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Fowler and Pisanski showed that the Fries number for a fullerene on surface Σ is bounded above by |𝑉|/3, and fullerenes which
attain this bound are exactly the class of leapfrog fullerenes on surface Σ. We showed that the Clar number of a fullerene on surface
Σ is bounded above by (|𝑉|/6) − 𝜒(Σ), where 𝜒(Σ) stands for the Euler characteristic of Σ. By establishing a relation between
the extremal fullerenes and the extremal (4,6)-fullerenes on the sphere, Hartung characterized the fullerenes on the sphere 𝑆

0
for

which Clar numbers attain (|𝑉|/6) − 𝜒(𝑆
0
). We prove that, for a (4,6)-fullerene on surface Σ, its Clar number is bounded above

by (|𝑉|/6) + 𝜒(Σ) and its Fries number is bounded above by (|𝑉|/3) + 𝜒(Σ), and we characterize the (4,6)-fullerenes on surface Σ
attaining these two bounds in terms of perfect Clar structure. Moreover, we characterize the fullerenes on the projective plane𝑁

1

for which Clar numbers attain (|𝑉|/6) − 𝜒(𝑁
1
) in Hartung’s method.

1. Introduction

Several possibilities of generalizations of the fullerene cages
have become a research interest soon after establishing
fullerene research itself. Fullerenes are closed carbon-cage
molecules made up solely of pentagons and hexagons. One
generalization is to consider such trivalent structures with
faces of other sizes, that is, fulleroid [1, 2], boron-nitrogen
fullerene [3–5], (3,6)-fullerene [6, 7], and so forth. Amongst
these, boron-nitrogen fullerenes are candidates for fully alter-
nating “inorganic fullerene” cages [3]. By using systematic
density-functional tight-binding calculations, Fowler et al.
indicated that these hypothetical “inorganic fullerenes” obey
an isolated-square rule for boron-nitrogen fullerenes with
small number of atoms [3] which is a counterpart of the
isolated-pentagon rule [8] for fullerenes. Another generaliza-
tion is to consider such trivalent structures on other surfaces
[9]. Using Euler’s formula, we can obtain that the number 𝑓

5

(resp., 𝑓
4
) of pentagons (resp., quadrilaterals) of a fullerene

(resp., (4,6)-fullerene) 𝐹 on surface Σ is equal to 6𝜒(Σ) (resp.,
3𝜒(Σ), resp.), where 𝜒(Σ) stands for the Euler characteristic
of Σ. It requires that 𝜒(Σ) ≥ 0. So there are only four
possible surfaces on which fullerenes ((4,6)-fullerenes) can

be embedded, namely, the sphere, the projective plane, the
torus, and the Klein bottle. The fullerenes ((4,6)-fullerenes)
on these surfaces are called spherical, projective, toroidal,
and Klein-bottle fullerenes ((4,6)-fullerenes), respectively.
On other generalizations of fullerenes, we refer to [2, 10, 11].

The concepts of the Fries number and the Clar number
were named after Fries [12] and Clar [13], respectively. An
embedding of a graph in a surface is called cellular if each
face is homeomorphic to an open disk. A map on a surface
Σ is a graph embedded cellularly on Σ. Let 𝐺 be a 2-
connected map. A perfect matching (or Kekulé structure)𝑀
of 𝐺 is a set of edges such that each vertex is incident with
exactly one edge in 𝑀. The faces that have exactly half of
their bounding edges in a perfect matching 𝑀 of 𝐺 are
called alternating faces with respect to𝑀. The Fries number
𝐹𝑟𝑖𝑒𝑠 (𝐺) of 𝐺 is the maximum number of alternating faces
over all perfect matchings; the Clar number 𝑐(𝐺) of 𝐺 is
the maximum number of independent alternating faces over
all perfect matchings. Note that the original definitions of
the Fries number and the Clar number are the maximum
number of alternating hexagonal faces and the maximum
number of independent alternating hexagonal faces over all
perfect matchings, respectively. The original definitions and
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the definitions we used in this paper coincide when the 2-
connected map has no other even faces except hexagonal
faces. AFries set is a set of alternating faceswith themaximum
number of alternating faces. A Clar set is a set of independent
alternating faces with the maximum number of alternating
faces. IfH is a Clar set of 𝐺 and𝑀

0
is a perfect matching of

𝐺 −H, then we say that (H,𝑀
0
) is a Clar structure of 𝐺. For

a face 𝑓 of 𝐺, we say that an edge 𝑒 in𝑀 exits 𝑓 if 𝑒 shares
exactly one vertex with 𝑓 and that 𝑒 lies on 𝑓 if both vertices
of 𝑒 are incident with 𝑓.

Both Clar number and Fries number have their chemical
significance. The Fries number was proposed as a stability
index for hydrocarbon in the early decades of the nineteenth
century, whereas the Clar number was later considered as
another stability index for hydrocarbon in the 1960s. For
buckminsterfullerene C

60
, Austin et al. think that the source

of the stability of it is attributed to the fact that uniquely
amongst the 1812 isomers it has a Fries Kekulé structure
where all hexagons are alternating and all pentagons do not
contain any double bond [14]. Ye and Zhang [15] showed
that the maximum Clar numbers of spherical fullerenes are
(|𝑉|/6)−2 and further characterized all 18 extremal spherical
fullerenes among all fullerene isomers of C

60
. Later, Zhang

et al. [16] proposed a combination of Clar number and
Kekulé count of spherical fullerenes, as a stability predictor of
spherical fullerenes, which turns out to distinguish uniquely
the icosahedral C

60
from its all 1812 fullerene isomers.

Leapfrog transformation L(𝐺) for a 2-connected map 𝐺
on surface Σ is usually defined in two ways. One way is first
taking a dual of𝐺, then truncating the resulting graph [17, 18].
The other equivalent way is first taking triangulation (or
omnicapping) on 𝐺, then taking a dual of the resulting graph
[17, 19, 20]. Triangulation of a map is achieved by adding a
new vertex in the center of each face followed by connecting it
with each boundary vertex of this face [17, 21]. Dualization of
amap on surface is built as follows: locate a point in the center
of each face and join two such points if their corresponding
faces share a common edge [17, 20]. Truncation of a map
𝐺 is obtained by replacing each vertex V of degree 𝑘 with 𝑘
new vertices, one for each edge incident to V. Pairs of vertices
corresponding to the edges of 𝐺 are adjacent, and 𝑘 new
vertices corresponding to a single vertex of 𝐺 are joined in
a cycle of length 𝑘 [17, 18, 20]. IfL(𝐺) is the leapfrog graph of
𝐺, we say that 𝐺 is a parent ofL(𝐺). A fullerene (resp., (4,6)-
fullerene)𝐹 is called a leapfrog fullerene (resp., leapfrog (4,6)-
fullerene) if it is a leapfrog graph of some fullerene (resp.,
(4,6)-fullerene) 𝐹. In this case, we denote the parent fullerene
(resp., (4,6)-fullerene) byL−1(𝐹), that is, 𝐹 =L−1(𝐹).

The chemical significance of leapfrog transformation is
that leapfrog cluster with at least one face of size 3𝑚 +
1 or 3𝑚 + 2 has a closed-shell electronic structure, with
bounding HOMOs and antibonding LUMOs in Hückel
theory, regardless of the electronic configuration of the
parent fullerene [22]. The other important fact for leapfrog
transformation is that leapfrog fullerenes have at least one
Kekulé structure containing the maximum number |𝑉|/3
of alternating hexagonal faces and thus to be maximally
stable in a localised valence bond picture [23]. Furthermore,
the leapfrog spherical fullerenes obey the isolated-pentagon

rule, while the leapfrog spherical (4,6)-fullerenes obey the
isolated-square rule.

The paper is organized as follows. In Section 2, we
show that the Clar number for a fullerene on surface Σ is
bounded above by (|𝑉|/6) − 𝜒(Σ) and give some other useful
results. In Section 3, we prove that the Clar number and
Fries number of a (4,6)-fullerene on surface Σ are bounded
above by (|𝑉|/6) + 𝜒(Σ) and (|𝑉|/3) + 𝜒(Σ), respectively.
We characterize the (4,6)-fullerenes on surface Σ attaining
these two bounds in terms of perfect Clar structure. In
Section 4, by using the results in Section 3, we obtain further
result that for the toroidal and Klein-bottle fullerenes, the
upper bound for Clar number and Fries number always can
be attained simultaneously. In Section 5, by establishing a
relation between the fullerenes on the projective plane whose
Clar numbers attain (|𝑉|/6) − 𝜒(Σ) and the extremal (4,6)-
fullerenes on the projective plane whose Clar numbers attain
(|𝑉|/6) + 𝜒(Σ), we also characterize the fullerenes on the
projective plane whose Clar numbers attain (|𝑉|/6) − 𝜒(Σ).
In Section 6, we study the relation between the projective
fullerenes (resp., (4,6)-fullerenes) attaining maximum Fries
number and the spherical fullerenes (resp., (4,6)-fullerenes)
attaining maximum Fries number and the relation between
the projective fullerenes (resp., (4,6)-fullerenes) attaining
maximum Clar number and the spherical fullerenes (resp.,
(4,6)-fullerenes) attaining maximum Clar number.

2. An Upper Bound for the Clar Number and
Fries Number of Fullerenes on Surfaces

The following lemma is an extension of the result on the
sphere in [24] to other surfaces. The proof of it is essentially
similar to that in [24]. However, to the completeness of this
paper, we present it here.

Lemma 1. Let 𝐹 be a fullerene on surface Σ, and let H be a
set of alternating faces with respect to a perfect matching 𝑀.
Then there is an even number of edges in𝑀 (possibly 0) exiting
any hexagon; there is an odd number of edges in𝑀 exiting any
pentagon.

Proof. Let𝑓 be a face in𝐹. If𝑓 is a face inH, then no edges in
𝑀 exit 𝑓. Suppose that 𝑓 is not inH. Any face ofH adjacent
to𝑓 is incident with two adjacent vertices on𝑓, as is any edge
in𝑀 that lies on 𝑓. Thus if 𝑓 is a hexagon, then there is an
even number of vertices (possibly 0) remaining to be covered
by the edges in𝑀 that exit 𝑓; if 𝑓 is a pentagon, then there
is an odd number of vertices remaining to be covered by the
edges in𝑀 that exit 𝑓.

Zhang and Ye [25] proved that (|𝑉|/6) − 2 is the upper
bound of Clar number of spherical fullerenes. A new proof
was given by Hartung [24]. Gao and Zhang [26] generalized
this bound to fullerenes on any surface as the following
theorem. Here we give a new proof for this theorem using
Hartung’s method.

Theorem 2 (see [26]). Let 𝐹 be a fullerene with 𝑛 vertices on
surface Σ. Then 𝑐(𝐹) ≤ ⌊𝑛/6⌋ − 𝜒(Σ).
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Proof. Let (H,𝑀) be a Clar structure of 𝐹. Since every face
in H contains six vertices, every edge in 𝑀 contains two
vertices, and every vertex of 𝐹 is incident with exactly one
element of the Clar structure, we have the equation

|H| =
|𝑉|

6
−
|𝑀|

3
. (1)

By Lemma 1 at least one edge in 𝑀 exits each of the
pentagons. There are additional edges in 𝑀 if one of these
edges exits a hexagon. By Euler’s formula, a fullerene has
exactly 6𝜒(Σ) pentagons, and thus |𝑀| ≥ 3𝜒(Σ), where
equality holds exactly when all edges from𝑀 connect pairs
of pentagons. So

𝑐 (𝐹) = |H| =
|𝑉|

6
−
|𝑀|

3
≤
|𝑉|

6
−
3𝜒 (Σ)

3
=
|𝑉|

6
− 𝜒 (Σ) .

(2)

We say that a fullerene on surface Σ is extremal if the Clar
number of the fullerene attains the bound (|𝑉|/6) − 𝜒(Σ). As
a direct corollary of the above theorem, the following result,
which is also a generalization of the result on the sphere
in [24], gives a necessary condition for the extremality of a
fullerene.

Corollary 3. Let 𝐹 be an extremal fullerene on surface Σ, and
let (H,𝑀) be a Clar set of 𝐹. Then there exists a pairing of the
6𝜒(Σ) pentagons such that each pair is connected by a single
edge. The edges in𝑀 are only the 3𝜒(Σ) edges between pairs of
pentagonal faces.

Fowler [23] proved that the Fries number for a spherical
fullerene 𝐹 is bounded above by |𝑉|/3 and characterized the
spherical fullerenes that attain this bound, that is, the leapfrog
spherical fullerenes. Then Fowler and Pisanski [27] general-
ized this result to trivalent polyhedrons on any surface.

Theorem 4 (see [27]). Let 𝐹 be a fullerene on surface Σ. Then
𝐹𝑟𝑖𝑒𝑠 (𝐹) ≤ ⌊|𝑉|/3⌋.

Proof. For any edge in a perfect matching 𝑀 of a fullerene
𝐹, it is contained in at most 2 alternating faces. Since each
alternating face has 3 edges in the perfect matching 𝑀 and
𝑀 has |𝑉|/2 edges of 𝐹, we have 3𝐹𝑟𝑖𝑒𝑠 (𝐹) ≤ 2|𝑀| = |𝑉|. It
implies that 𝐹𝑟𝑖𝑒𝑠 (𝐹) ≤ ⌊|𝑉|/3⌋ since 𝐹𝑟𝑖𝑒𝑠 (𝐹) is an integer.

A perfect Clar structure [27] (or face-only vertex covering
[24]) of a map 𝐺 is a set of vertex-disjoint faces that include
each vertex of 𝐺 once and only once. A perfect matching𝑀
is a Fries structure [27] if and only if for every edge, 𝑒, that
belongs to𝑀 the two adjacent faces are alternating faces with
respect to𝑀.

Fowler and Pisanski [27] presented a sufficient condition
for a map on a given surface to be a leapfrog graph. Later, in
[24], Hartung showed that for planar graphs, the condition
is also necessary. We are going to indicate that the sufficient
condition is necessary for graphs on any surface.

Figure 1: Illustration for the proof of Theorem 5.

Theorem 5. A map 𝐺 on surface Σ is a leapfrog graph if and
only if 𝐺 is 3-regular and has a perfect Clar structure.

Proof. If a map 𝐺 on surface Σ is a leapfrog graph, then each
face of the triangulation of the parent graph is triangular.The
fact that 𝐺 is 3-regular follows from the fact that the dual of a
triangulation graph is 3-regular. Furthermore, the faces of 𝐺
corresponding to the faces of the parent graph form a perfect
Clar structure of 𝐺 (see Figure 1).

Conversely, if 𝐺 is 3-regular and has a perfect Clar
structureH, then𝐺−𝐸(H) is a perfect matching𝑀 of𝐺. For
each alternating face of 𝐺 with respect to 𝑀, we add a new
vertex at the center of this alternating face; two vertices are
adjacent if the corresponding alternating faces are adjacent.
Denote the resulting graph by 𝐺. It is easy to check that 𝐺 is
a leapfrog graph of 𝐺 on surface Σ.

The following theorem is first presented by Fowler for
spherical fullerenes [23], then generalized by Fowler and
Pisanski [27] to trivalent polyhedron on any surface.

Theorem 6 (see [27]). Let 𝐹 be a fullerene on surface. Then 𝐹
attains the maximum Fries number |𝑉|/3 if and only if 𝐹 is a
leapfrog fullerene.

For a fullerene 𝐹 on surface Σ, if 𝐹 attains the maximum
Fries number |𝑉|/3, then there exists a perfect matching
𝑀 such that the number of alternating faces is |𝑉|/3, and
further𝑀 is a Fries structure of𝐹. Since each vertex incidents
with two alternating faces and a nonalternating face and the
nonalternating face contain no edges of𝑀, all nonalternating
faces form a perfect Clar structure of 𝐹.

The following theorem is a natural generalization of a
similar result on planar graphs in [24] and the proof is similar
too.

Theorem 7. Given a bipartite map𝐺 on surface with partition
𝑉 = (𝑈,𝑊). Then the sets of faces ofL(𝐺) corresponding to𝑈,
𝑊, and faces set of 𝐺 form a face 3-coloring of 𝐹.

Proof. Since the set of faces in𝐺 is corresponding to a perfect
Clar structure H of L(𝐺), the remaining faces in L(𝐺)
correspond to vertices in 𝐺. Denote the faces set of L(𝐺)
corresponding to𝑈 and𝑊 byU andW, respectively. Since𝐺
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is bipartite, each face ofL(𝐺) is bounded by faces alternating
from U and W. By Theorem 5, any leapfrog graph is 3-
regular.Thus each vertex inL(𝐺) is incident with exactly one
face from each of setsU,W, andH.

It is well known that Eulerian triangulation of the plane
is 3-colorable. This implies that, for a 3-regular planar graph
𝐺, 𝐺 is face 3-colorable is equivalent to 𝐺 = L(𝐺) for some
planar bipartite graph𝐺 [24].Using the samemethod in [24],
we generalize this result to 3-regular maps on any surface as
follows.

Theorem 8. Let 𝐺 be a 3-regular map on surface Σ. Then the
following three statements are equivalent.

(1) 𝐺 is face 3-colorable.
(2) 𝐺 =L(𝐺) for some bipartite map 𝐺 on surface Σ.
(3) 𝐺 has three different perfect Clar structures.

Proof. (1) ⇒ (2) Since 𝐺 is a 3-regular map, each vertex is
incident with a face of each color and each color class is a
perfect Clar structure of𝐺. ByTheorem 5, there exists a graph
𝐺
 such that 𝐺 is the leapfrog graph of 𝐺. The faces of one

color class in 𝐺 are one-to-one correspondence to all faces
in 𝐺. Other faces in 𝐺 are one-to-one correspondence to all
vertices in 𝐺. 𝐺 is a bipartite map since two vertices are
adjacent in 𝐺 if and only if corresponding faces are adjacent
in 𝐺.
(2) ⇒ (1) If 𝐺 is the leapfrog graph of a bipartite map

𝐺
 on surface Σ, then the sets of faces of 𝐺 corresponding to

the bipartite partition of𝐺 together with the set of faces of𝐺
corresponding to the set of faces of 𝐺 form a face 3-coloring
of 𝐺.
(1) ⇒ (3) Obvious.
(3) ⇒ (1) For any face of 𝐺 there is at most one way to

adjoin new faces in order to build a perfect Clar structure. So
each face belongs to at most one perfect Clar structure. If 𝐺
has three different perfect Clar structures, then since 𝐺 is 3-
regular, each vertex is incident with a face in each perfect Clar
structure and three different perfect Clar structures cover
each face of 𝐺 exactly once. So these three different perfect
Clar structures of 𝐺 form a face 3-coloring of 𝐺.

3. An Upper Bound for the Clar Number
and Fries Number of (4,6)-Fullerenes on
Surfaces

The following theorem, presenting an upper bound of Clar
number for (4,6)-fullerenes on surface Σ, is a counterpart of
Theorem 2 for fullerenes on surface Σ.

Theorem 9. Let 𝐵 be a (4,6)-fullerene on surface Σ. Then
𝑐(𝐵) ≤ ⌊|𝑉|/6⌋ + 𝜒(Σ).

Proof. Let (H,𝑀) be a Clar structure of 𝐵. Suppose that
H contains 𝑝 quadrilaterals, since every face in H other
than quadrilateral faces contains six vertices, every edge in
𝑀 contains two vertices, and every vertex of 𝐵 is incident

with exactly one element of the Clar structure, we have the
equation

6 (|H| − 𝑝) + 4𝑝 + 2 |𝑀| = |𝑉| . (3)

So

|H| =
|𝑉|

6
−
|𝑀|

3
+
𝑝

3
. (4)

Since |𝑀| is at least 0 and 𝑝 is at most 3𝜒(Σ), we have

𝑐 (𝐵) = |H| =
|𝑉|

6
−
|𝑀|

3
+
𝑝

3
≤
|𝑉|

6
+ 𝜒 (Σ) . (5)

Let𝐵 be a (4,6)-fullerene on surfaceΣ.We say that a (4,6)-
fullerene is extremal if the Clar number of the (4,6)-fullerene
attains the bound (|𝑉|/6)+𝜒(Σ). For a Clar structure (H,𝑀)
of a (4,6)-fullerene, if𝑀 = 0, we denote (H,𝑀) byH. Now
we are going to characterize the extremal (4,6)-fullerenes on
surface Σ.

Theorem 10. Let 𝐵 be a (4,6)-fullerene on surface Σ. Then the
following three statements are equivalent.

(1) 𝐵 is extremal.
(2) 𝐵 has a perfect Clar structure containing all quadrilat-

eral faces.
(3) 𝐵 is a leapfrog (4,6)-fullerene.

Proof. (1) ⇒ (2) Let (H,𝑀) be a Clar structure of the
extremal (4,6)-fullerene𝐵. By Inequality (5), we have |𝑀| = 0
and 𝑝 = 3𝜒(Σ). So H is a perfect Clar structure containing
all 3𝜒(Σ) quadrilateral faces.
(2) ⇒ (1) LetH be a perfect Clar structure containing all

quadrilateral faces in 𝐵. Then 6(|H| − 3𝜒(Σ)) + 4 × 3𝜒(Σ) =
|𝑉|. So we have |H| = (|𝑉|/6) + 𝜒(Σ), and 𝐵 is extremal.
(2) ⇔ (3) Obvious.

Theorem 11. Let 𝐵 be a (4,6)-fullerene on surface Σ. Then
𝐹𝑟𝑖𝑒𝑠 (𝐵) ≤ ⌊|𝑉|/3⌋ + 𝜒(Σ).

Proof. For any edge in a perfect matching 𝑀 of a (4,6)-
fullerene 𝐵, it is contained in at most 2 alternating faces.
Suppose thatI is the set of alternating faces in 𝐵with respect
to a perfectmatching𝑀 and𝑝 is the number of quadrilaterals
in I. Since each alternating hexagon has 3 edges, and each
alternating quadrilateral has 2 edges in the perfect matching
𝑀, we have 3(|I| − 𝑝) + 2𝑝 ≤ 2|𝑀| = |𝑉|. It implies that
𝐹𝑟𝑖𝑒𝑠 (𝐵) ≤ |I| ≤ ⌊|𝑉|/3⌋ + (𝑝/3) = ⌊|𝑉|/3⌋ + 𝜒(Σ) since
𝐹𝑟𝑖𝑒𝑠 (𝐵) is an integer and 𝑝 is at most 3𝜒(Σ).

Now we are going to characterize the (4,6)-fullerenes on
surface Σ whose Fries numbers attain the upper bound in
Theorem 11.

Theorem 12. A (4,6)-fullerene 𝐵 on surface Σ attains the
maximum Fries number (|𝑉|/3) + 𝜒(Σ) if and only if 𝐵 has
a perfect Clar structure containing no quadrilaterals.
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Figure 2: (a)𝐻(9, 6, 3); (b)𝐾(9, 6, 3); (c)𝑁(8, 9, 2).

Proof. Suppose that 𝐵 is a (4,6)-fullerene on surface Σ
attaining the maximum Fries number (|𝑉|/3) + 𝜒(Σ). Then
the number of quadrilaterals 𝑝 in the Fries set I is equal
to 3𝜒(Σ). Since 𝐵 has (|𝑉|/2) + 𝜒(Σ) faces, the remaining
|𝑉|/6 faces are all nonalternating hexagonal faces.These |𝑉|/6
nonalternating hexagonal faces form a perfect Clar structure
of 𝐵 contain no quadrilaterals.

Conversely, suppose that 𝐵 has a perfect Clar structureH
containing no quadrilaterals. Then |H| = |𝑉|/6. 𝐵 − 𝐸(H) is
clearly a perfect matching of 𝐵. Denote this perfect matching
by𝑀. We prove that each face other than the faces in H is
alternating. To see this, we simply observe that each face 𝑠
of 𝐵 different from any hexagon in H has at least one edge
𝑒 in 𝑀, since 𝑀 ∪ 𝐸(H) = 𝐸(𝐵). Two faces 𝑓

1
and 𝑓

2

connected by 𝑒 are nonalternating faces with respect to 𝑀.
If 𝑠 is a quadrilateral face, then the edge 𝑒

1
lying on 𝑠 that

satisfies 𝑑(𝑒, 𝑒
1
) = 1 also belongs to 𝑀 since 𝑒 and 𝑒

1
are

exterior of the same nonalternating face, simultaneously. If
𝑠 is a hexagonal face, then the two edges 𝑒

1
and 𝑒
2
lying on

𝑠 that satisfy 𝑑(𝑒, 𝑒
𝑖
) = 1 (𝑖 = 1, 2) also belong to 𝑀 since

𝑒
1
and 𝑒

2
are exterior edges of two nonalternating faces 𝑓

1

and 𝑓
2
, respectively. So 𝑠 is an alternating face for the perfect

matching𝑀. Since the number of faces of 𝐵 other than any
hexagon inH is (|𝑉|/3) + 𝜒(Σ), 𝐵 attains the maximum Fries
number (|𝑉|/3) + 𝜒(Σ).

4. Clar Number and Fries Number of Klein-
Bottle Fullerenes and Toroidal Fullerenes

Since a Klein-bottle fullerene (toroidal fullerene) coincides
with a Klein-bottle (4,6)-fullerene (toroidal (4,6)-fullerene,
resp.), we may use the results of the previous section to
obtain more information about fullerenes on the Klein bottle
and torus whose Clar numbers attain the upper bound in
Theorem 9 and fullerenes on theKlein bottle and torus whose
Fries numbers attain the upper bound inTheorem 11.

Toroidal fullerenes (resp., Klein-bottle fullerenes) with
girth at least 6 are classified into two (resp., five) classes
by Thomassen [28], then are reclassified into one new class
𝐻(𝑝, 𝑞, 𝑡) (resp., two new classes 𝐾(𝑝, 𝑞, 𝑡) and𝑁(𝑝, 𝑞, 𝑡)) by
Li et al. [29]. For the structures of the 𝐻(𝑝, 𝑞, 𝑡), 𝐾(𝑝, 𝑞, 𝑡),
and𝑁(𝑝, 𝑞, 𝑡), we refer to [26]. Both𝐻(𝑝, 𝑞, 𝑡) and 𝐾(𝑝, 𝑞, 𝑡)
are bipartite graphs with 𝑝𝑞 faces, 2𝑝𝑞 vertices, and 3𝑝𝑞
edges, while 𝑁(𝑝, 𝑞, 𝑡) is nonbipartite with 𝑝𝑞/2 faces, 𝑝𝑞

C1

C2

Figure 3: Illustration for the first part of proof in Theorem 14.

vertices, and 3𝑝𝑞/2 edges.𝐻(9, 6, 3),𝐾(9, 6, 3), and𝑁(8, 9, 2)
are illustrated in Figures 2(a), 2(b), and 2(c), respectively.

Theorem 10, together with Theorem 12, presents some
important structure properties of a toroidal or a Klein-bottle
fullerene.

Theorem 13. For a toroidal or a Klein-bottle fullerene 𝐹, the
following four properties are equivalent.

(1) 𝐹 attains the maximum Fries number |𝑉|/3.
(2) 𝐹 attains the maximum Clar number |𝑉|/6.
(3) 𝐹 is a leapfrog fullerene.
(4) 𝐹 has a perfect Clar structure.

The following theorem reveals an interesting appearance
of leapfrog transformation on Klein-bottle fullerenes.

Theorem 14. The leapfrog fullerene of a bipartite Klein-
bottle fullerene is nonbipartite, and the leapfrog fullerene of a
nonbipartite Klein-bottle fullerene is bipartite.

Proof. Weprove the first part of this theoremby presenting an
odd cycle in the leapfrog fullerene of a bipartite Klein-bottle
fullerene. Given a bipartite Klein-bottle fullerene 𝐾(𝑝, 𝑞, 𝑡),
let 𝐶
1
be a noncontractible cycle along the vertical direction

of 𝐾(𝑝, 𝑞, 𝑡). Then 𝐶
1
is an even cycle since 𝐾(𝑝, 𝑞, 𝑡) is

bipartite. The vertices of L(𝐾(𝑝, 𝑞, 𝑡)), on either side of 𝐶
1
,

which are proximal to cycle𝐶
1
induce a noncontractible cycle

𝐶
2
ofL(𝐾(𝑝, 𝑞, 𝑡)) (see Figure 3). Clearly, the length of 𝐶

2
is

equal to the length of 𝐶
1
plus double the times that 𝐶

1
passes
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Figure 4: Illustration for the second part of proof in Theorem 14.

through the edges of𝐾(𝑝, 𝑞, 𝑡) andminus one. So𝐶
2
is an odd

cycle inL(𝐾(𝑝, 𝑞, 𝑡)).
We prove the second part of this theorem by presenting a

bipartition in the leapfrog fullerene of a nonbipartite Klein-
bottle fullerene 𝑁(𝑝, 𝑞, 𝑡). For each face of the leapfrog
fullerene of a nonbipartite Klein-bottle fullerene, which is
contained entirely in some face of 𝑁(𝑝, 𝑞, 𝑡), we collect the
vertices, along the boundary of this face, into 𝑋 and 𝑌 in
the same manner, alternately (see Figure 4). Clearly 𝑋 ∪ 𝑌
contains all vertices of the leapfrog graph of 𝑁(𝑝, 𝑞, 𝑡), and
both𝑋 and 𝑌 are independent.

Theorem 14, together with Theorem 8, implies that none
of the bipartite Klein-bottle fullerenes 𝐾(𝑝, 𝑞, 𝑡) are face
3-colorable and a nonbipartite Klein-bottle fullerene is a
leapfrog fullerene if and only if it is face 3-colorable.

The following three theorems in [26] characterize the
toroidal and Klein-bottle fullerenes whose Clar numbers
attain the maximum Clar number |𝑉|/6.

Theorem 15 (see [26]). 𝐻(𝑝, 𝑞, 𝑡) is extremal if and only if𝑝 ≡
0 (mod3) and 𝑞 ≡ 𝑡 (mod3).

Theorem 16 (see [26]). 𝐾(𝑝, 𝑞, 𝑡) is extremal if and only if 𝑝 ≡
0 (mod3).

Theorem 17 (see [26]). 𝑁(𝑝, 𝑞, 𝑡) is extremal if and only if 𝑞 ≡
0 (mod3).

Combining Theorem 13 and remarks after Theorem 14
with Theorems 15, 16, and 17, respectively, we obtain the
following three corollaries.

Corollary 18. For a toroidal fullerene𝐻(𝑝, 𝑞, 𝑡), the following
six properties are equivalent.

(1) 𝐻(𝑝, 𝑞, 𝑡) attains the maximum Fries number |𝑉|/3.
(2) 𝐻(𝑝, 𝑞, 𝑡) attains the maximum Clar number |𝑉|/6.
(3) 𝐻(𝑝, 𝑞, 𝑡) is a leapfrog fullerene.
(4) 𝐻(𝑝, 𝑞, 𝑡) has a perfect Clar structure.
(5) 𝑝 ≡ 0 (mod3) and 𝑞 ≡ 𝑡 (mod3).
(6) 𝐻(𝑝, 𝑞, 𝑡) is face 3-colorable.

Corollary 19. For a Klein-bottle fullerene 𝐾(𝑝, 𝑞, 𝑡), the fol-
lowing five properties are equivalent.

(1) 𝐾(𝑝, 𝑞, 𝑡) attains the maximum Fries number |𝑉|/3.
(2) 𝐾(𝑝, 𝑞, 𝑡) attains the maximum Clar number |𝑉|/6.
(3) 𝐾(𝑝, 𝑞, 𝑡) is a leapfrog fullerene.
(4) 𝐾(𝑝, 𝑞, 𝑡) has a perfect Clar structure.
(5) 𝑝 ≡ 0 (mod3).

Corollary 20. For a Klein-bottle fullerene 𝑁(𝑝, 𝑞, 𝑡), the
following six properties are equivalent.

(1) 𝑁(𝑝, 𝑞, 𝑡) attains the maximum Fries number |𝑉|/3.
(2) 𝑁(𝑝, 𝑞, 𝑡) attains the maximum Clar number |𝑉|/6.
(3) 𝑁(𝑝, 𝑞, 𝑡) is a leapfrog fullerene.
(4) 𝑁(𝑝, 𝑞, 𝑡) has a perfect Clar structure.
(5) 𝑞 ≡ 0 (mod3).
(6) 𝑁(𝑝, 𝑞, 𝑡) is face 3-colorable.

A map on a surface is called fully-benzenoid if it has a
perfect Clar structure consisting only of hexagons. Gutman
and Babić [30] gave a characterization of fully-benzenoid
hydrocarbons earlier in 1991. Recently Gutman and Salem
[31] showed that any fully-benzenoid hydrocarbon has a
unique Clar set. Corollary 18, together with Corollaries 19
and 20, implies that fully-benzenoid 𝐾(𝑝, 𝑞, 𝑡) also has
this property; however, fully-benzenoid fullerenes 𝐻(𝑝, 𝑞, 𝑡)
and 𝑁(𝑝, 𝑞, 𝑡) each have exactly three Clar sets, while by
Theorem 2, none of the spherical fullerenes and projective
fullerenes is fully-benzenoid.

5. Extremal Fullerenes on the Sphere and the
Projective Plane

Hitherto, we have already characterized the (4,6)-fullerenes
on surface Σ whose Clar numbers (resp., Fries numbers)
attain (|𝑉|/6) + 𝜒(Σ) (resp., (|𝑉|/3) + 𝜒(Σ)). Fowler and
Pisanski [27] characterized the fullerenes whose Fries num-
bers attain |𝑉|/3. By establishing a relation between the
extremal spherical fullerenes and the extremal spherical
(4,6)-fullerenes on the sphere,Hartung [24] characterized the
spherical fullereneswhoseClar numbers attain (|𝑉|/6)−𝜒(Σ).
So the only question remaining is to characterize the extremal
fullerenes on the projective plane. Inspired by Hartung’s
methods, we characterize the fullerenes on the projective
plane whose Clar numbers attain (|𝑉|/6) − 𝜒(Σ) in this
section.

Amap on the projective plane is the antipodal quotient of
a centrosymmetric spherical map, that is, its vertices, edges,
and faces are obtained by identifying antipodal vertices,
edges, and faces of the centrosymmetric spherical map. Maps
on the projective plane are usually drawn inside a circular
frame where antipodal boundary points are identified [9].

For an extremal fullerene 𝐹 on surface Σ, let (H,𝑀) be
a Clar structure of 𝐹. Then the expansion of 𝐹 is defined as
follows: widen each of 3𝜒(Σ) edges in𝑀 between pentagonal
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Expansion

Reverse expansion

Figure 5: Expansion and reverse expansion.

pairs into a quadrilateral. Under this expansion, we can
see that each vertex covered by 𝑀 becomes an edge, and
each pentagon becomes a hexagon (see Figure 5). Denote
the resulting (4,6)-fullerene by E(H,𝑀) and the set of
quadrilateral faces byM.

Theorem 21. Let (H,𝑀) be a Clar structure of an extremal
fullerene 𝐹 on the sphere or the projective plane. Then the
expansion E(H,𝑀) of 𝐹 is extremal.

Proof. Since (H,𝑀) is a Clar structure of an extremal
fullerene 𝐹, by Theorem 2, we have |H| = (|𝑉(𝐹)|/6) − 𝜒(Σ)
and |𝑀| = 3𝜒(Σ). ThenH =H ∪M is a set of independent
even faces inE(H,𝑀)which covers each vertex exactly once.
Since |𝑉(E(H,𝑀))| = |𝑉(𝐹)| + 6𝜒(Σ), we have


H

= |H| + 3𝜒 (Σ) =

|𝑉 (𝐹)|

6
+ 2𝜒 (Σ)

=
|𝑉 (E (H,𝑀))|

6
+ 𝜒 (Σ) .

(6)

Therefore, E(H,𝑀) is extremal.

Corollary 22. Let 𝐹 be an extremal fullerene on the sphere or
the projective plane. Then the expansion E(H,𝑀) of 𝐹 has a
perfect Clar structure containing all quadrilateral faces.

Theorem 10 and Corollary 22 imply that expansion of
each extremal fullerene on surface Σ is always a leapfrog
(4,6)-fullerene. A natural question is that given a leapfrog
(4,6)-fullerene L(𝐵), can we always construct an extremal
fullerene 𝐹 such thatL(𝐵) is the expansion of 𝐹?

For each quadrilateral face of L(𝐵), we choose a pair
of two opposite hexagons adjacent to the quadrilateral,
denoted by P. The reverse expansion procedure on the pair
(L(𝐵),P), E−1(L(𝐵),P) is defined as follows: for each
quadrilateral face of L(𝐵), shrink each of the two opposite
edges that the quadrilateral shares with paired hexagons into
a vertex.We then obtain the graphE−1(L(𝐵),P), the reverse
expansion ofL(𝐵) with respect toP (see Figure 5).

The following three theorems are the natural generaliza-
tions of the similar results on the sphere in [24]. The proofs
are analogous to the corresponding proofs and are omitted
here.

Theorem23. SupposeL(𝐵) is the leapfrog fullerene of a (4,6)-
fullerene 𝐵 on the sphere or the projective plane Σ. LetP be the
set of hexagons paired on opposite sides of quadrilateral faces of
L(𝐵). The reverse expansion of this pair, 𝐹 = E−1(L(B),P),
is a fullerene if and only ifP is a set of 6𝜒(Σ) distinct hexagons.
When 𝐹 is a fullerene, 𝐹 is extremal.

A diagonalization of a (4,6)-fullerene 𝐵 is defined as a
choice of diagonal vertices for each quadrilateral face so
that no vertex is chosen twice. It follows that L(𝐵) can
be contracted into an extremal fullerene exactly when a
diagonalization of 𝐵 is possible. A perfect diagonalization of
a bipartite (4,6)-fullerene 𝐵 is a diagonalization in which all
vertices chosen are in the same class of the bipartition.

Theorem 24. Let 𝐵 be a (4,6)-fullerene on the sphere or the
projective plane. Then

(1) 𝐵 has a diagonalization if and only if no vertex meets
three quadrilaterals;

(2) 𝐵 has a perfect diagonalization if and only if 𝐵 is
bipartite and square-isolated. In this case,𝐵 has exactly
two perfect diagonalizations.

Theorem 25.
(1) The extremal fullerenes𝐹 on the sphere or the projective

plane Σ with 𝑛 vertices are in one-to-one correspon-
dence with the diagonalized (4,6)-fullerene on Σ with
(|𝑛|/3) + 2𝜒(Σ) vertices.

(2) The extremal fullerenes𝐹 on the sphere or the projective
plane Σ with 𝑛 vertices that have a Fries set are in one-
to-one correspondence with the perfectly diagonalized
(4,6)-fullerene on Σ with (|𝑛|/3) + 2𝜒(Σ) vertices.

Perfect diagonalization of a bipartite (4,6)-fullerene 𝐵
on the sphere or the projective plane has been proposed to
characterize the extremal fullerenes which has a Fries set
of size |𝑉|/3. The hypothesis condition that 𝐵 is bipartite
always holds for (4,6)-fullerene on the sphere, since it is well
known that a 3-regular planar graph is bipartite if and only
if it has only faces of even degree. But it is indispensable for
(4,6)-fullerenes on the projective plane. In fact, as we will see
later, there exist infinitely many nonbipartite (4,6)-fullerene
on the projective plane. The following theorem is somewhat
interesting.

Theorem 26. The leapfrog fullerene of a bipartite (4,6)-
fullerene on the projective plane is nonbipartite, and the
leapfrog fullerene of a nonbipartite (4,6)-fullerene on the
projective plane is bipartite.

Proof. Suppose 𝐵 is a bipartite (4,6)-fullerene on the projec-
tive plane, we prove the first part of this theorem by present-
ing an odd cycle inL(𝐵). Let 𝐶 be any noncontractible cycle
of 𝐵. Then the length of 𝐶 is even. The vertices of L(𝐵), on
either side of 𝐶, which are proximal to cycle 𝐶 induce a cycle
𝐶
1
ofL(𝐵) (see Figure 6(a)). The length of 𝐶

1
is equal to the

length of𝐶 plus double the times that 𝑃 passes through edges
of 𝐵 and minus one. So the cycle 𝐶

1
is an odd cycle.

Suppose 𝐵 is a nonbipartite (4,6)-fullerene on the pro-
jective plane. We prove the second part of this theorem by
proving that there are no odd cycles inL(𝐵).

For any cycle 𝐶 inL(𝐵), if 𝐶 is a contractible cycle, then
𝐶 is an even cycle since the vertices of 𝐶 and the interior of
𝐶 induce a planar bipartite graph. So let us assume that 𝐶 is a
noncontractible cycle.
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Figure 6: Illustration for the proof of Theorem 26.
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Figure 7: The iterated leapfrog fullerenes of (4,6)-fullerenes on the projective plane.

Let 𝐶
1
be any noncontractible cycle in 𝐵. We will show

that 𝐶
1
is an odd cycle. Suppose to the contrary that 𝐶

1
is an

even cycle. Since 𝐵 is nonbipartite, there is an odd cycle𝐶
2
in

𝐵. It is clear that 𝐶
2
is also a noncontractible cycle of 𝐵, and

the intersection of 𝐶
1
and 𝐶

2
is nonempty. Without loss of

generality, we may assume that V
1
, V
2
, . . . , V

𝑘
are intersection

vertices of𝐶
1
and𝐶

2
such that only one edge incident with V

𝑖

on𝐶
1
does not lie on𝐶

2
(see Figure 6(b)). Since the lengths of

𝐶
1
and𝐶

2
have opposite parity, at least one of the boundaries

V
2
𝐶
1
V
3
𝐶
2
V
2
, V
4
𝐶
1
V
5
𝐶
2
V
4
, . . . , V

𝑘
𝐶
1
V
1
𝐶
2
V
𝑘
is of odd length, say

V
2
𝐶
1
V
3
C
2
V
2
. Consider the subgraph 𝐺

1
of 𝐵 induced by the

vertices of V
2
𝐶
1
V
3
𝐶
2
V
2
and the interior of the V

2
𝐶
1
V
3
𝐶
2
V
2
.

Clearly,𝐺
1
is a planar graph and is a subgraph of 𝐵. Each face

of 𝐺
1
except the outer face has length 4 or 6, thus the length

of boundary V
2
𝐶
1
V
3
𝐶
2
V
2
is even, a contradiction. So 𝐶

1
is an

odd cycle.
The vertices of 𝐵, on either side of 𝐶, which are proximal

to 𝐶 induce a noncontractible cycle 𝐶
3
of 𝐵 (see Figure 6(c)).

The length of 𝐶 is equal to the length of 𝐶
3
plus double the

times that 𝐶 passes through edges of 𝐵 minus 1, thus the
lengths of 𝐶 and 𝐶

3
have the opposite parity. Since 𝐶

3
is an

odd cycle, 𝐶 is an even cycle.
The following theorem presented byMohar in [32] will be

useful for determining the face chromatic number of a (4,6)-
fullerene on the projective plane.

Theorem 27 (see [32]). Let 𝐺 be an Eulerian triangulation of
the projective plane. Then 𝜒(𝐺) ≤ 5 and 𝐺 has a color factor.
Moreover, if 𝑈 is any color factor of 𝐺, then

(1) 𝜒(𝐺) = 3 if and only if 𝐺 − 𝑈 is bipartite;
(2) 𝜒(𝐺) = 4 if and only if 𝐺 − 𝑈 is not bipartite and does

not contain a quadrangulation of the projective plane;
(3) 𝜒(𝐺) = 5 if and only if 𝐺 − 𝑈 is not bipartite and

contains a quadrangulation of the projective plane.
Such a quadrangulation is necessarily nonbipartite.
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Figure 8: The illustration of constructing extremal projective fullerenes from an extremal projective (4,6)-fullerene.

Theorem 27 implies that the unique projective (4,6)-
fullerene with chromatic number 4 is𝐾

4
. All other projective

(4,6)-fullerenes are 3-colorable. This fact further implies
that there is a polynomial time algorithm to determine the
chromatic number of a projective (4,6)-fullerene.

Theorem 28. The face chromatic number of a nonbipartite
(4,6)-fullerene on the projective plane is 3, the face chromatic
number of a bipartite (4,6)-fullerene on the projective plane is
4 exceptL(𝐾

3
), and the face chromatic number of the bipartite

(4,6)-fullereneL(𝐾
3
) on the projective plane is 5.

Proof. The theorem holds directly from Theorem 27, the
definition of the leapfrog transformation, and the fact that
the chromatic number of a map is equal to the face chromatic
number of the dual map.

Theorem 23, together with Theorems 25 and 28, gener-
ates a method of constructing extremal fullerenes on the
sphere and the projective plane from (4,6)-fullerene on these
surfaces using the leapfrog transformation and the reverse
expansion procedure. Given a (4,6)-fullerene 𝐵

0
on the

sphere or the projective plane, we define iterated leapfrog
fullerenes 𝐵

𝑖
= L𝑖(𝐵

0
) = L(𝐵

𝑖−1
), (𝑖 = 1, 2, . . .). Then all

𝐵
𝑖
(𝑖 ≥ 1) have a diagonalization, so the reverse expansion

𝐵
𝑖+1

with respect to 3𝜒(Σ) pairs of hexagons corresponding
to a diagonalization of 𝐵

𝑖
generates an extremal fullerene 𝐹

𝑖

on Σ. By being more specific on the projective plane, if 𝐵
0

is nonbipartite, then each 𝐵
𝑖
(𝑖 ≥ 1) has a diagonalization

and 𝐵
2𝑘−1

is bipartite and isolated, thus having a perfect
diagonalization. If 𝐵

0
is bipartite, then each 𝐵

𝑖
(𝑖 ≥ 1) has

a diagonalization and 𝐵
2𝑘

(𝑘 ≥ 1) is bipartite and isolated,
thus having a perfect diagonalization (see Figure 7). The
reverse expansion with respect to 3𝜒(Σ) pairs of hexagons
corresponding to a perfect diagonalization of 𝐵

𝑖
generates

an extremal fullerene 𝐹
𝑖
on Σ which also has a Fries set

of size |𝑉|/3. All hexagons, which are contained entirely
in some hexagon of 𝐵

𝑖
, form a Clar set of resulting graph,

whereas all faces corresponding to a color class of a bipartite
𝐵
𝑖
form a Fries set of resulting graph. A projective fullerene

generated from reverse expansion L2(𝐾
4
) (see Figure 8(b))

with respect to 3𝜒(Σ) pairs of hexagons corresponding to a
diagonalization (resp., perfect diagonalization) of L(𝐾

4
) is

illustrated by Figure 8(a) (resp., Figure 8(c)). Furthermore,
two projective fullerenes, which are illustrated in Figures 8(a)

and 8(c), are the only two projective fullerenes on 30 vertices.
It is noticeable that the corresponding centrosymmetric
spherical fullerene of the projective fullerene in Figure 8(c)
is the famous buckminsterfullerene C

60
.

6. Projective Fullerenes versus
Spherical Fullerenes

Since there is a one-to-one correspondence from projective
fullerenes to centrosymmetric spherical fullerenes, it is nat-
ural to study the relation between the projective fullerenes
(resp., (4,6)-fullerenes) attaining maximum Fries number
and the spherical fullerenes (resp., (4,6)-fullerenes) attaining
maximum Fries number and the relation between extremal
projective fullerenes (resp., (4,6)-fullerenes) and extremal
spherical fullerenes (resp., (4,6)-fullerenes).

Theorem29. Amap on the projective plane is a leapfrog graph
if and only if the corresponding centrosymmetric spherical map
is a leapfrog graph.

Proof. Suppose a map 𝐺 on the projective plane is a leapfrog
graph. Then by Theorem 5, 𝐺 is 3-regular and has a perfect
Clar structure H. Since each face of H is obtained by
identifying two antipodal faces of the corresponding cen-
trosymmetric spherical map𝐺, all faces in𝐺 corresponding
to faces of H in 𝐺 form a perfect Clar structure H of
𝐺
. Since each vertex of 𝐺 is obtained by identifying two

antipodal vertices of the corresponding centrosymmetric
spherical map 𝐺, 𝐺 is also 3-regular. By Theorem 5, the
corresponding centrosymmetric spherical map 𝐺 of 𝐺 is a
leapfrog graph.

Conversely, suppose the corresponding centrosymmetric
spherical map𝐺 of𝐺 is a leapfrog graph.Then byTheorem 5,
𝐺
 is 3-regular and has a perfect Clar structure H. Since

the parent graphL−1(𝐺) is also a centrosymmetric spherical
map and each face of H is corresponding to a face of
L−1(𝐺), the antipodal face of each face inH is also inH.
The set of faces obtained by identifying all antipodal faces of
H forms a perfect Clar structure H of 𝐺. Clearly, 𝐺 is 3-
regular. ByTheorem 5, 𝐺 is a leapfrog graph.

As a corollary of Theorems 10 and 29, we have the fol-
lowing result.
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Corollary 30. A projective (4,6)-fullerene is extremal if and
only if the corresponding centrosymmetric spherical (4,6)-
fullerene is extremal.

Combining Corollary 22 with Corollary 30, we have the
following result.

Corollary 31. A projective fullerene is extremal if and only
if the corresponding centrosymmetric spherical fullerene is
extremal.
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