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Under the condition that the values of the objective function and its subgradient are computed approximately, we introduce a
cutting plane and level bundle method for minimizing nonsmooth nonconvex functions by combining cutting plane method with
the ideas of proximity control and level constraint. The proposed algorithm is based on the construction of both a lower and an
upper polyhedral approximation model to the objective function and calculates new iteration points by solving a subproblem in
which the model is employed not only in the objective function but also in the constraints. Compared with other proximal bundle
methods, the new variant updates the lower bound of the optimal value, providing an additional useful stopping test based on the
optimality gap. Another merit is that our algorithm makes a distinction between affine pieces that exhibit a convex or a concave
behavior relative to the current iterate. Convergence to some kind of stationarity point is proved under some looser conditions.

1. Introduction

Bundlemethods family is based on the cutting planemethod,
first described in [1, 2], where the convexity of the objective
function is the fundamental assumption. The extension of
bundlemethods to the nonconvex case is not straightforward;
however, it is apparent that a number of ideas valid in the
convex framework are also valuable in the treatment of the
nonconvex case. In [3], by combining cutting plane method
with proximity control, for minimizing nonsmooth non-
convex function, the authors propose an iterative algorithm
which makes a distinction between affine pieces that exhibit
a convex or a concave behavior relative to the current point
in the iterative procedure, but the exact information of the
objective function and its subgradient is needed.

Level bundlemethod is anothermethodwhich is easier to
implement and has shown encouraging numerical results [4,
5]. Some evidence shows that constrained level bundle meth-
ods are preferable under certain conditions. Also, strategies
for updating the level parameter 𝑙𝑘 are readily available [6].

In various real-world applications, the objective function
and/or its subgradient can be costly (sometimes impossible)
to compute.This is particularly true when 𝑓 is given by some
optimization problem; for example, 𝑓(𝑥) = max𝑢∈𝑈𝜙(𝑥, 𝑢).
In such situations, approximate values must be used. Various
inexact bundle methods that use approximate functions
values and subgradient evaluations have been studied [7].

In this work, we combine the level bundle method with
cutting plane method involving the idea of proximal control
by employing inexact objective function information for
minimizing a nonconvex function. The proposed algorithm
makes a distinction between affine pieces that exhibit a
convex or a concave behavior relative to the current iteration
point such that the downward shifting of the affine pieces is
not arbitrary. The rest of this paper is organized as follows.
Section 2 gives some preliminary results and introduces the
basic idea of the proposed algorithm. Section 3 describes for-
mally the cutting plane and level stabilization bundle method
with inexact data for minimizing nonsmooth nonconvex
functions. Section 4 is devoted to convergence analysis of the
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algorithm with looser conditions than [3]. Section 5 contains
some conclusions of the proposed method.

2. The Construction of the Model

In this paper, we consider the following unconstrained
minimization problem:

min 𝑓 (𝑥)

s.t. 𝑥 ∈ 𝑅
𝑛
,

(1)

where 𝑓: 𝑅𝑛 → 𝑅
+ is not necessarily differentiable. We

assume that 𝑓 is locally Lipschitz; then 𝑓 is differentiable
almost everywhere. It is well known that, in [8], under
the above hypotheses, there is defined at each point 𝑥 the
generalized gradient (Clarke’s gradient):

𝜕𝑓 (𝑥) = conv {𝑔 ∈ 𝑅
𝑛
| ∇𝑓 (𝑥

𝑘
) → 𝑔, 𝑥

𝑘
→ 𝑥, 𝑥

𝑘
∉ Ω𝑓} ,

(2)

where Ω𝑓 is the set, where 𝑓 is not differentiable, and 𝜕𝑓(𝑥)

is locally bounded. An extension of the generalized gradient
is the Goldstein 𝜀-subdifferential 𝜕𝐺

𝜀
𝑓(𝑥) defined as

𝜕
𝐺

𝜀
𝑓 (𝑥) = conv {𝜕𝑓 (𝑦) |

󵄩󵄩󵄩󵄩𝑦 − 𝑥
󵄩󵄩󵄩󵄩 ≤ 𝜀} , (3)

which is first described by Goldstein in [9]. The Goldstein
subdifferential is both outer and inner semicontinuous as a
multifunction of 𝑥 and 𝜀.

Throughout the paper, we assume that, given 𝑥 ∈ 𝑅
𝑛, the

oracle provides some approximate values 𝑓𝑥 ∈ 𝑅 and 𝑔
𝐺

𝑥
∈

𝑅
𝑛 of the objective function and its subgradient, respectively,

such that
𝑓𝑥 = 𝑓 (𝑥) − 𝜂𝑥,

𝑔
𝐺

𝑥
∈ 𝜕
𝐺

𝜂
𝑔

𝑥

𝑓 (𝑥) = conv {𝜕𝑓 (𝑦) |
󵄩󵄩󵄩󵄩𝑦 − 𝑥

󵄩󵄩󵄩󵄩 ≤ 𝜂
𝑔

𝑥
} ,

(4)

where 𝜂𝑥 ∈ 𝑅 and 𝜂
𝑔

𝑥
≥ 0 are some unknown errors.

Specifically, 𝜂𝑥 is uniformly bounded; that is, there exists 𝜂 ≥

0 such that
󵄨󵄨󵄨󵄨𝜂𝑥

󵄨󵄨󵄨󵄨 ≤ 𝜂, ∀𝑥 ∈ 𝑅
𝑛
. (5)

Let𝑥𝑘 be the current stability center; the bundle 𝐼𝑘 of available
information is the set of elements:

(𝑥𝑖, 𝑓𝑥𝑖
, 𝑔
𝐺

𝑥𝑖
, 𝛼𝑖, 𝑎𝑖) , 𝑖 ∈ 𝐼𝑘, (6)

where 𝛼𝑖 is the linearization error defined by

𝛼𝑖 = 𝑓𝑥𝑘
− 𝑓𝑥𝑖

− ⟨𝑔
𝐺

𝑥𝑖
, 𝑥𝑘 − 𝑥𝑖⟩ (7)

and 𝑎𝑖 = ‖𝑥𝑘 − 𝑥𝑖‖. With this information, we create the
linearization

𝑓
𝑖
(𝑥) = 𝑓𝑥𝑖

+ ⟨𝑔
𝐺

𝑥𝑖
, 𝑥 − 𝑥𝑖⟩ . (8)

At iteration 𝑘, a polyhedral cutting plane model of 𝑓 is
available:

̌𝑓𝑘 (𝑥) = max
𝑖∈𝐼𝑘

{𝑓𝑥𝑖
+ ⟨𝑔
𝐺

𝑥𝑖
, 𝑥 − 𝑥𝑖⟩} . (9)

Suppose there exists 𝛽𝑘 > 0 such that ̌𝑓𝑘(𝑥) ≤ 𝑓(𝑥) + 𝛽𝑘,
∀𝑥 ∈ 𝑅

𝑛, and 𝛽𝑘 is uniformly bounded; that is, there exists
𝛽 > 0 such that 𝛽𝑘 ≤ 𝛽, ∀𝑘. We recall that the classical cutting
planemethods [1, 2]minimize ̌𝑓𝑘(𝑥) at each iteration, and the
minimization of ̌𝑓𝑘(𝑥) can be written in linear programming
form:

min Ṽ

s.t. Ṽ ≥ 𝑓𝑥𝑖
+ ⟨𝑔
𝐺

𝑥𝑖
, 𝑥 − 𝑥𝑖⟩ , 𝑖 ∈ 𝐼𝑘,

(10)

which is equivalent to solving

min V := Ṽ − 2𝜂

s.t. V := Ṽ − 2𝜂 ≥ (𝑔
𝐺

𝑥𝑖
)
𝑇

𝑑 − 𝛼𝑖 − 2𝜂, 𝑖 ∈ 𝐼𝑘,

(11)

where 𝑑 = 𝑥−𝑥𝑘. We divide the set 𝐼𝑘 into two sets 𝐼
+

𝑘
and 𝐼
−

𝑘

defined as follows:

𝐼
+

𝑘
= {𝑖 ∈ 𝐼𝑘 | 𝛼𝑖 ≥ −2𝜂} , 𝐼

−

𝑘
= {𝑖 ∈ 𝐼𝑘 | 𝛼𝑖 < −2𝜂} .

(12)

We observe that 𝐼+
𝑘
is never empty since 𝑘 ∈ 𝐼

+

𝑘
. By using 𝐼

+

𝑘

and 𝐼
−

𝑘
, we define two piecewise affine functions:

Δ
+
(𝑑) = max

𝑖∈𝐼
+

𝑘

{(𝑔
𝐺

𝑥𝑖
)
𝑇

𝑑 − 𝛼𝑖} ,

Δ
−
(𝑑) = min

𝑖∈𝐼
−

𝑘

{(𝑔
𝐺

𝑥𝑖
)
𝑇

𝑑 − 𝛼𝑖} .

(13)

In fact, Δ+(𝑑) can be regarded as an approximation of the
difference function ℎ(𝑑) = 𝑓𝑥𝑘+𝑑

− 𝑓𝑥𝑘
. Because Δ

+
(0) ≤

2𝜂 and Δ
−
(0) > 2𝜂, thus Δ

+
(0) < Δ

−
(0); it is reasonable

to consider the approximation Δ
+
(𝑑) significant as far as

Δ
+
(𝑑) ≤ Δ

−
(𝑑).Therefore we introduce a kind of trust model:

𝑆𝑓 = {𝑑 ∈ 𝑅
𝑛
| Δ
+
(𝑑) ≤ Δ

−
(𝑑)} . (14)

Let ]𝑙
𝑘
be a nonnegative scalar representing howmuchwe aim

to reduce the value 𝑓𝑥𝑘
at the current iteration. Define the

corresponding level parameter 𝑙𝑘 = 𝑓𝑥𝑘
− ]𝑙
𝑘
. Since 𝑓(𝑥) > 0,

𝑙𝑘 > 0. Then the level set associated with ̌𝑓𝑘(⋅) and 𝑙𝑘 is given
by

𝑋𝑘 = {𝑥 ∈ 𝑅
𝑛
| ̌𝑓𝑘 (𝑥) ≤ 𝑙𝑘} . (15)

We obtain the search direction by solving the following con-
vex quadratic subproblem, parameterized in the nonnegative
scalar 𝑢, where the first two constraints ensure 𝑑 ∈ 𝑆𝑓 and the
last constraint represents the idea of level bundle method:

𝑄𝑃 (𝑢)

{{{{{{

{{{{{{

{

𝑧𝑢 = min 𝑢V +
1

2
‖𝑑‖
2

s.t. V ≥ (𝑔
𝐺

𝑥𝑖
)
𝑇

𝑑 − 𝛼𝑖 − 2𝜂, 𝑖 ∈ 𝐼
+

𝑘
,

V ≤ (𝑔
𝐺

𝑥𝑖
)
𝑇

𝑑 − 𝛼𝑖 − 2𝜂, 𝑖 ∈ 𝐼
−

𝑘
,

V ≤ 𝑙𝑘.

(16)
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Observe that 𝑧𝑢 ≤ 0 since (V, 𝑑) = (0, 0) is feasible. We have
consequently that the optimal value V cannot be positive.

The dual problem of 𝑄𝑃(𝑢) can be written in the form

𝐷𝑃 (𝑢)

{{{{{

{{{{{

{

min 1

2

󵄩󵄩󵄩󵄩𝐺+𝜆 − 𝐺−𝜇
󵄩󵄩󵄩󵄩
2
+ 𝛼
𝑇

+
𝜆 − 𝛼
𝑇

−
𝜇 + 𝜉𝑙𝑘

+2𝜂 (𝑒
𝑇
𝜆 − 𝑒
𝑇
𝜇)

s.t. 𝜆, 𝜇, 𝜉 ≥ 0,

𝑒
𝑇
𝜆 − 𝑒
𝑇
𝜇 − 𝜉 = 𝑢,

(17)

where 𝐺+ and 𝐺− are matrices whose columns are, respec-
tively, the vectors 𝑔𝐺

𝑥𝑖
, 𝑖 ∈ 𝐼

+

𝑘
and 𝑔

𝐺

𝑥𝑖
, 𝑖 ∈ 𝐼

−

𝑘
and 𝛼+ and 𝛼−

are vectors whose components are 𝛼𝑖, 𝑖 ∈ 𝐼
+

𝑘
and 𝛼𝑖, 𝑖 ∈ 𝐼

−

𝑘
,

respectively. 𝜆 and 𝜇 are the vectors with components 𝜆𝑖,
𝑖 ∈ 𝐼

+

𝑘
, 𝜇𝑖, 𝑖 ∈ 𝐼

−

𝑘
, and 𝑒 = (1, 1, . . . , 1)

𝑇, 𝜉 ∈ 𝑅
+. The

primal optimal solution (V𝑢, 𝑑𝑢) is related to the dual optimal
solution (𝜆𝑢, 𝜇𝑢, 𝜉𝑢) by the following formulae:

𝑑𝑢 = −𝐺+𝜆𝑢 + 𝐺−𝜇𝑢, (18)

V𝑢 = −
1

𝑢
[
󵄩󵄩󵄩󵄩𝑑𝑢

󵄩󵄩󵄩󵄩
2
+ (𝛼+ + 2𝜂𝑒)

𝑇
𝜆𝑢 − (𝛼− + 2𝜂𝑒)

𝑇
𝜇𝑢 + 𝜉𝑢𝑙𝑘] .

(19)

Before giving a description of the algorithm, we state
some simple properties of 𝑄𝑃(𝑢).

Lemma 1. Let 0 < 𝑢2 < 𝑢1; then the following conclusions
hold:

(i) 𝑧𝑢1 ≤ 𝑧𝑢2
;

(ii) V𝑢1 ≤ V𝑢2 ;
(iii) ‖𝑑𝑢1‖ ≥ ‖𝑑𝑢2

‖.

Proof. We omit the proof since the conclusions can be
obtained by imitating the proof of Lemma 2.1 [3].

Lemma 2. For any 𝑢 > 0, the following conclusions hold:

(i) ‖𝑑𝑢‖ ≤ 2𝑢‖𝑔
𝐺

𝑥𝑘
‖ + 2𝑢𝜂;

(ii) 𝑧𝑢 ≥ −(1/2)𝑢
2
‖𝑔
𝐺

𝑥𝑘
‖
2

− 2𝑢𝜂;

(iii) |V𝑢| ≥ (1/2𝑢)‖𝑑𝑢‖
2.

Proof. Theconclusions can be obtained by imitating the proof
of Lemma 2.2 [3].

3. Algorithm

In this section, we state the algorithm in full detail and give
some comments on it.

Algorithm 3. We have the following.

Step 0 (initialization). The following global parameters are to
be set: the stopping tolerances 𝛿 > 0, TolΔ ≥ 0, the proximity
measure 𝜀 ≥ 0, the descent parameter 𝑚 ∈ (0, 1), the cut
parameter 𝜌 ∈ (𝑚, 1), the reduction parameter 𝑟 ∈ (0, 1), the
increase parameter 𝑅 > 1, and the level measure parameter

𝑚𝑙 ∈ (0, 1). Choose a starting point 𝑥0 ∈ 𝑅
𝑛; set 𝑥0 =

𝑥0; the oracle provides 𝑓𝑥0
∈ 𝑅 and 𝑔

𝐺

𝑥0
∈ 𝑅
𝑛 satisfying

Assumption (4). The initial bundle is made up of just one
element (𝑥0, 𝑓𝑥0 , 𝑔

𝐺

𝑥0
, 0, 0) so that 𝐼−

0
is empty, while 𝐼

+

0
is a

singleton. Since 𝑓(𝑥) > 0, a lower bound 𝑓
low
0

for 𝑓
inf

=

min{𝑓(𝑥) | 𝑥 ∈ 𝑅
𝑛
} is available; set ]𝑙

0
= (1 − 𝑚𝑙)(𝑓𝑥0

− 𝑓
low
0

).
Set the iteration counter 𝑘 = 0.

Step 1 (first stopping test). If ‖𝑔𝐺
𝑥𝑘
‖ ≤ 𝛿, then terminate.

Step 2 (second stopping test). Set Δ 𝑘 = 𝑓𝑥𝑘
− 𝑓

low
𝑘

. If Δ 𝑘 ≤

TolΔ, then stop.

Step 3 (level feasibility checking). Set the level parameter 𝑙𝑘 =
𝑓𝑥𝑘

− ]𝑙
𝑘
. If the level set 𝑋𝑘 defined by (15) is detected to be

empty, then set𝑓low
𝑘

= 𝑙𝑘, ]
𝑙

𝑘
= (1−𝑚𝑙)(𝑓𝑥𝑘

−𝑓
low
𝑘

) and go back
to Step 2. Otherwise set 𝑢𝑘min = 𝑟𝜀/2‖𝑔

𝐺

𝑥𝑘
‖, 𝑢𝑘max = 𝑅𝑢

𝑘

min, and
𝜃
(𝑘)

= 𝑟𝛿𝑢
𝑘

min.

Step 4 (direction finding). Find the solution (𝑑
𝑘

𝑢̂
, V𝑘
𝑢̂
) of𝑄𝑃(𝑢̂)

for increasing value of 𝑢, such that

𝑓𝑥𝑘+𝑑𝑢̂
> 𝑓𝑥𝑘

+ 𝑚V𝑢̂, (20)

where 𝑢̂ equals the minimum value of 𝑢 ∈ [𝑢
𝑘

min, 𝑢
𝑘

max] if such
𝑢 does exist; otherwise set 𝑢̂ = 𝑢

𝑘

max.

Step 5 (bundle updating). Set

𝐼
+

𝑘
= 𝐼
+

𝑘
\ {𝑖 ∈ 𝐼

+

𝑘
| 𝑎𝑖 > 𝜀} , 𝐼

−

𝑘
= 𝐼
−

𝑘
\ {𝑖 ∈ 𝐼

−

𝑘
| 𝑎𝑖 > 𝜀} .

(21)

Calculate

𝑔
∗
= argmin {

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩 | 𝑔 ∈ conv {𝑔𝐺

𝑥𝑖
| 𝑖 ∈ 𝐼

+

𝑘
}} . (22)

If ‖𝑔∗‖ ≤ 𝛿, then terminate.
Else set 𝑢𝑘max = 𝑢

𝑘

max − 𝑟(𝑢
𝑘

max − 𝑢
𝑘

min); go to Step 4.

Step 6 (trial point calculating). Set 𝑥𝑘+1 = 𝑥𝑘 + 𝑑
𝑘

𝑢̂
, calculate

𝑓𝑥𝑘+1
, 𝑔𝐺
𝑥𝑘+1

∈ 𝜕
𝐺

𝜂
𝑔

𝑥
𝑘+1

𝑓(𝑥𝑥+1), and set 𝛼𝑘+1 = 𝑓𝑥𝑘
− 𝑓𝑥𝑘+1

+

(𝑔
𝐺

𝑥𝑘+1
)
𝑇
𝑑
𝑘

𝑢̂
.

Step 7 (index insertion). (a) If 𝛼𝑘+1 < −2𝜂 and ‖𝑑
𝑘

𝑢̂
‖ > 𝜀,

then insert the element (𝑥𝑘+1, 𝑓𝑥𝑘+1 , 𝑔
𝐺

𝑥𝑘+1
, 𝛼𝑘+1, ‖𝑑

𝑘

𝑢̂
‖) into the

bundle for an appropriate value of 𝑖 ∈ 𝐼
−

𝑘
and set 𝑢̂ = 𝑢̂−𝑟(𝑢̂−

𝑢
𝑘

min).
(b) Else, if (𝑔𝐺

𝑥𝑘+1
)
𝑇
𝑑
𝑘

𝑢̂
≥ 𝜌V𝑘
𝑢̂
− 2𝜂, then insert the element

(𝑥𝑘+1, 𝑓𝑥𝑘+1
, 𝑔
𝐺

𝑥𝑘+1
, max{𝛼𝑘+1, −2𝜂}, ‖𝑑

𝑘

𝑢̂
‖) into the bundle for

an appropriate value of 𝑖 ∈ 𝐼
+

𝑘
.

(c) Else find a scalar 𝑡 ∈ (0, 1) such that 𝑔(𝑡) ∈

𝜕
𝐺

𝜂
𝑔

𝑥
𝑘
+𝑡𝑑
𝑘

𝑢̂

𝑓(𝑥𝑘 + 𝑡𝑑
𝑘

𝑢̂
) satisfies the condition 𝑔(𝑡)

𝑇
𝑑
𝑘

𝑢̂
≥ 𝜌V𝑘

𝑢̂

−2𝜂 and insert the element (𝑥𝑘 + 𝑡𝑑
𝑘

𝑢̂
, 𝑓
𝑥𝑘+𝑡𝑑

𝑘

𝑢̂

, 𝑔(𝑡),max{−2𝜂,
𝛼𝑡}, 𝑡‖𝑑

𝑘

𝑢̂
‖) into the bundle for an appropriate value of 𝑖 ∈ 𝐼

+

𝑘
,

where 𝛼𝑡 = 𝑓𝑥𝑘
− 𝑓
𝑥𝑘+𝑡𝑑

𝑘

𝑢̂

+ 𝑡𝑔(𝑡)
𝑇
𝑑
𝑘

𝑢̂
.
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Step 8 (descent test). If ‖𝑑𝑘
𝑢̂
‖ ≤ 𝜃, go to Step 5. Choose 𝑓low

𝑘+1
∈

[𝑓
low
𝑘

, 𝑓
inf

].
If

𝑓𝑥𝑘+1
≤ 𝑓𝑥𝑘

+ 𝑚V𝑘
𝑢̂
, (23)

set the new stability center 𝑥𝑘+1 = 𝑥𝑘+1, ]
𝑙

𝑘+1
= (1−𝑚𝑙)(𝑓𝑥𝑘+1

−

𝑓
low
𝑘+1

), set 𝑘 = 𝑘 + 1, and go to Step 1 (serious step).
Otherwise set 𝑥𝑘+1 = 𝑥𝑘, ]

𝑙

𝑘+1
= (1 −𝑚𝑙)(𝑓𝑥𝑘+1

−𝑓
low
𝑘+1

), set
𝑘 = 𝑘 + 1, and go to Step 9 (null step).

Step 9 (resolving 𝑄𝑈(𝑢) or 𝐷𝑃(𝑢)). Solve 𝑄𝑃(𝑢) or, equiva-
lently,𝐷𝑃(𝑢), to obtain the primal and dual optimal solutions
(V𝑢̂, 𝑑𝑢̂) and (𝜆𝑢̂, 𝜇𝑢̂, 𝜉𝑢̂) and go to Step 6.

That is the end of the algorithm.
A few comments on the algorithm are in the following

order.
(a) Step 1 is justified by the optimality estimate.
(b) Step 2 is another stopping criterion. 𝑋𝑘 = 0 means

that 𝑙𝑘 ≤ ̌𝑓𝑘(𝑥) ≤ 𝑓(𝑥)+𝛽, ∀𝑥 ∈ 𝑅
𝑛, and since the update sets

𝑓
low
𝑘

= 𝑙𝑘, it holds that 𝑓
low
𝑘

≤ 𝑓
inf

+𝛽 for all 𝑘. If Algorithm 3
stops at Step 2, we have that

TolΔ ≥ 𝑓𝑥𝑘
− 𝑓

low
𝑘

≥ 𝑓𝑥𝑘
− 𝑓

inf
− 𝛽 = 𝑓 (𝑥𝑘) − 𝜂𝑥𝑘

− 𝑓
inf

− 𝛽

≥ 𝑓 (𝑥𝑘) − 𝜂 − 𝑓
inf

− 𝛽,

(24)

which means that 𝑥𝑘 is a (TolΔ + 𝜂+𝛽)-approximate solution
to problem (1). If at Step 2 the rule 𝑙𝑘 = 𝑓𝑥𝑘

− ]𝑙
𝑘
is replaced

by 𝑙𝑘 = +∞ for all 𝑘, Algorithm 3 becomes an approximate
proximal bundle algorithm.

(c) Step 4 may use the dual quadratic programming
method of [10], which can solve efficiently sequences of
related subproblems 𝑄𝑃(𝑢) with varying 𝑢. The construction
of 𝑑𝑘
𝑢̂
at Step 4may be discretized by repeatedly solving𝑄𝑃(𝑢)

for increasing values of 𝑢 or by adopting techniques of the
type described in [11].

(d) 𝑑
𝑘

𝑢̂
≤ 𝜃 is never a consequence of the choice of too

small 𝑢̂. In fact, we note that if ‖𝑔𝐺
𝑥𝑘
‖ > 𝛿, it holds that

󵄩󵄩󵄩󵄩󵄩
𝑑𝑢min

󵄩󵄩󵄩󵄩󵄩
≤ 2𝑢min

󵄩󵄩󵄩󵄩󵄩
𝑔
𝐺

𝑥𝑘

󵄩󵄩󵄩󵄩󵄩
+ 2𝑢min𝜂 =

2𝜃 (
󵄩󵄩󵄩󵄩󵄩
𝑔
𝐺

𝑥𝑘

󵄩󵄩󵄩󵄩󵄩
+ 𝜂)

𝑟𝛿
. (25)

The right-hand side of the above inequality is bigger than 𝜃,
so too small 𝑢̂ cannot lead to 𝑑

𝑘

𝑢̂
≤ 𝜃; therefore we need to

increase the value of 𝑢.
(e)We remark that the insertion of a bundle index into 𝐼

+

𝑘

or 𝐼−
𝑘
at Step 7 is not simply based on the sign of 𝛼𝑖.

(f) The level constraint ̌𝑓𝑘(𝑥) ≤ 𝑙𝑘 provides an addi-
tional useful stopping test based on a certain optimality
gap, something not present in cutting plane methods. It
should be noted that this additional stopping test is useful,
as usual proximal bundle methods sometimes “take time”
to accumulate enough information to recognize that an
acceptable approximate solution has been already computed.

(g) To keep the size of problem (16) manageable, the
number of elements in bundle should be kept bounded, with-
out impairing convergence. For this, the usual aggregation

techniques of proximal bundle methods can be employed
here. Specifically, themodel can be composed of as few as only
two cutting planes, corresponding to the new linearization
and the aggregate linearization.

4. Convergence Analysis

Convergence analysis ofAlgorithm 3has to account for all the
following cases:

the level sets𝑋𝑘 are empty for infinitelymany times; (26)

infinitelymany descent steps are generated; (27)

finitelymany descent steps are generated. (28)

For the first case (26), if the stopping tolerance TolΔ is
positive, then the method terminates with an approximate
solution in a finite number of iterations.

Lemma 4. Suppose the level sets 𝑋𝑘 are empty for infinitely
many times; then Δ 𝑘 → 0:

lim
𝑘→∞

𝑓𝑥𝑘
≤ 𝑓

inf
+ 𝛽. (29)

And every cluster point of the sequence {𝑥𝑘} (if any exists) is a
(𝜂 + 𝛽)-approximate solution to problem (1).

Proof. Since 𝑓
low
𝑘

> −∞, Δ 𝑘 < +∞. Also, by Steps 3 and 8,
]𝑙
𝑘
≤ (1 − 𝑚𝑙)Δ 𝑘; thus

𝑓𝑥𝑘
− 𝑙𝑘 = 𝑓𝑥𝑘

− (𝑓𝑥𝑘
− ]𝑙
𝑘
) = ]𝑙
𝑘
≤ (1 − 𝑚𝑙) Δ 𝑘, (30)

whichmeans that if𝑋𝑘 is empty at iteration 𝑘, then the update
decreases the optimality gapΔ 𝑘 by a factor of at least (1−𝑚𝑙).
Hence if this happens infinitelymany times, we haveΔ 𝑘 → 0

as 𝑘 → ∞.Moreover, we haveΔ 𝑘 = 𝑓𝑥𝑘
−𝑓

low
𝑘

≥ 𝑓𝑥𝑘
−𝑓

inf
−𝛽.

As {𝑓𝑥𝑘
} is decreasing and bounded below (𝑓𝑥𝑘

= 𝑓(𝑥𝑘) −

𝜂𝑥𝑘
> 𝑓(𝑥𝑘) − 𝜂 > 𝑓

inf
− 𝜂 > −∞), we conclude that

lim
𝑘→∞

𝑓𝑥𝑘
− 𝑓

inf
− 𝛽 ≤ lim

𝑘→∞

𝑓𝑥𝑘
− 𝑓

low
𝑘

= lim
𝑘→∞

Δ 𝑘 = 0, (31)

which gives (29). Let 𝑥 be any cluster point of {𝑥𝑘}, and let
{𝑥𝑘(𝑗)} be a subsequence converging to 𝑥 as 𝑗 → ∞. Then

𝑓
inf

+ 𝛽 ≥ lim
𝑗→∞

𝑓𝑥𝑘(𝑗)
= lim
𝑗→∞

(𝑓 (𝑥𝑘(𝑗)) − 𝜂𝑥𝑘(𝑗)
) ≥ 𝑓 (𝑥) − 𝜂,

(32)

which establishes the last conclusion.

From now on, we consider the case when 𝑋𝑘 ̸= 0 for
𝑘 large enough. Without loss of generality, we can simply
assume 𝑋𝑘 ̸= 0 for all 𝑘. For cases (27) and (28) we make the
following assumptions:

(A1) the set 𝑆0 = {𝑥 ∈ 𝑅
𝑛
| 𝑓𝑥 ≤ 𝑓𝑥0

} is compact;
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(A2) for any 𝑑 ∈ 𝑅
𝑛, the directional directive 𝑓

󸀠
(𝑥; 𝑑) of 𝑓

at 𝑥 exists and

𝑓
󸀠
(𝑥; 𝑑) = lim

𝑡↓0

𝑔(𝑡)
𝑇
𝑑, (33)

where 𝑔(𝑡) ∈ 𝜕
𝐺

𝜂
𝑔

𝑥+𝑡𝑑

𝑓(𝑥 + 𝑡𝑑).

Remark 5. Assumption (A2) is a looser condition than the
one emerging in [3], where the condition that 𝑓 is weakly
semismooth is required.

Next we introduce Lemma 6 to see what will happen if
no really new stability center is generated; that is, there exists
the last stability center and from then on only null steps are
generated.

Lemma 6. Suppose 𝑥𝑘 is the last stability center followed by a
null step sequence (𝑑𝑗

𝑢̂
, V𝑗
𝑢̂
) such that ‖𝑑𝑗

𝑢̂
‖ > 𝜃 and

𝑓
𝑥𝑘+𝑑
𝑗

𝑢̂

− 𝑓𝑥𝑘
> 𝑚V𝑗
𝑢̂

(34)

with the algorithm looping between Steps 6 and 9. Then the
following conclusions hold.

(i) There exists an index 𝑗 such that, for each 𝑗 ≥ 𝑗, every
new bundle index is inserted into 𝐼

+

𝑘
and 𝑢̂ remains

unchanged.
(ii) Step 7(c) is well defined.
(iii) Whenever a new bundle index is inserted into 𝐼

+

𝑘
, the

condition (𝑔
𝐺

𝑗
)
𝑇
𝑑
𝑗

𝑢̂
≥ 𝜌V𝑗
𝑢̂
− 2𝜂 holds, where 𝑔

𝐺

𝑗
is the

subgradient corresponding to the new bundle element.

Proof. (i) The conclusion can be obtained by noting that no
bundle index can be inserted into 𝐼

−

𝑘
as soon as 𝑢̂ falls below

the threshold 𝜀/(2‖𝑔𝑥𝑘
‖ + 2𝜂).

(ii) Since the sufficient decrease condition (23) is not
satisfied, it follows that

𝜌V𝑗
𝑢̂
< 𝑚V𝑗
𝑢̂
< 𝑓
𝑥𝑘+𝑑
𝑗

𝑢̂

− 𝑓𝑥𝑘
. (35)

According to the inexact data in Assumption (4), 𝑓
𝑥𝑘+𝑑
𝑗

𝑢̂

−

𝑓𝑥𝑘
≤ 𝑓(𝑥𝑘 + 𝑑

𝑗

𝑢̂
) − 𝑓(𝑥𝑘) + 2𝜂, by mean value theorem there

exists a scalar 𝑡𝑗 ∈ (0, 1) such that

𝜌V𝑗
𝑢̂
< 𝑓
󸀠
(𝑥𝑘 + 𝑡

𝑗
𝑑
𝑗

𝑢̂
; 𝑑
𝑗

𝑢̂𝑘
) + 2𝜂. (36)

Thus the conclusion follows from Assumption (A2).
(iii) Observe that the condition (𝑔

𝐺

𝑗
)
𝑇
𝑑
𝑗

𝑢̂
≥ 𝜌V𝑗
𝑢̂
− 2𝜂 is

ensured either by construction or by the fact that

(𝑔
𝐺

𝑗
)
𝑇

𝑑
𝑗

𝑢̂
+ 2𝜂 ≥ (𝑔

𝐺

𝑗
)
𝑇

𝑑
𝑗

𝑢̂
− 𝛼
𝑗

𝑢̂
= 𝑓
𝑥𝑘+𝑑
𝑗

𝑢̂

− 𝑓𝑥𝑘
> 𝑚V𝑗
𝑢̂
> 𝜌V𝑗
𝑢̂
,

(37)

whenever 𝛼𝑗
𝑢̂
≥ −2𝜂.

Nowwe consider the case of infinitelymany descent steps;
we prove that either an approximate solution is achieved at
Step 5 or we obtain a really new stability center 𝑥𝑘+1 ̸= 𝑥𝑘.

Lemma 7. For Algorithm 3, if infinitely many descent steps are
generated one either obtains an approximate solution at Step 5
or one executes descent step at Step 8.

Proof. Firstly we prove that the algorithm cannot pass
through Step 5 for infinitely many times. Just like the result of
Lemma 4.2 in [3], we can obtain that the indices of the new
bundle elements are inserted into 𝐼

+

𝑘
and are never removed.

Moreover, when a passage at Step 5 occurs all the elements
with index 𝑖 ∈ 𝐼

−

𝑘
are removed. Taking into account (18) and

the constraint 𝑒𝑇𝜆 − 𝑒
𝑇
𝜇 − 𝜉 = 𝑢̂ in the dual problem 𝐷𝑃(𝑢̂),

there exists an index 𝑗 such that, for all 𝑗 ≥ 𝑗, 𝑑𝑗
𝑢̂
can be

expressed in the form (say |𝐼
+

𝑘
| = 𝑚)

𝑑
𝑗

𝑢̂
= −𝐺+𝜆

𝑗
= −∑

𝑖∈𝐼
+

𝑘

𝜆𝑖𝑔
𝐺

𝑥𝑖

= −∑

𝑖∈𝐼
+

𝑘

𝜆𝑖(
𝜆1

∑
𝑖∈𝐼
+

𝑘

𝜆𝑖

𝑔
𝐺

𝑥1
+ ⋅ ⋅ ⋅ +

𝜆𝑚

∑
𝑖∈𝐼
+

𝑘

𝜆𝑖

𝑔
𝐺

𝑥𝑚
)

= − (𝑢̂ + 𝜉) 𝑔
(𝑗)
,

(38)

where 𝑔
(𝑗)

∈ conv{𝑔𝐺
𝑥𝑖

| 𝑖 ∈ 𝐼
+

𝑘
}. But since ‖𝑑

𝑗

𝑢̂
‖ ≤ 𝜃 and

‖𝑔
∗
(𝑗)

‖ > 𝛿, we have

𝜃 ≥
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑗

𝑢̂

󵄩󵄩󵄩󵄩󵄩
=

󵄨󵄨󵄨󵄨𝑢̂ + 𝜉
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑔
𝑗󵄩󵄩󵄩󵄩󵄩

≥ 𝑢min
󵄩󵄩󵄩󵄩󵄩󵄩
𝑔
∗
(𝑗)󵄩󵄩󵄩󵄩󵄩󵄩

>
𝜃

𝑟𝛿
𝛿 > 𝜃, (39)

which leads to a contradiction.
Next we show that it is impossible to have 𝑑

𝑗

𝑢̂
> 𝜃 for

infinitely many times and the descent condition (23) is not
satisfied with the algorithm looping between Steps 6 and 9.
Indexing by 𝑗 ∈ 𝐽 the 𝑗th passage through such a loop, we
observe that, by Lemma 6 (i), there exists an index 𝑗 such
that, for every 𝑗 ≥ 𝑗, the sequence {𝑧

𝑗

𝑢̂
} is nondecreasing,

bounded, and hence convergent. Moreover, {𝑑𝑗
𝑢̂
} is bounded;

it admits a convergent subsequence, say {𝑑
𝑗

𝑢̂
}𝑗∈𝐽󸀠⊂𝐽. The above

consideration implies also that {V𝑗
𝑢̂
}𝑗∈𝐽󸀠⊂𝐽 is convergent to a

nonpositive limit, say V. Next, we can imitate the proof of
Lemma 4.2 in [3] to show that V = 0, which, by Lemma 2 (iii),
contradicts the fact that ‖𝑑𝑗

𝑢̂
‖ > 𝜃.

Finally we show after a finite number of descent steps that
Algorithm 3 stops at a point satisfying the condition of some
kind of approximate solution.

Theorem 8. For any 𝜀 > 0 and 𝛿 > 0, Algorithm 3 stops in a
finite number of iterations at a point satisfying the approximate
stationarity condition

󵄩󵄩󵄩󵄩𝑔
∗󵄩󵄩󵄩󵄩 ≤ 𝛿 (40)

with 𝑔
∗
∈ conv {𝜕

𝐺

𝜂
𝑔

𝑦

𝑓(𝑦) | ‖𝑦 − 𝑥𝑘‖ ≤ 𝜀}.

Proof. Suppose that the conclusion does not hold. It follows
from Lemma 7 that for infinitely many times the descent
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condition (23) is satisfied. Let 𝑥𝑘 be the stability center at the
𝑘th passage; then ‖𝑑

𝑘

𝑢̂
‖ > 𝜃 and

𝑓𝑥𝑘+1
≤ 𝑓𝑥𝑘

+ 𝑚V𝑘
𝑢̂
,

𝑓𝑥𝑘+1
− 𝑓𝑥0

≤ 𝑚

𝑘

∑

𝑖=0

V𝑖
𝑢̂
.

(41)

Since 𝑢𝑘min = 𝑟𝜀/2‖𝑔𝑥𝑘
‖ and 𝜃

(𝑘)
= 𝑟𝛿𝑢

𝑘

min, so 𝜃
(𝑘)

≥ 𝑟
2
𝜀𝛿/2𝐿0,

where 𝐿0 is the Lipschitz constant of 𝑓 on 𝑆0. It follows from
‖𝑑
𝑘

𝑢̂
‖ > 𝜃
(𝑘)

≥ 𝑟
2
𝜀𝛿/2𝐿0 that ‖𝑑

𝑗

𝑢̂
‖ is bounded away from zero.

Then from Lemma 2(iii), V𝑗
𝑢̂
is bounded away from zero as

well. Therefore by passing to the limit we obtain

lim
𝑘→∞

𝑓𝑥𝑘+1
− 𝑓𝑥0

≤ −∞. (42)

Since𝑓𝑥𝑘+1 = 𝑓(𝑥𝑘+1)−𝜂𝑥𝑘+1
≤ 𝑓(𝑥𝑘+1)+𝜂,𝑓𝑥0 = 𝑓(𝑥0)−𝜂𝑥0

≤

𝑓(𝑥0)+𝜂, we have lim𝑘→∞𝑓(𝑥𝑘+1) = −∞, which contradicts
the fact that the value of 𝑓 at 𝑥 ∈ 𝑅

𝑛 is positive.

5. Conclusions

In this paper, we propose a new algorithm for nonsmooth
nonconvex minimization by employing the approximate val-
ues of the objective function and its subgradient. It combines
the cutting plane method, level bundle method, and the idea
of proximal control. The aim is to take advantage of good
properties of all above-mentionedmethods, thus speeding up
the optimization process. In addition, the algorithm provides
a useful stopping test based on the optimality gap, something
not present in the proximal bundle methods. Compared with
bundle methods for nonsmooth nonconvex functions, the
amount of the shifting of affine pieces appears somehow
arbitrary, but in our paper, the use of downward shifting is
restricted to some particular cases.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to acknowledge the valuable sugges-
tions and helpful comments from the referees. This research
was supported by theNational Natural Science Foundation of
China (Grants 11301246, 11171049, and 11171138).

References

[1] E.W.Cheney andA.A.Goldstein, “Newton’smethod for convex
programming and Tchebycheff approximation,” Numerische
Mathematik, vol. 1, pp. 253–268, 1959.

[2] J. E. Kelley, Jr., “The cutting-plane method for solving convex
programs,” Journal of the Society for Industrial and Applied
Mathematics, vol. 8, pp. 703–712, 1960.

[3] A. Fuduli, M. Gaudioso, and G. Giallombardo, “Minimizing
nonconvex nonsmooth functions via cutting planes and prox-
imity control,” SIAM Journal on Optimization, vol. 14, no. 3, pp.
743–756, 2003.

[4] U. Brannlund, On relaxation methods for nonsmooth convex
optimization [Ph.D. thesis], Department of Mathematics, Royal
Institute of Technology, Stockholm, Sweden, 1993.
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