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Boundary layer flow of the Newtonian fluid that is caused by the vibration of inner sphere while the outer sphere is at rest is
calculated. Vishik-Lyusternik (Nayfeh refers to this method as the method of composite expansions) method is employed to
construct an asymptotic expansion of the solution of the Navier-Stokes equations in the limit of high-frequency vibrations for
Reynolds number of 𝑂(1). The effect of the Stokes drift of fluid particles is also considered.

1. Introduction

In the present paper we consider boundary layer flow due to
the vibrating sphere in a viscous fluid. Boundary layer flow
for Newtonian and non-Newtonian fluid’s is studied by many
researchers [1, 2].The interesting effect of viscosity is the flow
produced by high-frequency oscillations of a boundarywhere
the flow oscillations do not average to zero, such steady flow
is referred to as “steady streaming” or “acoustic streaming” or
“nonlinear streaming” [3, 4].

Mathematical modeling of the problem involves two
parameters: the inverse of Reynolds number ] and the inverse
Strouhal number 𝛼, given by

𝛼 =
𝑉
∗

0

𝜔𝑎
, ] =

1

Re
=

]∗

𝑎𝑉
∗

0

, (1)

where 𝑉
∗

0
is the amplitude of the velocity of the oscillating

sphere, 𝑎 is the radius of the sphere,𝜔 is the angular frequency
of the oscillations, and ]∗ is the kinematic viscosity of the
fluid. Parameter 𝛼 measures the ratio of the amplitude of
the displacement of the oscillating sphere to its radius and is
assumed to be small, that is, 𝛼 ≪ 1. An asymptotic solution of
Navier-Stokes equations in the limit 𝛼 → 0 is obtained using
the Vishik-Lyusternik method.

Steady secondary flowwas investigated numerically in [5]
for 0.2 ≤ √] ≤ 1. The study was carried out to investigate
the steady streaming near the rotating cylinder. In [6] steady
streaming between two cylinders was studied experimentally

for 1/(𝛼])1/2 at different amplitude of oscillations. The study
was carried out to investigate the behavior of outer boundary
on the inner circulations. The unsteady flow around rotating
and oscillating cylinder in a viscous incompressible microp-
olar fluid is studied numerically by [7] for 0 < 𝛼 < 2.8

and obtained a good agreement with the experiments. Stream
lines pattern was observed between two oscillating walls by
Thomas et al. [8]. The study is carried out to show that less
force is required by the flat plate to move the fluid rather than
wavy wall. Steady flow between two cylinders was studied
by [9] where the inner cylinder performs transverse oscil-
lation and outer cylinder performs rotatory oscillations for
1/(𝛼]).

Wang [10] discussed the steady streaming due to oscilla-
tions of a sphere for Re

𝑠
= 𝛼/] = 𝑂(1) using the method

of inner and outer expansion. However his solution is
incomplete, which had been understood and explained by
Riley [11]. Riley discussed the steady streaming due to a
sphere fixed in an oscillating fluid for Re

𝑠
≪ 1 using method

of matched asymptotic expansions. He discussed two cases:
(i) for Re = 1/] ≪ 1 and (ii) for |1/𝛼]| ≫ 1, where in
the second case choice of Re is arbitrary such that Re

𝑠
≪ 1.

Dohara [12] studied steady streaming for 1/√𝛼] ≈ 𝑂(1) and
obtained good results with the experimental results. Recently
the experimental work of Kotas et al. [13–15] produced
the visualization of steady streaming due to the oscillating
spheroids for moderate Reynolds number and small ampli-
tude of oscillations. In recent paper [13], numerical results for
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steady streaming are presented for Re
𝑠
≫ 1 and compared

with the experimental results of Kotas et al.
In the present paper, steady streaming between two

spheres is studied. The results are obtained for Re = 𝑂(1).
Section 2 describes the mathematical formulation of the
problem. Section 3 briefly explains the asymptotic procedure.
To construct an asymptotic expansion of the solution of
the Navier-Stokes equations, we apply the Vishik-Lyusternik
method [16, 17]. This method has an essential advantage
that it does not require the procedure of matching inner
and outer expansion as in the case of matched asymptotic
expansions. The Vishik-Lyusternik method had been used
to study viscous boundary layer at a fixed impermeable
boundary by Chudov [17]. Recently it has been applied to
viscous boundary layers in high Reynolds number flows
through a fixed domain with an inlet and an outlet [18]
and to viscous flows in a half-plane produced by tangential
vibrations on its boundary [19]. Vishik-Lyusternik method
has successfully applied to the steady streaming due to a
vibrating cylinder and by vibrating wavy wall [20–22]. In
Section 4 asymptotic equations are solved. In Section 5 the
steadyEulerian velocity is corrected through Stokes drift.This
produces the steady Lagrangian velocity which is important
because: (i) it is the Lagrangian velocity that is observed in
experiments; (ii) it is the Lagrangian velocity that is invariant
under the change of the frame of reference from the one fixed
in the oscillating sphere to the one fixed in space. Section 6
contains the discussion of the results.

2. Formulation of the Problem

We consider a three-dimensional flow of a viscous incom-
pressible fluid between two spheres with radii 𝑎 and𝑅

∗ (𝑅∗ >
𝑎) produced by small translational vibrations of an inner
sphere about the axis of the outer sphere which is fixed in
space. Let x∗ = (𝑥

∗

, 𝑦
∗

, 𝑧
∗

) beCartesian coordinates in space,
and let x∗

0
= (0, 0, 𝑧

∗

0
(𝑡
∗

)) be the position of the center of the
inner sphere at time 𝑡

∗. We assume that 𝑧∗
0
(𝑡
∗

) is oscillating
in 𝑡
∗ with angular frequency 𝜔 and period 𝑇 = 2𝜋/𝜔 and has

zero mean value, that is,

𝑧∗ ≡
1

𝑇
∫

𝑇

0

𝑧
∗

(𝑡
∗

) 𝑑𝑡
∗

= 0. (2)

The motion of the fluid is governed by the two-dimensional
Navier-Stokes equations:

k∗
𝑡
∗ + (k∗ ⋅ ∇∗) k∗ = −∇

∗

𝑝
∗

+ ]∗∇∗2k∗, ∇
∗

⋅ k∗ = 0. (3)

The velocity of the fluid satisfies the standard no-slip condi-
tion on the surfaces of the spheres which is:

k∗ (𝑧∗, 𝑡∗) |outer sphere = 0,

k∗ (𝑧∗, 𝑡∗) |inner sphere =
𝑑z∗
0

𝑑𝑡∗
.

(4)

Let 1/𝜔, 𝑎, 𝑉∗
0
, and 𝑎𝜔𝑉

∗

0
be the characteristic scales for

time, length, velocity, and pressure, respectively. Using the
dimensionless variables

𝜏 = 𝜔𝑡
∗

, x =
1

𝑎
x∗, x

0
=

1

𝑎
x∗
0
,

k =
1

𝑉
∗

0

k∗, 𝑝 =
𝑝
∗

𝑎𝜔𝑉
∗

0

,

(5)

we rewrite (3) in the form

k
𝜏
+ 𝛼 [(k ⋅ ∇) k − ]∇2k] = −∇𝑝, ∇ ⋅ k = 0, (6)

where

𝛼 =
𝑉
∗

0

𝑎𝜔
, ] =

]∗

𝑉
∗

0
𝑎∗

, (7)

are the inverse Strouhal number and the dimensionless vis-
cosity (the inverse Reynolds number). Equations (4) become

k (𝑧, 𝜏)|outer sphere = 0,

k (𝑧, 𝜏)|inner sphere =
1

𝛼
ż
0
(𝜏) =

1

𝛼
�̇�
0
(𝜏) e
𝑧
.

(8)

Here dots denote differentiation with respect to 𝜏 and 𝑧
0
(𝜏)

is a given function which describes the motion of the inner
sphere.

We are interested in the asymptotic behavior of periodic
solution of (6) in the high-frequency limit 𝛼 → 0.

It is convenient to introduce parameter 𝜖 such that 𝛼 = 𝜖
2.

Then (6) becomes

k
𝜏
= −∇𝑝 + 𝜖

2

(− (k ⋅ ∇) k + ]∇2k) , ∇ ⋅ k = 0. (9)

Boundary condition (8) takes the form

k (𝑧, 𝜏)|outer sphere = 0, k (𝑧, 𝜏)|inner sphere = ̇𝑓 (𝜏) e
𝑧
.

(10)

We assume that the flow is axisymmetric (in spherical coor-
dinates (𝑟, 𝜃, 𝜑), axisymmetric flow means k = V

𝑟
(𝑟, 𝜃)e

𝑟
+

V
𝜃
(𝑟, 𝜃)e

𝜃
, where 𝜑 is the azimuthal angle and V

𝜑
= 0, 𝜕/𝜕𝜑 =

0) in which the flow quantities do not depend upon the
azimuthal angle 𝜑. Thus the time-dependent boundary of
the sphere can be described in the parametric form by the
equations

𝑥 = sin 𝜃 cos𝜑, 𝑦 = sin 𝜃 sin𝜑,

𝑧 = cos 𝜃 + 𝜖
2

𝑓 (𝜏) ,

(11)

where 𝜃 ∈ [0, 𝜋) is the parameter on the sphere boundary.
Now the boundary condition on the sphere can be written as
follows:

k|
𝑧=cos ̃𝜃+𝜖2𝑓(𝜏)

√𝑥
2
+𝑦
2
=sin ̃𝜃

= 𝑓


(𝜏) e
𝑧
. (12)
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Using the assumption that 𝜖 is small, we expand 𝑢 and V in
Taylor’s series at 𝜖 = 0. This yields

k|
𝑧=cos ̃𝜃

√𝑥
2
+𝑦
2
=sin ̃𝜃

+ 𝜖
2

𝑓 (𝜏) 𝜕
𝑧
k|

𝑧=cos ̃𝜃

√𝑥
2
+𝑦
2
=sin ̃𝜃

+
𝜖
4

𝑓
2

(𝜏)

2
𝜕
2

𝑧
k|

𝑧=cos ̃𝜃

√𝑥
2
+𝑦
2
=sin ̃𝜃

+ ⋅ ⋅ ⋅ = 𝑓


(𝜏) e
𝑧
.

(13)

Note that each term on the left side of (13) is evaluated at the
averaged position of the sphere.

In spherical polar coordinates (𝑟, 𝜃, 𝜑), with origin at the
axis of the outer sphere, the axisymmetric form of (9) takes
the form

𝑢
𝜏
= −𝑝
𝑟
+ 𝜖
2

[−𝑢𝑢
𝑟
−
V
𝑟
𝑢
𝜃
+
V2

𝑟

+ ](∇2𝑢 −
2𝑢

𝑟2
−

2(sin 𝜃V)
𝜃

𝑟2sin2𝜃
)] ,

V
𝜏
= −

1

𝑟
𝑝
𝜃

+ 𝜖
2

[−𝑢V
𝑟
−
V
𝑟
V
𝜃
−

𝑢V
𝑟

+ ](∇2V −
V

𝑟2sin2𝜃
+

2𝑢
𝜃

𝑟2
)] ,

𝑢
𝑟
+

2𝑢

𝑟
+

(sin 𝜃V)
𝜃

𝑟 sin 𝜃
= 0,

(14)

where 𝑢 and V are the velocity components along 𝑟 and
𝜃 directions and subscripts “𝜏,” “𝑟,” and “𝜃” denote partial
derivatives, and

∇
2

𝑓 =
𝜕
2

𝑓

𝜕𝑟2
+

2

𝑟

𝜕𝑓

𝜕𝑟
+

1

𝑟2sin2𝜃
𝜕 (sin 𝜃𝑓

𝜃
)

𝜕𝜃
. (15)

The boundary condition on the outer sphere becomes

𝑢|
𝑟=𝑅

= 0, V|
𝑟=𝑅

= 0, (16)

where 𝑅 = 𝑅
∗

/𝑎. The boundary condition (13) on the inner
sphere takes the form

𝑢|
𝑟=1

+ 𝜖
2

𝑓[𝐿𝑢 +
sin 𝜃

𝑟
V]

𝑟=1

+
𝜖
4

𝑓
2

2
[𝐿
2

𝑢 −
sin2𝜃
𝑟

𝑢 +
2 sin 𝜃

𝑟
𝐿V−

2 sin 𝜃 cos 𝜃
𝑟2

V]
𝑟=1

+ ⋅ ⋅ ⋅ = 𝑓


(𝜏) cos 𝜃,
(17)

V|
𝑟=1

+ 𝜖
2

𝑓[𝐿V −
sin 𝜃

𝑟
𝑢]

𝑟=1

+
𝜖
4

𝑓
2

2
[𝐿
2V −

sin2𝜃
𝑟

V −
2 sin 𝜃

𝑟
𝐿𝑢+

2 sin 𝜃 cos 𝜃
𝑟2

𝑢]

𝑟=1

+ ⋅ ⋅ ⋅ = −𝑓


(𝜏) sin 𝜃.

(18)

Here

𝐿 = cos 𝜃𝜕
𝑟
−
sin 𝜃

𝑟
𝜕
𝜃
. (19)

Equation (14) is to be solved according to the boundary
conditions (16)–(18).

3. Asymptotic Expansion

We seek a solution of (14)–(18) in the form

𝑢 = 𝑢
𝑖

(𝑟, 𝜃, 𝜏, 𝜖) + 𝜖𝑢
𝑎

(𝜉, 𝜃, 𝜏, 𝜖) + 𝜖𝑢
𝑏

(𝜂, 𝜃, 𝜏, 𝜖) , (20)

V = V𝑖 (𝑟, 𝜃, 𝜏, 𝜖) + V𝑎 (𝜉, 𝜃, 𝜏, 𝜖) + V𝑏 (𝜂, 𝜃, 𝜏, 𝜖) , (21)

𝑝 = 𝑝
𝑖

(𝑟, 𝜃, 𝜏, 𝜖) + 𝑝
𝑎

(𝜉, 𝜃, 𝜏, 𝜖) + 𝑝
𝑏

(𝜂, 𝜃, 𝜏, 𝜖) . (22)

Here 𝜉 = (𝑟 − 1)/𝜖 and 𝜂 = (𝑅 − 𝑟)/𝜖 are the boundary
layer variables. Functions 𝑢

𝑖, V𝑖, and 𝑝
𝑖 represent a regular

expansion of the solution in power series in 𝜖 (an outer
solution), and 𝑢

𝑎, V𝑎, and 𝑝
𝑎 and 𝑢

𝑏, V𝑏, and 𝑝
𝑏 correspond

to boundary layer corrections to this regular expansion.
Superscripts “𝑎” and “𝑏” correspond to the boundary layers at
the inner and outer spheres, respectively. We assume that the
boundary layer part of the expansion rapidly decays outside
the thin boundary layers, that is,

𝑢
𝑎

, V𝑎, 𝑝𝑎 → 0 as 𝜉 → ∞,

𝑢
𝑏

, V𝑏, 𝑝𝑏 → 0 as 𝜂 → ∞.

(23)

3.1. Regular Part of the Expansion. Substituting (20)–(22) in
(14), we get the following equations:

𝑢
𝑖

𝑘
𝜏

= −𝑝
𝑖

𝑘
𝑟

, (24)

V𝑖
𝑘
𝜏

= −
1

𝑟
𝑝
𝑖

𝑘
𝜃

, (25)

1

𝑟2

𝜕

𝜕𝑟
(𝑟
2

𝑢
𝑖

𝑘
) +

1

𝑟 sin 𝜃

𝜕

𝜕𝜃
(V𝑖
𝑘
sin 𝜃) = 0, (26)

where 𝑘 = 0, 1 and

𝑢
𝑖

𝑘
𝜏

= −𝑝
𝑖

𝑘
𝑟

+ ](∇
2

𝑢
𝑖

𝑘−2
−

2𝑢
𝑖

𝑘−2

𝑟2
−

(2V𝑖
𝑘−2

sin 𝜃)
𝜃

sin 𝜃𝑟2
) + 𝑀

𝑘
,

(27)

V𝑖
𝑘
𝜏

= −
1

𝑟
𝑝
𝑖

𝑘
𝜃

+ ](∇
2V𝑖
𝑘−2

−
V𝑖
𝑘−2

𝑟2sin2𝜃
+

2𝑢
𝑖

𝑘−2
𝜃

𝑟2
) + 𝑁

𝑘
, (28)

1

𝑟2

𝜕

𝜕𝑟
(𝑟
2

𝑢
𝑖

𝑘
) +

1

𝑟 sin 𝜃

𝜕

𝜕𝜃
(V𝑖
𝑘
sin 𝜃) = 0, (29)

for 𝑘 = 2, 3, 4, 5. Explicit expression of 𝑀
𝑘
and 𝑁

𝑘
for 𝑘 =

1, 2, 3 is given in Appendix A.
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3.2. Boundary Layer Expansion

Boundary Layer at the Inner Sphere. Let us assume that

𝑢
𝑎

= 𝑢
𝑎

0
+ 𝜖𝑢
𝑎

1
+ 𝜖
2

𝑢
𝑎

2
+ ⋅ ⋅ ⋅ ,

V𝑎 = V𝑎
0
+ 𝜖V𝑎
1
+ 𝜖
2V𝑎
2
+ ⋅ ⋅ ⋅ ,

𝑝
𝑎

= 𝑝
𝑎

0
+ 𝜖𝑝
𝑎

1
+ 𝜖
2

𝑝
𝑎

2
+ ⋅ ⋅ ⋅ .

(30)

Then we substitute (20)–(22) and (30) into (14) and take into
account that 𝑢𝑖

𝑘
, V𝑖
𝑘
, and 𝑝

𝑖

𝑘
(𝑘 = 0, 1, . . .) satisfy (24)–(29).

Thenwemake the change of variables 𝑟 = 1+𝜖𝜉, expand every
function of 𝜖𝜉 in Taylor’s series at 𝜖 = 0, and collect terms of
equal powers in 𝜖. This produces the following sequence of
equations:

V𝑎
0
𝜏

+ 𝑝
𝑎

0
𝜃

− ]V𝑎
0
𝜉𝜉

= 0, (31)

𝑝
𝑎

0
𝜉

= 0, (32)

𝑢
𝑎

0
𝜉

+
(sin 𝜃V𝑎

0
)
𝜃

sin 𝜃
= 0, (33)

V𝑎
𝑘
𝜏

+ 𝑝
𝑎

𝑘
𝜃

− ]V𝑎
𝑘
𝜉𝜉

= 𝐹
𝑎

𝑘
, (34)

𝑝
𝑎

𝑘
𝜉

= 𝐺
𝑎

𝑘
, (35)

𝑢
𝑎

𝑘
𝜉

+
(sin 𝜃V𝑎

𝑘
)
𝜃

sin 𝜃
= 𝐻
𝑎

𝑘
, (36)

for 𝑘 ≥ 1. Functions 𝐹𝑎
𝑘
, 𝐺
𝑎

𝑘
, and 𝐻

𝑎

𝑘
are defined in terms of

k𝑖
0
, . . . , k𝑖

𝑘−1
, V𝑎
0
, . . . , V𝑎

𝑘−1
, and 𝑢

𝑎

0
, . . . , 𝑢

𝑎

𝑘−1
. Explicit expression

of these functions for 𝑘 = 1, 2, 3 is given in Appendix A.

Boundary Layer at the Outer Sphere. Let us assume that

𝑢
𝑏

= 𝑢
𝑏

0
+ 𝜖𝑢
𝑏

1
+ 𝜖
2

𝑢
𝑏

2
+ ⋅ ⋅ ⋅ ,

V𝑏 = V𝑏
0
+ 𝜖V𝑏
1
+ 𝜖
2V𝑏
2
+ ⋅ ⋅ ⋅ ,

𝑝
𝑏

= 𝑝
𝑏

0
+ 𝜖𝑝
𝑏

1
+ 𝜖
2

𝑝
𝑏

2
+ ⋅ ⋅ ⋅ .

(37)

Then we substitute (20)–(22) and (37) into (14) and take into
account that 𝑢𝑖

𝑘
, V𝑖
𝑘
, and 𝑝

𝑖

𝑘
(𝑘 = 0, 1, . . .) satisfy (24)–(29).

Thenwemake the change of variables 𝑟 = 𝑅−𝜖𝜂, expand every
function of 𝜖𝑠 in Taylor’s series at 𝜖 = 0 and collect terms of
equal powers in 𝜖. This produces the following sequence of
equations:

V𝑎
0
𝜏

+
1

𝑅
𝑝
𝑎

0
𝜃

− ]V𝑎
0
𝜂𝜂

= 0, (38)

𝑝
𝑎

0
𝜂

= 0, (39)

−𝑢
𝑎

0
𝜂

+
1

𝑅

(sin 𝜃V𝑎
0
)
𝜃

sin 𝜃
= 0, (40)

V𝑏
𝑘
𝜏

+
1

𝑅
𝑝
𝑏

𝑘
𝜃

− ]V𝑏
𝑘
𝜂𝜂

= 𝐹
𝑏

𝑘
, (41)

𝑝
𝑏

𝑘
𝜂

= 𝐺
𝑏

𝑘
, (42)

−𝑢
𝑏

𝑘
𝜂

+
1

𝑅

(sin 𝜃V𝑏
𝑘
)
𝜃

sin 𝜃
= 𝐻
𝑏

𝑘
, (43)

for 𝑘 ≥ 1. Functions 𝐹𝑏
𝑘
, 𝐺
𝑏

𝑘
, and 𝐻

𝑏

𝑘
are defined in terms of

k𝑖
0
, . . . , k𝑖

𝑘−1
, V𝑏
0
, . . . , V𝑏

𝑘−1
, and 𝑢

𝑏

0
, . . . , 𝑢

𝑏

𝑘−1
. Explicit expression

of these functions for 𝑘 = 1, 2, 3 is given in Appendix A. We
require that in all orders the boundary layer corrections to the
outer solution rapidly decay outside boundary layers, that is,

𝑢
𝑎

𝑘
→ 0, V𝑎

𝑘
→ 0, 𝑝

𝑎

𝑘
→ 0 as 𝜉 → ∞, (44)

𝑢
𝑏

𝑘
→ 0, V𝑏

𝑘
→ 0, 𝑝

𝑏

𝑘
→ 0 as 𝜂 → ∞, (45)

for 𝑘 = 0, 1, . . . .

Before we try to solve these equations, it is convenient to
discuss boundary conditions at 𝑟 = 1 and 𝑟 = 𝑅.

3.3. Boundary Conditions. Substituting (20)–(22), (30), and
(37) in (16)–(18) and collecting terms of equal powers in 𝜖, we
obtain the following boundary conditions:

𝑢
𝑖

0

𝑟=1
= 𝑓


(𝜏) cos 𝜃, (46)

V𝑖
0

𝑟=1
+ V𝑎
0

𝜉=0 = −𝑓


(𝜏) sin 𝜃, (47)

𝑢
𝑖

0

𝑟=𝑅
= 0, (48)

V𝑖
0

𝑟=𝑅
+ V𝑏
0

𝜂=0
= 0, (49)

𝑢
𝑖

𝑘

𝑟=1
+ 𝑢
𝑎

𝑘−1

𝜉=0
= 𝑄
𝑎

𝑘
, (50)

V𝑖
𝑘

𝑟=1
+ V𝑎
𝑘

𝜉=0 = 𝑆
𝑎

𝑘
, (51)

𝑢
𝑖

𝑘

𝑟=𝑅
+ 𝑢
𝑏

𝑘−1

𝜂=0
= 0, (52)

V𝑖
𝑘

𝑟=𝑅
+ V𝑏
𝑘

𝜂=0
= 0, (53)

for 𝑘 ≥ 1. Functions 𝑄
𝑘
and 𝑆

𝑘
are defined in terms of

k𝑖
0
, . . . , k𝑖

𝑘−1
, V𝑎
0
, . . . , V𝑎

𝑘−1
, and 𝑢

𝑎

0
, . . . , 𝑢

𝑎

𝑘−1
. Explicit expression

of these functions for 𝑘 = 1, 2, 3 is given in Appendix A.

4. Analysis of the Asymptotic Equations

4.1. Leading Order Equations. Taking the derivative of (26)
(for 𝑘 = 0) with respect to 𝜏 and substituting (24)-(25) we get

𝑝
𝑖

0𝑟𝑟
+

2

𝑟
𝑝
𝑖

0𝑟
+

1

𝑟2 sin 𝜃
(𝑝
𝑖

0𝜃
sin 𝜃)

𝜃

= 0. (54)

The boundary conditions for the above equation can be
obtained from (46) and (48) and with the relation 𝑢

𝑖

0
𝜏

= −𝑝
𝑖

0
𝑟

.
The boundary conditions are

𝑝
𝑖

0
𝑟

𝑟=1
= −Re (𝐶𝑒

𝑖𝜏

) cos 𝜃, 𝑝
𝑖

0
𝑟

|
𝑟=𝑅

= 0. (55)



Journal of Applied Mathematics 5

The solution of (54) together with (55) and (26) gives 𝑢𝑖
0
and

V𝑖
0
, the (leading order) oscillating outer flow which are

𝑢
𝑖

0
=

𝑓


(𝜏)

1 − 𝑅3
(1 −

𝑅
3

𝑟3
) cos 𝜃,

V𝑖
0
= −

𝑓


(𝜏)

2 (1 − 𝑅3)
(2 +

𝑅
3

𝑟3
) sin 𝜃.

(56)

Inner Sphere.Consider now the leading order equations (31)–
(33).The condition of decay at infinity (in the boundary layer
variable 𝜉) for 𝑝

𝑎

0
and (32) has a consequence that 𝑝𝑎

0
≡ 0.

Hence, we have the standard heat equation

V𝑎
0𝜏

= ]V𝑎
0𝜉𝜉

. (57)

Boundary condition for V𝑎
0
at 𝜉 = 0 follows from (47):

V𝑎
0
(𝑟, 𝜃, 𝜏) |

𝜉=0
= −V𝑖
0
(𝑟, 𝜃, 𝜏) |

𝑟=1
− 𝑓


(𝜏) sin 𝜃. (58)

The solution of (57) must also satisfy the decay condition
(44).

Substitution of (56) in the boundary condition (58) yields

V𝑎
0
(𝜉, 𝜃, 𝜏)

𝜉=0 =
3𝑅
3

2 (1 − 𝑅3)
𝑓


(𝜏) sin 𝜃

=
3𝑅
2

2 (1 − 𝑅3)
Re (𝑖𝐶𝑒

𝑖𝜏

) sin 𝜃.

(59)

Equation (57) subject to the boundary conditions (59) and
(44) can be solved by standardmethods.The solution is given
by

V𝑎
0
=

3𝑅
3

2 (1 − 𝑅3)
Re (𝑖𝐶𝑒

−𝛾𝜉+𝑖𝜏

) sin 𝜃, (60)

where

𝛾 =
1 + 𝑖

√2]
. (61)

On averaging (57), we obtain

V𝑎
0𝜉𝜉

= 0. (62)

The only solution of this equation that satisfies the decay
condition at infinity and the boundary condition V𝑎

0
|
𝜉=0

=

0 (which follows from averaging the boundary condition
(59)) is zero solution. Thus, in the leading order the boundary
layer at the inner sphere is purely oscillatory. This fact implies
that the boundary condition for V𝑖

0
at 𝑟 = 1 (i.e., obtained

by averaging the condition (47)) is V𝑖
0
|
𝑟=1

= 0. Similarly,
averaging the condition (46) yields 𝑢𝑖

0
|
𝑟=1

= 0. Thus, we have

k𝑖
0
|
𝑟=1

= 0. (63)

The normal velocity 𝑢
𝑎

0
is determined from (33):

𝑢
𝑎

0
(𝜉, 𝜃, 𝜏) = ∫

∞

𝜉

(sin 𝜃V𝑎
0
)
𝜃

sin 𝜃
(𝜉


, 𝜃, 𝜏) 𝑑𝜉


=
3𝑅
3

2 (1 − 𝑅3)
Re( 𝑖

𝛾
𝐶𝑒
−𝛾𝜉+𝑖𝜏

) cos 𝜃.

(64)

Here the constant of integration is chosen so as to guarantee
that 𝑢𝑎

0
(𝜉, 𝜃, 𝜏) decays as 𝜉 → ∞. Evidently, 𝑢𝑎

0
, given by (64),

does not satisfy the boundary condition 𝑢
𝑎

0
|
𝜉=0

= 0. Now we
recall that the correction to 𝑢

𝑖

0
is 𝜖𝑢
𝑎

0
, and, therefore, 𝑢𝑎

0
|
𝜉=0

gives us the boundary condition for the next approximation
of the outer solution. Indeed, according to (50) (For 𝑘 = 1),
we must have

𝑢
𝑖

1
(𝑟, 𝜃, 𝜏)|

𝑟=0
= −𝑢
𝑎

0
(𝜉, 𝜃, 𝜏)

𝜉=0

= −
3𝑅
3

2 (1 − 𝑅3)
Re( 𝑖

𝛾
𝐶𝑒
𝑖𝜏

) cos 𝜃.
(65)

Outer Sphere. Consider now (38)–(40). It follows from (39)
and the condition of decay at infinity (in the boundary layer
variable 𝜂) for 𝑝𝑏

0
that 𝑝𝑏

0
≡ 0. Hence, we have

V𝑏
0𝜏

= ]V𝑏
0𝜂𝜂

. (66)

Boundary condition for V𝑏
0
at 𝜂 = 0 follows from (49):

V𝑏
0
(𝜂, 𝜃, 𝜏)|

𝜂=0
= −V𝑖
0
(𝑟, 𝜃, 𝜏)|

𝑟=𝑅
=

3𝑓


2 (1 − 𝑅3)
sin 𝜃

=
3

2 (1 − 𝑅3)
Re (𝑖𝐶𝑒

𝑖𝜏

) sin 𝜃.

(67)

The solution of (66) that satisfies (67) and the decay condition
(45) are given by

V𝑏
0
=

3

2 (1 − 𝑅3)
Re (𝑖𝐶𝑒

−𝛾𝜂+𝑖𝜏

) sin 𝜃. (68)

As mentioned before, the radial velocity 𝑢
𝑏

0
is determined

from the incompressibility condition (40):

𝑢
𝑏

0
(𝜂, 𝜃, 𝜏) = −

1

𝑅
∫

∞

𝜂

(sin 𝜃V𝑏
0
)
𝜃

sin 𝜃
(𝜂


, 𝜃, 𝜏) 𝑑𝜂


= −
3

2𝑅 (1 − 𝑅3)
Re( 𝑖

𝛾
𝐶𝑒
−𝛾𝜉+𝑖𝜏

) cos 𝜃.

(69)

Here again the constant of integration is chosen so as to
guarantee that 𝑢

𝑏

0
decays as 𝜂 → ∞. 𝑢𝑏

0
|
𝜂=0

gives us the
boundary condition for the next approximation of the outer
solution:

𝑢
𝑖

1
(𝑟, 𝜃, 𝜏)

𝑟=𝑅
= −𝑢
𝑏

0
(𝜂, 𝜃, 𝜏)

𝜂=0

=
3

2𝑅 (1 − 𝑅3)
Re( 𝑖

𝛾
𝐶𝑒
𝑖𝜏

) cos 𝜃.
(70)

The same arguments as in the case of the inner sphere lead
to a conclusion that in the leading order the boundary layer
at the outer sphere is purely oscillatory. This fact implies that
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the boundary condition for V𝑖
0
at 𝑟 = 𝑅 (i.e., obtained

by averaging the condition (49)) is V𝑖
0
|
𝑟=𝑅

= 0. Similarly,
averaging the condition (48) yields 𝑢𝑖

0
|
𝑟=𝑅

= 0. Hence,

k𝑖
0
|
𝑟=𝑅

= 0. (71)

Averaged Outer Flow. Averaging (27) and (28) (for 𝑘 = 2)
together with boundary conditions (63) and (71) implies that
k𝑖
0
≡ 0, that is, there is no steady streaming in the leading order

of the expansion. First order solution.

4.2. Higher Order Solutions. Using the same procedure as
for the leading order equation we get the steady streaming
at higher orders of 𝜖. Equations (20)-(21) can be written as
follows:

𝑢 = 𝑢
𝑖

0
+ 𝜖 (𝑢

𝑖

1
+ 𝑢
𝑎

0
+ 𝑢
𝑏

0
) + 𝜖
2

(𝑢
𝑖

2
+ 𝑢
𝑎

1
+ 𝑢
𝑏

1
) + ⋅ ⋅ ⋅ ,

V = V𝑖
0
+ V𝑎
0
+ V𝑏
0
+ 𝜖 (V𝑖

1
+ V𝑎
1
+ V𝑏
1
)

+ 𝜖
2

(V𝑖
2
+ V𝑎
2
+ V𝑏
2
) + ⋅ ⋅ ⋅ .

(72)

To rewrite our asymptotic expansion in terms of the stream
function, we get

𝜓 = 𝜓
𝑖

0
+ 𝜖 [𝜓

𝑖

1
+ 𝜓
𝑎

0
+ 𝜓
𝑏

0
] + 𝜖
2

[𝜓
𝑖

2
+ 𝜓
𝑎

1
+ 𝜓
𝑏

1
]

+ 𝜖
3

[𝜓
𝑖

3
+ 𝜓
𝑎

2
+ +𝜓
𝑏

2
] + 𝑂 (𝜖

4

) ,

(73)

where 𝜓
𝑖

𝑘
is such that 𝑢

𝑖

𝑘
= (1/𝑟

2 sin 𝜃)𝜓
𝑖

𝑘𝜃
and V𝑖

𝑘
=

−(1/𝑟 sin 𝜃)𝜓
𝑖

𝑘𝑟
for 𝑘 = 0, 1, . . . and where 𝜓𝑎

𝑘
is defined as

𝜓
𝑎

𝑘
= sin 𝜃∫

∞

𝜉

V𝑎
𝑘
(𝜉


, 𝜃, 𝜏) 𝑑𝜉


,

𝜓
𝑏

𝑘
= − sin 𝜃∫

∞

𝜂

V𝑏
𝑘
(𝜂


, 𝜃, 𝜏) 𝑑𝜂


.

(74)

Taking the average of (73), we get

𝜓 = 𝜖
2

[𝜓
𝑖

2
+ 𝜓
𝑎

1
] + 𝜖
3

[𝜓
𝑖

3
+ 𝜓
𝑎

2
+ +𝜓
𝑏

2
] + 𝑂 (𝜖

4

) , (75)

where

𝜓
𝑎

1
= −

3𝑅
3

4 (𝑅3 − 1)
𝑒
−𝑠/√2] sin(

𝑠

√2]
) sin 𝜃 sin 2𝜃,

𝜓
𝑎

2
=

3𝑅
2√2] 𝑒

−𝑠/√2]

64(𝑅3 − 1)
2

× [3𝑅
4

𝑒
−𝑠/√2]

+ (40𝑅
4

− 16𝑅)
𝑠

√2]
sin 𝑠

√2]

+ (24𝑅
4

− 12) sin 𝑠

√2]
+ (48𝑅

4

− 12) cos 𝑠

√2]
]

× sin 2𝜃 sin 𝜃,

𝜓
𝑏

2
= −

9√2] 𝑒
−𝜂/√2]

64𝑅2(𝑅3 − 1)
2

× [𝑒
−𝜂/√2]

+ 8
𝜂

√2]
sin

𝜂

√2]

+12 sin
𝜂

√2]
+ 20 cos

𝜂

√2]
] sin 2𝜃 sin 𝜃.

(76)

Similarly we get

𝜓
𝑖

2
= (𝐶
1
−

𝐶
2

𝑟2
+ 𝐶
3
𝑟
2

+ 𝐶
4
𝑟
5

) sin 𝜃 sin 2𝜃, (77)

where

𝐶
1
=

(2𝑅
5

+ 4𝑅
4

+ 6𝑅
3

+ 8𝑅
2

+ 10𝑅 + 5) 𝑅
3

𝐴

𝐻

+

𝐵𝑅 (5𝑅
5

+ 10𝑅
4

+ 8𝑅
3

+ 6𝑅
2

+ 4𝑅 + 2)

𝐻
,

𝐶
2
=

(2𝑅
3

+ 4𝑅
2

+ 6𝑅 + 3)𝐴𝑅
5

𝐻

+

𝐵𝑅
3

(3𝑅
3

+ 6𝑅
2

+ 4𝑅 + 2)

𝐻
,

𝐶
3
= −

(5𝑅
5

+ 10𝑅
4

+ 8𝑅
3

+ 6𝑅
2

+ 4𝑅 + 2)𝐴

𝐻

−

𝑅 (2𝑅
5

+ 4𝑅
4

+ 6𝑅
3

+ 8𝑅
2

+ 10𝑅 + 5) 𝐵

𝐻
,

𝐶
4
=

(3𝑅
3

+ 6𝑅
2

+ 4𝑅 + 2)𝐴

𝐻

+

𝑅 (2𝑅
3

+ 4𝑅
2

+ 6𝑅 + 3) 𝐵

𝐻
,

𝐻 = 4𝑅
8

+ 8𝑅
7

+ 12𝑅
6

− 9𝑅
5

− 30𝑅
4

− 9𝑅
3

+ 12𝑅
2

+ 8𝑅 + 4,

𝐴 =
45

32

𝑅
6

(𝑅3 − 1)
2
, 𝐵 =

45

32

1

𝑅(𝑅3 − 1)
2
,

𝜓
𝑖

3
= (𝐷
1
−

𝐷
2

𝑟2
+ 𝐷
3
𝑟
3

+ 𝐷
4
𝑟
5

) sin 2𝜃 sin 𝜃,

(78)

where

𝐷
1
=

(4𝑅
6

+ 4𝑅
5

+ 4𝑅
4

+ 4𝑅
3

+ 4𝑅
2

+ 25𝑅 + 25) 𝑅
3

𝐴

𝐺

−

(25𝑅
6

+ 25𝑅
5

+ 4𝑅
4

+ 4𝑅
3

+ 4𝑅
2

+ 4𝑅 + 4) 𝐵

𝐺
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+

(2𝑅
5

+ 4𝑅
4

+ 6𝑅
3

+ 8𝑅
2

+ 10𝑅 + 5)𝑅
3

𝐺
𝐶

+

𝑅 (5𝑅
5

+ 10𝑅
4

+ 8𝑅
3

+ 6𝑅
2

+ 4𝑅 + 2)

𝐺
𝐷,

𝐷
2
=

15 (𝑅 + 1) 𝑅
5

𝐺
𝐴 −

15 (𝑅 + 1) 𝑅
5

𝐺
𝐵

+

(2𝑅
3

+ 4𝑅
2

+ 6𝑅 + 3)𝑅
5

𝐺
𝐶

+

𝑅
3

(3𝑅
3

+ 6𝑅
2

+ 4𝑅 + 2)

𝐺
𝐷,

𝐷
3
= −

10 (𝑅
6

+ 𝑅
5

+ 𝑅
4

+ 𝑅
3

+ 𝑅
2

+ 𝑅 + 1)

𝐺
𝐴

+

10 (𝑅
6

+ 𝑅
5

+ 𝑅
4

+ 𝑅
3

+ 𝑅
2

+ 𝑅 + 1)

𝐺
𝐵

−
5𝑅
5

+ 10𝑅
4

+ 8𝑅
3

+ 6𝑅
2

+ 4𝑅 + 2

𝐺
𝐶

−

𝑅 (2𝑅
5

+ 4𝑅
4

+ 6𝑅
3

+ 8𝑅
2

+ 10𝑅 + 5)

𝐺
𝐷,

𝐷
4
=

6 (𝑅
4

+ 𝑅
3

+ 𝑅
2

+ 𝑅 + 1)

𝐺
𝐴

−

6 (𝑅
4

+ 𝑅
3

+ 𝑅
2

+ 𝑅 + 1)

𝐺
𝐵

+

(3𝑅
3

+ 6𝑅
2

+ 4𝑅 + 2)

𝐺
𝐶

+

𝑅 (2𝑅
3

+ 4𝑅
2

+ 6𝑅 + 3)

𝐺
𝐷,

𝐺 = 4𝑅
9

+ 4𝑅
8

+ 4𝑅
7

− 21𝑅
6

− 21𝑅
5

+ 21𝑅
4

+ 21𝑅
3

− 4𝑅
2

− 4𝑅 − 4,

𝐴 = −

√2] 9𝑅
2

(17𝑅
4

− 4)

64(𝑅3 − 1)
2

, 𝐵 =
189√2]

64𝑅2(𝑅3 − 1)
2
,

𝐶 = −√2]
9𝑅
2

(46𝑅
7

− 61𝑅
4

− 11𝑅
3

− 4)

32(𝑅3 − 1)
3

,

𝐷 = √2]
9 (6𝑅
8

+ 10𝑅
7

− 7𝑅
4

− 19𝑅
3

+ 16)

32𝑅2(𝑅3 − 1)
3

.

(79)

5. Stokes Drift

It is well-known that in oscillatory flows the observed aver-
aged Lagrangian velocity differs from the Eulerian velocity

by the term known as Stokes drift. The velocity observed
in the experiments is the velocity of fluid particles, that is,
the Lagrangian velocity. Our asymptotic expansion for the
averaged Eulerian velocity has the form

𝑢
𝐸

= 𝜖
2

[𝑢
𝑖

2
+ 𝑢
𝑎

1
] + 𝑂 (𝜖

3

) , (80)

V𝐸 = 𝜖V𝑖
1
+ 𝜖
2

[V𝑖
2
+ V𝑎
2
+ V𝑏
2
] + 𝑂 (𝜖

3

) . (81)

It is shown in Appendix B that the Lagrangian velocity of
fluid particles is given by

𝑢
𝐿

= 𝜖
2

𝑢
𝑖

2
+ 𝑂 (𝜖

3

) , (82)

V𝐿 = 𝜖
2

[V𝑖
2
+ V𝑎
2
+ V𝑏
2
+ V𝑠
2
] + 𝑂 (𝜖

3

) , (83)

where V𝑠
2
is the Stokes drift velocity of the fluid particles.

Comparing (80) with (82) and (81) with (83), we observe that
the Stokes drift eliminates (i) 𝑢1

𝑎
from (80) and (ii) the 𝑂(𝜖)

term in (83). It also results in the additional 𝑂(𝜖
2

) term k
𝑠

in the expansion of azimuthal velocity. Thus, the 𝑂(𝜖) steady
boundary layer at the inner cylinder disappears when we take
account of the Stokes drift. This is a consequence of the fact
that the steady Lagrangian velocity rather than the steady
Eulerian velocity is invariant to the change of reference frame.
In the reference frame fixed in the inner cylinder, we would
have no 𝑂(𝜖) steady boundary layer at the inner cylinder.
Further calculations with the help of the known formula for
k𝑎, k𝑏, and k𝑠 show that k𝐿 can be written as follows:

𝑢
𝐿

= 𝜖
2

𝑢
𝑖

2
+ 𝑂 (𝜖

3

) ,

V𝐿 = 𝜖
2

[V𝑖
2
+ (V𝑎
2
)
𝐿

+ (V𝑏
2
)
𝐿

] + 𝑂 (𝜖
3

) ,

(84)

where

(V𝑎
2
)
𝐿

=
9𝑅
6

𝑒
−𝜉/√2]

32(𝑅3 − 1)
2

(12 sin 𝜉

√2]
+ 5𝑒
−𝜉/√2]

) sin (2𝜃) ,

(V𝑏
2
)
𝐿

=
9𝑒
−𝜂/√2]

32𝑅(𝑅3 − 1)
2

× (5𝑒
−𝜂/√2]

+ 8 sin
𝜂

√2]

−4
𝜂

√2]
(cos

𝜂

√2]
− sin

𝜂

√2]
)) sin (2𝜃) .

(85)

Asymptotic Expansion for Stream Function. To rewrite our
asymptotic expansion of terms of the averaged stream func-
tion, we get

𝜓
𝐸

= 𝜖
2

[𝜓
𝑖

2
+ 𝜓
𝑎

1
] + 𝜖
3

[𝜓
𝑖

3
+ 𝜓
𝑎

2
+ 𝜓
𝑏

2
] + 𝑂 (𝜖

4

) ,

𝜓
𝐿

= 𝜖
2

𝜓
𝑖

2
+ 𝜖
3

[𝜓
𝑖
𝐿

3
+ 𝜓
𝑎
𝐿

2
+ 𝜓
𝑏
𝐿

2
] + 𝑂 (𝜖

4

) .

(86)
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In the last formula, 𝜓𝑎
𝐿

2
and 𝜓

𝑏
𝐿

2
are obtained from (85):

𝜓
𝑎
𝐿

2
=

9𝑅
6√2] 𝑒
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𝜓
𝑏
𝐿

2
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9√2] 𝑒
−𝜂/√2]
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√2]
] sin 2𝜃 sin 𝜃.

(87)

𝜓
𝑖
𝐿

3
is the stream function for the third-order Lagrangian

velocity:

𝜓
𝑖
𝐿

3
= (𝐷

1
−

𝐷
2

𝑟2
+ 𝐷
3
𝑟
3

+ 𝐷
4
𝑟
5

) sin 2𝜃 sin 𝜃, (88)

where

𝐷
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3

− 1)
3

)

−1

) ,
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4

− 7𝑅
5

+ 10𝑅
8

+ 6𝑅
9

)

32𝑅3(𝑅3 − 1)
3

.

(89)

6. Results Discussion

Equation (77) together with (87) and (88) represent nonzero
terms in the asymptotic expansion of the stream function
for the Lagrangian velocity. Let us first discuss the domain
of applicability of formula (86). Steady streaming due to
the vibration of the sphere is calculated. Our asymptotic
expansion is formally valid for ] = 𝑂(1) and for 𝜖 ≪ 1.
Also we may expect that it will be valid for all 𝜖 and ] such
that the contribution of the 𝑂(𝜖

3

) term to the right side of
(86) is smaller than the contribution of the 𝑂(𝜖

2

) term. It is
convenient to rewrite (86) in the form

𝜓
𝐿

= 𝜖
2

√] [Φ
0
(𝑟) + 𝜖Φ

1
(𝜖, ], 𝑟)] sin 𝜃 sin 2𝜃 + 𝑂 (𝜖

4

) ,

(90)

where

Φ
0
(𝑟) =

1

sin 𝜃 sin 2𝜃
𝜓
𝑖

2
(𝑟, 𝜃) ,

Φ
1
(𝑟, ]) =

1

√] sin 𝜃 sin 2𝜃

× [𝜓
𝑖

3
(𝑟, 𝜃) + 𝜓

𝑎

2

𝜉=(𝑟−1)/𝜖 + 𝜓
𝑏

2

𝜂=(𝑅−𝑟)/𝜖
] .

(91)

Consider now the following quantity:

𝜒(], 𝜖) = 𝜖√]
max
𝑟∈[1,∞]

Φ1 (], 𝑟, 𝜖)


max
𝑟∈[1,∞]

Φ0 (𝑟)


, (92)

which measures the magnitude of the second nonzero term
relative to the first term. We expect that our theory will work
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Figure 1: Steady streaming between two spheres.

for all 𝜖, ] such that 𝜒(], 𝜖) < 1, and the smaller the 𝜒 is the
better the theory should work.

In (86) if we take 𝑅 → ∞ we get the results of
steady streaming due to single sphere in infinite viscous
incompressible fluid. The results of single vibrating sphere in
an infinite fluid are

𝜓
𝑖

2
=

45

64
(1 −

1

𝑟2
) sin 𝜃 sin 2𝜃,

𝜓
𝑎

2
=

9√2] 𝑒
−𝜉/√2]

64
[5𝑒
−𝜉/√2]

+ 12 sin 𝜉

√2]

+12 cos 𝜉

√2]
] sin 𝜃 sin 2𝜃,

𝜓
𝑖

3
=

1

2

√2](−
567

32
+

207

16𝑟2
) sin 𝜃 sin 2𝜃.

(93)

Wang [10] studied the steady streaming when the sphere is at
rest andfluid is oscillating at infinity for Re

𝑠
= 𝑂(1). However,

the averaged stream function was incomplete because of the
absence of the terms 𝜓

𝑎

2
and 𝜓

𝑖

3
which appears at 𝑂(𝜖

3

) in
the expansion of stream function. Riley [11] studied the flow
produced by a fixed sphere placed in an oscillating fluid
using matched asymptotic expansion method and obtained
a uniformly valid expansion of the stream function under the
same assumption as in the present paper. He did not compute
the 𝜓

𝑖

3
, which appears in the expansion of stream function

at 𝑂(𝜖
3

). In order to obtain the invariant velocity field one
should consider the Lagrangian velocity which is different
from the Eulerian velocity by Stokes drift velocity of the fluid
particles. In order to support the argument, here the results
for steady streaming are also presented for the case when the
sphere is at rest and fluid is oscillating at infinity using the
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Figure 2: Steady streaming near inner sphere.

Vishik-Lyusternik method. In Eulerian coordinates system
the steady streaming is given as follows:

𝜓
𝑖

2
=

45

64
(1 −

1

𝑟2
) sin 𝜃 sin 2𝜃,

𝜓
𝑎

2
=

9√2]𝑒−𝜉/√2]

64
[𝑒
−𝜉/√2]

+ 8
𝜉

√2]
sin 𝜉

√2]
+ 12 sin 𝜉

√2]

+ 20 cos 𝜉

√2]
] sin 𝜃 sin 2𝜃,

𝜓
𝑖

3
=

1

2

√2](−
567

32
+

189

16𝑟2
) sin 𝜃 sin 2𝜃.

(94)

After computing the Stokes drift the results of (93) are
achieved.

Typical stream line pattern due to vibrating sphere is
shown in Figure 1 for 𝜖 = 0.06, ] = 1, and 𝑅 = 1. Graph
of streamlines produced near the inner sphere produced by
the formula (86) are shown in Figure 2 for ] = 0.1 and
𝜖 = 0.316 with outer sphere at 𝑅 = 7. In Figure 3 two sets
of circulations with opposite direction can be seen in each
quadrant for 𝜖 = 0.316, 𝑅 = 7, and ] = 0.1, 0.12, 0.14, 0.16,
respectively. Figure 3 shows that with the increase in ] the
thickness of the inner circulation also increases. Similarly if
we fix ] and change 𝜖, it is observed that with the increase of
𝜖 the thickness of inner circulation also increases and outer
circulations become thinner. Figure 3 shows the streamlines
for ] = 0.1 and 𝜖 = 0.3, 0.34, 0.37, 0.4, respectively. The
center of the circulation lies on the line at angle 𝜃 ≅ 54

∘.
It is observed that as ] and 𝜖 increase the stagnation point
moves away from the surface of inner sphere. Figure 2 is in
good comparison with the experimental results of Kotas et al.
[13–15]. A recent paper [23] claims that distance of stagnation
point to the surface of the sphere along the axis of oscillation
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Figure 3: Steady streaming between two spheres.

is different from the distance of stagnation point to the surface
of sphere along perpendicular axis. According to our results
this does not happen. In Figure 4 the distance of stagnation
points UPS (upper stagnation point) and LSP (left stagnation
point) from the surface of the sphere is the same. Typical
profiles of the radial velocity are shown in Figure 5 for 𝜖 =

0.316 and ] − 0.1, 0.12, 0.14, 0.16, respectively.

7. Conclusion

(I) Vishik-Lyusternik method is successfully applied to
study the steady streaming between two spheres. In
comparison with the method of matched asymptotic
expansions, it has two advantages: (i) it does not
require the procedure ofmatching the inner and outer

expansions and (ii) the boundary layer part of the
expansion satisfies the condition of decay at infinity
(in boundary layers) in all the orders of the expansion,
which is not the case in the method of matched
asymptotic expansion.

(II) Stokes drift is calculated not for the outer flow but for
the entire flow domain including the boundary layers.

(III) We also calculated the averaged lagrangian velocity
which remains invariant with the change of reference
frame and is observed in experiment.

(IV) The distance of stagnation points from the surface of
sphere in each quadrant remains the same.

(V) Qualitatively the graphs of the streamlines are very
much similar to the experimental results which are
done for 𝜖 > 0.3; our theory is valid for the small 𝜖.
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Appendix

A. Explicit Expression for
the Right Hand Side of (27)–(29), (34)–(36),
(41)–(43), and (50)-(51)

Functions 𝑀
𝑘
, 𝑁
𝑘
, and (29) for 𝑘 = 2, 3, 4, 5 in (27)-(28) are

given by
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−

V𝑖
2
V𝑖
1
𝜃

𝑟
−

V𝑖
3
V𝑖
0
𝜃

𝑟
−

𝑢
𝑖

0
V𝑖
3

𝑟
−

𝑢
𝑖

1
V𝑖
2

𝑟
−

𝑢
𝑖

2
V𝑖
1

𝑟
−

𝑢
𝑖

3
V𝑖
0

𝑟
,

1

𝑟2

𝜕

𝜕𝑟
(𝑟
2

𝑢
𝑖

5
) +

1

𝑟 sin 𝜃

𝜕

𝜕𝜃
(V𝑖
5
sin 𝜃) = 0.

(A.1)

Functions𝐹𝑎
𝑘
,𝐺𝑎
𝑘
, and𝐻

𝑎

𝑘
for 𝑘 = 1, 2, 3 in (34)–(36) are given

by

𝐹
𝑎

1
= −𝑢
𝑖

0

𝑟=1
V𝑎
0
𝜉

+ 2]V𝑎
0
𝜉

+ 𝜉𝑝
𝑎

0
𝜃

,

𝐺
𝑎

1
= 0,

𝐻
𝑎

1
=

𝜉(sin 𝜃V𝑎
0
)
𝜃

sin 𝜃
− 2𝑢
𝑎

0
,

𝐹
𝑎

2
= −𝜉
2

𝑝
𝑎

0
𝜃

+ 𝜉𝑝
𝑎

1
𝜃

− 𝑢
𝑖

1

𝑟=1
V𝑎
0
𝜉

− 𝑢
𝑎

0
V𝑎
0
𝜉

− 𝑢
𝑖

0

𝑟=1
V𝑎
0

− V𝑖
0

𝑟=1
V𝑎
0
𝜃

− V𝑎
0
V𝑖
0
𝜃

𝑟=1
− V𝑎
0
V𝑎
0
𝜃

− 𝜉𝑢
𝑖

0
𝑟

𝑟=1
V𝑎
0
𝜉

− 𝑢
𝑖

0

𝑟=1
V𝑎
1
𝜉

+ ](2V𝑎
1
𝜉

− 4𝜉V𝑎
0
𝜉

+

(sin 𝜃V𝑎
0
𝜃

)
𝜃

sin 𝜃
−

2V𝑎
0

sin2𝜃
) ,

𝐺
𝑎

2
= −𝑢
𝑎

0
𝜏

+ ] 𝑢
𝑎

0
𝜉𝜉

,

𝐻
𝑎

2
= −2 (𝑢

𝑎

1
− 𝜉𝑢
𝑎

0
) +

𝜉(sin 𝜃V𝑎
1
)
𝜃

sin 𝜃
−

𝜉
2

(sin 𝜃V𝑎
0
)
𝜃

sin 𝜃
,

𝐹
𝑎

3
= −𝑢
𝑖

0

𝑟=1
V𝑎
2
𝜉

− (𝑢
𝑖

1
+ 𝜉𝑢
𝑖

0
𝑟

)
𝑟=1

V𝑎
1
𝜉

− 𝑢
𝑎

0
V𝑖
0
𝑟

𝑟=1

− [𝑢
𝑖

2
+ 𝜉𝑢
𝑖

1
𝑟

+

𝜉
2

𝑢
𝑖

0
𝑟𝑟

2
]

𝑟=1

V𝑎
0
𝜉

− 𝑢
𝑎

0
V𝑎
1
𝜉

− 𝑢
𝑎

1
V𝑎
0
𝜉

− 𝜕
𝜃
[V𝑖
0

𝑟=1
V𝑎
1
+ (V𝑖
1
+ 𝜉V𝑖
0
𝑟

)
𝑟=1

V𝑎
0
+ V𝑎
0
V𝑎
1
−

𝜉(V𝑎
0
)
2

2

−𝜉V𝑖
0

𝑟=1
V𝑎
0
] − 𝑢

𝑖

0

𝑟=1
V𝑎
1

− (𝑢
𝑖

1
+ 𝜉𝑢
𝑖

0
𝑟

)
𝑟=1

V𝑎
0
− 𝑢
𝑎

0
V𝑖
0

𝑟=1
− 𝑢
𝑎

0
V𝑎
0
+ 𝜉𝑢
𝑖

0

𝑟=1
V𝑎
0

+ 𝑠
3

𝑝
𝑎

0
𝜃

− 𝜉
2

𝑝
𝑎

1
𝜃

+ 𝜉𝑝
𝑎

2
𝜃

+ ](2V𝑎
2
𝜉

− 4𝑠V𝑎
1
𝜉

+ 6𝜉
2V𝑎
0𝜉

+

(sin 𝜃V𝑎
1
𝜃

)
𝜃

sin 𝜃

−

2𝜉(sin 𝜃V𝑎
0
𝜃

)
𝜃

sin 𝜃
−

2V𝑎
1

sin2𝜃
+

4𝜉V𝑎
0

sin2𝜃
+ 2𝑢
𝑎

0
𝜃

) ,

𝐺
𝑎

3
= −𝑢
𝑎

1
𝜏

+ ]𝑢𝑎
1
𝜉𝜉

− 𝑢
𝑖

0

𝑟=1
𝑢
𝑎

0
𝜉

− V𝑎
0
𝑢
𝑖

0
𝜃

𝑟=1

+ (V𝑎
0
)
2

+ 2V𝑎
0
V𝑖
0

𝑟=1
+ ][𝑢𝑎

0
𝜉

− 2
(sin 𝜃V𝑎

0
)
𝜃

sin 𝜃
] .

(A.2)

Functions 𝐹𝑏
𝑘
,𝐺𝑏
𝑘
, and𝐻

𝑏

𝑘
for 𝑘 = 1, 2, 3 in (41)–(43) are given

by

𝐹
𝑏

1
= −

2]
𝑅
V𝑏
0𝜂

−
𝜂

𝑅2
𝑝
𝑏

0𝜃
,

𝐺
𝑏

1
= 0,

𝐻
𝑏

1
= −

𝜂

𝑅2

(sin 𝜃V𝑏
0
)
𝜃

sin 𝜃
−

2

𝑅
𝑢
𝑏

0
,

𝐹
𝑏

2
= 𝑢
𝑖

0

𝑟=𝑅
V𝑏
1𝜂

+ (𝑢
𝑖

1

𝑟=𝑅
− 𝜂𝑢
𝑖

0𝑟

𝑟=𝑅
) V𝑏
0𝜂

+ 𝑢
𝑏

0
V𝑏
0𝜂

−
1

𝑅
𝜕
𝜃
(

(V𝑏
0
)
2

2
+ V𝑖
0

𝑟=𝑅
V𝑏
0
) −

1

𝑅
𝑢
𝑖

0
|
𝑟=𝑅

V𝑏
0

+ ](−
1

𝑅
V𝑏
1𝜂

−
𝜂

𝑅2
V𝑏
0𝜂

+
1

𝑅2
(

(sin 𝜃V𝑏
0
𝜃

)
𝜃

sin 𝜃
−

2V𝑏
0

sin2𝜃
))

−
𝜂

𝑅2
𝑝
𝑏

1𝜃
−

𝜂
2

𝑅3
𝑝
𝑏

0𝜃
,

𝐺
𝑏

2
= 𝑢
𝑏

0𝜏
− ]𝑢𝑏
0𝜂𝜂

,
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𝐻
𝑏

2
= −

𝜂

𝑅2

(sin 𝜃V𝑏
1
)
𝜃

sin 𝜃
−

𝜂
2

𝑅3

(sin 𝜃V𝑏
0
)
𝜃

sin 𝜃
−

1

𝑅
𝑢
𝑏

1
−

𝜂

𝑅2
𝑢
𝑏

0
,

𝐹
𝑏

3
= 𝑢
𝑖

0

𝑟=𝑅
V𝑏
2𝜂

+ (𝑢
𝑖

1

𝑟=𝑅
− 𝜂𝑢
𝑖

0𝑟

𝑟=𝑅
) V𝑏
1𝜂

+ (𝑢
𝑖

2

𝑟=𝑅
− 𝜂𝑢
𝑖

1𝑟

𝑟=𝑅
+

𝜂
2

2
𝑢
𝑖

0𝑟𝑟

𝑟=𝑅
) V𝑏
0𝜂

+ 𝑢
𝑏

0
V𝑏
1𝜂

+ 𝑢
𝑏

1
V𝑏
0𝜂

−
1

𝑅
𝜕
𝜃

[

[

V𝑖
0

𝑟=𝑅
V𝑏
1
+ (V𝑖
1

𝑟=𝑅
− 𝜂V𝑖
0𝑟

𝑟=𝑅
) V𝑏
0
+V𝑏
0
V𝑏
1

+
𝜂

𝑅2
(

(V𝑏
0
)
2

2
+ V𝑖
0

𝑟=𝑅
V𝑏
0
)]

]

− V𝑖
0𝑟

𝑟=𝑅
𝑢
𝑏

0

−
1

𝑅
[𝑢
𝑖

0

𝑟=𝑅
V𝑎
1
+ (𝑢
𝑖

1

𝑟=𝑅
− 𝜂𝑢
𝑖

0𝑟

𝑟=𝑅
) V𝑏
0

+V𝑖
0

𝑟=𝑅
𝑢
𝑏

0
+ 𝑢
𝑎

0
V𝑎
0
] −

𝜂

𝑅2
𝑢
𝑖

0

𝑟=𝑅
V𝑏
0

+ ](−
1

𝑅
V𝑏
2𝜂

−
𝜂

𝑅2
V𝑏
1𝜂

−
𝜂
2

𝑅3
V𝑏
0𝜂

+
1

𝑅2
(

(sin 𝜃V𝑏
1
𝜃

)
𝜃

sin 𝜃
−

2V𝑏
1

sin2𝜃
)

+2
𝜂

𝑅3
(

(sin 𝜃V𝑏
0
𝜃

)
𝜃

sin 𝜃
−

V𝑏
0

sin2𝜃
))

+ ]
2

𝑅2
𝑢
𝑏

0𝜃
−

𝜂

𝑅2
𝑝
𝑏

2𝜃
−

𝜂
2

𝑅3
𝑝
𝑏

1𝜃
−

𝜂
3

𝑅4
𝑝
𝑏

0𝜃
,

𝐺
𝑏

3
= 𝑢
𝑏

1𝜏
− ]𝑢𝑏
1𝜂𝜂

− 𝑢
𝑖

0

𝑟=𝑅
𝑢
𝑏

0𝜂
+ 𝑢
𝑖

0𝜃

𝑟=𝑅
V𝑏
0

−
1

𝑅
((V𝑏
0
)
2

+ 2V𝑖
0

𝑟=𝑅
V𝑏
0
)

+ ](
1

𝑅
𝑢
𝑏

0𝜂
+

2

𝑅2

(sin 𝜃V𝑏
0
)
𝜃

sin 𝜃
) .

(A.3)

Function 𝑄
𝑎

𝑘
and 𝑆
𝑎

𝑘
in (50) and (51) are given by

𝑄
𝑎

1
= 0,

𝑆
𝑎

1
= − cos 𝜃𝑓 (𝜏) V𝑎

0𝜉

𝜉=0
,

𝑄
𝑎

2
= − cos 𝜃𝑓 (𝑢

𝑖

0𝑟

𝑟=1
+ 𝑢
𝑎

0𝜉

𝜉=0
) + sin 𝜃𝑓𝑢

𝑖

0𝜃

𝑟=1
,

𝜉
𝑎

2
= − cos 𝜃𝑓 (V𝑖

0𝑟

𝑟=1
+ V𝑎
1𝜉

𝜉=0
)

+ sin 𝜃𝑓 (V𝑖
0𝜃

𝑟=1
+ V𝑎
0𝜃

𝜉=0)

+ sin 𝜃𝑓𝑢
𝑖

0

𝑟=1
− cos2𝜃

𝑓
2

2
V𝑎
0𝜉𝜉

𝜉=0
.

𝑄
𝑎

3
= − cos 𝜃𝑓 (𝑢

𝑖

1𝑟

𝑟=1
+ 𝑢
𝑎

1𝜉

𝜉=0
)

+ sin 𝜃𝑓 (𝑢
𝑖

1𝜃

𝑟=1
+ 𝑢
𝑎

0𝜃

𝜉=0)

− sin 𝜃𝑓 (V𝑖
1

𝑟=1
+ V𝑎
1

𝜉=0) − cos2𝜃
𝑓
2

2
𝑢
𝑎

0𝜉𝜉

𝜉=0

− sin 𝜃 cos 𝜃 𝑓
2 V𝑎
0𝜉

𝜉=0
,

𝑆
𝑎

3
= − cos 𝜃𝑓 (V𝑖

1𝑟

𝑟=1
+ V𝑎
2𝜉

𝜉=0
)

+ sin 𝜃𝑓 (V𝑖
1𝜃

𝑟=1
+ V𝑎
1𝜃
|
𝜉=0

)

+ sin 𝜃𝑓 (𝑢
𝑖

1

𝑟=1
+ 𝑢
𝑎

0

𝜉=0) − cos2𝜃
𝑓
2

2
V𝑎
1𝜉𝜉

𝜉=0

+ sin 𝜃 cos 𝜃𝑓2 V𝑎
0𝜉𝜃

𝜉=0
− sin2𝜃

𝑓
2

2
V𝑎
0𝜉

𝜉=0

− cos3𝜃
𝑓
3

6
V𝑎
0𝜉𝜉𝜉

𝜉=0
.

(A.4)
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