are well-defined; then,

−

𝑎
2

− 𝑏
2

2

∫

𝑏

𝑎

∫

𝑡

𝑡+𝑠

𝑥
⊺

(𝑠)𝑀𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

≤ −[∫

𝑏

𝑎

∫

𝑡

𝑡+𝑠

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃]

⊺

𝑀[∫

𝑏

𝑎

∫

𝑡

𝑡+𝑠

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃] .

(12)

3. Finite-Time 𝐻
∞

Performance Analysis

The issue of stability analysis of Markovian jump system (1)
subject to 𝑢(𝑡) = 0 is given firstly. Therefore, the finite-time
stability is obtained in this section.

Theorem 6. System (1) is called the finite-time bounded with
respect to (𝑐

1
, 𝑐
2
, 𝑑, 𝑅, 𝑇), if there exist matrices

𝑃
𝑖
> 0, 𝑄

𝑙𝑖
> 0 (𝑙 = 1, 2) , 𝑄 > 0,

X
𝑖
= [

𝑋
1𝑖

𝑋
2𝑖

𝑋
3𝑖

𝑋
4𝑖

] > 0, X = [

𝑋
1

𝑋
2

𝑋
3

𝑋
4

] > 0,

𝑌
𝑠
> 0 (𝑠 = 1, 2) , 𝑍

𝑖
> 0,

𝑍 > 0, 𝐻 > 0,

(13)

scalars 𝑐
1

< 𝑐
2
, 𝑇 > 0, 𝜆

𝑠
> 0, (𝑠 = 1, 2, . . . , 12), 𝜂 > 0,

and Λ > 0, such that ∀𝑖, 𝑗 ∈ N and the inequalities hold as
follows:

𝑒
𝛿ℎ

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
1𝑗

+ 𝑒
𝛿ℎ

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
𝑄
2𝑗

< 𝑄, (14)

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
X

𝑗
−X < 0, (15)

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑍
𝑗
− 𝑍 < 0, (16)

[

[

[

[

X
𝑖

ℎ

S
𝑖

∗

X
𝑖

ℎ

]

]

]

]

> 0, (17)

[

𝑌
1

𝑊
1

∗ 𝑌
2

] > 0, (18)

[

𝑌
1

𝑊
2

∗ 𝑌
2

] > 0, (19)

Ξ
𝑖
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
11𝑖

Ξ
12𝑖

𝑆
4𝑖

Ξ
14𝑖

Ξ
15𝑖

−𝑆
3𝑖
+

𝑍
𝑖
+ 𝑍

⊺

𝑖

ℎ

𝑃
𝑖
𝐷
𝑖

∗ Ξ
22𝑖

−𝑆
4𝑖
+

𝑋
4𝑖

ℎ

0

𝑋
3𝑖

2ℎ

+

𝑋
⊺

2𝑖

2ℎ

𝑆
3𝑖
− 𝑆

⊺

2𝑖
−

𝑋
3𝑖

2ℎ

−

𝑋
⊺

2𝑖

2ℎ

0

∗ ∗ −𝑄
1𝑖
−

𝑋
4𝑖

ℎ

− 𝑊
2

0 0 𝑆
⊺

2𝑖
+

𝑋
3𝑖

2ℎ

+

𝑋
⊺

2𝑖

2ℎ

0

∗ ∗ ∗ Ξ
44𝑖

0 0 0

∗ ∗ ∗ ∗ Ξ
55𝑖

−𝑆
1𝑖
−

𝑍
𝑖

ℎ
2
−

𝑍
⊺

𝑖

ℎ
2

0

∗ ∗ ∗ ∗ ∗ −

𝑋
1𝑖

ℎ

−

𝑍
𝑖

ℎ
2
−

𝑍
⊺

𝑖

ℎ
2

0

∗ ∗ ∗ ∗ ∗ ∗ −𝛿𝐻

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (20)

𝑐
1
Λ + 𝑑𝛿𝜆

12

1

𝜂

(1 − 𝑒
−𝜂𝑇

) < 𝜆
1
𝑒
−𝜂𝑇

𝑐
2
, (21)

where

Ξ
11𝑖

=

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝛿𝑃

𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝐴

⊺

𝑖
𝑃
𝑖
+ 𝑒

𝛿ℎ

(𝑄
1𝑖
+ 𝑄

2𝑖
)

+ ℎ𝑄 +

𝑒
𝛿ℎ−1

𝛿

𝑋
1𝑖

+

𝑒
𝛿ℎ

− 𝛿ℎ𝑒
𝛿ℎ

− 1

𝛿
2

𝑋
1
−

𝑋
4𝑖

ℎ

+ ℎ𝑌
1
+ 𝑊

1
− 𝑍

𝑖
− 𝑍

⊺

𝑖
,

Ξ
12𝑖

= 𝑃
𝑖
𝐴
𝜏𝑖
+

𝑋
4𝑖

ℎ

− 𝑆
4𝑖
,

Ξ
14𝑖

=

𝑒
𝛿ℎ

− 1

2𝛿

(𝑋
2𝑖
+ 𝑋

⊺

3𝑖
) +

𝑒
𝛿ℎ

− 𝛿ℎ𝑒
𝛿ℎ

− 1

2𝛿
2

(𝑋
2
+ 𝑋

⊺

3
) ,

Ξ
15𝑖

= −

𝑋
3𝑖

2ℎ

−

𝑋
⊺

2𝑖

2ℎ

+

𝑍
𝑖

ℎ
2
+

𝑍
⊺

𝑖

ℎ
2
,

Ξ
22𝑖

= − (1 − 𝜇
𝑖
) 𝑄

2𝑖
−

2𝑋
4𝑖

ℎ

+ 𝑆
4𝑖
+ 𝑆

⊺

4𝑖
− 𝑊

1
+ 𝑊

2
,



4 Abstract and Applied Analysis

Ξ
44𝑖

=

𝑒
𝛿ℎ

− 1

𝛿

𝑋
4𝑖
+

𝑒
𝛿ℎ

− 𝛿ℎ𝑒
𝛿ℎ

− 1

𝛿
2

𝑋
4𝑖
+ ℎ𝑌

2

+

𝑒
𝛿ℎ

− 𝛿ℎ − 1

𝛿
2

𝑍
𝑖
+

ℎ𝛿
2

𝑒
𝛿ℎ

+ 𝑒
𝛿ℎ

+ 𝛿ℎ + 1

𝛿
3

𝑍,

Ξ
55𝑖

= −

𝑋
4𝑖

ℎ

−

𝑍
𝑖

ℎ
2
−

𝑍
⊺

𝑖

ℎ
2
,

Λ = 𝜆
2
+ ℎ𝑒

𝛿ℎ

(𝜆
3
+ 𝜆

4
) + ℎ

2

𝑒
𝛿ℎ

𝜆
5
+ ℎ

2

𝑒
𝛿ℎ

𝜆
6

+

1

2

ℎ
3

𝑒
𝛿ℎ

𝜆
7
+ ℎ

2

𝑒
𝛿ℎ

(𝜆
8
+ 𝜆

9
)

+

1

2

ℎ
3

𝑒
𝛿ℎ

𝜆
10

+

1

6

ℎ
4

𝑒
𝛿ℎ

𝜆
11
,

𝜆
1
= max

𝑖∈N
𝜆max (𝑃𝑖) , 𝜆

2
= max

𝑖∈N
𝜆max (�̃�𝑖) ,

𝜆
3
= max

𝑖∈N
𝜆max (𝑄1𝑖

) , 𝜆
4
= max

𝑖∈N
𝜆max (𝑄2𝑖

) ,

𝜆
5
= 𝜆max (𝑄) , 𝜆

6
= max

𝑖∈N
𝜆max (

̃X
𝑖
) ,

𝜆
7
= max

𝑖∈N
𝜆max (

̃X) , 𝜆
8
= 𝜆max (�̃�1) ,

𝜆
9
= 𝜆max (�̃�2) , 𝜆

10
= max

𝑖∈N
𝜆max (

̃
𝑍
𝑖
) ,

𝜆
11

= 𝜆max (
̃
𝑍) , 𝜆

12
= 𝜆max (𝐻) ,

�̃�
𝑖
= 𝑅

−(1/2)

𝑃
𝑖
𝑅
−(1/2)

,

𝑄
𝑙𝑖
= 𝑅

−(1/2)

𝑄
𝑙𝑖
𝑅
−(1/2)

(𝑙 = 1, 2) ,

𝑄 = 𝑅
−(1/2)

𝑄𝑅
−(1/2)

,

̃X
𝑖
= 𝑅

−(1/2)

X
𝑖
𝑅
−(1/2)

(𝑙 = 1, 2) ,

𝑋 = 𝑅
−(1/2)

𝑋𝑅
−(1/2)

,

�̃�
𝑠
= 𝑅

−(1/2)

𝑌
𝑠
𝑅
−(1/2)

(𝑠 = 1, 2) ,

̃
𝑍
𝑖
= 𝑅

−(1/2)

𝑍
𝑖
𝑅
−(1/2)

,

̃
𝑍 = 𝑅

−(1/2)

𝑍𝑅
−(1/2)

.

(22)

Proof. Firstly, a novel process is defined in this paper as
follows:

𝑥
𝑡
(𝑠) = 𝑥 (𝑡 + 𝑠) , 𝑠 ∈ [−ℎ, 0] . (23)

Then, the following Lyapunov-Krasovskii functional is con-
sidered:

𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡) =

5

∑

𝑙=1

𝑉
𝑙
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡) , (24)

where

𝑉
1
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡) = 𝑥(𝑡)

⊺

𝑒
𝛿𝑡

𝑃
𝑟
𝑡

𝑥 (𝑡) ,

𝑉
2
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡) = ∫

𝑡

𝑡−ℎ

𝑒
𝛿(𝑠+ℎ)

𝑥
⊺

(𝑠) 𝑄
1𝑟
𝑡

𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏
𝑟𝑡
(𝑡)

𝑒
𝛿(𝑠+ℎ)

𝑥
⊺

(𝑠) 𝑄
2𝑟
𝑡

𝑥 (𝑠) 𝑑𝑠

+ ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠+ℎ)

𝑥
⊺

(𝑠) 𝑄𝑥 (𝑠) 𝑑𝑠 𝑑𝜃,

𝑉
3
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡) = ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠−𝜃)

𝜂
⊺

(𝑠)X
𝑟
𝑡

𝜂 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−ℎ

∫

0

𝜃

∫

𝑡

𝑡+𝜐

𝑒
𝛿(𝑠−𝜃)

𝜂
⊺

(𝑠)X𝜂 (𝑠) 𝑑𝑠 𝑑𝜐 𝑑𝜃,

𝑉
4
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡) = ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠−𝜃)

𝑥
⊺

(𝑠) 𝑌
1
𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠−𝜃)

�̇�
⊺

(𝑠) 𝑌
2
�̇� (𝑠) 𝑑𝑠 𝑑𝜃,

𝑉
5
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡) = ∫

0

−ℎ

∫

0

𝜃

∫

𝑡

𝑡+𝜐

𝑒
𝛿(𝑠−𝜃)

�̇�
⊺

(𝑠) 𝑍
𝑟
𝑡

�̇� (𝑠) 𝑑𝑠 𝑑𝜐 𝑑𝜃

+ ∫

0

−ℎ

∫

0

𝜍

∫

0

𝜃

∫

𝑡

𝑡+𝜐

𝑒
𝛿(𝑠−𝜃)

�̇�
⊺

(𝑠)

× 𝑍�̇� (𝑠) 𝑑𝑠 𝑑𝜐 𝑑𝜃 𝑑𝜍,

(25)

where 𝜂(𝑡) = [𝑥
⊺

(𝑡), �̇�
⊺

(𝑡)]
⊺.

Letting 𝑖 represent the time 𝑡, that is, 𝑟
𝑡
= 𝑖 ∈ N, one has

£𝑉
1
(𝑥

𝑡
, 𝑖, 𝑡) = 𝛿𝑒

𝛿𝑡

𝑥
⊺

(𝑡) 𝑃
𝑖
𝑥 (𝑡) + 2𝑒

𝛿𝑡

𝑥
⊺

(𝑡) 𝑃
𝑖
�̇� (𝑡)

+ 𝑒
𝛿𝑡

𝑥
⊺

(𝑡)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
)𝑥 (𝑡)

= 𝑒
𝛿𝑡

𝑥
⊺

(𝑡)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝛿𝑃

𝑖
)𝑥 (𝑡) + 2𝑒

𝛿𝑡

𝑥
⊺

(𝑡) 𝑃
𝑖

× (𝐴
𝑖
𝑥 (𝑡) + 𝐴

𝜏𝑖
𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) + 𝐷

𝑖
𝜔 (𝑡)) .

(26)

Noting 𝜋
𝑖𝑗
≥ 0 for 𝑗 ̸= 𝑖 and 𝜋

𝑖𝑖
≤ 0, one has

£𝑉
2
(𝑥

𝑡
, 𝑖, 𝑡) = 𝑒

𝛿𝑡

𝑥
⊺

(𝑡) (𝑒
𝛿ℎ

𝑄
1𝑖
+ 𝑒

𝛿ℎ

𝑄
2𝑖
+ ℎ𝑄) 𝑥 (𝑡)

− 𝑒
𝛿𝑡

𝑥
⊺

(𝑡 − ℎ)𝑄
1𝑖
𝑥 (𝑡 − ℎ)

− (1 − ̇𝜏
𝑖
(𝑡)) 𝑒

𝛿(𝑡+ℎ−𝜏
𝑖
(𝑡))

𝑥
⊺

× (𝑡 − 𝜏
𝑖
(𝑡)) 𝑄

2𝑖
𝑥 (𝑡 − 𝜏

𝑖
(𝑡))

+ ∫

𝑡

𝑡−ℎ

𝑒
𝛿𝑠

𝑥
⊺

(𝑠)(𝑒
𝛿ℎ

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
1𝑗

− 𝑄)𝑥 (𝑠) 𝑑𝑠
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+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
∫

𝑡

𝑡−𝜏
𝑗
(𝑡)

𝑒
𝛿(𝑠+ℎ)

𝑥
⊺

(𝑠) 𝑄
2𝑗
𝑥 (𝑠) 𝑑𝑠

≤ 𝑒
𝛿𝑡

𝑥
⊺

(𝑡) (𝑒
𝛿ℎ

𝑄
1𝑖
+ 𝑒

𝛿ℎ

𝑄
2𝑖
+ ℎ𝑄) 𝑥 (𝑡)

− 𝑒
𝛿𝑡

𝑥
⊺

(𝑡 − ℎ)𝑄
1𝑖
𝑥 (𝑡 − ℎ)

− (1 − ̇𝜏
𝑖
(𝑡)) 𝑒

𝛿𝑡

𝑥
⊺

(𝑡 − 𝜏
𝑖
(𝑡)) 𝑄

2𝑖
𝑥 (𝑡 − 𝜏

𝑖
(𝑡))

+ ∫

𝑡

𝑡−ℎ

𝑒
𝛿𝑠

𝑥
⊺

(𝑠)(𝑒
𝛿ℎ

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑄
1𝑗

+ 𝑒
𝛿ℎ

×

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
𝑄
2𝑗

− 𝑄)

× 𝑥 (𝑠) 𝑑𝑠.

(27)

It follows from (15) and (28) that

£𝑉
2
(𝑥

𝑡
, 𝑖, 𝑡) = 𝑒

𝛿𝑡

𝑥
⊺

(𝑡) (𝑒
𝛿ℎ

𝑄
1𝑖
+ 𝑒

𝛿ℎ

𝑄
2𝑖
+ ℎ𝑄) 𝑥 (𝑡)

− 𝑒
𝛿𝑡

𝑥
⊺

(𝑡 − ℎ)𝑄
1𝑖
𝑥 (𝑡 − ℎ)

− (1 − ̇𝜏
𝑖
(𝑡)) 𝑒

𝛿𝑡

𝑥
⊺

(𝑡 − 𝜏
𝑖
(𝑡)) 𝑄

2𝑖
𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) ,

(28)

£𝑉
3
(𝑥

𝑡
, 𝑖, 𝑡) = ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠−𝜃)

𝜂
⊺

(𝑠)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
X

𝑖𝑗
−X)

× 𝜂 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝑒
𝛿𝑡

𝜂
⊺

X
𝑖
𝜂 (𝑡) ∫

0

−ℎ

𝑒
−𝛿𝜐

𝑑𝜐

− 𝑒
𝛿𝑡

∫

𝑡

𝑡−ℎ

𝜂
⊺

(𝑠)X
𝑖
𝜂 (𝑠) 𝑑𝑠

+ 𝑒
𝛿𝑡

𝜂
⊺

(𝑡)X𝜂 (𝑡) ∫

0

−ℎ

∫

0

𝜐

𝑒
−𝛿𝜐

𝑑𝜃 𝑑𝜐.

(29)

By employing Lemma 4, we can obtain that

− ∫

𝑡

𝑡−ℎ

𝜂
⊺

(𝑠)X
𝑖
𝜂 (𝑠) 𝑑𝑠

= −∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝜂
⊺

(𝑠)X
𝑖
𝜂 (𝑠) 𝑑𝑠 − ∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝜂
⊺

(𝑠)X
𝑖
𝜂 (𝑠) 𝑑𝑠

≤ −

ℎ

𝜏
𝑖
(𝑡)

[∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝜂 (𝑠) 𝑑𝑠]

⊺

X
𝑖

ℎ

[∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝜂 (𝑠) 𝑑𝑠]

−

ℎ

ℎ − 𝜏
𝑖
(𝑡)

[∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝜂 (𝑠) 𝑑𝑠]

⊺

X
𝑖

ℎ

[∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝜂 (𝑠) 𝑑𝑠]

≤ −

[

[

[

[

[

∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝜂 (𝑠) 𝑑𝑠

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝜂 (𝑠) 𝑑𝑠

]

]

]

]

]

⊺

[

[

[

[

X
𝑖

ℎ

S
𝑖

∗

X
𝑖

ℎ

]

]

]

]

[

[

[

[

[

∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝜂 (𝑠) 𝑑𝑠

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝜂 (𝑠) 𝑑𝑠

]

]

]

]

]

.

(30)

It follows from (30) and (31) that

𝑉
3
(𝑥

𝑡
, 𝑖, 𝑡) ≤ 𝑒

𝛿𝑡

𝜂
⊺

(𝑡)

× (

𝑒
𝛿ℎ

− 1

𝛿

X
𝑖
+

𝑒
𝛿ℎ

− 𝛿ℎ𝑒
𝛿ℎ

− 1

𝛿
2

X)𝜂 (𝑡)

− 𝑒
𝛿𝑡

[

[

[

[

[

∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝜂 (𝑠) 𝑑𝑠

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝜂 (𝑠) 𝑑𝑠

]

]

]

]

]

⊺

[

[

[

[

X
𝑖

ℎ

S
𝑖

∗

X
𝑖

ℎ

]

]

]

]

×

[

[

[

[

[

∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝜂 (𝑠) 𝑑𝑠

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝜂 (𝑠) 𝑑𝑠

]

]

]

]

]

.

(31)

Consider

£𝑉
4
(𝑥

𝑡
, 𝑖, 𝑡) = ℎ𝑥

⊺

(𝑡) 𝑌
1
𝑥 (𝑡)

− ∫

𝑡

𝑡−ℎ

𝑥
⊺

(𝑠) 𝑌
1
𝑥 (𝑠) 𝑑𝑠 + ℎ�̇�

⊺

(𝑡) 𝑌
2
�̇� (𝑡)

−∫

𝑡

𝑡−ℎ

�̇�
⊺

(𝑠) 𝑌
2
�̇� (𝑠) 𝑑𝑠.

(32)

Moreover, the following two zero equalities with any symmet-
ric matrices𝑊

1
and𝑊

2
are considered:

0 = 𝑥
⊺

(𝑡)𝑊
1
𝑥 (𝑡) − 𝑥

⊺

(𝑡 − 𝜏
𝑖
(𝑡))𝑊

1
𝑥 (𝑡 − 𝜏

𝑖
(𝑡))

− 2∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑥
⊺

(𝑠)𝑊
1
�̇� (𝑠) 𝑑𝑠,

(33)

0 = 𝑥
⊺

(𝑡 − 𝜏
𝑖
(𝑡))𝑊

2
𝑥 (𝑡 − 𝜏

𝑖
(𝑡))

− 𝑥
⊺

(𝑡 − ℎ)𝑊
2
𝑥 (𝑡 − ℎ)

− 2∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝑥
⊺

(𝑠)𝑊
2
�̇� (𝑠) 𝑑𝑠.

(34)
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With the above two zero equalities (34) and (35), an upper
bound of £𝑉

4
(𝑥

𝑡
, 𝑖, 𝑡) is

£
4
(𝑥

𝑡
, 𝑖, 𝑡) = 𝑥

⊺

(𝑡) (ℎ𝑌
1
+ 𝑊

1
) 𝑥 (𝑡) + ℎ�̇�

⊺

(𝑡) 𝑌
2
�̇� (𝑡)

+ 𝑥
⊺

(𝑡 − 𝜏
𝑖
(𝑡)) (𝑊

2
− 𝑊

1
) 𝑥 (𝑡 − 𝜏

𝑖
(𝑡))

− 𝑥
⊺

(𝑡 − ℎ)𝑊
2
𝑥 (𝑡 − ℎ)

− ∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

[

𝑥 (𝑠)

�̇� (𝑠)
]

⊺

[

𝑌
1

𝑊
1

∗ 𝑌
2

] [

𝑥 (𝑠)

�̇� (𝑠)
]

− ∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

[

𝑥 (𝑠)

�̇� (𝑠)
]

⊺

[

𝑌
1

𝑊
1

∗ 𝑌
2

] [

𝑥 (𝑠)

�̇� (𝑠)
] .

(35)

From (19), (20), and (36), one can obtain

£
4
(𝑥

𝑡
, 𝑖, 𝑡) = 𝑥

⊺

(𝑡) (ℎ𝑌
1
+ 𝑊

1
) 𝑥 (𝑡) + ℎ�̇�

⊺

(𝑡) 𝑌
2
�̇� (𝑡)

+ 𝑥
⊺

(𝑡 − 𝜏
𝑖
(𝑡)) (𝑊

2
− 𝑊

1
) 𝑥 (𝑡 − 𝜏

𝑖
(𝑡))

− 𝑥
⊺

(𝑡 − ℎ)𝑊
2
𝑥 (𝑡 − ℎ) .

(36)

Now, £𝑉
5
(𝑥

𝑡
, 𝑖, 𝑡) is obtained as follows:

£𝑉
5
(𝑥

𝑡
, 𝑖, 𝑡)

= ∫

0

−ℎ

∫

0

𝜃

∫

𝑡

𝑡+𝜐

𝑒
𝛿(𝑠−𝜃)

�̇�
⊺

(𝑠)(

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑍
𝑗
− 𝑍)

× �̇� (𝑠) 𝑑𝑠 𝑑𝜐 𝑑𝜃

+ 𝑒
𝛿𝑡

�̇�
⊺

(𝑡) 𝑍
𝑖
�̇� (𝑡) ∫

0

−ℎ

∫

0

𝜃

𝑒
−𝛿𝜐

𝑑𝜐 𝑑𝜃

− 𝑒
𝛿𝑡

∫

0

−ℎ

∫

𝑡

𝑡+𝜃

�̇�
⊺

(𝑠) 𝑍
𝑖
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝑒
𝛿𝑡

�̇�
⊺

(𝑡) 𝑍�̇� (𝑡) ∫

0

−ℎ

∫

0

𝜍

∫

0

𝜃

𝑒
−𝛿𝜃

𝑑𝜐 𝑑𝜃 𝑑𝜍.

(37)

By using Lemma 5, one has

− ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

�̇�
⊺

(𝑠) 𝑍
𝑖
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

≤ −

2

ℎ
2
∫

0

−ℎ

∫

𝑡

𝑡+𝜃

�̇�
⊺

(𝑠) 𝑑𝑠 𝑑𝜃𝑍
𝑖
∫

0

−ℎ

∫

𝑡

𝑡+𝜃

�̇� (𝑠) 𝑑𝑠 𝑑𝜃

= −2[𝑥 (𝑡) −

1

ℎ

∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑥 (𝑠) 𝑑𝑠 −

1

ℎ

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

⊺

𝑍
𝑖

× [𝑥 (𝑡) −

1

ℎ

∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑥 (𝑠) 𝑑𝑠 −

1

ℎ

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠] .

(38)

Together with (38) and (39), it implies that

£𝑉
5
(𝑥

𝑡
, 𝑖, 𝑡) ≤ 𝑒

𝛿𝑡

�̇�
⊺

(𝑡)

𝑒
𝛿ℎ

− 𝛿ℎ − 1

𝛿
2

𝑍
𝑖
�̇� (𝑡)

+ 𝑒
𝛿𝑡

�̇�
⊺

(𝑡)

ℎ𝛿
2

𝑒
𝛿ℎ

+ 𝑒
𝛿ℎ

+ 𝛿ℎ + 1

𝛿
3

𝑍�̇� (𝑡)

− 2𝑒
𝛿𝑡

[𝑥 (𝑡) −

1

ℎ

∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑥 (𝑠) 𝑑𝑠 −

1

ℎ

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

⊺

𝑍
𝑖

× [𝑥 (𝑡) −

1

ℎ

∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑥 (𝑠) 𝑑𝑠 −

1

ℎ

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠] .

(39)

From (26)–(40), we can eventually obtain

£𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡) − 𝛿𝜔

⊺

(𝑡)𝐻𝜔 (𝑡) ≤ 𝑒
𝛿𝑡

𝜉
⊺

(𝑡) Ξ
𝑖
𝜉 (𝑡) , (40)

where

𝜉
⊺

(𝑡) = [𝑥
⊺

(𝑡) , 𝑥
⊺

(𝑡 − 𝜏
𝑖
(𝑡)) , 𝑥

⊺

(𝑡 − ℎ) , ∫

𝑡

𝑡−𝜏
𝑖
(𝑡)

𝑥
⊺

(𝑠) 𝑑𝑠,

∫

𝑡−𝜏
𝑖
(𝑡)

𝑡−ℎ

𝑥
⊺

(𝑠) 𝑑𝑠, 𝜔
⊺

(𝑡)] .

(41)

It follows from (45) that

E {£𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡)} ≤ E [𝜂𝑉 (𝑥

𝑡
, 𝑟
𝑡
, 𝑡)] + 𝛿𝜔

⊺

(𝑡)𝐻𝜔 (𝑡) .

(42)

Multiplying the above inequality by 𝑒
−𝜂𝑡 yields that

E {£ [𝑒−𝜂𝑡𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡)]} ≤ 𝑒

−𝜂𝑡

𝛿𝜔
⊺

(𝑡)𝐻𝜔 (𝑡) . (43)

Integrating the inequality from 0 to 𝑡, we have

𝑒
−𝜂𝑡

E [𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡)] − E [𝑉 (𝑥

0
, 𝑟
0
, 0)]

≤ 𝛿∫

𝑡

0

𝑒
−𝜂𝑠

𝜔
⊺

(𝑠)𝐻𝜔 (𝑠) 𝑑𝑠.

(44)

Denoting �̃�
𝑖

= 𝑅
−(1/2)

𝑃
𝑖
𝑅
−(1/2), 𝑄

𝑖
= 𝑅

−(1/2)

𝑄
𝑖
𝑅
−(1/2),

𝑄 = 𝑅
−(1/2)

𝑄𝑅
−(1/2), ̃X

𝑖
= 𝑅

−(1/2)X
𝑖
𝑅
−(1/2), ̃X =

𝑅
−(1/2)X𝑅

−(1/2), �̃�
𝑖
= 𝑅

−(1/2)

𝑌
𝑖
𝑅
−(1/2), �̃� = 𝑅

−(1/2)

𝑌𝑅
−(1/2),

̃
𝑍
𝑖
= 𝑅

−(1/2)

𝑍
𝑖
𝑅
−(1/2), and ̃

𝑍 = 𝑅
−(1/2)

𝑍𝑅
−(1/2) yields that

E [𝑉 (𝑥
0
, 𝑟
0
, 0)]

≤ max
𝑖∈N

𝜆max (�̃�𝑖) 𝑥
⊺

(0) 𝑅𝑥 (0)

+ (max
𝑖∈N

𝜆max (𝑄1𝑖
) +max

𝑖∈N
𝜆max (𝑄2𝑖

)) 𝑒
𝛿ℎ
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× ∫

0

−ℎ

𝑒
𝛿𝑠

𝑥
⊺

(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠

+ 𝑒
𝛿ℎ

𝜆max (𝑄) ∫

0

−ℎ

∫

0

𝜃

𝑒
𝛿𝑠

𝑥
⊺

(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠

+ 𝑒
𝛿ℎmax

𝑖∈N
𝜆max (X𝑖

) ∫

0

−ℎ

∫

0

𝜃

𝑒
−𝛿𝜃

𝜂
⊺

(𝑠) 𝑅𝜂 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝑒
𝛿ℎ

𝜆max (X) ∫

0

−ℎ

∫

0

𝜃

∫

0

𝜐

𝑒
−𝛿𝜃

𝜂
⊺

(𝑠) 𝑅𝜂 (𝑠) 𝑑𝑠 𝑑𝜃 𝑑𝜐

+ (𝜆max (𝑌1) + 𝜆max (𝑌2)) 𝑒
𝛿ℎ

× ∫

0

−ℎ

∫

0

𝜃

𝑒
−𝛿𝜃

𝑥
⊺

(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝑒
𝛿ℎmax

𝑖∈N
𝜆max (𝑍𝑖

) ∫

0

−ℎ

∫

0

𝜃

∫

0

𝜐

𝑒
−𝛿𝜃

𝑥
⊺

(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝑒
𝛿ℎ

𝜆max (𝑍) ∫

0

−ℎ

∫

0

𝜍

∫

0

𝜃

∫

0

𝜐

𝑒
−𝛿𝜃

𝑥
⊺

(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠 𝑑𝜃 𝑑𝜍

≤ {max
𝑖∈N

𝜆max (�̃�𝑖) + ℎ𝑒
𝛿ℎ

× (max
𝑖∈N

𝜆max (𝑄1𝑖
+max

𝑖∈N
𝜆max (𝑄2𝑖

))

+ ℎ
2

𝑒
𝛿ℎ

𝜆max (𝑍) + ℎ
2

𝑒
𝛿ℎmax

𝑖∈N
𝜆max (

̃X
𝑖
)

+

1

2

ℎ
3

𝑒
𝛿ℎ

𝜆max (
̃X) + ℎ

2

𝑒
𝛿ℎ

(𝜆max (𝑌1) + 𝜆max (𝑌2))

+

1

2

ℎ
3

𝑒
𝛿ℎmax

𝑖∈N
𝜆max (𝑍𝑖

) +

1

6

ℎ
4

𝑒
𝛿ℎ

𝜆max (𝑍)}

× sup
−ℎ≤𝑠≤0

{𝑥
⊺

(𝑠) 𝑅𝑥 (𝑠) , �̇�
⊺

(𝑠) 𝑅�̇� (𝑠)} = 𝑐
1
Λ.

(45)

For scalars 𝜂 > 0 and 𝑇 ≥ 𝑡 ≥ 0, (46) turns out to be

E [𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡)] ≤ E [𝑒

𝜂𝑡

𝑉 (𝑥
0
, 𝑟
0
, 0)]

+ 𝑒
𝜂𝑡

𝛿∫

𝑡

0

𝑒
−𝜂𝑠

𝜔
⊺

(𝑠)𝐻𝜔 (𝑠) 𝑑𝑠

≤ 𝑒
𝜂𝑇

𝑐
1
Λ + 𝑑𝛿𝑒

𝜂𝑇

𝜆max (𝐻)∫

𝑇

0

𝑒
−𝜂𝑠

𝑑𝑠

≤ 𝑒
𝜂𝑇

{𝑐
1
Λ + 𝑑𝛿𝜆

12

1

𝜂

(1 − 𝑒
−𝜂𝑇

)} .

(46)

To illustrate the bounded, (26) takes the following form:

E [𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡)] ≥ E [𝑥

⊺

(𝑡) 𝑒
𝜆𝑡

𝑃
𝑖
𝑥 (𝑡)]

≥ max
𝑖∈N

𝜆min (𝑃𝑖)E [𝑥
⊺

(𝑡) 𝑅𝑥 (𝑡)] = 𝜆
1
E [𝑥

⊺

(𝑡) 𝑅𝑥 (𝑡)] .

(47)

From inequalities (46)–(48), one has

E [𝑥
⊺

(𝑡) 𝑅𝑥 (𝑡)] ≤

𝑒
𝜂𝑇

𝜆
1

{𝑐
1
Λ + 𝑑𝛿𝜆

12

1

𝜂

(1 − 𝑒
−𝜂𝑇

)} .

(48)

Finally, inequalities (24) and (49) guarantee that

E [𝑥
⊺

(𝑡) 𝑅𝑥 (𝑡)] < 𝑐
2
. (49)

Therefore, the Markovian jump system (1) is finite-time
stochastic bounded with respect to (𝑐

1
, 𝑐
2
, 𝑑, 𝑅, 𝑇).

Remark 7. It should be noted that 𝜏
𝑖
(𝑡) and ̇𝜏

𝑖
(𝑡) may,

respectively, get the different upper bound due to the fact
that condition (6) holds. However, 𝜏

𝑖
(𝑡) and ̇𝜏

𝑖
(𝑡) always lead

to conservativeness for 𝜏
𝑖
(𝑡) ≤ ℎ = max{ℎ

𝑖
, 𝑖 ∈ N} and

̇𝜏
𝑖
(𝑡) ≤ 𝜇 = max{𝜇

𝑖
, 𝑖 ∈ N} in [14–18], and this case can be

improved with employing the different Lyapunov-Krasovskii
functional (26).

Remark 8. It should be pointed out that, in Theorem 6,
the novelty of the Lyapunov functional (26) lies in the
following: (i) triple-integral terms𝑉

3
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡) and𝑉

5
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡)

and four-integral term𝑉
5
(𝑥

𝑡
, 𝑟
𝑡
, 𝑡) are introduced and (ii) the

distinct Lyapunov matrices (𝑃
𝑖
, 𝑄

1𝑖
, 𝑄

2𝑖
,X

𝑖
, 𝑍

𝑖
) are chosen

for different system modes 𝑖 (𝑖 = 1, 2, . . . , 𝑁).
For the condition 𝑟

𝑡
= 𝑖, the Markovian jump system

given in this paper is followed by

�̇� (𝑡) = 𝐴
𝑖
𝑥 (𝑡) + 𝐴

𝜏𝑖
𝑥 (𝑡 − 𝜏

𝑟
𝑡

(𝑡)) + 𝐷
𝑖
𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶
𝑖
𝑥 (𝑡) + 𝐶

𝜏𝑖
𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) + 𝐹

𝑖
𝜔 (𝑡) ,

(50)

where

𝐴
𝑖
= 𝐴

𝑖
+ 𝐵

𝑖
𝐾
𝑖
. (51)

Theorem9. System (53) is finite-time stochastic bounded with
respect to (𝑐

1
, 𝑐
2
, 𝑑, 𝑅, 𝑇) with a disturbance attenuation, if

there exist matrices

𝑃
𝑖
> 0, 𝑄

𝑙𝑖
> 0 (𝑙 = 1, 2) , 𝑄 > 0,

X
𝑖
=

[

[

𝑋
1𝑖

𝑋
2𝑖

𝑋
3𝑖

𝑋
4𝑖

]

]

> 0, X =
[

[

𝑋
1

𝑋
2

𝑋
3

𝑋
4

]

]

> 0,

𝑌
𝑠
> 0 (𝑠 = 1, 2) , 𝑍

𝑖
> 0, 𝑍 > 0,

(52)

scalars 𝑐
1
< 𝑐

2
, 𝑇 > 0, 𝜆

𝑠
> 0, (𝑠 = 1, 2, . . . , 12), 𝜂 > 0 and

Λ > 0, such that for all 𝑖, 𝑗 ∈ N, (15)–(20) and the following
inequalities hold:
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Σ
𝑖
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Σ
11𝑖

Ξ
12𝑖

𝑆
4𝑖

Ξ
14𝑖

Ξ
15𝑖

−𝑆
3𝑖
+

𝑍
𝑖
+ 𝑍

⊺

𝑖

ℎ

𝑃
𝑖
𝐷
𝑖

𝐶
⊺

𝑖

∗ Ξ
22𝑖

−𝑆
4𝑖
+

𝑋
4𝑖

ℎ

0

𝑋
3𝑖

2ℎ

+

𝑋
⊺

2𝑖

2ℎ

𝑆
3𝑖
− 𝑆

⊺

2𝑖
−

𝑋
3𝑖

2ℎ

−

𝑋
⊺

2𝑖

2ℎ

0 𝐶
⊺

𝜏𝑖

∗ ∗ −𝑄
1𝑖
−

𝑋
4𝑖

ℎ

− 𝑊
2

0 0 𝑆
⊺

2𝑖
+

𝑋
3𝑖

2ℎ

+

𝑋
⊺

2𝑖

2ℎ

0 0

∗ ∗ ∗ Ξ
44𝑖

0 0 0 0

∗ ∗ ∗ ∗ Ξ
55𝑖

−𝑆
1𝑖
−

𝑍
𝑖

ℎ
2
−

𝑍
⊺

𝑖

ℎ
2

0 0

∗ ∗ ∗ ∗ ∗ −

𝑋
1𝑖

ℎ

−

𝑍
𝑖

ℎ
2
−

𝑍
⊺

𝑖

ℎ
2

0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼 𝐹
⊺

𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (53)

𝑐
1
Λ + 𝑑𝛾

2
1

𝜂

(1 − 𝑒
−𝜂𝑇

) < 𝜆
1
𝑒
−𝜂𝑇

𝑐
2
, (54)

where

Σ
11𝑖

=

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝛿𝑃

𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝐴

⊺

𝑖
𝑃
𝑖

+ 𝑒
𝛿ℎ

(𝑄
1𝑖
+ 𝑄

2𝑖
) + ℎ𝑄 +

𝑒
𝛿ℎ−1

𝛿

𝑋
1𝑖

+

𝑒
𝛿ℎ

− 𝛿ℎ𝑒
𝛿ℎ

− 1

𝛿
2

𝑋
1
−

𝑋
4𝑖

ℎ

+ ℎ𝑌
1
+ 𝑊

1
− 𝑍

𝑖
− 𝑍

⊺

𝑖
.

(55)

Proof. Considering the Lyapunov-Krasovskii functional in
Theorem 6 and from Schur’s Lemma, it turns out to be

£𝑉 (𝑥
𝑡
, 𝑖, 𝑡) + 𝑧

⊺

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝜔
⊺

(𝑡) 𝜔 (𝑡)

≤ 𝜉
⊺

(𝑡) Θ
𝑖
(𝜇

𝑝𝑖
, ℎ

𝑞𝑖
) 𝜉 (𝑡) .

(56)

Thanks to (54), we have

E {£𝑉 (𝑥
𝑡
, 𝑖, 𝑡)} ≤ E [𝜂𝑉 (𝑥

𝑡
, 𝑖, 𝑡)]

+ 𝛾
2

𝜔
⊺

(𝑡) 𝜔 (𝑡) − E [𝑧
⊺

(𝑡) 𝑧 (𝑡)] .

(57)

Multiplying the (58) by 𝑒
−𝜂𝑡, (58) can be written as

E {£ [𝑒−𝜂𝑡𝑉 (𝑥
𝑡
, 𝑖, 𝑡)]}

≤ 𝑒
−𝜂𝑡

[𝛾
2

𝜔
⊺

(𝑡) 𝜔 (𝑡) − 𝑧
⊺

(𝑡) 𝑧 (𝑡)] .

(58)

Under the condition of zero initial and E[𝑉(𝑥
𝑡
, 𝑖, 𝑡)] > 0, one

has

∫

𝑇

0

𝑒
−𝜂𝑡

[𝛾
2

𝜔
⊺

(𝑡) 𝜔 (𝑡) − 𝑧
⊺

(𝑡) 𝑧 (𝑡)] 𝑑𝑡

≤ E{∫

𝑇

0

£ [𝑒−𝜂𝑡𝑉 (𝑥
𝑡
, 𝑖, 𝑡)] 𝑑𝑡} ≤ 𝑉 (𝑥

0
, 𝑟
0
, 0) = 0.

(59)
Using the Dynkin formula, it results that

E [∫

𝑇

0

𝑒
−𝜂𝜐

𝑧
⊺

(𝜐) 𝑧 (𝜐) 𝑑𝜐] ≤ 𝛾
2

E [∫

𝑇

0

𝑒
−𝜂𝜐

𝜔
⊺

(𝜐) 𝜔 (𝜐) 𝑑𝜐] .

(60)
Finally, it is easy to obtains that

E [∫

𝑇

0

𝑧
⊺

(𝜐) 𝑧 (𝜐) 𝑑𝜐] ≤ 𝛾
2

𝑒
𝜂𝑇

E [∫

𝑇

0

𝜔
⊺

(𝜐) 𝜔 (𝜐) 𝑑𝜐] .

(61)
Therefore, the Markovian jump system (53) is finite-time
stochastic bounded with an performance 𝛾.

4. Finite-Time 𝐻
∞

Control

Theorem 10. System (53) is finite-time stochastic bounded
with respects to (𝑐

1
, 𝑐
2
, 𝑑, 𝑅, 𝑇) with an disturbance attenua-

tion, if there exists matrices

𝑃
𝑖
> 0, 𝑃

𝑖
, 𝑄

𝑙𝑖
> 0 (𝑙 = 1, 2) , 𝐾

𝑖
, 𝑄 > 0,

X
𝑖
=

[

[

𝑋
1𝑖

𝑋
2𝑖

𝑋
3𝑖

𝑋
4𝑖

]

]

> 0, X =
[

[

𝑋
1

𝑋
2

𝑋
3

𝑋
4

]

]

> 0,

𝑌
𝑠
> 0 (𝑠 = 1, 2) , 𝑍

𝑖
> 0, 𝑍 > 0,

(62)

scalars 𝑐
1
< 𝑐

2
, 𝑇 > 0, 𝜆

𝑠
> 0, (𝑠 = 1, 2, . . . , 12), 𝜂 > 0 and

Λ > 0, such that for all 𝑖, 𝑗 ∈ N, (15)–(20) and the following
inequalities hold:
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[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Θ
11𝑖

Ξ
12𝑖

𝑆
4𝑖

Ξ
14𝑖

Ξ
15𝑖

−𝑆
3𝑖
+

𝑍
𝑖
+ 𝑍

⊺

𝑖

ℎ

𝑃
𝑖
𝐷
𝑖

𝐶
⊺

𝑖

∗ Ξ
22𝑖

−𝑆
4𝑖
+

𝑋
4𝑖

ℎ

0

𝑋
3𝑖

2ℎ

+

𝑋
⊺

2𝑖

2ℎ

𝑆
3𝑖
− 𝑆

⊺

2𝑖
−

𝑋
3𝑖

2ℎ

−

𝑋
⊺

2𝑖

2ℎ

0 𝐶
⊺

𝜏𝑖

∗ ∗ −𝑄
1𝑖
−

𝑋
4𝑖

ℎ

− 𝑊
2

0 0 𝑆
⊺

2𝑖
+

𝑋
3𝑖

2ℎ

+

𝑋
⊺

2𝑖

2ℎ

0 0

∗ ∗ ∗ Ξ
44𝑖

0 0 0 0

∗ ∗ ∗ ∗ Ξ
55𝑖

−𝑆
1𝑖
−

𝑍
𝑖

ℎ
2
−

𝑍
⊺

𝑖

ℎ
2

0 0

∗ ∗ ∗ ∗ ∗ −

𝑋
1𝑖

ℎ

−

𝑍
𝑖

ℎ
2
−

𝑍
⊺

𝑖

ℎ
2

0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (63)

𝑃
𝑖
𝐵
𝑖
= 𝐵

𝑖
𝑃
𝑖

(64)

𝑐
1
Λ + 𝑑𝛾

2
1

𝜂

(1 − 𝑒
−𝜂𝑇

) < 𝜆
1
𝑒
−𝜂𝑇

𝑐
2
, (65)

where

Θ
11𝑖

=

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝛿𝑃

𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝐵

𝑖
𝐾
𝑖

+ 𝐴
⊺

𝑖
𝑃
𝑖
+ 𝐾

⊺

𝑖
𝐵
⊺

𝑖
+ 𝑒

𝛿ℎ

(𝑄
1𝑖
+ 𝑄

2𝑖
)

+ ℎ𝑄 +

𝑒
𝛿ℎ−1

𝛿

𝑋
1𝑖
+

𝑒
𝛿ℎ

− 𝛿ℎ𝑒
𝛿ℎ

− 1

𝛿
2

𝑋
1

−

𝑋
4𝑖

ℎ

+ ℎ𝑌
1
+ 𝑊

1
− 𝑍

𝑖
− 𝑍

⊺

𝑖
,

(66)

and the state feedback gain matrices considered in this paper
could be designed as follows:

𝐾
𝑖
= 𝑃

−1

𝑖
𝐾
𝑖
, ∀𝑖 = 1, 2, . . . , 𝑁. (67)

Proof. Thisproof can be completed in viewofTheorem 9with
𝑃
𝑖
𝐵
𝑖
= 𝐵

𝑖
𝑃
𝑖
and 𝑃

𝑖
𝐾
𝑖
= 𝐾

𝑖
.

5. Illustrative Example

Example 1. Considering the following example with parame-
ters

𝐴
1
= [

−0.9 0.5

−0.32 −0.8
] , 𝐴

𝜏1
= [

−0.5 −0.3

0.3 −0.2
] ,

𝐵
1
= [

−1.05 0.8

−0.15 −1.3
] , 𝐶

1
= [

0.6 −0.4

0.35 −0.41
] ,

(68)

the transition probabilities matrix is given as follows:

Ω = [

−0.2 0.2

0.8 −0.8
] . (69)

Given the different upper bounds of ℎ and 𝛿, the results
of themaximumupper bound of decay rates 𝛿 andmaximum
values of ℎ for different time delays are obtained in Tables
1 and 2, respectively. This example indicates fully that the
method proposed in the paper plays an important role in
reducing conservatism. It can be also seen that our results
in this paper show significant improvement over the results
obtained in [11, 12]. This clearly shows that our results have
less conservatism in the above two cases.

Example 2. Consider the Markovian jump system (1) where

𝐴
1
= [

−0.8 1.5

2 3
] , 𝐴

𝜏1
= [

−0.45 1

−0.5 2
] ,

𝐵
1
= [

−1 0.2

0.5 −0.1
] , 𝐷

1
= [

0.2

0.1
] ,

𝐶
1
= [

0.2 0

0 0.1
] , 𝐶

𝜏1
= [

0.03 0

0.01 0.02
] ,

𝐸
1
= [

0.02 0

0.01 0.01
] , 𝐷

1
= [

0.01

0.001
] ,

𝐴
2
= [

−2 1.2

1 4
] , 𝐴

𝜏2
= [

−1 1.2

0 −0.5
] ,

𝐵
2
= [

−1 1

0.5 −2
] , 𝐷

2
= [

0.2

0.3
] ,

𝐶
2
= [

0.1 0.02

0 0.1
] , 𝐶

𝜏2
= [

0.02 0

0.1 0.02
] ,

𝐸
2
= [

0.04 0

0.1 0.01
] , 𝐹

2
= [

0.04

0.01
] ,

(70)

and corresponding transition rate matrix is

Ω = [

−1.2 1.2

1 −1
] . (71)
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Table 1: Comparison of the upper bounds of the decay rate for
different delays.

ℎ = 0.2 ℎ = 0.5 ℎ = 0.8 ℎ = 1 ℎ = 1.2

[12] 1.2683 1.0064 0.7962 0.6838 0.5900
[11] 1.3618 1.1769 0.9420 0.7694 0.6261
Theorem 6 1.3622 1.1771 0.9426 0.7696 0.6263

Table 2: Comparison of the allowable values of time delay ℎ for
different decay rates.

𝛿 = 0.6 𝛿 = 0.8 𝛿 = 1 𝛿 = 1.2 𝛿 = 1.4

[12] 1.1768 0.7938 0.5081 0.2731 0.0657
[11] 1.2435 0.9626 0.7368 0.4651 0.1302
Theorem 6 1.2441 0.9630 0.7372 0.4655 0.1304

Assuming that𝑅 = 𝐼,𝑇 = 2, 𝑐
1
= 1, and𝑑 = 0.01, by suing

LMI toolbox, Theorem 10 provides the following controller
gains:

𝐾
1
= [

−11.5351 −8.1210

13.2230 10.5612
] ,

𝐾
2
= [

−21.2123 15.5613

−23.2318 16.4518
] .

(72)

6. Conclusions

We have presented the problems of finite-time stochastic
𝐻
∞

performance analysis of continuous-time systems with
random abrupt changes in this paper. By using a different
Lyapunov-Krasovskii functional, several sufficient conditions
are provided to ensure the Markovian jump system is finite-
time stochastic bounded. The controller gains can be dealt
with by LMIs toolbox and optimization techniques. At
last, two numerical examples are proposed to illustrate the
effective and advantage of the developed theories.
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