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Addition arithmetic design plays a crucial role in high performance digital systems. The paper proposes a systematic method
to formalize and verify adders in a formal proof assistant Coq. The proposed approach succeeds in formalizing the gate-level
implementations and verifying the functional correctness of themost important adders of interest in industry, in a faithful, scalable,
and modularized way. The methodology can be extended to other adder architectures as well.

1. Introduction

Demonstrating the functional correctness of an arithmetic
implementation is a challenging topic which has lasted
for several decades. Testing and simulation, as the tradi-
tional methods, have won good reputation and have been
employed extensively in industry. When dealing with large
scale designs, these methods may find counterexamples but
could not assert if a design is correct because the exhaustivity
is impractical.

As an alternative, formal methods have been increasingly
adopted to validate the arithmetic implementations. A main
branch of formal methods is model checking, which is
recognised by its automation and succeeds in numerous
industrial applications. However, the inherent state explosion
problem prevents it from scaling to large scale designs.

Another branch of verification is theorem proving, which
is no longer restricted by the scale as model checking, test-
ing, and simulation. The main problem restricting theorem
proving to be widespread is that it requires strong logic
backgrounds and heavy user interactions. Nevertheless, there
appear quite a few successful applications by different theo-
rem provers. By Boyer-Moore, a microprocessor is verified in
[1], and anN-bit comparator aswell asmean-value circuits are
verified in [2]. By HOL, a ripple carry adder and a sequential
device are verified in [3], and an ATM switch fabric is verified
in [4]. ByCoq, a sequentialmultiplier is verified in [5], and an
asynchronous transfer mode switch fabric is verified in [6].

The main effort of this work is to propose a holistic
methodology to formalize and verify adders in Coq [7].
Adders are chosen because they are the most fundamental
arithmetic units widely employed in various advanced digital
systems, such as IBM POWER6, whose correctness depends
significantly on the correctness of its addition subcompo-
nents.Thismethodology provides a uniformway to formalize
and verify various implementations of arithmetic addition,
and it is applied in this work to formalize and verify primary
and high speed adders of interest in industry, including Carry
Look-ahead Adder (CLA), Ling Adder (LA), and Parallel
Prefix Adder (PPA).

Benefiting from the techniques of Coq, the methodology
shares the following decent features.

(i) Scalability: the formalization of an adder is parame-
terized by a natural number (named length) and the
correctness proof applies to any length.

(ii) Modularization: various verified adders are encap-
sulated as instances of an abstract module, which
provides a uniform way to be reused in advanced
arithmetic units. The formalization and verification
of an advanced arithmetic unit can be accumulated
from verified units ignoring their detailed implemen-
tations.

(iii) Fidelity: the adders are formalized by (recursive)
functions, which have clear correspondences to the
gate-level implementations of circuits. The addends
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and sum of an adder are formalized as vectors, which
is a faithful model of arrays and provides meanwhile
additional type checking ability to avoid potential
misusing of inputs.

The rest of paper is organized as follows. Related works
are introduced in Section 2. According to our knowledge, we
verify not only most adders appearing in the literature, but
also some for the first time by theorem proving. Section 3
explains our methodology in details by the example of ripple
carry adder. Preliminaries are also introduced according
to our needs. Some definitions and most proofs will not
be presented in this paper, but they are available on the
author’s webpage (http://superwalter.github.io/dev/veriadder
.zip). Sections 4 and 5 are devoted to LA and PPA, respec-
tively.

2. Related Work

Compared to their extensive applications, the verification of
primary adders by theorem proving is not at the fingertips.
In particular, the formalization and verification of the Ling
adder cannot be found in any literature. Reference [8] proves
the correctness of RCAby formalizing adderswith dependent
types in Coq. Reference [9] proves the correctness of RCA by
the higher-order logic with a reusable library for formalizing
circuits. Reference [2] verifies RCA written in VHDL as
well as other circuits by the higher-order logic. Reference
[10] develops semiformal correctness proof of CLA or PPA.
Reference [11] shows a pencil-and-paper proof of the general
prefix adders, as well as the proof of related RCA. Further-
more, [12] formalizes and verifies these adders in Coq. By
rewriting and induction, [13] provides the verification of PPA
using powerlists. An algebra formalization of PPA and its
correctness proof are presented in [14]. Besides applying it to
formalize and verify most primary adders, our methodology
also provides good features, which only appear partially in
other literatures, but are never integrated together in any
preview work, according to our knowledge.

3. A Holistic Methodology

Various kinds of adders are designed to provide rela-
tively good performances for different circumstances, while
they implement the same addition functionality. A holistic
methodology is proposed in this work in order to capture all
the different adders and provide desired good features.

3.1. A Unified Proof Structure. Basically, the methodology
answers four questions:

(i) how to formalize the related data types;
(ii) which method is used to formalize an adder;
(iii) what should be proved;
(iv) how to organize formalizations and verifications for

different adders.

These questions are answered by a uniform specification,
utilizing the module system of Coq.

(1) Definition mbadder (n: nat):=

(2) data (S n)-> data (S n)-> bit->

hyb (S n).

(3) Definition mbadder c n (f: mbadder n):=

(4) forall (X Y: data (S n)) c,

(5) |[X]| + |[Y]| + |c| = |(f X Y c)|.

(6) Module Type GenAdder.

(7) Parameter adder: forall n, mbadder n.

(8) Axiom adder correct: forall (n:nat),

(9) mbadder correct (@adder n).

(10) End GenAdder.

Lines 1 and 2 answer the first two questions. 𝑛, in line 1, is a
parameter (name length) indicating the inherent nature of an
adder: how many bits it can process. The input carry-in and
output carry-out are formalized by Booleans (bit).The input
addends and the returned sum are formalized by vectors of
Booleans (data 𝑚), which are dependent types depending
on the length 𝑚. hyp 𝑚 is another dependent type standing
for a tuple of a bit and a 𝑚-bit vector, which is used in line
2 for combining the carry-out and the sum. Thus, an adder
is formalized as a function, taking two addends and a carry-
in as inputs and returning a tuple of carry-out and sum. This
function is normally recursively defined as shown later.

Lines 3, 4, and 5 answer the third question. The cor-
rectness of an adder is ensured by proving that the natural
number denotations of the inputs and outputs are equivalent.
In line 5, |𝑏| is the natural number denotation of a bit 𝑏. |[V]|
and |(𝑡)| are natural number denotations of the vector V and
the result tuple 𝑡. Big endian is chosen to implement these two
functions.

Lines 6–10 answer the last question. A general adder
is formalized as an abstract module. The specification is
assigned and the correctness is required. A verified adder
should be its instance, like a Ripple Carry Adder (RCA).

3.2. An Example Explaining the Methodology. Carry Look-
ahead Adder (CLA) improves RCA by computing all the
carries in advance in order to reduce the significant delay.This
is represented, in the formalization, by extending the general
module with abstract functions 𝑃, 𝐺, and 𝑐𝑎𝑟𝑟𝑖𝑒𝑠 which are
supposed to compute all the propagated carries, generated
carries, and carries, respectively, according to the inputs.

(1) Module Type LookAheadAdder <: GenAdder.

(2) Parameter P: forall n, data n -> data

n -> data n.

(3) Parameter G: forall n, data n -> data

n -> data n.

(4) Parameter carries n: data (S n) -> data

(S n) -> bit -> hyb (S n).

(5) Parameter adder: forall n, mbadder n.
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(6) Parameter adder correct: forall n,

mbadder correct (@adder n).

(7) End LookAheadAdder.

<: symbol in line 1 stands for the fact that this module
should be an instance of the general verified adder. RCA is
formalized according to the following equations:

𝑐
𝑖+1

= (𝑥
𝑖
∧ 𝑦
𝑖
) ∨ ((𝑥

𝑖
⊕ 𝑦
𝑖
) ∧ 𝑐
𝑖
) = 𝑔
𝑖
∨ (𝑝
𝑖
∧ 𝑐
𝑖
) , (1)

𝑠
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𝑖
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𝑖
⊕ 𝑐
𝑖
= 𝑝
𝑖
⊕ 𝑐
𝑖
. (2)

Carry to each bit 𝑐
𝑖+1

in CLA is computed by iteratively
unfolding 𝑐

𝑖
in (1) until 𝑐

0
which is an overall input bit as

shown by the following example:
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) ∨ (𝑝
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∧ 𝑝
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∧ 𝑐
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(3)

This process as well as definitions of 𝑃 and 𝐺 are
formalized as follows:

(1) Definition P n (X Y: data n):= X ⊕ Y.

(2) Definition G n (X Y: data n):= X ∧ Y.

(3) Definition carries n (X Y: data (S n))

(cin: bit): hyb (S n).

(4) induction n as [|n rec].

(5) + exact (bandor (Y ⊳) (X ⊳) cin, [cin]).

(6) + set (recs:= rec (X ⊲) (Y ⊲)).

(7) exact (bandor (Y ⊳) (X ⊳) (recs
1
),

(recs
1
)⋈(recs

2
)).

(8) Defined.

⊕ and ∧ in lines 1 and 2 and ∨ used later are extensions
of logical Boolean operations ⊕, ∧, and ∨, iterating these
operations on the elements at the same position of the two
vectors. + symbols in lines 5 and 6 stand for the start of the
two branches of the recursion where 𝑛 = 0 or 𝑛 = 𝑚 + 1.
The ⊳ operators in line 5 return the leftmost element of a
vector. Correspondingly, the ⊲ operator in line 6 returns the
rightmost 𝑛 elements of a (𝑛+1)-bit vector. [𝑏] is a vector with
a single bit 𝑏. 𝑝

1
and 𝑝

2
represent the first and second objects

of a tuple, respectively.The ⋈ operator in line 9 joins a bit and
a 𝑛-bit vector to form a (𝑛 + 1)-bit vector.

The adder is defined as follows and its correctness is
proved by induction on the length and reusing the correctness
result of the full adder:

(1) Definition adder: forall n, mbadder n.

(2) intros n X Y cin.

(3) set (cc:= carries (P X Y) (G X Y) cin).

(4) exact (cc
1
, (P X Y) ⊕ (cc

2
)).

(5) Defined.

(6) Theorem adder correct: forall n,

mbadder correct (@adder n).

(7) Proof. induction n as [|n rec].

. . . Qed.

3.3. Features Provided by the Methodology. There are several
benefits to the use of this methodology for the verification of
adders.

3.3.1. Scalability. The formalization and verification of an
adder is scalable to any data-width, because the parameter-
ized length can be specified to arbitrary natural number. A
4-bit RCA can be obtained by the following:

(1) Definition CLA4:= CLA 3.

(2) Corollary CLA4 correct: forall

(X Y: data 4) c,

(3) |[X]| + |[Y]| + |c| = |(RCA4 X Y c)|.

(4) Proof. intros; apply CLA correct. Qed.

Notice that a 4-bit CLA is CLA3, because we require
that the addends of the adders have at least one bit. The
correctness proof of a CLA with a specified length follows
straightforwardly from the proof of CLA with arbitrary
length.

3.3.2. Modularization. Some high speed adders divide the
input addends into different groups. Each group is calculated
by aCarry SelectedAdder (CSA) independently, and different
groups will be concatenated together in order. Since the
computation of CSA depends on the very late steps of input
carry-in, such designs would have less propagated time, thus
high performance. We formalize an abstract architecture for
this kind of design, which illustrates the modularization of
ourmethod andmay also contribute to verify complex adders
in the future.

CSA takes an abstract verified adder as parameter and is
also an instance of the general verified adder.

(1) Module CSA (M: GenAdder) <: GenAdder.

(2) Definition adder n: mbadder n.

(3) intros X Y c.

(4) set (a1:= M.adder X Y true).

(5) set (a0:= M.adder X Y false).

(6) set (sum:= (dmap (band c) a1
2
) ∨

(dmap (band (¬c)) a0
2
)).

(7) set (c’:= (a1
1
∧ c) ∨ (a0

1
∧ (¬c))).

(8) exact (c’, sum).

(9) Defined.
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(10) Theorem adder c: forall n, badder

correct (@adder n).

(11) Proof. . . . rewrite M.adder c. . . . Qed.

(12) End CSA.

(13) Module CSA CLA:= CSA CLA.

Lines 2 to 10 define CSA. Two adders compute the sum
and the carry-out with respect to carry-in 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒 in
lines 4 and 5, respectively. The multiplexer chooses the real
sum and carry-out according to the actual carry-in in lines 6
and 7, since when the input carry is required. 𝑑𝑚𝑎𝑝 in line 6
applies a function to each element of a vector.The correctness
of CSA holds because the addition unites are correct; thus,
CSA is an instance of the general adder. The parameterized
module can be instantiated by any verified adders. Line 13
defines a CSA whose addition unites are specified to CLA.

(1) Module Type GroupAdder (M: GenAdder)

<: GenAdder.

(2) Parameter part: list nat.

(3) Fixpoint adder rec (n lens len: nat):
(mbadder lens).

(4) destruct n.

(5) + exact (@M.adder lens).

(6) + specialize adder rec with (1:=n)

(7) (lens:= pred (cur index abr n len))

(2:=len).

(8) . . ..

(9) exact (cast comb (combination

(10) (@M.adder (lens - (cur index abr n

len)))

(11) (adder rec)) (aux Hc3 Hc2)).

(12) Defined.

(13) Definition adder n:= adder rec (sect n)

n n.

(14) Lemma adder correct: forall n, mbadder

correct (adder n).

(15) Proof. . . . Qed.

(16) End GroupAdder.

The formalization and verification of this adder are quite
complex due to the problem with the dependent types as
described in [15, 16]; therefore, the unimportant details are
omitted. The 𝑝𝑎𝑟𝑡 in line 2 is a partition of the addends. This
partition should be valid, whichmeans the elements preserve
strict order and do not exceed the total data-width. Lines 3 to
12 define the adder recursively by combining an adder with
another which is combination of the remaining groups of
adders obtained by recursion. 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 in line 9 execute
the combining operation. 𝑐𝑎𝑠𝑡 𝑐𝑜𝑚𝑏 in line 9 converts an
adder with length 𝑚 to an adder with length 𝑛 taking the

proof of 𝑚 = 𝑛 as an argument. The initial values of this
recursive function are specified in line 13.The correctness can
be proved by the induction on the length of the partition and
using the correctness result of combining correct adders.

The parameterized module can be instantiated by any
verified adder. If it is instantiated by CSA, it is a verification
of many popular high speed adders.

3.3.3. Fidelity. There are normally two ways to formalize the
addends and sum of an adder in Coq, either by dependent
type V𝑒𝑐𝑡𝑜𝑟 as in [6, 8] and this work or nondependent type
𝑙𝑖𝑠𝑡 as in [12]. Both [6, 8] have explanations why dependent
type is more proper for the verification of adders. Generally
speaking, nondependent list is more proper for formalizing
linked list, whose length can be obtained by computation,
while dependent vector is more proper for formalizing array,
whose length is inherent natural. The functionality of adders
is formalized by interactively defined (recursive) functions
which have clear correspondences to gate-level description of
circuits.

4. Ling Adder

The Ling Adder (LA) was proposed by [17]. Instead of
computing in advance all the carries as CLA, LA computes all
the pseudo carries, the propagation of which have less fan-ins
and fan-outs.With the proper grouping of the input addends,
LA needs lesser levels of gates and consequently has better
performance.

Similar to the propagated and generated carries, LA has
new complementing signal 𝑘

𝑖
and previous stage propagate

𝑇
𝑖
, which are defined in (4) and (5) respectively as follows:

𝑘
𝑖
= 𝑎
𝑖
∧ 𝑏
𝑖
, (4)

𝑇
𝑖
= 𝑎
𝑖
∨ 𝑏
𝑖
. (5)

The pseudo carries are defined recursively. According to
our knowledge, [17] and other materials about LA define the
pseudo carries without considering the case 𝑖 = 0 as this
paper does in (6b).

Consider

𝐻
𝑖
= 𝑘
𝑖
∨ (𝐻
𝑖−1
∧ 𝑇
𝑖−1
) 𝑖 > 0, (6a)

𝐻
𝑖
= 𝑘
𝑖
∨ 𝑐
𝑖𝑛

𝑖 = 0. (6b)

Without this case, the default values of 𝐻
−1

and 𝑇
−1

are
both 𝑓𝑎𝑙𝑠𝑒, and it is equivalent to our definition assuming
that 𝑐
𝑖𝑛
is always 𝑓𝑎𝑙𝑠𝑒. More intuitively, that algorithm does

not consider the carry-in to the least significant bit,, which
restricts it to some special applications, such as the addition of
two registers.We generalize it to provide general functionality
of an adder. Sum is defined similarly to consider the carry-in
to the least significant bit as follows:

𝑠
𝑖
= (𝐻

𝑖
⊕ 𝑇
𝑖
) ∨ (𝑘

𝑖
∧ 𝐻
𝑖−1
∧ 𝑇
𝑖−1
) 𝑖 > 0, (7a)

𝑠
𝑖
= (𝐻

𝑖
⊕ 𝑇
𝑖
) ∨ (𝑘

𝑖
∧ 𝑐
𝑖𝑛
) 𝑖 = 0. (7b)



Journal of Applied Mathematics 5

The abstract module of Ling extends the general one by
adding signatures of 𝑘, 𝑇, and𝐻.

(1) Module Type LingAdder <: GenAdder.

(2) Parameter K: forall n, data n -> data

n -> data n.

(3) Parameter T: forall n, data n -> data

n -> data n.

(4) Parameter H: forall n, data (S n)-> data

(S n)-> bit-> data (S n).

(5) Parameter adder: forall n, mbadder n.

(6) Parameter adder correct: forall n,

mbadder correct (@adder n).

(7) End LingAdder.

To compute the 𝑖th pseudo carry of𝐻, the 𝑖th bit of𝐾 and
the (𝑖−1)th bit of𝑇 are needed.Therefore, the two parameters
of𝐻 stand for vectors𝐾 and a left shift of𝑇.The formalization
of𝐻 assuming the correctness of the parameters is as follows:

(1) Definition H n (X Y: data (S n)):

data (S n).

(2) induction n as [|n rec].

(3) + exact ([(X ⊳) ∨ (Y ⊳)]).

(4) + set (recs:= rec (X ⊲) (Y ⊲)).

(5) exact ((X ⊳) ∨ ((Y ⊳) ∧ (recs ⊳))

⋈ recs).

(6) Defined.

𝐻 is defined recursively. Line 3 deals with the case 𝑖 = 0.
Lines 4 and 5 deal with the recursive case. 𝑟𝑒𝑐𝑠 is the last 𝑛
bits of𝐻 by recursion, and 𝑟𝑒𝑐𝑠 ⊳ stands for𝐻

𝑛−1
.

LA is defined according to (7a) and (7b) using the
definition of𝐻.

(1) Definition adder n

(2) (X Y: data (S n)) (cin: bit): hyb (S n).

(3) set (KXY:= K X Y).

(4) set (TXY:= T X Y).

(5) set (Tshft:= shiftin cin TXY).

(6) set (Hc:= H KXY (Tshft ⊲)).

(7) set (Hcshft:= shiftin true pc).

(8) set (sum:= (TXY ⊕ Hc) ∨ (KXY ∧

(Hcshft ⊲) ∧ (Tshft ⊲))).

(9) exact ((TXY ⊳) ∧ (Hc ⊳), sum).

(10) Defined.

Since the 𝑖th bit of sum depends on the (𝑖 − 1)th bit of𝐻
and 𝑇, they are shifted in lines 5 and 7. The reason why 𝑐𝑖𝑛
is shifted into 𝑇 is explained above; 𝑡𝑟𝑢𝑒 is shifted into 𝐻 to
ensure 𝑇

−1
∧ 𝐻
−1
= 𝑐𝑖𝑛 where𝐻

−1
and 𝑇

−1
are the bits to be

shifted in, respectively, and 𝑇
−1
= 𝑐𝑖𝑛. The carry-out of LA is

(TXY ⊳) ∧ (Hc ⊳) which is equivalent to 𝑐out as shown in

𝑐
𝑖
= 𝐻
𝑖−1
∧ 𝑇
𝑖−1
, 𝑖 ≥ 0. (8)

The formalization of (8) is complicated, but the proof is
trivial by induction and case analysis. The correctness of LA
follows by proving a lemma stating that the outputs of CLA
and LA are the same with regard to arbitrary same inputs.
This lemma is proved by induction with the result of (8).

(1) Lemma LA CLA eq: forall n (X Y: data

(S n)) c in,

(2) LAdder.adder X Y c in = CLAdder.adder

X Y c in.

(3) Proof. induction n as [|n rec].. . . Qed.

(4) Theorem adder correct: forall n

(X Y: data (S n)) c,

(5) |[X]| + |[Y]| + |c| =

|(LAdder⋅adder X Y c)|.

(6) Proof. intros; rewrite LA CLA eq.

apply CLAdder.adder correct. Qed.

Reference [18] proposed an extension of Ling’s adder by
the following equations:

𝐷
𝑗:𝑘
= 𝐺
𝑗:𝑘
+ 𝑃
𝑗:𝑘
= 𝐺
𝑗:𝑘+1

+ 𝑃
𝑗:𝑘
, (9)

𝐵
𝑗:𝑘
= 𝑔
𝑗
+ 𝑔 + 𝑗 − 1 + ⋅ ⋅ ⋅ + 𝑔

𝑘
, (10)

𝐺
𝑗:𝑖
= 𝐷
𝑗:𝑘
∧ (𝐵
𝑗:𝑘
+ 𝐺
𝑘−1:𝑖

) , (11)

where𝐺
𝑖:𝑗
and𝑃
𝑖:𝑗
are group propagated and generated carries

which are defined later in Section 5. Equation (11) is also
proved in this work.

5. Parallel Prefix Adder

CLA improves RCA by computing all the carries in advance
as shown in (4). However, large fan-in and fan-out will be
caused if all the carries 𝑐

𝑖
are computed this way especially

when 𝑖 is large. Parallel Prefix Adder (PPA) avoids this by
the idea of divide-and-conquer, which provides an efficient
way to compute all the parallel carries. Basic definitions are
as follows:

𝑐
𝑖+1

= 𝐺
𝑖:𝑗
∨ (𝑃
𝑖:𝑗
∧ 𝑐
𝑗
) (𝑗 ≤ 𝑖) , (12)

𝑠
𝑖
= 𝑐
𝑖
⊕ 𝑃
𝑖
, (13)

𝑃
𝑖:𝑗
= {

𝑃
𝑖

𝑖 = 𝑗

𝑃
𝑖
∧ 𝑃
𝑖−1:𝑗

𝑖 > 𝑗,
(14)

𝐺
𝑖:𝑗
= {

𝐺
𝑖

𝑖 = 𝑗

𝐺
𝑖
∨ (𝑃
𝑖
∧ 𝐺
𝑖−1:𝑗

) 𝑖 > 𝑗.
(15)
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Due to the similarity between (14) and (15), only the
formalization of (15) is shown as follows. An auxiliary
function, defined recursively on the difference of 𝑖 and 𝑗, is
reluctantly introduced to define it in Coq.

(1) Definition GpG rec n (gp gg: data (S n))

(d i: nat): bit.

(2) revert i; induction d as [|d rec];

intros i.

(3) + exact (nth (n-i) gg).

(4) + exact ((nth (n-i) gg) ∨

((nth (n-i) gp) ∧ (rec (pred i)))).

(5) Defined.

(6) Definition GpG n (X Y: data (S n)) i j:=

(7) GpG rec X Y (i-j) i.

In line 1, the parameters 𝑔𝑝 and 𝑔𝑔 stand for the
propagated and generated carry vectors. Another parameter
𝑑 is the difference of 𝑖 and 𝑗. Function 𝑛th 𝑘 V returns the 𝑘th
element of V from the leftmost bit indexed 0. pred 𝑛 computes
the predecessor of 𝑛.

To compute all the carries parallel in advance, the carry
𝑐
𝑖+1

should not depend on any 𝑐
𝑘
, where 𝑖 ≥ 𝑘 > 0, except

𝑐
0
which is the overall carry-in. Therefore, carries of PPA are

computed according to a variation of (12) as follows:

𝑐
𝑖+1

= 𝐺
𝑖:0
∨ (𝑃
𝑖:0
∧ 𝑐
0
) , (16)

and different PPAs employ different parallel prefix methods
to compute the group carries 𝐺

𝑖:0
and 𝑃

𝑖:0
, for all 𝑛 ≥ 𝑖 ≥ 0,

for the sake of high performance. To capture various PPAs in
a uniform framework, an abstract module, which abstractly
describes this method as 𝑔𝑟𝑜𝑢𝑝𝑠, is employed as follows:

(1) Module Type GroupCarries.

(2) Parameter groups: forall n, data2

(S n) -> data2 (S n).

(3) Axiom groups correct: forall

n (X Y: data (S n)),

(4) groups (P X Y, G X Y) =

correct groups (P X Y, G X Y).

(5) End GroupCarries.

𝑑𝑎𝑡𝑎2 𝑛, in line 3, is the dependent type of a tuple of
vectors whose lengths are both 𝑛. Therefore, the parameter of
𝑔𝑟𝑜𝑢𝑝𝑠 stands for vectors of propagated and generated carries
as shown in line 6. 𝑔𝑟𝑜𝑢𝑝𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 in line 4 is the assumption
that the 𝑔𝑟𝑜𝑢𝑝𝑠 function is correct. The correctness is
represented as an extensional equality of another correct
function and itself. In line 7, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑔𝑟𝑜𝑢𝑝𝑠 is the correct
function to compute the groups carries according to (14) and
(15). Its correctness holds by, first, computing all the carries
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑎𝑟𝑟𝑖𝑒𝑠 according to this function and then proving
that 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑎𝑟𝑟𝑖𝑒𝑠 are equivalent to the carries of CLA.

(1) Definition correct carries (n: nat)

(c in: bool)

(2) (X Y: data (S n)): hyb (S n).

(3) set (PXY:= P X Y).

(4) set (GXY:= G X Y).

(5) set (bvGp:= correct groups (PXY, GXY)).

(6) set (all c:= shift map c in bvGp).

(7) exact (all c ⊳, all c ⊲).

(8) Defined.

(9) Lemma carries correct: forall n

(X Y: data (S n)) c in,

(10) correct carries c in X Y =

CLAdder.carries (P X Y) (G X Y) c in.

𝑠ℎ𝑖𝑓𝑡 𝑚𝑎𝑝, in line 2, is a compositional operation first
iterating Equation (16) on all the𝐺

𝑖:0
and𝑃
𝑖:0
which are stored

in the vectors of the first and projection of 𝑏V𝐺𝑝 and then
shifting the overall carry-in 𝑐

0
to get all the carries. Consider

that the computation of 𝐺
𝑖:𝑗
depends on the subgroups of the

group propagated carries𝑃
𝑖:𝑚
, the fundamental carry operator

“∘” as in [19] is used to compute the group propagated and
generated carries simultaneously in function 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑔𝑟𝑜𝑢𝑝𝑠
and should be used in all implementations of function
𝑔𝑟𝑜𝑢𝑝𝑠. Consider

(𝑃, 𝐺) ∘ (𝑃
󸀠
, 𝐺
󸀠
) = (𝑃 ∧ 𝑃

󸀠
, 𝐺 ∨ (𝑃 ∧ 𝐺

󸀠
)) . (17)

Function 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑔𝑟𝑜𝑢𝑝𝑠 can be taken as an instance of
𝑔𝑟𝑜𝑢𝑝𝑠 function and is only one particular implementation of
𝑔𝑟𝑜𝑢𝑝𝑠, which is verified.There are many other implementa-
tions of the 𝑔𝑟𝑜𝑢𝑝𝑠 function based on the following lemmas
which are proved by induction on the difference between 𝑖
and𝑚, using (14) and (15):

𝑃
𝑖:𝑗
= 𝑃
𝑖:𝑚
∧ 𝑃
𝑚−1:𝑗

(𝑗 < 𝑚 ≤ 𝑖) ,

𝐺
𝑖:𝑗
= 𝐺
𝑖:𝑚
∨ (𝑃
𝑖:𝑚
∧ 𝐺
𝑚−1:𝑗

) (𝑗 < 𝑚 ≤ 𝑖) .
(18)

Equation (18) can be rewritten using ∘ operator in one
equation. For all 𝑗 < 𝑚 ≤ 𝑖,

(𝑃
𝑖:𝑗
, 𝐺
𝑖:𝑗
) = (𝑃

𝑖:𝑚
, 𝑃
𝑚−1:𝑗

) ∘ (𝐺
𝑖:𝑚
, 𝐺
𝑚−1:𝑗

) . (19)

Equation (19) shows clearly that any group of group
carries can be computed by its concatenation (or even over-
lapped) subgroups. And the proper dividing and conquering
of the bits of input addends can implement 𝑔𝑟𝑜𝑢𝑝𝑠 function
with high performance. PPA is such a family of adders
differing only in the computation of the 𝑔𝑟𝑜𝑢𝑝𝑠 function;
thus, a general PPA can be formalized and parameterized by
module 𝐺𝑟𝑜𝑢𝑝𝐶𝑎𝑟𝑟𝑖𝑒𝑠.

(1) Module PPAdder (Import M: GroupCarries)

<: GenAdder.
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(2) Definition adder n (X Y: data (S n))

(c in: bit): (hyb (S n)).

(3) set (GT0:= groups ((P X Y), (G X Y)).

(4) set (all carries:= shift map c in (GT0
1
)

(GT0
2
)).

(5) set (sum:= PC ⊕ (all carries ⊲)).

(6) exact (all carries ⊳, sum).

(7) Defined.

(8) Theorem adder correct: forall n

(X Y: data (S n)) c in,

(9) |[X]| + |[Y]| + |c in| = |(adder X Y c in)|.

(10) Proof.

(11) intros n X Y c in; unfold adder.

(12) rewrite CLAdder.adder correct.

(13) unfold CLAdder.adder.

(14) rewrite <- carries correct.

(15) unfold correct carries.

(16) rewrite groups correct; trivial.

(17) Qed.

(18) End PPAdder.

Line 5, uses the abstract function𝑔𝑟𝑜𝑢𝑝𝑠 from the param-
eterized module 𝐺𝑟𝑜𝑢𝑝𝐶𝑎𝑟𝑟𝑖𝑒𝑠 to compute all the group
carries in advance. 𝑠ℎ𝑖𝑓𝑡 𝑚𝑎𝑝 function in line 7 implements
the operation in (16). Lines 6 and 8 compute all the carries
and the sum.

The correctness of PPA is proved based on the assump-
tion 𝑔𝑟𝑜𝑢𝑝𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 in the abstract parameterized module
𝐺𝑟𝑜𝑢𝑝𝐶𝑎𝑟𝑟𝑖𝑒𝑠. Line 15 reformats the left part of the equation
to the result of what CLA computes. Line 17 uses the result
that the carries of CLA are identical to the carries computed
by (14), (15), and (16). Finally, the assumption 𝑔𝑟𝑜𝑢𝑝𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡
is used to prove that 𝑔𝑟𝑜𝑢𝑝𝑠 computes the same result as (14)
and (15) do.

The rest of this section will show, by the example
of Kogge-Stone addition algorithm, how this general PPA
applies to some specific ones. The algorithm formalized
following [20], in which the algorithm is proposed. Other
implementations of PPA can be formalized and verified
similarly.

(1) Module Kogge Stone <: GroupCarries.

(2) Fixpoint KS PG rec (n m: nat)

(bvPG: data2 (S n)): (data2 (S n)):=

(3) match m with

(4) | 0 => bvPG

(5) | S m’=> let recur:= (KS PG rec m’bvPG)
in

(6) data2 op1 recur (shiftin group

(power2 m’)recur)

(7) end.

(8) Definition groups n (PG: data2 (S n)):=

(9) KS PG rec (S (log2 (S n))) PG.

(10) Theorem groups correct: forall n

(X Y: data (S n)),

(11) groups (P X Y, G X Y) = correct groups

(P X Y, G X Y).

(12) End Kogge Stone Group Carry.

Lines 2 to 10 describe the main function to define the
Kogge-Stone implementation of the 𝑔𝑟𝑜𝑢𝑝𝑠 function. 𝑚 is
a simple counter to indicate how many stages are needed
and which should the logarithm of the data-width be. When
initializing, the input 𝑏V𝑃𝐺 stands for two vectors of the
propagated and generated carries, respectively, for example,
𝑃
𝑖
= 𝑃
𝑖:𝑖
and 𝐺

𝑖
= 𝐺
𝑖:𝑖
, for all 𝑛 ≥ 𝑖 ≥ 0. At any stage 𝑚, this

function computes the group carries of maximum length 2𝑚.
A 8-bit kogge-stone adder is taken as an example to illustrate
this procedure. At stage 2 (𝑚󸀠 = 2), the group carries of
maximum length 4 has been computed according to line 8:

𝑟𝑒𝑐𝑢𝑟 := ([𝑃
7:4
, 𝑃
6:3
, 𝑃
5:2
, 𝑃
4:1
, 𝑃
3:0
, 𝑃
2:0
, 𝑃
1:0
, 𝑃
0
] ,

[𝐺
7:4
, 𝐺
6:3
, 𝐺
5:2
, 𝐺
4:1
, 𝐺
3:0
, 𝐺
2:0
, 𝐺
1:0
, 𝐺
0
]) .

(20)

At the next stage (𝑚 = 3), as in lines 8 and 9, firstly
𝑠ℎ𝑖𝑓𝑡𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 function shifts both vectors in the tuple
simultaneously 2𝑚

󸀠

times with 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒, respectively.
The result is represented by 𝑟𝑒𝑐𝑢𝑟󸀠:

𝑟𝑒𝑐𝑢𝑟
󸀠
:= ([𝑃

3:0
, 𝑃
2:0
, 𝑃
1:0
, 𝑃
0
, true, true, true, true] ,

[𝐺
3:0
, 𝐺
2:0
, 𝐺
1:0
, 𝐺
0
, false, false, false, false]) .

(21)

Secondly, 𝑑𝑎𝑡𝑒2 𝑜𝑝1 executes the fundamental operator in
(17) with two operands 𝑟𝑒𝑐𝑢𝑟 and 𝑟𝑒𝑐𝑢𝑟󸀠, and the result is

([𝑃
7:0
, 𝑃
6:0
, 𝑃
5:0
, 𝑃
4:0
, 𝑃
3:0
, 𝑃
2:0
, 𝑃
1:0
, 𝑃
0
] ,

[𝐺
7:0
, 𝐺
6:0
, 𝐺
5:0
, 𝐺
4:0
, 𝐺
3:0
, 𝐺
2:0
, 𝐺
1:0
, 𝐺
0
]) .

(22)

In line 11, 𝑔𝑟𝑜𝑢𝑝𝑠 function specifies that the stages needed
are log

2
(𝑛 + 1), where 𝑛 is the data-width.

The correctness theorem cannot be proved by induction
on the data-width as normal, because Kogge-Stone imple-
mentation of 𝑔𝑟𝑜𝑢𝑝𝑠 function recurses on the stages, not the
data-width as shown in the definition of 𝐾𝑆 𝑃𝐺 𝑟𝑒𝑐.

Noticing that, in the theorem, the result of each side of
equation is a tuple of vectors, the equality holds if and only if
the corresponding elements are identical pairwise.

(1) Lemma data eq nth eq data2: forall n

(gx gy: (data2 (S n))),

(2) (forall k, k < S n ->

(3) (nth k (fst gx), nth k (snd gx)) =
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(4) (nth k (fst gy), nth k (snd gy))) <->

(5) gx = gy.

However, the result of 𝐾𝑆 𝑃𝐺 𝑟𝑒𝑐 changes with the stage
𝑚, the first thing to prove is an invariant of 𝑚 stating how
this function approaches the result of 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑔𝑟𝑜𝑢𝑝 function
gradually with the increasing of the stages. Suppose, without
loss of generality, that

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑔𝑟𝑜𝑢𝑝𝑠 (𝑋, 𝑌) := ([𝑃
𝑛:0
, . . . , 𝑃

0
] , [𝐺
𝑛:0
, . . . , 𝐺

0
]) ,

𝐾𝑆 𝑃𝐺 𝑟𝑒𝑐 (𝑚, 𝑍) := ([𝑃
𝑚

𝑛:0
, . . . , 𝑃

𝑚

0
] , [𝐺
𝑚

𝑛:0
, . . . , 𝐺

𝑚

0
]) ,

(23)

for all𝑚, 𝑍 = (𝑋, 𝑌) and 𝑛 > 0; then, for all 0 ≤ 𝑘 ≤ 𝑛,

(𝑃
𝑚

𝑘:0
, 𝐺
𝑚

𝑘:0
) = {

(𝑃
𝑘:0
, 𝐺
𝑘:0
) 𝑘 < 2𝑚

(𝑃
𝑘:(𝑘+1−2

𝑚
)
, 𝐺
𝑘:(𝑘+1−2

𝑚
)
) 𝑘 ≥ 2𝑚.

(24)

With this invariant, the existence of the fixed points
can be proved secondly, and the least fixed point should
be log

2
(𝑛 + 1). For all 𝑚 ≥ log

2
(𝑛 + 1)and 𝑘 ≤ 𝑛 <

2𝑚, (𝑃𝑚
𝑘:0
, 𝐺𝑚
𝑘:0
) = (𝑃𝑚+1

𝑘:0
, 𝐺𝑚+1
𝑘:0

) = (𝑃
𝑘:0
, 𝐺
𝑘:0
). Function

𝑔𝑟𝑜𝑢𝑝𝑠, which iterates𝐾𝑆 𝑃𝐺 𝑟𝑒𝑐 function log
2
(𝑛+1) stages,

computes the same result as function 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑔𝑟𝑜𝑢𝑝𝑠, which
is the correctness theorem. The whole proof of this theorem
has been carried out in COQ, although they are expressed in
an intuitive way here for better understandings of the readers.

Kogge-Stone adder can be combined by the general
module of PPA and this specific module of Kogge-Stone
methods to compute all the group carries, which provides not
only the computation method but also the correctness proof.

(1) Module Kogge Stone <: GenAdder:=

(2) PPAdder Kogge Stone.

6. Conclusion and Future Work

In this work, we proposed a holistic methodology to formal-
ize and verify primary adders (RCA, CLA, LA, and PPA) in
theorem prover Coq. They are formalized using dependent
types, higher-order recursion and module systems in order
to provide fidelity, scalability, and modularization.

In particular, PPA is a family of adders sharing the same
structure, only differing in the methods of parallel prefix
computing. We provide a novel way to describe the general
PPA and show how to use this general module to verify a
specific PPA, exemplified by Kogge-Stone adder.

Other advanced arithmetic designs can be verified
reusing the formalizations and verifications of this work in
a combinational way, as we describe by the example of carry
select adders.

All the work has been carried out in Coq. The whole
development contains around 2,000 lines of Coq scripts.This
number of scripts is only about one third of [12], which
is another work dedicated to verify additional designs in
Coq.This work used lesser scripts but verified more addition
designs than [12].

This work can be continued in two directions. Advanced
arithmetic designs, such as IBMPOWER6, can be cumulately

verified based on these verified adders. Since formalization in
a constructive way is to have clear correspondence to gate-
level descriptions of circuits, HDL codes can be generated
from the verified designs, which may provide an alternative
way for designing the correct arithmetic implementations.
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