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We establish Crouzeix-Raviart element adaptive algorithm based on Rayleigh quotient iteration and give its a priori/a posteriori
error estimates. Our algorithm is performed under the package of Chen, and satisfactory numerical results are obtained.

1. Introduction

A posteriori error estimates and adaptive methods of finite
element approximation for eigenvalue problems are topics
attracting more attention from mathematical and physical
fields; see, for example, [1-8]. Basically, there are the following
three ways of combining adaptivity and eigenvalue problems
in which the a posteriori error estimators are more or less the
same but different in the problem solved in each iteration:
(1) solving the original eigenvalue problem a(u, v) = Ab(u, v)
(see Algorithm 10). The convergence and optimality of this
adaptive procedure were proved in [2]; (2) inverse iteration
type (with or without correction). The convergence has been
studied in [1, 6, 7]; (3) Shifted-inverse iteration type (see [8-
1)).

The triangular Crouzeix-Raviart element (C-R element)
was first introduced by Crouzeix and Raviart [12] in 1973
to solve the stationary Stokes equation. After that, many
scholars developed and applied it to eigenvalue problems, for
instance, [13-16] discussed a posteriori error estimates and
the adaptive methods of the C-R element. C-R element has
important properties; for example, Armentano and Duran
[17] discovered and proved that the C-R element eigenvalues
approximate the exact ones of the Laplace operator from
below, which is a very important property in engineering and
mechanics computing.

Based on the above work, this paper further discusses
the third kind of adaptive methods of the C-R finite element

method for eigenvalue problems and obtains the following
new results:

(1) we establish a multiscale discretization scheme of the
C-R element based on Rayleigh quotient iteration and
prove its convergence and a priori error estimates;

(2) we give residual type a posteriori error estimator for
our adaptive algorithm, as well as its reliability and
efficiency;

(3) we establish an adaptive algorithm (Algorithm 11),
which is performed under the package of Chen (see
[18]), and satisfactory numerical results are obtained.

As for the fundamental theory of finite elements and
spectral approximation, we refer to [19-22].

Throughout this paper, C denotes a positive constant
independent of mesh parameter, which may not be the
same constant in different places. For simplicity, we use the
notation a < b to mean that a < Cb, a = O(b) and to mean
thata <bandb < a.

2. Preliminaries
Consider Laplace eigenvalue problem
-Au=Au in Q,

u=0 on 0Q, 1)

where Q ¢ R’ is a polygonal domain with the maximum
interior angle w.
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We denote the real order Sobolev spaces with norm | - ||,
by H'(Q), Hy(Q) = {v € H'(Q),v|q = O} Let b(-,-) and
I -l be the inner product and the norm in the space L*((2),
respectively.

The weak form of (1) is as follows: find A € R, u € Hé (Q),
u # 0 such that

a(u,v)=Ab(u,v), VveH, (Q), )

where

a(u,v) = J Vu - Vv, b(u,v)= J- uv. (3)
Q Q

As we know, a(-,-) is a symmetric, continuous, and
Hé (Q)-elliptic bilinear form on HS(Q) X Hé (Q),and b(-, ) is
a symmetric, continuous, and positive definite bilinear form
on L2(Q) x L*(Q).

Define the operator T : L*(Q) — Hé(Q), satisfying

a(Tg,v)=b(g,v), VveH,(Q). (4)

Then, (2) has the equivalent operator form Tu = A7 u,
where the operators T : Hé(Q) — HS(Q) and T : L2(Q) —
L*(Q) are self-adjoint and completely continuous.

Let 7m;, = {x} be a regular triangulation of the domain Q, ¢
denote the set of all element edges in 77;,, €(Q2) denote the set
of interior edges, £(0Q2) denote the set of all boundary edges,
and N,,, denote the set of the midside nodes m, of the edges
e € & For the set of midpoints of the edges e € €(0Q)), we
use the notation N,,(0Q); for any element x, we let dx be the
union set of edges of «, andlet h, be the diameter of «. The
domain w, consists of all elements sharing at least a side with
k. For any edge e € ¢, h, = |e| is the length of ¢, and 9, =
(9,,9,) and 7, = (-9,,9,) are unit outward normal vector
and unit tangential vector, respectively.

Given a nonnegative integer k, the space Py (k) consists of
polynomials of total degree at most k defined over x. The C-R
element space is given by V,, = {v ¢ L}(Q), V|, € Pi(k),k €
7y, v is continuous at each m, € N,,\ N,,,(0Q), and v(m,) = 0
for m, € N,,(0Q)}.

The C-R element approximation of (2) is given as follows:
find A, € R, u;, € V},, uy, # 0 such that

ap (up,v) = Aub (wy,v), Vv eV, (5)

where

ay, (up,,v) = Z J Vu, - Vv. (6)

Kem, *K

ay (-, +) is a symmetric, continuous, and V;, -elliptic bilinear
form on V}, x V,,. [vll, = Va, (v, v) is well known as the norm
of the space V); let D c Q, D which consists of k € my,,

anp (U, v) = Z a,,. (),
xeD (7)

vl p = \ %D (v, v).

ay,,. (u,v) = J uv,
K
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Define the operator T), : L*(Q) — Vj,, satisfying

ay (Thg,v) =b(g,v), VveV, (8)

Then, (5) has the equivalent operator form Tj,uy, = A;'wy,
where the operators T), : V;, — Vj, and T}, : L*(Q) — L*(Q)
are self-adjoint and completely continuous.

Suppose that A and A, are the kth eigenvalue of (2) and
(5), respectively, and the algebraic multiplicity of A is equal to
@A = A = A = -+ = Agygor- Let M(Ay) be the space
spanned by all eigenfunctions corresponding to A, and let
M, (X)) be the direct sum of eigenspaces corresponding to all
eigenvalues of (5) that converge to A;. Let M(A,) = {v: v €
M, vl = 18 M(Ay) = {v: v € M(A), lIvlly, = 1}

Define

2
6;21 (M) = " (T~ Th)|M()Lk)||h + ” (T - Th)lM(/\k)”O' ©)
Define E,(Tf,v) = a,(Tf,v) — b(f,v), which is the
consistent item of nonconforming finite element. Let (A, u)

be an eigenpair of (2), and then
E, (u,v) = a, (u,v) —b(Au,v). (10)

We need the lemmas as follows (see [11, 23]).

Lemma 1 (see [11, Lemma 2.5]). Let (A,u) be an eigenpair
of (2) and then, for any w € V, with ||w|, #0, the Rayleigh
quotient a,(w, w)/||w||(2) satisfies

E;, (u, w)
b (w,w)

2 2
g ww o w-ul} fw-ul?

. (D)

2 2 2
llwlly llwlly llwlly

Lemma 2 (see [11, Lemma 2.4] and [23, Lemma 2.3]). Let A,
and Ay be the kth eigenvalue of (5) and (2), respectively. Then,

Min = Al < H (T - Th)lM(Ak)“o' 2

For any eigenfunction u,; corresponding to Ay, satisfying
g pll, = 1, there exists uy € M(Ay) such that

loten = wielly < “ (T - Th)lM(/\k)"o’ (13)
et = vl < el Towe = Tyawell, + €| (T - Th)'M(Ak)”O’ (14)
For any u;. € M(M,), there exists u;, € M, (A) such that
e, = el < | (T - Th)lMuk)"h ] (r- Th)|M<Ak)||o' (15)
3. A Priori Error Estimates for Multiscale

Discretization Scheme

In this section, we will discuss a priori error estimates of
the C-R finite element multiscale discretization scheme based
on the shift-inverse power method. Let {nhi}é be a family of

shape-regular meshes and let {Vhi}é be the C-R finite element

spaces defined on {nhi}é. Besides, letmy =, , Vi = V), .
The following condition results from [10, 24].
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Condition 1. There exists a properly small positive number €,
t; € (1,3-¢€],i = 1,2,..., such that Shi()t) = O(‘Sh,-,l M),
8, (A) = 0 (i — o0).

The following scheme is proposed by Yang and Bi (see
[11]).

Scheme 3 (multiscale discretization scheme). Consider the
following steps.
Step 1. Solve (5) on Vi find (A, uy) € R x Vi such that
gl g = 1and

ay (> ¥) = Apb (U y), Yy € V. (16)

Step 2. Execute u" & uy, A < Ay, i< 1.

Step 3. Solve a linear system on V), : find u' € Vy,, such that

a, (W' y) - Vb(uy) =b(u"y), YyeV,. (17)
Setu = u'[|lu']l,.
Step 4. Compute the Rayleigh quotient

a, (uh", uh")

e S 18
S (18)

M =

Step 5.1f i = I, then output (A", u™), stop. Else, i < i + 1, and
return to Step 3.

Let (Ap,uy) be the kth eigenpair of (16), and then
(A", u) derived from Scheme 3 is the kth eigenpair approx-
imation of (5).

In the sequel, we also denote (Ag,uy) = (Agpp Uy pp)s
A, ulry = (0, ).

Lemma 4 (see [11, Lemma 3.1]). For any nonzero u,v € V}, +
H, (),

u_ v lle — vl
—_ b
el VI 1, lleell,
(19)
u_ v lu =,
lull, Wl IVl

Denote dist(u, S) = inf,llu — v,

Our analysis is based on the following crucial property
of the shifted-inverse iteration in finite element method (see
Lemma 4.2 of [24]), which is a development of Theorem 3.2
in [11] Let M = (I/Ak) = M(Ak), Mh = (1/Ak) = Mh(Ak)

Lemma 5 (see (24, Lemma 4.2]). Let yy = 1/Ay and w;, =
1/Ay, be the kth eigenvalue of T and T, respectively, (4, t,)
be an approximation for the eigenpair (., uy,), where p is not
an eigenvalue of Ty, and uy € V), with |uyll, = 1. Suppose that

(C1) dist(ug, M, (1)) < 1/2;

(C2) lpg — wjul 2 p/2 for j#k,k +1,....k +q— 1, where
p=miny, o, lu;— il is the separation constant of the

eigenvalue p;

(C3)u' eV, uZ €V, satisfy

u
(=T =uy i = [l (20)
h
Then,
dist (14, Mj, (1))
4 . (1)
€ e oy dist (ot My ().

Let us construct the interpolation postprocessing opera-
tor, : V, — V,n HS(Q) (see [25]): on the vertex z of
elements,

z € 0Q),

z ¢ 00, (22)

0,
(L) (2) = ]i Z w, (2),

Z K€w,

where J, is the number of elements containing the vertex z
and w, is the union of elements containing the vertex z.

Lemma 6. Suppose that Condition 1 holds and H is properly

small. Let (/\21 , uZ‘) be obtained by Scheme 3 forl = 1, and then
there exists u, € M(Ay.) such that

“”Zl - ”k“hl <C (6;1 (M) + 65, (Ak))7 (23)
W =] < € (85 (M) + 87 (M) (24)

Proof. Based on the proof of Theorem 5.1 in [11] and
Lemma 5, we deduce that

e = ]
uk Uy I

=¢ <|| (T- TH)|M“‘k)"§ * “ (T- Thl)lm(Ak) h1> )

< 85 (Ay) + 8, (Ak)>

and thus (23) holds. Using Strang Lemma and Lemma 3.1 of
[25], we deduce that

h
Ehl (uk’ ukl)

= E, (uk,uzl - IflluZ‘)
(26)
< “uk - Ty, (Akuk)nhl "uZ1 -1, uZ‘

|h1

< “”k =Ty, (Ak”k)nhl "”Zl - “k"h1 S 5;211 (M)



From the above formula and (5.2) in [11], we get
hy
A=A

2

(R T

hy
. (27)
Ehl (uk uk1)>
o
b (”k > Uy )
<85 (M) + 8;211 (M)
and thus (24) holds. O

Based on [10, 11, 24], we will prove the following
Theorems 7 and 8 for Scheme 3.

Theorem 7. Let (A",u™) be an approximate eigenpair
obtained by Scheme 3, and "' and A" approximate u €
M) and A, respectively, and [l — ull, , < 8;1[_1()&), [ -
Al < 8,21!_1 (A). Suppose that H is properly small and Condition 1
holds. Then, there exists u € M(A) such that

=], = |(T=T) "), + IR (28)
W 2| < 62 (), 29
b1, () <05, D v o)

where |Rl), p < 85, (1) + 6}, ().

Proof. Let gy = 1/A", uy = AT, " [T, )
1

Since 1 € M(A), by calculation, we get
[ Ty
= [A"m, Ul - ATﬁ“hl

(1)
<

b+ AT, (" =),
+A|(7, - 1),
From the definition of Th,’ it is easy to know that
“Thlv"hl <Clvllp, Vve L’ (Q). (32)
From ay, (T}, vy, » vi,) = b(vy,, vy,), we get
il < Izl ol < Bl 63

and thus

1 I A (34
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By Lemma 3.1 in [25], we get that

e A A R A A
h ¢ h h — (35)
A A M L
Thus,
o -,
< o -1y e, o -,
h c h c h — (36)
S A A R e
< Jutr -,
Using the above formula and (31), we can deduce that
bt =, < =2 o,
2 (1= 1) ||h, 47
<6, ).
Using Lemma 4, we get
dist (uO,M(A)) < |up -4, < 2||Ahl"Thluhzfl - ﬁ”h
’ ' (38)

<6, M),
Using triangle inequality and (15), we have
dist (1, My, (1)) < dist (1, M (1)) + 8, (1) (39)
From (12),for j =k, k+1,..., k+q— 1, we have

D
Ajg Al

ot a5 0.

(40)

Noticing that H is small enough and Condition 1 holds, then
by (38) and (39), we can obtain

dist (1, M;, (1)) < = (41)

N | =

Since p is the separation constant, H is small enough, and
Condition 1 holds, we have

|#0_#j)hl|2§, jtkk+1,.. . k+q-1. (42)

From the definition of Tj, we can see that Step 3 in
Scheme 3 (i = I) is equivalent to

ap, (u,’ 1//) - AhHahz (Thzu” l//)

= ay, (Thluhl", 1//) s

(43)
Yy eV,
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where " = u'/IIu'IIhI; that is,

hy u

1 1 I, B !
<E—Thl>u = ET’H”Z s u't= W (44)

Noticing that (1/A")T;, u* = (1/A")T;, 1|, u, differs
1
from u,, by only a constant, then Step 3 is equivalent to

1 h u
——T)u:u, u'l=——. 45
(Ahz,I h 0 ful, (45)

From the above formulae, (41), (42), and (45), we can see that
the conditions in Lemma 5 hold; therefore, substituting (39)
and (40) into (21), we derive

dist (uh’ , Mhl ()t))
< (A" = Al + 85 (1) (dist (g, M (1)) + 8y, (1)) (46)
S 82’1—1 + 82‘1—16}‘1 (/‘) S 621—1 (/\) :

Let eigenfunctions {uj,hl}:w_l be an orthonormal basis of
M, (A) in the sense of inner product ay, (>°) and then

k+q-1
dist (”hl’ My, (A)) = " - Z G, (”hl’ “j,h,) Uip| - (47)
j=* "
Let
k+gq-1
* h
u = Z 9 (u I’uj’hz) Ujhp» (48)
j=k
and then it follows directly from (46) that
o = u® ”hl < dist (u™, M, (1)) < 8, (). (49)

By Lemma 2, there exists {u?}fq_l c M()) so that Ujp — u?
satisfies (14).

Let
k+q-1
u= Z ay, (uhl, “j,h,) u(;. (50)
=k
Then, u € M(A), and
k+q-1
u—-u" = Z ay, (uh’,uj,hl) (u(; - uj,h,)- (51)
=k

By calculation,
W-u, =ATu’ L., T, u,
j ol it gt iy
_ 0o 0 0
= )t]Tu] Aj’thuj + Aj)thuj Aj’thu]')hl
+ A Tt = Ay Tt

(=) Tl 23, T (0 ) )

+ A (T =T ) uj,
= Aj)hl (T - Thl) Ujp, + R.Ii’

where R; = ()Lj - Aj,h,)T”? + /\j’th(ug - ”j,hl)-

From (12) and (13), we deduce that
"R.If"hl - “(’\j ~ i) T”? + AT (“? - uj,h,)"hl S 5; A).

(53)
Substituting (52) into (51), we have
k+q-1
u-u' = Z ap, (uhl’ uj)hz) (/\]')hz (T - Thl) Ujh + R;)
ik
k+g-1
= Aj’hl (T N Thz) Z ap, (uhl’ uj)hz) Ui,
ik
k+q-1
+ Z ap, (uhl’ u]')hz) R;’
ik
k+q-1
= (T - Thz) (/\]':hzu*) + Zk ap, (uhl’ uﬂ‘l) R;
j=
= (T=T,) (Ajnd") + Ay, (T = Ty,) (" ~ud)
k+gq-1
+ Z G (uhl’uﬂhl) R;'
ik
J (54)
Let
k+q-1
R = Aj’hz (T - Thl) (u* - uhl) + G (uhl’ uj’hl) R;
j=k (55)

+ut -,
By the above two equalities, we obtain

u—u=u—utrut—ul = (T - Thz) (Aj,hzuhl) +R.
(56)

From (49) and (53), we have

Aj’hl (T - Tht) (u* - uhl)

L

k+q-1

hl ) ! * hy
+ Z I (u Uiy Rj tu u
j=k

D

IN

Wi [T =T,

[y, ol ="
h,D h,D

k+g-1

hy li
2 an (") R

j=k

*

+ +'u -u

|
D

h,D
k+q-1

Iy /

| Z G (u ’uj)hz) Rj
j=k

<6, (M+8 ().

A

-
- +
w -,

h,D

(57)



Therefore,

il = 1T 5) Qs+ IR, 9

<8, (1). (59)

By Lemma 1, we have

A AT BN il PN i
BT PR 2
R 7 T
th(u,uh’)
* b(ul,uh)’

Since Iﬁl uh € C°(Q)), using Strang Lemma and Lemma 3.1 of
[25], we deduce that

E, (u, uhl) = E, (u, u - Izluhl)

h c h
< Ju-1, Q] Ju" - 5],

(61)
< Ju- T, i Ju" - o,
<8, ().
Substituting (59) and (61) into (60), (29) holds.
By (56) and triangle inequality, we have
=), = (T =T3) (™) + R
< [ir-n) ), -

(T =T) (g, = A") " + R,

= (= 1,) ("), + IRI

where R = (T - T, ), - A")u + R'.

By (57) and (29), we know that ”R”h,,D < SZH A)+ 6;211 (A);
thus, (28) holds.

By calculation,

k+q-1

hy ) hy
Z G, (u Ui, A Thzuj’hz
j=k

k+q-1 (63)
h h
=A IThz ( Z ap, (u l’uj’hz) uﬂ‘z)

j=k

_ *
= A, thu .
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By the above formulae and (12), we deduce that
| - T A",
= "uh’ —u"+u =Ty (/\h’u*)

+T;, (A - Thl()thluh’)“hbD

h *
< -
< fu —ut,
k+gq-1
_ hz) ( b ) 64
2 = A"y, ("0, Ty, (64)
j=k hy.D

Ty, (u” = o)
+||)L Ty, (v —u koD

k+g-1
ARl N TR
S"u Ul Ajp = A
Jj=k

*

<o

2
Wt 8,11 1),

which together with (49) leads to (30). This completes the
proof. O

Theorem 8. Let (A", 1) be the kth approximate eigenpair of
(1) obtained by Scheme 3, let A be the kth eigenvalue of (1), and
let H be properly small. Suppose that Condition 1 holds, then
there exists u € M(A) such that

o =], = €O, )
(65)
-2 <ca ), 1=

Proof. The proof of (65) is completed by using induction.
When I = 1, by Lemma 6, we know that Theorem 8 holds.
Suppose that Theorem 8 holds for I — 1; that is,

“ S u||hH <Cs, (M),
(66)
|\ A< e,

which together with the assumptions in Theorem 8, we know
that Theorem 7 holds. For [, by (29) and (59), we get (65). The
proof is completed. O

4. A Posteriori Error Estimates for Multiscale
Discretization Scheme

Based on the work of [14, 26], in this section, we will discuss a
posteriori error estimates of the C-R element approximation
for Laplace eigenvalue problem.

Consider the boundary value problem corresponding to
(2): find w € Hy(Q) such that

a(w,v)=b(f,v), VveH)(Q), (67)
and its C-R element approximation: find wy, € V,, such that

a, (w,,v) =b(fiv), YveV, (68)
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Letx" € m,, k&~ € m, be two elements sharing one edge
e. For any piecewise continuous function ¢, we denote by
[lell, = (@l)l, = (@l-)], the jump gfgo across e.

Let w;, be the solution of (68), ], be the jump of Vw,
across e along 9,, and J, , be the jump of Vwj, across e along
7,; let R, (w;,) be element residual; that is,

R (w,) = f +Mw, xem,

7 _ [[vw]l, -9 ece(@),

]e,S (wh) - {0’ cce (aQ) ’ (69)
7 _ [lVw,]], -7, eece(@),

Jox ) = { V2Vw, - 1,, e €e(0Q).

For k € m;, define the residual on the element x as

i (W, ) = <h:2<“§’< (wh)”;x

+Zh<

e€ok

IET(wh ||Oe

, 1/2
72,9 (wh)"()’e)) >

(70)

and thus, for G ¢ Q, the residual sum on G is given by

1/2
i (wp, G) ( Z i (wh’ K)) : (71)
KEMm,,kCG

For f € L*(Q), define the date oscillation by

1/2
osim)=( SHIr-Ak,) - o

KEM,

where f, stands for a piecewise polynomial approximation of
f over m,.

For the boundary value problem (67), Carstensen and Hu
[27] have proved the following a posteriori error estimates :

w = wy,q < C, (7, (wp, Q) + 0sc (£, 1)), (73)

where constant C, is only dependent on minimum angle of
my,, and if the right-hand side f of (67) is a piecewise linear
polynomial over 7, then

Cofy (wy, Q) < Jlw - Wyl (74)

Selecting f = A" in (67) and (68), then the generalized
solution and the nonconforming finite element solution are
w = TA"") and w, = Thl(/\h’ u), respectively, and the a
posteriori error indicator of wy, is 7, (wy,, Q2), which is defined
by (71).

Define the element residual R, (1) and the jump residual
]e)e(uh’ ) and ]m(uh’ ) for 1" as follows:

R, (uhl) = Ayl

o [[[94]],8 ece@,
Je,9 (u )_ {0) ece(0Q), (75)

h
+Au? Kk em,,

eece(Q),
ece(0Q).

Vil T,
]e,‘l' (uhl) = {[—[\/EVJ)’IE T,

For x € mj, , define the residual on the element x as

Mh, (uhl,x) = (hi

h 2
l)"o,x

AT (eI, ()

(76)

For G c ), define the residual sum on G as

12
L Al) . o

)=
K€y KCG

Theorem 9. Suppose that the conditions in Theorem 7 hold

and Vy, is a finite element space consisting of piecewise linear

polynomials, then there exists a positive constant & which is

independent of mesh parameter, such that

ol 02 (G (), om
(Co+8)my, (u",Q) < Ju—u], (79)
A -2 < (u,0). (80)

Proof. Letwy, =T, Ayl and by calculation

12
1, (whl’Q) = < Z Qﬁizz, (whz’K)>
KEm} ,1C

1/2
= < Z 11}211 (uhl’ K))
KETIhI,KCQ

1/2 (81)
( s i (whl,@)

KE"h, KCQ

1/2
- < Z 11]211 (uhl’ K))
KE"h, KCQ

=1, (uh’, Q) +R,.
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By triangle inequality, we have

1/2
( IACHE ))
KETTy KCQ)

1/2
—< 2 %KJ%@>
K€y, ,KCQ

1/2
(LZ mlon-mn)
KEn’hl,KCQ

|R,| =

(82)

From triangle inequality, (69)-(70), and (75)-(76), we deduce
that

i, () = 1y, ()|

(hz &, ()]},
) 1/2
Al o)l
eEK
—<h2

AT L))

R ()],

S<@@AMJ—RAJM&
+ _Zh (”Je‘r whz -, (uhl)"ie

eGBK

, 1/2
+'|7e,9 (wh,) = Jio (uhl)"O,e))

< (2 (o, ),
S

CEK

el
A,k)

(83)

[V (wn, -

Abstract and Applied Analysis

It is obvious that A(wy, - uhl)||
theorem (see e.g., [28]) and the i 1nverse estimates, we get

= 0, and, by the trace

_Zh( 2

ecok

[[v (i, )], 9.,
A1 )], =)

< (119 a0, ®)

|V (wy, - ”hl)'iw,()

Iy ||
< "wh -u " .
1 hl’“’x
Thus,

©)] < 1, (") =],

|i;ihl (wht’ K) ~ M, (uhl

h (85)
= [wn, —u"],,...
Combining (82), (85), and (30), we get
IRy < [|wy, - uhl”hl <8 (M)+8 (). (86)

Hence, from Condition 1, we know that R, is a small quantity
of higher order than 1h, (whl , Q). Using (81), we obtain that R,

is also a small quantity of higher order than 7, wh, Q).
Therefore, by (28), (73), (81), and (86), we have

Tht) (Ahluhl)“hl,(z + IlR"th
T, (A"u),
< 61’1h1 (uh’, Q)

+ 61 (ﬁhz (Thz (Ahluhl) >

+ IRl 0

Q) + IRl 0

(87)

Q) -, (u".0))

< Cpy, (4",Q) + C Ryl 0 + IRl 0

< (G, +8)m, (", 2),

which is (78).
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Similarly, by (28) and (74), we get

=],
= (7 -7,) (A"u")], o + IRl
> Cyffy, (T, ("), Q) + IRl o
> Cyry, (1", Q) )
<8 (7, (1, (V) 0) =, (. 0)
+ IRl 0
> Cyr, (", Q) + ColRo 0 + IRl 0
> (C,+8)n, (V™. Q),
and thus (79) holds.
By (61) and (28), we get
By, (") < Ju= T, Q] Ju" =,
(89)

h 2
< -]
h’

and, by substituting the above relation into (60), we obtain
h h 2
=] < o - u, ©0)

which together with (78) yields (80). This completes the
proof. O

5. Adaptive Finite Element Algorithm Based

on Multiscale Discretizations

As we know, The following Algorithm 10 is fundamental and
important; see [14, 16] for its detailed theoretical results.

Algorithm 10. Choose parameter 0 < 0 < 1.

Step 1. Pick any initial mesh ;, with mesh size h.
Step 2. Solve (5) on mj, for discrete solution (A, , uy, ).
Step 3.1 < 0.

Step 4. Compute the local indicators 77, (1, , ).

Step 5. Construct 77,
parameter 0.

C my, by Marking Strategy E and

Step 6. Refine 7, to get a new mesh 7, .
Step 7. Solve (5) on 7, for discrete solution (A, ,uy, ).

Step 8.1 & [+ 1, and go to Step 4.

Marking Strategy E. Give parameter 0 < 0 < 1.

Step 1. Construct a minimal subset 77, of 7r;, by selecting some
elements in 7;, such that

S (o) 200 (1,9).

KEﬁhl
Step 2. Mark all the elements 77, .

1y, () and 1, (wy,, Q) are defined as (76) and (77),
respectively, with 1/ and A" replaced by up and A, .

We have the following adaptive algorlthm on the basis of
Scheme 3.
Algorithm 11. Choose parameter 0 < 0 < 1.

Step 1. Pick any initial mesh 7;, with mesh size h,.
Step 2. Solve (5) on 7, for discrete solution (A™, /).
Step 3.1 < 0,1, < A,

Step 4. Compute the local indicators 7, ", x).

Step 5. Construct 7,
parameter 0.

C my, by Marking Strategy E and

Step 6. Refine 7, to geta new mesh 7, |

such that

= b(uh’,q/),

=u' /Il n,, and compute the Rayleigh quotient

ah (uhl+l ) uhlﬂ )
Ahlﬂ _ 1+1

b (uhl+1 5 uhl-v-l )

Step 7. Find u' € Vi,

i, (42) = Aob (')

hl+1

Yy eV, . (92)

Set u
(93)
Step 8. Ay <= A", 1 &< [ + 1 and go to Step 4.

Marking Strategy E in Algorithm 11 will be the same as
that in Algorithm 10, except for replacing u;, with ult,

Note that when |1, — A| is too small, (92) is an almost
singular linear equation. Although it has no difficulty in
solving (92) numerically (see Lecture 27.4 in [29]), one would
like to think of selecting a proper integer [, > 0. When I > [,
set A" = A% in (92). So, we can establish the following
algorithm (see e.g., Scheme 3.2 in [24]).

Algorithm 12. Choose parameter 0 < 0 < 1.

Step 1-Step 7. Execute Step 1-Step 7 of Algorithm 11.

Step 8. 1f 1 < Iy, Ay & A1, [ & 141, go to Step 4; else
I & 1+1,goto Step 4.

Marking Strategy E in Algorithm 12 will be the same as
that in Algorithm 11.
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(®)

F1GURE 1: The initial mesh H = v/2/16.

(a)

(b)

FIGURE 2: The adaptive meshes of 1st eigenvalue after 5th iteration by Algorithm 10 (a) and Algorithm 11 (b).

6. Numerical Experiments

In this section, we will report two numerical examples for
Algorithms 10 and 11 to illustrate the theoretical results in
this paper. We use MATLAB 2012 to solve Examples 1 and
2. Our program is compiled under the package of Chen. We
take 6 = 0.5 in two Algorithms.

For reading convenience, we use the following notations
in our tables.

I": The I"th iteration of Algorithm 10

A, ‘The kth approximate eigenvalue derived from
the I"th iteration obtained by Algorithm 10

dofy ;- :The degrees of freedom of the I*th iteration for
computing A Ko

CPUy - (s): The total CPU time(s) for computing
Aoy

|Akn. — Akl: the error of kth approximate eigenvalue
Aty

I: The Ith iteration of Algorithm 11

Azl :The kth approximate eigenvalue derived from the
Ith iteration obtained by Algorithm 11

dofy ;: The degrees of freedom of the Ith iteration for
computing /\Z’



Abstract and Applied Analysis

XIXIXIXIXL 11/ 1 1 RRRIIY)

XXX
KRR IIAAAS

NN A»I‘n
X SDRDKDKDKRPRRX X ]
XX PRORDRPRIKX XXX XS]
XIXIXIXIXIXIX] 171 XK

K
1

N

1

KORPEK

XXX DR
NN

5

K

<]

L XXX XXX DR DRDRKRK Y

AN N ZAVZAY

N

2N
NS
L DX RRRKKDREK!
NSNS SPSPNIZSZNZNZSZSZSEN
PRSZSSSSISY

1S DEDEKRIED

SRS

O AUV OO
ERORSRERE 7T I
KININVINZINZINVINZINY NSNS

KPKRXIXIXIX DG

RS
SN

X
X

NN
J
RSNSIISISISN
SN
NSNS

NN

I RSSRISISISII T
2SN SRS

XIXIXIXIDEDR

N

<]

VAN N NN
S
Dl
K

<X
=
X

Pal
7

X

SISISNNS

V‘;VAL‘VAL‘VAL‘VAL‘VAL‘
- N
20T
0N
X
X
20X
202
20X
AN
N
NN

N
NIXIX
NNX

XIX]

XIX]

NN

XD
X
XD
N

NN NN N NN

S
NN
7N
NN
P

X

X
X

NN
Jax

XIXD

X
X
N
N
N
N
X
X
X

/I

Error

10° 10* 10° 10°
Number of degrees of freedom

—«— The a posteriori estimator of Algorithm 1

—o— The a posteriori estimator of Algorithm 2

—&— The error of 1st eigenvalue obtained by Algorithm 1
—v— The error of 1st eigenvalue obtained by Algorithm 2
—— A line with slope —1.0187

()

1

XIXIXIXIXIXIX] 7171 X RPREK
D
Sene
RO A
NISISERSESENENZINZN]
ﬂﬂuuhmwmwggn

PSS
NN AV N ZAVZAY

%
N N
% 7N

KB

ANUVIN VIV

R AU TAI O
SRERERIERO A 71 BB
KINININFINININZISEISE IS SIS SN N
SRERRERSIIBABIEIN
NZNZINVINISENINES %
VAL‘VAEVAMMth"A
KRR
KRKRIRPXIXI XIS

KR 1K

Error

1074k . .

10° 10* 10° 10°
Number of degrees of freedom

—+— The a posteriori estimator of Algorithm 1

—o— The a posteriori estimator of Algorithm 2

—e— The error of 5th eigenvalue obtained by Algorithm 1
—v— The error of 5th eigenvalue obtained by Algorithm 2
—— A line with slope —1.0085

(®)

FIGURE 4: The error curves of two algorithms on L-shaped domain.

CPUy(s): The total CPU time(s) for computing )L:I

|)Lzl —Ag|: The error of kth approximate eigenvalue /\Z’.

Example 1. We use Algorithms 10 and 11 to compute the
approximate eigenvalues of (1) on the L-shaped domain Q =
((0,2) x (0,2)) \ ([1,2] x [1,2]) (see Figure 1(a)).

The first and fifth eigenvalues of (1) are A; = 9.639723844
and A; = 31912636 on this domain, respectively. The
associated numerical results are presented in Table1 and

Figures 1(a), 2, 3, and 4. Figure 1(a) gives the uniform initial
mesh with H = +/2/16. Figures 2 and 3 show the adaptive
meshes of the first and fifth eigenvalues after the fifth iteration
by two algorithms, respectively. It is indicated in Figure 4 that
the error curves of the first and fifth approximate eigenvalues
and the curves of the associated a posteriori error estimators
obtained by Algorithms 10 and 11 are approximately parallel
to the line with slope —1, respectively; this coincides with our
theory in Section 4.
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TaBLE 1: The Ist and 5th eigenvalues obtained by two algorithms on L-shaped domain with H = v/2/16.
k I* dofy,- A CPU,- (s) I dofy, A CPU, (s)
1 5 6615 9.624308 0.43 5 6615 9.624308 0.26
1 10 28350 9.636503 1.83 10 28350 9.636503 0.99
1 15 122122 9.638997 9.27 15 122122 9.638997 5.17
1 19 387527 9.639505 35.6 19 387527 9.639505 19.3
1 20 520999 9.639556 52.0 20 520999 9.639556 26.6
1 21 — — — 21 692323 9.639608 38.2
5 5 8319 31.83478 0.62 5 8319 31.83478 0.35
5 10 38601 31.89705 3.07 10 38601 31.89705 1.75
5 15 171591 31.90928 171 15 171591 31.90928 9.79
5 18 414327 31.91127 479 18 414327 31.91127 26.7
5 19 550331 31.91156 68.6 19 550331 31.91156 37.0
5 20 — — — 20 743563 31.91187 53.0
TABLE 2: The 1st and 6th eigenvalues obtained by two algorithms on slit domain with H = v/2/16.
k I* dofy- A CPUy- (s) ! dofy,, A CPUy, (s)
1 5 5229 8.329697 0.43 5 5229 8.329697 0.25
1 10 17488 8.361012 1.33 10 17491 8.361012 0.79
1 15 64863 8.368891 5.14 15 64863 8.368891 2.90
1 20 249713 8.370756 23.4 20 249713 8.370756 12.9
1 23 569429 8.371082 61.5 23 569429 8.371082 31.2
1 24 — — — 24 748279 8.371148 44.0
6 5 8733 30.39428 0.69 5 8721 30.39422 0.41
6 10 35253 30.50367 3.21 10 35212 30.50363 1.68
6 15 141116 30.52867 16.2 15 140930 30.52866 8.20
6 19 426746 30.53371 58.8 19 426194 30.53371 28.9
6 20 566328 30.53432 82.6 20 565526 30.53431 39.1
6 21 — — — 21 743261 30.53464 54.9

()

FIGURE 5: The adaptive meshes of 1st eigenvalue after 5th iteration by Algorithm 10 (a) and Algorithm 11 (b).

(®)
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(®)

FIGURE 6: The adaptive meshes of 6th eigenvalue after 5th iteration by Algorithm 10 (a) and Algorithm 11 (b).

Error

10° 10* 10° 106

Number of degrees of freedom

—«— The a posteriori estimator of Algorithm 1

—o— The a posteriori estimator of Algorithm 2

—&— The error of 1st eigenvalue obtained by Algorithm 1
—— The error of 1st eigenvalue obtained by Algorithm 2
—— A line with slope —1.0474

()

Error

10° 10* 10° 10°

Number of degrees of freedom

—+— The a posteriori estimator of Algorithm 1

—o— The a posteriori estimator of Algorithm 2

—e— The error of 6th eigenvalue obtained by Algorithm 1
—%— The error of 6th eigenvalue obtained by Algorithm 2
—— A line with slope —1.0196

(®)

FI1GURE 7: The error curves of two algorithms on slit domain.

But from Table 1, using Algorithm 11, we will spend much
less time in the case of the same number of degrees of freedom
but get the same accuracy to Algorithm 10. In addition,
Algorithm 10, due to not having enough memory, can not
proceed, while Algorithm 11 can have one more iteration;
thus, more accurate numerical results will be obtained.

Example 2. We use Algorithms 10 and 11 to compute the
approximate eigenvalues of (1) on Q = ((0,2)x(0, 2))\([1, 2] x
{1}) with a slit (see Figure 1(b)).

The first and sixth eigenvalues of (1) are A, =
8.3713297112 and A4 = 30.536 on this domain, respectively.
The associated numerical results are presented in Table 2 and
Figures 5, 6, and 7. Figure 7 show that the error curves of
the first and sixth approximate eigenvalues and the curves of
the associated a posteriori error estimators obtained by Algo-
rithms 10 and 11 are approximately parallel to the line with
slope —1, respectively, which suffices to support our theory.

From Table2, using Algorithm1l, compared with
Algorithm 10, we can get the same accurate results in the case
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of the almost same degrees of freedom, but the CPU time is
significantly decreased.

Remark 13. Based on the work of [30], we would like to
believe that A" and Rayleigh quotient a(Iﬁluh’,Iﬁluh’)/b
(Iflluh’ ,Iflluh’ ) of I,ﬁluhl are the lower and upper bounds of
the exact eigenvalue A, respectively. To see this point, the
numerical results of Tables 1 and 2 also illustrate that the
C-R element eigenvalues approximate the exact ones of the
Laplace operator from below. Thus, we can establish iterative
control condition by computing A and a(Iﬁluhl,Izluh’)/
b(I;I u, I}Cl, u™) for the two algorithms.

Remark 14. For Algorithm 12, by calculating, in the case of
the almost same number of degrees of freedom, we can get
the same accurate results to Algorithm 11, and CPU time is
almost the same; thus, we do not list the associated numerical
results in this paper.
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