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We establish Crouzeix-Raviart element adaptive algorithm based on Rayleigh quotient iteration and give its a priori/a posteriori
error estimates. Our algorithm is performed under the package of Chen, and satisfactory numerical results are obtained.

1. Introduction

A posteriori error estimates and adaptive methods of finite
element approximation for eigenvalue problems are topics
attracting more attention from mathematical and physical
fields; see, for example, [1–8]. Basically, there are the following
three ways of combining adaptivity and eigenvalue problems
in which the a posteriori error estimators are more or less the
same but different in the problem solved in each iteration:
(1) solving the original eigenvalue problem 𝑎(𝑢, V) = 𝜆𝑏(𝑢, V)
(see Algorithm 10). The convergence and optimality of this
adaptive procedure were proved in [2]; (2) inverse iteration
type (with or without correction). The convergence has been
studied in [1, 6, 7]; (3) Shifted-inverse iteration type (see [8–
11]).

The triangular Crouzeix-Raviart element (C-R element)
was first introduced by Crouzeix and Raviart [12] in 1973
to solve the stationary Stokes equation. After that, many
scholars developed and applied it to eigenvalue problems, for
instance, [13–16] discussed a posteriori error estimates and
the adaptive methods of the C-R element. C-R element has
important properties; for example, Armentano and Durán
[17] discovered and proved that the C-R element eigenvalues
approximate the exact ones of the Laplace operator from
below, which is a very important property in engineering and
mechanics computing.

Based on the above work, this paper further discusses
the third kind of adaptive methods of the C-R finite element

method for eigenvalue problems and obtains the following
new results:

(1) we establish a multiscale discretization scheme of the
C-R element based on Rayleigh quotient iteration and
prove its convergence and a priori error estimates;

(2) we give residual type a posteriori error estimator for
our adaptive algorithm, as well as its reliability and
efficiency;

(3) we establish an adaptive algorithm (Algorithm 11),
which is performed under the package of Chen (see
[18]), and satisfactory numerical results are obtained.

As for the fundamental theory of finite elements and
spectral approximation, we refer to [19–22].

Throughout this paper, 𝐶 denotes a positive constant
independent of mesh parameter, which may not be the
same constant in different places. For simplicity, we use the
notation 𝑎 ≲ 𝑏 to mean that 𝑎 ≤ 𝐶𝑏, 𝑎 = 𝑂(𝑏) and to mean
that 𝑎 ≲ 𝑏 and 𝑏 ≲ 𝑎.

2. Preliminaries

Consider Laplace eigenvalue problem

−Δ𝑢 = 𝜆𝑢 in Ω, 𝑢 = 0 on 𝜕Ω, (1)

where Ω ⊂ 𝑅
2 is a polygonal domain with the maximum

interior angle 𝜔.
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We denote the real order Sobolev spaces with norm ‖ ⋅ ‖
𝑡

by 𝐻
𝑡
(Ω), 𝐻1

0
(Ω) = {V ∈ 𝐻

1
(Ω), V|

𝜕Ω
= 0}. Let 𝑏(⋅, ⋅) and

‖ ⋅ ‖
0,Ω

be the inner product and the norm in the space 𝐿2(Ω),
respectively.

The weak form of (1) is as follows: find 𝜆 ∈ 𝑅, 𝑢 ∈ 𝐻
1

0
(Ω),

𝑢 ̸= 0 such that

𝑎 (𝑢, V) = 𝜆𝑏 (𝑢, V) , ∀V ∈ 𝐻
1

0
(Ω) , (2)

where

𝑎 (𝑢, V) = ∫

Ω

∇𝑢 ⋅ ∇V, 𝑏 (𝑢, V) = ∫

Ω

𝑢V. (3)

As we know, 𝑎(⋅, ⋅) is a symmetric, continuous, and
𝐻
1

0
(Ω)-elliptic bilinear form on𝐻

1

0
(Ω) ×𝐻

1

0
(Ω), and 𝑏(⋅, ⋅) is

a symmetric, continuous, and positive definite bilinear form
on 𝐿

2
(Ω) × 𝐿

2
(Ω).

Define the operator 𝑇 : 𝐿
2
(Ω) → 𝐻

1

0
(Ω), satisfying

𝑎 (𝑇𝑔, V) = 𝑏 (𝑔, V) , ∀V ∈ 𝐻
1

0
(Ω) . (4)

Then, (2) has the equivalent operator form 𝑇𝑢 = 𝜆
−1
𝑢,

where the operators 𝑇 : 𝐻
1

0
(Ω) → 𝐻

1

0
(Ω) and 𝑇 : 𝐿

2
(Ω) →

𝐿
2
(Ω) are self-adjoint and completely continuous.
Let 𝜋

ℎ
= {𝜅} be a regular triangulation of the domainΩ, 𝜀

denote the set of all element edges in 𝜋
ℎ
, 𝜀(Ω) denote the set

of interior edges, 𝜀(𝜕Ω) denote the set of all boundary edges,
and 𝑁

𝑚
denote the set of the midside nodes 𝑚

𝑒
of the edges

𝑒 ∈ 𝜀. For the set of midpoints of the edges 𝑒 ∈ 𝜀(𝜕Ω), we
use the notation𝑁

𝑚
(𝜕Ω); for any element 𝜅, we let 𝜕𝜅 be the

union set of edges of 𝜅, and let ℎ
𝜅
be the diameter of 𝜅. The

domain 𝜔
𝜅
consists of all elements sharing at least a side with

𝜅. For any edge 𝑒 ∈ 𝜀, ℎ
𝑒
= |𝑒| is the length of 𝑒, and 𝜗

𝑒
=

(𝜗
1
, 𝜗
2
) and 𝜏

𝑒
= (−𝜗

2
, 𝜗
1
) are unit outward normal vector

and unit tangential vector, respectively.
Given a nonnegative integer 𝑘, the space 𝑃

𝑘
(𝜅) consists of

polynomials of total degree at most 𝑘 defined over 𝜅.The C-R
element space is given by 𝑉

ℎ
= {V ∈ 𝐿

2
(Ω), V|

𝜅
∈ 𝑃

1
(𝜅), 𝜅 ∈

𝜋
ℎ
, V is continuous at each𝑚

𝑒
∈ 𝑁

𝑚
\𝑁

𝑚
(𝜕Ω), and V(𝑚

𝑒
) = 0

for𝑚
𝑒
∈ 𝑁

𝑚
(𝜕Ω)}.

The C-R element approximation of (2) is given as follows:
find 𝜆

ℎ
∈ 𝑅, 𝑢

ℎ
∈ 𝑉

ℎ
, 𝑢

ℎ
̸= 0 such that

𝑎
ℎ
(𝑢
ℎ
, V) = 𝜆

ℎ
𝑏 (𝑢

ℎ
, V) , ∀V ∈ 𝑉

ℎ
, (5)

where

𝑎
ℎ
(𝑢
ℎ
, V) = ∑

𝜅∈𝜋ℎ

∫

𝜅

∇𝑢
ℎ
⋅ ∇V. (6)

𝑎
ℎ
(⋅, ⋅) is a symmetric, continuous, and𝑉

ℎ
-elliptic bilinear

form on 𝑉
ℎ
× 𝑉

ℎ
. ‖V‖

ℎ
= √𝑎

ℎ
(V, V) is well known as the norm

of the space 𝑉
ℎ
; let𝐷 ⊂ Ω, 𝐷 which consists of 𝜅 ∈ 𝜋

ℎ
,

𝑎
ℎ,𝜅

(𝑢, V) = ∫

𝜅

𝑢V, 𝑎
ℎ,𝐷

(𝑢, V) = ∑

𝜅∈𝐷

𝑎
ℎ,𝜅

(𝑢, V) ,

‖V‖
ℎ,𝐷

= √𝑎
ℎ,𝐷

(V, V).

(7)

Define the operator 𝑇
ℎ
: 𝐿

2
(Ω) → 𝑉

ℎ
, satisfying

𝑎
ℎ
(𝑇
ℎ
𝑔, V) = 𝑏 (𝑔, V) , ∀V ∈ 𝑉

ℎ
. (8)

Then, (5) has the equivalent operator form 𝑇
ℎ
𝑢
ℎ
= 𝜆

−1

ℎ
𝑢
ℎ
,

where the operators 𝑇
ℎ
: 𝑉

ℎ
→ 𝑉

ℎ
and 𝑇

ℎ
: 𝐿

2
(Ω) → 𝐿

2
(Ω)

are self-adjoint and completely continuous.
Suppose that 𝜆 and 𝜆

ℎ
are the 𝑘th eigenvalue of (2) and

(5), respectively, and the algebraic multiplicity of 𝜆 is equal to
𝑞, 𝜆 = 𝜆

𝑘
= 𝜆

𝑘+1
= ⋅ ⋅ ⋅ = 𝜆

𝑘+𝑞−1
. Let 𝑀(𝜆

𝑘
) be the space

spanned by all eigenfunctions corresponding to 𝜆
𝑘
, and let

𝑀
ℎ
(𝜆
𝑘
) be the direct sum of eigenspaces corresponding to all

eigenvalues of (5) that converge to 𝜆
𝑘
. Let 𝑀̂(𝜆

𝑘
) = {V : V ∈

𝑀(𝜆
𝑘
), ‖V‖

ℎ
= 1}, 𝑀̂

ℎ
(𝜆
𝑘
) = {V : V ∈ 𝑀

ℎ
(𝜆
𝑘
), ‖V‖

ℎ
= 1}.

Define

𝛿
2

ℎ
(𝜆
𝑘
) =

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝑇

ℎ
)
󵄨
󵄨
󵄨
󵄨𝑀(𝜆𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩

2

ℎ
+

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝑇

ℎ
)
󵄨
󵄨
󵄨
󵄨𝑀(𝜆𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩0
. (9)

Define 𝐸
ℎ
(𝑇𝑓, V) = 𝑎

ℎ
(𝑇𝑓, V) − 𝑏(𝑓, V), which is the

consistent item of nonconforming finite element. Let (𝜆, 𝑢)
be an eigenpair of (2), and then

𝐸
ℎ
(𝑢, V) = 𝑎

ℎ
(𝑢, V) − 𝑏 (𝜆𝑢, V) . (10)

We need the lemmas as follows (see [11, 23]).

Lemma 1 (see [11, Lemma 2.5]). Let (𝜆, 𝑢) be an eigenpair
of (2) and then, for any 𝑤 ∈ 𝑉

ℎ
with ‖𝑤‖

0
̸= 0, the Rayleigh

quotient 𝑎
ℎ
(𝑤, 𝑤)/‖𝑤‖

2

0
satisfies

𝑎
ℎ
(𝑤, 𝑤)

‖𝑤‖
2

0

− 𝜆 =

‖𝑤 − 𝑢‖
2

ℎ

‖𝑤‖
2

0

− 𝜆

‖𝑤 − 𝑢‖
2

0

‖𝑤‖
2

0

+ 2

𝐸
ℎ
(𝑢, 𝑤)

𝑏 (𝑤, 𝑤)

. (11)

Lemma2 (see [11, Lemma 2.4] and [23, Lemma 2.3]). Let 𝜆
𝑘,ℎ

and 𝜆
𝑘
be the 𝑘th eigenvalue of (5) and (2), respectively. Then,

󵄨
󵄨
󵄨
󵄨
𝜆
𝑘,ℎ

− 𝜆
𝑘

󵄨
󵄨
󵄨
󵄨
≲

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝑇

ℎ
)
󵄨
󵄨
󵄨
󵄨𝑀(𝜆𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩0
. (12)

For any eigenfunction 𝑢
𝑘,ℎ

corresponding to 𝜆
𝑘,ℎ
, satisfying

‖𝑢
𝑘,ℎ

‖
ℎ
= 1, there exists 𝑢

𝑘
∈ 𝑀(𝜆

𝑘
) such that

󵄩
󵄩
󵄩
󵄩
𝑢
𝑘,ℎ

− 𝑢
𝑘

󵄩
󵄩
󵄩
󵄩0

≲

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝑇

ℎ
)
󵄨
󵄨
󵄨
󵄨𝑀(𝜆𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩0
, (13)

󵄩
󵄩
󵄩
󵄩
𝑢
𝑘,ℎ

− 𝑢
𝑘

󵄩
󵄩
󵄩
󵄩ℎ

≤ 𝜆
𝑘

󵄩
󵄩
󵄩
󵄩
𝑇𝑢

𝑘
− 𝑇

ℎ
𝑢
𝑘

󵄩
󵄩
󵄩
󵄩ℎ

+ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝑇

ℎ
)
󵄨
󵄨
󵄨
󵄨𝑀(𝜆𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩0
. (14)

For any 𝑢
𝑘
∈ 𝑀̂(𝜆

𝑘
), there exists 𝑢

ℎ
∈ 𝑀

ℎ
(𝜆
𝑘
) such that

󵄩
󵄩
󵄩
󵄩
𝑢
ℎ
− 𝑢

𝑘

󵄩
󵄩
󵄩
󵄩ℎ

≲

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝑇

ℎ
)
󵄨
󵄨
󵄨
󵄨𝑀(𝜆𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ

+

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝑇

ℎ
)
󵄨
󵄨
󵄨
󵄨𝑀(𝜆𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩0
. (15)

3. A Priori Error Estimates for Multiscale
Discretization Scheme

In this section, we will discuss a priori error estimates of
the C-R finite elementmultiscale discretization scheme based
on the shift-inverse power method. Let {𝜋

ℎ𝑖
}
𝑙

0
be a family of

shape-regular meshes and let {𝑉
ℎ𝑖
}
𝑙

0
be the C-R finite element

spaces defined on {𝜋
ℎ𝑖
}
𝑙

0
. Besides, let 𝜋

𝐻
= 𝜋

ℎ0
, 𝑉

𝐻
= 𝑉

ℎ0
.

The following condition results from [10, 24].
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Condition 1. There exists a properly small positive number 𝜖,
𝑡
𝑖
∈ (1, 3 − 𝜖], 𝑖 = 1, 2, . . ., such that 𝛿

ℎ𝑖
(𝜆) = 𝑂(𝛿

ℎ𝑖−1
(𝜆)

𝑡𝑖
),

𝛿
ℎ𝑖
(𝜆) → 0 (𝑖 → ∞).

The following scheme is proposed by Yang and Bi (see
[11]).

Scheme 3 (multiscale discretization scheme). Consider the
following steps.
Step 1. Solve (5) on 𝑉

𝐻
: find (𝜆

𝐻
, 𝑢
𝐻
) ∈ 𝑅 × 𝑉

𝐻
such that

‖𝑢
𝐻
‖
𝐻

= 1 and

𝑎
𝐻
(𝑢
𝐻
, 𝜓) = 𝜆

𝐻
𝑏 (𝑢

𝐻
, 𝜓) , ∀𝜓 ∈ 𝑉

𝐻
. (16)

Step 2. Execute 𝑢
ℎ0

⇐ 𝑢
𝐻
, 𝜆

ℎ0
⇐ 𝜆

𝐻
, 𝑖 ⇐ 1.

Step 3. Solve a linear system on 𝑉
ℎ𝑖
: find 𝑢

󸀠
∈ 𝑉

ℎ𝑖
such that

𝑎
ℎ𝑖
(𝑢
󸀠
, 𝜓) − 𝜆

ℎ𝑖−1
𝑏 (𝑢

󸀠
, 𝜓) = 𝑏 (𝑢

ℎ𝑖−1
, 𝜓) , ∀𝜓 ∈ 𝑉

ℎ𝑖
. (17)

Set 𝑢ℎ𝑖 = 𝑢
󸀠
/‖𝑢

󸀠
‖
ℎ𝑖
.

Step 4. Compute the Rayleigh quotient

𝜆
ℎ𝑖

=

𝑎
ℎ𝑖
(𝑢
ℎ𝑖
, 𝑢
ℎ𝑖
)

𝑏 (𝑢
ℎ𝑖 , 𝑢

ℎ𝑖)

. (18)

Step 5. If 𝑖 = 𝑙, then output (𝜆ℎ𝑙 , 𝑢ℎ𝑙), stop. Else, 𝑖 ⇐ 𝑖 + 1, and
return to Step 3.

Let (𝜆
𝐻
, 𝑢
𝐻
) be the 𝑘th eigenpair of (16), and then

(𝜆
ℎ𝑙
, 𝑢
ℎ𝑙
) derived from Scheme 3 is the 𝑘th eigenpair approx-

imation of (5).
In the sequel, we also denote (𝜆

𝐻
, 𝑢
𝐻
) = (𝜆

𝑘,𝐻
, 𝑢
𝑘,𝐻

),
(𝜆
ℎ𝑙
, 𝑢
ℎ𝑙
) = (𝜆

ℎ𝑙

𝑘
, 𝑢
ℎ𝑙

𝑘
).

Lemma 4 (see [11, Lemma 3.1]). For any nonzero 𝑢, V ∈ 𝑉
ℎ
+

𝐻
1

0
(Ω),

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑢

‖𝑢‖ℎ

−

V
‖V‖ℎ

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩ℎ

≤ 2

‖𝑢 − V‖ℎ
‖𝑢‖ℎ

,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑢

‖𝑢‖ℎ

−

V
‖V‖ℎ

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩ℎ

≤ 2

‖𝑢 − V‖
ℎ

‖V‖ℎ
.

(19)

Denote dist(𝑢, 𝑆) = infV∈𝑆‖𝑢 − V‖
ℎ
.

Our analysis is based on the following crucial property
of the shifted-inverse iteration in finite element method (see
Lemma 4.2 of [24]), which is a development of Theorem 3.2
in [11]. Let𝑀 = (1/𝜆

𝑘
) = 𝑀(𝜆

𝑘
), 𝑀

ℎ
= (1/𝜆

𝑘
) = 𝑀

ℎ
(𝜆
𝑘
).

Lemma 5 (see [24, Lemma 4.2]). Let 𝜇
𝑘

= 1/𝜆
𝑘
and 𝜇

𝑘,ℎ
=

1/𝜆
𝑘,ℎ

be the 𝑘th eigenvalue of 𝑇 and 𝑇
ℎ
, respectively, (𝜇

0
, 𝑢
0
)

be an approximation for the eigenpair (𝜇
𝑘
, 𝑢
𝑘
), where 𝜇

0
is not

an eigenvalue of 𝑇
ℎ
, and 𝑢

0
∈ 𝑉

ℎ
with ‖𝑢

0
‖
ℎ
= 1. Suppose that

(C1) dist(𝑢
0
,𝑀

ℎ
(𝜇
𝑘
)) ≤ 1/2;

(C2) |𝜇
0
− 𝜇

𝑗,ℎ
| ≥ 𝜌/2 for 𝑗 ̸= 𝑘, 𝑘 + 1, . . . , 𝑘 + 𝑞 − 1, where

𝜌 = min
𝜇𝑗 ̸= 𝜇𝑘

|𝜇
𝑗
− 𝜇

𝑘
| is the separation constant of the

eigenvalue 𝜇
𝑘
;

(C3) 𝑢
󸀠
∈ 𝑉

ℎ
, 𝑢

ℎ

𝑘
∈ 𝑉

ℎ
satisfy

(𝜇
0
− 𝑇

ℎ
) 𝑢

󸀠
= 𝑢

0
, 𝑢

ℎ

𝑘
=

𝑢
󸀠

󵄩
󵄩
󵄩
󵄩
𝑢
󸀠󵄩󵄩
󵄩
󵄩ℎ

. (20)

Then,

dist (𝑢ℎ
𝑘
,𝑀

ℎ
(𝜇
𝑘
))

≤

4

𝜌

max
𝑘≤𝑗≤𝑘+q−1

󵄨
󵄨
󵄨
󵄨
󵄨
𝜇
0
− 𝜇

𝑗,ℎ

󵄨
󵄨
󵄨
󵄨
󵄨
dist (𝑢

0
,𝑀

ℎ
(𝜇
𝑘
)) .

(21)

Let us construct the interpolation postprocessing opera-
tor 𝐼

𝑐

ℎ
: 𝑉

ℎ
→ 𝑉

ℎ
∩ 𝐻

1

0
(Ω) (see [25]): on the vertex 𝑧 of

elements,

(𝐼
𝑐

ℎ
𝑢
ℎ
) (𝑧) =

{
{

{
{

{

0, 𝑧 ∈ 𝜕Ω,

1

𝐽
𝑧

∑

𝜅∈𝜔𝑧

𝑢
ℎ
|
𝜅
(𝑧) , 𝑧 ∉ 𝜕Ω,

(22)

where 𝐽
𝑧
is the number of elements containing the vertex 𝑧

and 𝜔
𝑧
is the union of elements containing the vertex 𝑧.

Lemma 6. Suppose that Condition 1 holds and 𝐻 is properly
small. Let (𝜆ℎ1

𝑘
, 𝑢
ℎ1

𝑘
) be obtained by Scheme 3 for 𝑙 = 1, and then

there exists 𝑢
𝑘
∈ 𝑀(𝜆

𝑘
) such that

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ1

𝑘
− 𝑢

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩ℎ1

≤ 𝐶 (𝛿
3

𝐻
(𝜆
𝑘
) + 𝛿

ℎ1
(𝜆
𝑘
)) , (23)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
ℎ1

𝑘
− 𝜆

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶 (𝛿

6

𝐻
(𝜆
𝑘
) + 𝛿

2

ℎ1
(𝜆
𝑘
)) . (24)

Proof. Based on the proof of Theorem 5.1 in [11] and
Lemma 5, we deduce that

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ1

𝑘
− 𝑢

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩ℎ1

≤ 𝐶(

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝑇

𝐻
)
󵄨
󵄨
󵄨
󵄨𝑀(𝜆𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0
+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝑇 − 𝑇
ℎ1
)

󵄨
󵄨
󵄨
󵄨
󵄨𝑀(𝜆𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩ℎ1

)

≲ 𝛿
4

𝐻
(𝜆
𝑘
) + 𝛿

ℎ1
(𝜆
𝑘
) ,

(25)

and thus (23) holds. Using Strang Lemma and Lemma 3.1 of
[25], we deduce that

𝐸
ℎ1

(𝑢
𝑘
, 𝑢
ℎ1

𝑘
)

= 𝐸
ℎ1

(𝑢
𝑘
, 𝑢
ℎ1

𝑘
− 𝐼

𝑐

ℎ1
𝑢
ℎ1

𝑘
)

≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑘
− 𝑇

ℎ1
(𝜆
𝑘
𝑢
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ1

𝑘
− 𝐼

𝑐

ℎ1
𝑢
ℎ1

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩ℎ1

≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑘
− 𝑇

ℎ1
(𝜆
𝑘
𝑢
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ1

𝑘
− 𝑢

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩ℎ1

≲ 𝛿
2

ℎ1
(𝜆
𝑘
) .

(26)



4 Abstract and Applied Analysis

From the above formula and (5.2) in [11], we get

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
ℎ1

𝑘
− 𝜆

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶(

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝑇

𝐻
)
󵄨
󵄨
󵄨
󵄨𝑀(𝜆𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩

4

0
+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝑇 − 𝑇
ℎ1
)

󵄨
󵄨
󵄨
󵄨
󵄨𝑀(𝜆𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

ℎ1

+2

𝐸
ℎ1

(𝑢
𝑘
, 𝑢
ℎ1

𝑘
)

𝑏 (𝑢
ℎ1

𝑘
, 𝑢
ℎ1

𝑘
)

)

≲ 𝛿
6

𝐻
(𝜆
𝑘
) + 𝛿

2

ℎ1
(𝜆
𝑘
) ,

(27)

and thus (24) holds.

Based on [10, 11, 24], we will prove the following
Theorems 7 and 8 for Scheme 3.

Theorem 7. Let (𝜆
ℎ𝑙
, 𝑢
ℎ𝑙
) be an approximate eigenpair

obtained by Scheme 3, and 𝑢
ℎ𝑙−1 and 𝜆

ℎ𝑙−1 approximate 𝑢 ∈

𝑀̂(𝜆) and 𝜆, respectively, and ‖𝑢
ℎ𝑙−1

− 𝑢‖
ℎ𝑙−1

≲ 𝛿
ℎ𝑙−1

(𝜆), |𝜆ℎ𝑙−1 −
𝜆| ≲ 𝛿

2

ℎ𝑙−1
(𝜆). Suppose that𝐻 is properly small and Condition 1

holds. Then, there exists 𝑢 ∈ 𝑀(𝜆) such that

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑢

ℎ𝑙
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

=

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝑇

ℎ𝑙
) (𝜆

ℎ𝑙
𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

+ ‖𝑅‖ℎ𝑙 ,𝐷
, (28)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
ℎ𝑙

− 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
≲ 𝛿

2

ℎ𝑙
(𝜆) , (29)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙

− 𝑇
ℎ𝑙
(𝜆
ℎ𝑙
𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

≲ 𝛿
3

ℎ𝑙−1
(𝜆) + 𝛿

2

ℎ𝑙
(𝜆) , (30)

where ‖𝑅‖
ℎ𝑙 ,𝐷

≲ 𝛿
3

ℎ𝑙−1
(𝜆) + 𝛿

2

ℎ𝑙
(𝜆).

Proof. Let 𝜇
0

= 1/𝜆
ℎ𝑙−1

, 𝑢
0

= 𝜆
ℎ𝑙−1

𝑇
ℎ𝑙
𝑢
ℎ𝑙−1

/‖𝜆
ℎ𝑙−1

𝑇
ℎ𝑙
𝑢
ℎ𝑙−1

‖
ℎ𝑙

.
Since 𝑢 ∈ 𝑀̂(𝜆), by calculation, we get

󵄩
󵄩
󵄩
󵄩
󵄩
𝜆
ℎ𝑙−1

𝑇
ℎ𝑙
𝑢
ℎ𝑙−1

− 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝜆
ℎ𝑙−1

𝑇
ℎ𝑙
𝑢
ℎ𝑙−1

− 𝜆𝑇𝑢

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
ℎ𝑙−1

− 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
ℎ𝑙
𝑢
ℎ𝑙−1

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

+ 𝜆

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
ℎ𝑙
(𝑢
ℎ𝑙−1

− 𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

+ 𝜆

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇
ℎ𝑙

− 𝑇) 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

.

(31)

From the definition of 𝑇
ℎ𝑙
, it is easy to know that

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
ℎ𝑙
V
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

≤ 𝐶‖V‖0, ∀V ∈ 𝐿
2
(Ω) . (32)

From 𝑎
ℎ𝑙
(𝑇
ℎ𝑙
V
ℎ𝑙
, V
ℎ𝑙
) = 𝑏(V

ℎ𝑙
, V
ℎ𝑙
), we get

󵄩
󵄩
󵄩
󵄩
󵄩
V
ℎ𝑙

󵄩
󵄩
󵄩
󵄩
󵄩

2

0
≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
ℎ𝑙
V
ℎ𝑙

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

󵄩
󵄩
󵄩
󵄩
󵄩
V
ℎ𝑙

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

≲

󵄩
󵄩
󵄩
󵄩
󵄩
V
ℎ𝑙

󵄩
󵄩
󵄩
󵄩
󵄩0

󵄩
󵄩
󵄩
󵄩
󵄩
V
ℎ𝑙

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

, (33)

and thus
󵄩
󵄩
󵄩
󵄩
󵄩
V
ℎ𝑙

󵄩
󵄩
󵄩
󵄩
󵄩0

≲

󵄩
󵄩
󵄩
󵄩
󵄩
V
ℎ𝑙

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

, ∀V
ℎ𝑙

∈ 𝑉
ℎ𝑙
. (34)

By Lemma 3.1 in [25], we get that

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙−1

− 𝐼
𝑐

ℎ𝑙−1
𝑢
ℎ𝑙−1

󵄩
󵄩
󵄩
󵄩
󵄩0

≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙−1

− 𝐼
𝑐

ℎ𝑙−1
𝑢
ℎ𝑙−1

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙−1

,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙−1

− 𝐼
𝑐

ℎ𝑙−1
𝑢
ℎ𝑙−1

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙−1

≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙−1

− 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙−1

.

(35)

Thus,
󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙−1

− 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩0

≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙−1

− 𝐼
𝑐

ℎ𝑙−1
𝑢
ℎ𝑙−1

󵄩
󵄩
󵄩
󵄩
󵄩0

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐼
𝑐

ℎ𝑙−1
𝑢
ℎ𝑙−1

− 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩0

≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙−1

− 𝐼
𝑐

ℎ𝑙−1
𝑢
ℎ𝑙−1

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙−1

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐼
𝑐

ℎ𝑙−1
𝑢
ℎ𝑙−1

− 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙−1

≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙−1

− 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙−1

.

(36)

Using the above formula and (31), we can deduce that

󵄩
󵄩
󵄩
󵄩
󵄩
𝜆
ℎ𝑙−1

𝑇
ℎ𝑙
𝑢
ℎ𝑙−1

− 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

≲

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
ℎ𝑙−1

− 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝜆

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙−1

− 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩0

+ 𝜆

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝑇
ℎ𝑙

− 𝑇)

󵄨
󵄨
󵄨
󵄨
󵄨𝑀(𝜆)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

≲ 𝛿
ℎ𝑙−1

(𝜆) .

(37)

Using Lemma 4, we get

dist (𝑢
0
, 𝑀̂ (𝜆)) ≤

󵄩
󵄩
󵄩
󵄩
𝑢
0
− 𝑢

󵄩
󵄩
󵄩
󵄩ℎ𝑙

≤ 2

󵄩
󵄩
󵄩
󵄩
󵄩
𝜆
ℎ𝑙−1

𝑇
ℎ𝑙
𝑢
ℎ𝑙−1

− 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

≲ 𝛿
ℎ𝑙−1

(𝜆) .

(38)

Using triangle inequality and (15), we have

dist (𝑢
0
,𝑀

ℎ𝑙
(𝜆)) ≤ dist (𝑢

0
, 𝑀̂ (𝜆)) + 𝛿

ℎ𝑙
(𝜆) . (39)

From (12), for 𝑗 = 𝑘, 𝑘 + 1, . . . , 𝑘 + 𝑞 − 1, we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝜇
0
− 𝜇

𝑗,ℎ𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜆
ℎ𝑙−1

− 𝜆 + 𝜆 − 𝜆
𝑗,ℎ𝑙

𝜆
𝑗,ℎ𝑙

𝜆
ℎ𝑙−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≲

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
ℎ𝑙−1

− 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝛿

2

ℎ𝑙
(𝜆) .

(40)

Noticing that𝐻 is small enough and Condition 1 holds, then
by (38) and (39), we can obtain

dist (𝑢
0
,𝑀

ℎ𝑙
(𝜆)) ≤

1

2

. (41)

Since 𝜌 is the separation constant, 𝐻 is small enough, and
Condition 1 holds, we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝜇
0
− 𝜇

𝑗,ℎ𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
≥

𝜌

2

, 𝑗 ̸= 𝑘, 𝑘 + 1, . . . , 𝑘 + 𝑞 − 1. (42)

From the definition of 𝑇
ℎ𝑙
, we can see that Step 3 in

Scheme 3 (𝑖 = 𝑙) is equivalent to

𝑎
ℎ𝑙
(𝑢
󸀠
, 𝜓) − 𝜆

ℎ𝑙−1
𝑎
ℎ𝑙
(𝑇
ℎ𝑙
𝑢
󸀠
, 𝜓)

= 𝑎
ℎ𝑙
(𝑇
ℎ𝑙
𝑢
ℎ𝑙−1

, 𝜓) , ∀𝜓 ∈ 𝑉
ℎ𝑙
,

(43)
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where 𝑢
ℎ𝑙

= 𝑢
󸀠
/‖𝑢

󸀠
‖
ℎ𝑙
; that is,

(

1

𝜆
ℎ𝑙−1

− 𝑇
ℎ𝑙
) 𝑢

󸀠
=

1

𝜆
ℎ𝑙−1

𝑇
ℎ𝑙
𝑢
ℎ𝑙−1

, 𝑢
ℎ𝑙

=

𝑢
󸀠

󵄩
󵄩
󵄩
󵄩
𝑢
󸀠󵄩󵄩
󵄩
󵄩ℎ𝑙

. (44)

Noticing that (1/𝜆ℎ𝑙−1)𝑇
ℎ𝑙
𝑢
ℎ𝑙−1

= ‖(1/𝜆
ℎ𝑙−1

)𝑇
ℎ𝑙
𝑢
ℎ𝑙−1

‖
ℎ𝑙

𝑢
0
differs

from 𝑢
0
by only a constant, then Step 3 is equivalent to

(

1

𝜆
ℎ𝑙−1

− 𝑇
ℎ𝑙
) 𝑢 = 𝑢

0
, 𝑢

ℎ𝑙
=

𝑢

‖𝑢‖ℎ𝑙

. (45)

From the above formulae, (41), (42), and (45), we can see that
the conditions in Lemma 5 hold; therefore, substituting (39)
and (40) into (21), we derive

dist (𝑢ℎ𝑙 , 𝑀̂
ℎ𝑙
(𝜆))

≲ (

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
ℎ𝑙−1

− 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝛿

2

ℎ𝑙
(𝜆)) (dist (𝑢

0
, 𝑀̂ (𝜆)) + 𝛿

ℎ𝑙
(𝜆))

≲ 𝛿
3

ℎ𝑙−1
+ 𝛿

2

ℎ𝑙−1
𝛿
ℎ𝑙
(𝜆) ≲ 𝛿

3

ℎ𝑙−1
(𝜆) .

(46)

Let eigenfunctions {𝑢
𝑗,ℎ𝑙

}
𝑘+𝑞−1

𝑘
be an orthonormal basis of

𝑀
ℎ𝑙
(𝜆) in the sense of inner product 𝑎

ℎ𝑙
(⋅, ⋅) and then

dist (𝑢ℎ𝑙 ,𝑀
ℎ𝑙
(𝜆)) =

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑢
ℎ𝑙

−

𝑘+𝑞−1

∑

𝑗=𝑘

𝑎
ℎ𝑙
(𝑢
ℎ𝑙
, 𝑢
𝑗,ℎ𝑙

) 𝑢
𝑗,ℎ𝑙

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

. (47)

Let

𝑢
∗
=

𝑘+𝑞−1

∑

𝑗=𝑘

𝑎
ℎ𝑙
(𝑢
ℎ𝑙
, 𝑢
𝑗,ℎ𝑙

) 𝑢
𝑗,ℎ𝑙

, (48)

and then it follows directly from (46) that
󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙

− 𝑢
∗󵄩󵄩
󵄩
󵄩
󵄩ℎ𝑙

≤ dist (𝑢ℎ𝑙 , 𝑀̂
ℎ𝑙
(𝜆)) ≲ 𝛿

3

ℎ𝑙−1
(𝜆) . (49)

By Lemma 2, there exists {𝑢0
𝑗
}
𝑘+𝑞−1

𝑘
⊂ 𝑀̂(𝜆) so that 𝑢

𝑗,ℎ𝑙
− 𝑢

0

𝑗

satisfies (14).
Let

𝑢 =

𝑘+𝑞−1

∑

𝑗=𝑘

𝑎
ℎ𝑙
(𝑢
ℎ𝑙
, 𝑢
𝑗,ℎ𝑙

) 𝑢
0

𝑗
. (50)

Then, 𝑢 ∈ 𝑀(𝜆), and

𝑢 − 𝑢
∗
=

𝑘+𝑞−1

∑

𝑗=𝑘

𝑎
ℎ𝑙
(𝑢
ℎ𝑙
, 𝑢
𝑗,ℎ𝑙

) (𝑢
0

𝑗
− 𝑢

𝑗,ℎ𝑙
) . (51)

By calculation,

𝑢
0

𝑗
− 𝑢

𝑗,ℎ𝑙
= 𝜆

𝑗
𝑇𝑢

0

𝑗
− 𝜆

𝑗,ℎ𝑙
𝑇
ℎ𝑙
𝑢
𝑗,ℎ𝑙

= 𝜆
𝑗
𝑇𝑢

0

𝑗
− 𝜆

𝑗,ℎ𝑙
𝑇𝑢

0

𝑗
+ 𝜆

𝑗,ℎ𝑙
𝑇𝑢

0

𝑗
− 𝜆

𝑗,ℎ𝑙
𝑇𝑢

𝑗,ℎ𝑙

+ 𝜆
𝑗,ℎ𝑙

𝑇𝑢
𝑗,ℎ𝑙

− 𝜆
𝑗,ℎ𝑙

𝑇
ℎ𝑙
𝑢
𝑗,ℎ𝑙

= (𝜆
𝑗
− 𝜆

𝑗,ℎ𝑙
) 𝑇𝑢

0

𝑗
+ 𝜆

𝑗,ℎ𝑙
𝑇 (𝑢

0

𝑗
− 𝑢

𝑗,ℎ𝑙
)

+ 𝜆
𝑗,ℎ𝑙

(𝑇 − 𝑇
ℎ𝑙
) 𝑢

𝑗,ℎ𝑙

= 𝜆
𝑗,ℎ𝑙

(𝑇 − 𝑇
ℎ𝑙
) 𝑢

𝑗,ℎ𝑙
+ 𝑅

󸀠

𝑗
,

(52)

where 𝑅
󸀠

𝑗
= (𝜆

𝑗
− 𝜆

𝑗,ℎ𝑙
)𝑇𝑢

0

𝑗
+ 𝜆

𝑗,ℎ𝑙
𝑇(𝑢

0

𝑗
− 𝑢

𝑗,ℎ𝑙
).

From (12) and (13), we deduce that
󵄩
󵄩
󵄩
󵄩
󵄩
𝑅
󸀠

𝑗

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

=

󵄩
󵄩
󵄩
󵄩
󵄩
(𝜆

𝑗
− 𝜆

𝑗,ℎ𝑙
) 𝑇𝑢

0

𝑗
+ 𝜆

𝑗,ℎ𝑙
𝑇 (𝑢

0

𝑗
− 𝑢

𝑗,ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

≲ 𝛿
2

ℎ𝑙
(𝜆) .

(53)

Substituting (52) into (51), we have

𝑢 − 𝑢
∗
=

𝑘+𝑞−1

∑

𝑗=𝑘

𝑎
ℎ𝑙
(𝑢
ℎ𝑙
, 𝑢
𝑗,ℎ𝑙

) (𝜆
𝑗,ℎ𝑙

(𝑇 − 𝑇
ℎ𝑙
) 𝑢

𝑗,ℎ𝑙
+ 𝑅

󸀠

𝑗
)

= 𝜆
𝑗,ℎ𝑙

(𝑇 − 𝑇
ℎ𝑙
)

𝑘+𝑞−1

∑

𝑗=𝑘

𝑎
ℎ𝑙
(𝑢
ℎ𝑙
, 𝑢
𝑗,ℎ𝑙

) 𝑢
𝑗,ℎ𝑙

+

𝑘+𝑞−1

∑

𝑗=𝑘

𝑎
ℎ𝑙
(𝑢
ℎ𝑙
, 𝑢
𝑗,ℎ𝑙

) 𝑅
󸀠

𝑗

= (𝑇 − 𝑇
ℎ𝑙
) (𝜆

𝑗,ℎ𝑙
𝑢
∗
) +

𝑘+𝑞−1

∑

𝑗=𝑘

𝑎
ℎ𝑙
(𝑢
ℎ𝑙
, 𝑢
𝑗,ℎ𝑙

) 𝑅
󸀠

𝑗

= (𝑇 − 𝑇
ℎ𝑙
) (𝜆

𝑗,ℎ𝑙
𝑢
ℎ𝑙
) + 𝜆

𝑗,ℎ𝑙
(𝑇 − 𝑇

ℎ𝑙
) (𝑢

∗
− 𝑢

ℎ𝑙
)

+

𝑘+𝑞−1

∑

𝑗=𝑘

𝑎
ℎ𝑙
(𝑢
ℎ𝑙
, 𝑢
𝑗,ℎ𝑙

) 𝑅
󸀠

𝑗
.

(54)

Let

𝑅
󸀠
= 𝜆

𝑗,ℎ𝑙
(𝑇 − 𝑇

ℎ𝑙
) (𝑢

∗
− 𝑢

ℎ𝑙
) +

𝑘+𝑞−1

∑

𝑗=𝑘

𝑎
ℎ𝑙
(𝑢
ℎ𝑙
, 𝑢
𝑗,ℎ𝑙

) 𝑅
󸀠

𝑗

+ 𝑢
∗
− 𝑢

ℎ𝑙
.

(55)

By the above two equalities, we obtain

𝑢 − 𝑢
ℎ𝑙

= 𝑢 − 𝑢
∗
+ 𝑢

∗
− 𝑢

ℎ𝑙
= (𝑇 − 𝑇

ℎ𝑙
) (𝜆

𝑗,ℎ𝑙
𝑢
ℎ𝑙
) + 𝑅

󸀠
.

(56)

From (49) and (53), we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅
󸀠󵄩󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜆
𝑗,ℎ𝑙

(𝑇 − 𝑇
ℎ𝑙
) (𝑢

∗
− 𝑢

ℎ𝑙
)

+

𝑘+𝑞−1

∑

𝑗=𝑘

𝑎
ℎ𝑙
(𝑢
ℎ𝑙
, 𝑢
𝑗,ℎ𝑙

) 𝑅
󸀠

𝑗
+ 𝑢

∗
− 𝑢

ℎ𝑙

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
𝑗,ℎ𝑙

󵄨
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇 − 𝑇

ℎ𝑙

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
∗
− 𝑢

ℎ𝑙
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑘+𝑞−1

∑

𝑗=𝑘

𝑎
ℎ𝑙
(𝑢
ℎ𝑙
, 𝑢
𝑗,ℎ𝑙

) 𝑅
󸀠

𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
∗
− 𝑢

ℎ𝑙
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
∗
− 𝑢

ℎ𝑙
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑘+𝑞−1

∑

𝑗=𝑘

𝑎
ℎ𝑙
(𝑢
ℎ𝑙
, 𝑢
𝑗,ℎ𝑙

) 𝑅
󸀠

𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

≲ 𝛿
3

ℎ𝑙−1
(𝜆) + 𝛿

2

ℎ𝑙
(𝜆) .

(57)
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Therefore,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑢

ℎ𝑙
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

=

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝑇

ℎ𝑙
) (𝜆

𝑗,ℎ𝑙
𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅
󸀠󵄩󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

(58)

≲ 𝛿
ℎ𝑙
(𝜆) . (59)

By Lemma 1, we have

𝑎
ℎ
(𝑢
ℎ𝑙
, 𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙
󵄩
󵄩
󵄩
󵄩

2

0

− 𝜆 =

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙

− 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

ℎ𝑙

󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙
󵄩
󵄩
󵄩
󵄩

2

0

− 𝜆

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙

− 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

0

󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙
󵄩
󵄩
󵄩
󵄩

2

0

+ 2

𝐸
ℎ
(𝑢, 𝑢

ℎ𝑙
)

𝑏 (𝑢
ℎ𝑙 , 𝑢

ℎ𝑙)

.

(60)

Since 𝐼
𝑐

ℎ𝑙
𝑢
ℎ𝑙

∈ 𝐶
0
(Ω), using Strang Lemma and Lemma 3.1 of

[25], we deduce that

𝐸
ℎ𝑙
(𝑢, 𝑢

ℎ𝑙
) = 𝐸

ℎ𝑙
(𝑢, 𝑢

ℎ𝑙
− 𝐼

𝑐

ℎ𝑙
𝑢
ℎ𝑙
)

≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑇

ℎ𝑙
(𝜆𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙

− 𝐼
𝑐

ℎ𝑙
𝑢
ℎ𝑙
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑇

ℎ𝑙
(𝜆𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙

− 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

≲ 𝛿
2

ℎ𝑙
(𝜆) .

(61)

Substituting (59) and (61) into (60), (29) holds.
By (56) and triangle inequality, we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑢

ℎ𝑙
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

=

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝑇

ℎ𝑙
) (𝜆

𝑗,ℎ𝑙
𝑢
ℎ𝑙
) + 𝑅

󸀠󵄩󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

≤

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝑇

ℎ𝑙
) (𝜆

ℎ𝑙
𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

+

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝑇

ℎ𝑙
) (𝜆

𝑗,ℎ𝑙
− 𝜆

ℎ𝑙
) 𝑢

ℎ𝑙
+ 𝑅

󸀠󵄩󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

≡

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝑇

ℎ𝑙
) (𝜆

ℎ𝑙
𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

+ ‖𝑅‖ℎ𝑙 ,𝐷
,

(62)

where 𝑅 = (𝑇 − 𝑇
ℎ𝑙
)(𝜆

𝑗,ℎ𝑙
− 𝜆

ℎ𝑙
)𝑢
ℎ𝑙

+ 𝑅
󸀠.

By (57) and (29), we know that ‖𝑅‖
ℎ𝑙 ,𝐷

≲ 𝛿
3

ℎ𝑙−1
(𝜆) +𝛿

2

ℎ𝑙
(𝜆);

thus, (28) holds.
By calculation,

𝑘+𝑞−1

∑

𝑗=𝑘

𝑎
ℎ𝑙
(𝑢
ℎ𝑙
, 𝑢
𝑗,ℎ𝑙

) 𝜆
ℎ𝑙
𝑇
ℎ𝑙
𝑢
𝑗,ℎ𝑙

= 𝜆
ℎ𝑙
𝑇
ℎ𝑙
(

𝑘+𝑞−1

∑

𝑗=𝑘

𝑎
ℎ𝑙
(𝑢
ℎ𝑙
, 𝑢
𝑗,ℎ𝑙

) 𝑢
𝑗,ℎ𝑙

)

= 𝜆
ℎ𝑙
𝑇
ℎ𝑙
𝑢
∗
.

(63)

By the above formulae and (12), we deduce that
󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙

− 𝑇
ℎ𝑙
(𝜆
ℎ𝑙
𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙

− 𝑢
∗
+ 𝑢

∗
− 𝑇

ℎ𝑙
(𝜆
ℎ𝑙
𝑢
∗
)

+𝑇
ℎ𝑙
(𝜆
ℎ𝑙
𝑢
∗
) − 𝑇

ℎ𝑙
(𝜆
ℎ𝑙
𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙

− 𝑢
∗󵄩󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑘+𝑞−1

∑

𝑗=𝑘

(𝜆
𝑗,ℎ𝑙

− 𝜆
ℎ𝑙
) 𝑎

ℎ𝑙
(𝑢
ℎ𝑙
, 𝑢
𝑗,ℎ𝑙

) 𝑇
ℎ𝑙
𝑢
𝑗,ℎ𝑙

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜆
ℎ𝑙
𝑇
ℎ𝑙
(𝑢
∗
− 𝑢

ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝐷

≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙

− 𝑢
∗󵄩󵄩
󵄩
󵄩
󵄩ℎl ,𝐷

+

𝑘+𝑞−1

∑

𝑗=𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
𝑗,ℎ𝑙

− 𝜆
ℎ𝑙
󵄨
󵄨
󵄨
󵄨
󵄨

≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙

− 𝑢
∗󵄩󵄩
󵄩
󵄩
󵄩ℎ𝑙

+ 𝛿
2

ℎ𝑙
(𝜆) ,

(64)

which together with (49) leads to (30). This completes the
proof.

Theorem 8. Let (𝜆ℎ𝑙 , 𝑢ℎ𝑙) be the 𝑘th approximate eigenpair of
(1) obtained by Scheme 3, let 𝜆 be the 𝑘th eigenvalue of (1), and
let 𝐻 be properly small. Suppose that Condition 1 holds, then
there exists 𝑢 ∈ 𝑀(𝜆) such that

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙

− 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

≤ 𝐶𝛿
ℎ𝑙
(𝜆) ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
ℎ𝑙

− 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝛿

2

ℎ𝑙
(𝜆) , 𝑙 ≥ 1.

(65)

Proof. The proof of (65) is completed by using induction.
When 𝑙 = 1, by Lemma 6, we know that Theorem 8 holds.

Suppose that Theorem 8 holds for 𝑙 − 1; that is,
󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙−1

− 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙−1

≤ 𝐶𝛿
ℎ𝑙−1

(𝜆) ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
ℎ𝑙−1

− 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝛿

2

ℎ𝑙−1
(𝜆) ,

(66)

which together with the assumptions inTheorem 8, we know
thatTheorem 7 holds. For 𝑙, by (29) and (59), we get (65).The
proof is completed.

4. A Posteriori Error Estimates for Multiscale
Discretization Scheme

Based on the work of [14, 26], in this section, we will discuss a
posteriori error estimates of the C-R element approximation
for Laplace eigenvalue problem.

Consider the boundary value problem corresponding to
(2): find 𝑤 ∈ 𝐻

1

0
(Ω) such that

𝑎 (𝑤, V) = 𝑏 (𝑓, V) , ∀V ∈ 𝐻
1

0
(Ω) , (67)

and its C-R element approximation: find 𝑤
ℎ
∈ 𝑉

ℎ
such that

𝑎
ℎ
(𝑤

ℎ
, V) = 𝑏 (𝑓, V) , ∀V ∈ 𝑉

ℎ
. (68)
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Let 𝜅+ ∈ 𝜋
ℎ
, 𝜅

−
∈ 𝜋

ℎ
be two elements sharing one edge

𝑒. For any piecewise continuous function 𝜑, we denote by
[[𝜑]]

𝑒
= (𝜑|

𝜅
+)|

𝑒
− (𝜑|

𝜅
−)|

𝑒
the jump of 𝜑 across 𝑒.

Let 𝑤
ℎ
be the solution of (68), 𝐽

𝑒,𝜗
be the jump of ∇𝑤

ℎ

across 𝑒 along 𝜗
𝑒
, and 𝐽

𝑒,𝜏
be the jump of ∇𝑤

ℎ
across 𝑒 along

𝜏
𝑒
; let 𝑅̃

𝜅
(𝑤

ℎ
) be element residual; that is,

𝑅̃
𝜅
(𝑤

ℎ
) = 𝑓 + Δ𝑤

ℎ
𝜅 ∈ 𝜋

ℎ
,

𝐽
𝑒,𝜗

(𝑤
ℎ
) = {

[[∇𝑤
ℎ
]]
𝑒
⋅ 𝜗
𝑒
, 𝑒 ∈ 𝜀 (Ω) ,

0, 𝑒 ∈ 𝜀 (𝜕Ω) ,

𝐽
𝑒,𝜏

(𝑤
ℎ
) = {

[[∇𝑤
ℎ
]]
𝑒
⋅ 𝜏
𝑒
, 𝑒 ∈ 𝜀 (Ω) ,

−√2∇𝑤
ℎ
⋅ 𝜏
𝑒
, 𝑒 ∈ 𝜀 (𝜕Ω) .

(69)

For 𝜅 ∈ 𝜋
ℎ
, define the residual on the element 𝜅 as

𝜂
ℎ
(𝑤

ℎ
, 𝜅) = (ℎ

2

𝜅

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅̃
𝜅
(𝑤

ℎ
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝜅

+

1

2

∑

𝑒∈𝜕𝜅

ℎ
𝑒
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐽
𝑒,𝜏

(𝑤
ℎ
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝑒
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐽
𝑒,𝜗

(𝑤
ℎ
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝑒
))

1/2

,

(70)

and thus, for 𝐺 ⊂ Ω, the residual sum on 𝐺 is given by

𝜂
ℎ
(𝑤

ℎ
, 𝐺) = ( ∑

𝜅∈𝜋ℎ,𝜅⊂𝐺

𝜂
2

ℎ
(𝑤

ℎ
, 𝜅))

1/2

. (71)

For 𝑓 ∈ 𝐿
2
(Ω), define the date oscillation by

osc (𝑓, 𝜋
ℎ
) = ( ∑

𝜅∈𝜋ℎ

ℎ
2

𝜅

󵄩
󵄩
󵄩
󵄩
𝑓 − 𝑓

ℎ

󵄩
󵄩
󵄩
󵄩

2

0,𝜅
)

1/2

, (72)

where𝑓
ℎ
stands for a piecewise polynomial approximation of

𝑓 over 𝜋
ℎ
.

For the boundary value problem (67), Carstensen andHu
[27] have proved the following a posteriori error estimates :

󵄩
󵄩
󵄩
󵄩
𝑤 − 𝑤

ℎ

󵄩
󵄩
󵄩
󵄩ℎ,Ω

≤ 𝐶
1
(𝜂
ℎ
(𝑤

ℎ
, Ω) + osc (𝑓, 𝜋

ℎ
)) , (73)

where constant 𝐶
1
is only dependent on minimum angle of

𝜋
ℎ
, and if the right-hand side 𝑓 of (67) is a piecewise linear

polynomial over 𝜋
ℎ
, then

𝐶
2
𝜂
ℎ
(𝑤

ℎ
, Ω) ≤

󵄩
󵄩
󵄩
󵄩
𝑤 − 𝑤

ℎ

󵄩
󵄩
󵄩
󵄩ℎ,Ω

. (74)

Selecting𝑓 = 𝜆
ℎ𝑙
𝑢
ℎ𝑙 in (67) and (68), then the generalized

solution and the nonconforming finite element solution are
𝑤 = 𝑇(𝜆

ℎ𝑙
𝑢
ℎ𝑙
) and 𝑤

ℎ
= 𝑇

ℎ𝑙
(𝜆
ℎ𝑙
𝑢
ℎ𝑙
), respectively, and the a

posteriori error indicator of𝑤
ℎ
is 𝜂

ℎ
(𝑤

ℎ
, Ω), which is defined

by (71).

Define the element residual𝑅
𝜅
(𝑢
ℎ𝑙
) and the jump residual

𝐽
𝑒,𝜗

(𝑢
ℎ𝑙
) and 𝐽

𝑒,𝜏
(𝑢
ℎ𝑙
) for 𝑢ℎ𝑙 as follows:

𝑅
𝜅
(𝑢
ℎ𝑙
) = 𝜆

ℎ𝑙
𝑢
ℎ𝑙

+ Δ𝑢
ℎ𝑙

𝜅 ∈ 𝜋
ℎ𝑙
,

𝐽
𝑒,𝜗

(𝑢
ℎ𝑙
) = {

[[∇𝑢
ℎ𝑙
]]
𝑒
⋅ 𝜗
𝑒
, 𝑒 ∈ 𝜀 (Ω) ,

0, 𝑒 ∈ 𝜀 (𝜕Ω) ,

𝐽
𝑒,𝜏

(𝑢
ℎ𝑙
) = {

[[∇𝑢
ℎ𝑙
]]
𝑒
⋅ 𝜏
𝑒
, 𝑒 ∈ 𝜀 (Ω) ,

−√2∇𝑢
ℎ𝑙

⋅ 𝜏
𝑒
, 𝑒 ∈ 𝜀 (𝜕Ω) .

(75)

For 𝜅 ∈ 𝜋
ℎ𝑙
, define the residual on the element 𝜅 as

𝜂
ℎ𝑙
(𝑢
ℎ𝑙
, 𝜅) = (ℎ

2

𝜅

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅
𝜅
(𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝜅

+

1

2

∑

𝑒∈𝜕𝜅

ℎ
𝑒
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐽
𝑒,𝜏

(𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝑒
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐽
𝑒,𝜗

(𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝑒
))

1/2

.

(76)

For 𝐺 ⊂ Ω, define the residual sum on 𝐺 as

𝜂
ℎ𝑙
(𝑢
ℎ𝑙
, 𝐺) = ( ∑

𝜅∈𝜋ℎ𝑙
,𝜅⊂𝐺

𝜂
2

ℎ𝑙
(𝑢
ℎ𝑙
, 𝜅))

1/2

. (77)

Theorem 9. Suppose that the conditions in Theorem 7 hold
and 𝑉

ℎ𝑙
is a finite element space consisting of piecewise linear

polynomials, then there exists a positive constant 𝛿 which is
independent of mesh parameter, such that

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑢

ℎ𝑙
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,Ω

≤ (𝐶
1
+ 𝛿) 𝜂

ℎ𝑙
(𝑢
ℎ𝑙
, Ω) , (78)

(𝐶
2
+ 𝛿) 𝜂

ℎ𝑙
(𝑢
ℎl
, Ω) ≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑢

ℎ𝑙
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,Ω

, (79)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆 − 𝜆

ℎ𝑙
󵄨
󵄨
󵄨
󵄨
󵄨
≲ 𝜂

2

ℎ𝑙
(𝑢
ℎ𝑙
, Ω) . (80)

Proof. Let 𝑤
ℎ𝑙

= 𝑇
ℎ𝑙
𝜆
ℎ𝑙
𝑢
ℎ𝑙 , and by calculation

𝜂
ℎ𝑙
(𝑤

ℎ𝑙
, Ω) = ( ∑

𝜅∈𝜋ℎ𝑙
,𝜅⊂Ω

𝜂
2

ℎ𝑙
(𝑤

ℎ𝑙
, 𝜅))

1/2

= ( ∑

𝜅∈𝜋ℎ𝑙
,𝜅⊂Ω

𝜂
2

ℎ𝑙
(𝑢
ℎ𝑙
, 𝜅))

1/2

+ ( ∑

𝜅∈𝜋ℎ𝑙
,𝜅⊂Ω

𝜂
2

ℎ𝑙
(𝑤

ℎ𝑙
, 𝜅))

1/2

− ( ∑

𝜅∈𝜋ℎ𝑙
,𝜅⊂Ω

𝜂
2

ℎ𝑙
(𝑢
ℎ𝑙
, 𝜅))

1/2

≡ 𝜂
ℎ𝑙
(𝑢
ℎ𝑙
, Ω) + 𝑅

2
.

(81)
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By triangle inequality, we have

󵄨
󵄨
󵄨
󵄨
𝑅
2

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

( ∑

𝜅∈𝜋ℎ𝑙
,𝜅⊂Ω

𝜂
2

ℎ𝑙
(𝑤

ℎ𝑙
, 𝜅))

1/2

−( ∑

𝜅∈𝜋ℎ𝑙
,𝜅⊂Ω

𝜂
2

ℎ𝑙
(𝑢
ℎ𝑙
, 𝜅))

1/2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ( ∑

𝜅∈𝜋ℎ𝑙
,𝜅⊂Ω

(𝜂
ℎ𝑙
(𝑤

ℎ𝑙
, 𝜅) − 𝜂

ℎ𝑙
(𝑢
ℎ𝑙
, 𝜅))

2

)

1/2

.

(82)

From triangle inequality, (69)-(70), and (75)-(76), we deduce
that

󵄨
󵄨
󵄨
󵄨
󵄨
𝜂
ℎ𝑙
(𝑤

ℎ𝑙
, 𝜅) − 𝜂

ℎ𝑙
(𝑢
ℎ𝑙
, 𝜅)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(ℎ
2

𝜅

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅̃
𝜅
(𝑤

ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝜅

+

1

2

∑

𝑒∈𝜕𝜅

ℎ
𝑒
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐽
𝑒,𝜏

(𝑤
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝑒
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐽
𝑒,𝜗

(𝑤
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝑒
))

1/2

− (ℎ
2

𝜅

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅
𝜅
(𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝜅

+

1

2

∑

𝑒∈𝜕𝜅

ℎ
𝑒
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐽
𝑒,𝜏

(𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝑒
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐽
𝑒,𝜗

(𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝑒
))

1/2󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ (ℎ
2

𝜅

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅̃
𝜅
(𝑤

ℎ𝑙
) − 𝑅

𝜅
(𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝜅

+

1

2

∑

𝑒∈𝜕𝜅

ℎ
𝑒
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐽
𝑒,𝜏

(𝑤
ℎ𝑙
) − 𝐽

𝑒,𝜏
(𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝑒

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐽
𝑒,𝜗

(𝑤
ℎ𝑙
) − 𝐽

𝑙,𝜗
(𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝑒
))

1/2

≲ (ℎ
2

𝜅

󵄩
󵄩
󵄩
󵄩
󵄩
Δ (𝑤

ℎ𝑙
− 𝑢

ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝜅

+

1

2

∑

𝑒∈𝜕𝜅

ℎ
𝑒
(

󵄩
󵄩
󵄩
󵄩
󵄩
[[∇ (𝑤

ℎ𝑙
− 𝑢

ℎ𝑙
)]]

𝑒
⋅ 𝜗
𝑒

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝑒

+

󵄩
󵄩
󵄩
󵄩
󵄩
[[∇ (𝑤

ℎ𝑙
− 𝑢

ℎ𝑙
)]]

𝑒
⋅ 𝜏
𝑒

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝑒
))

1/2

.

(83)

It is obvious that ‖Δ(𝑤
ℎ𝑙

− 𝑢
ℎ𝑙
)‖

2

0,𝜅
= 0, and, by the trace

theorem (see e.g., [28]) and the inverse estimates, we get

1

2

∑

𝑒∈𝜕𝜅

ℎ
𝑒
(

󵄩
󵄩
󵄩
󵄩
󵄩
[[∇ (𝑤

ℎ𝑙
− 𝑢

ℎ𝑙
)]]

𝑒
⋅ 𝜗
𝑒

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝑒

+

󵄩
󵄩
󵄩
󵄩
󵄩
[[∇ (𝑤

ℎ𝑙
− 𝑢

ℎ𝑙
)]]

𝑒
⋅ 𝜏
𝑒

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝑒
)

≲ ℎ
𝜅
(ℎ
−1

𝜅

󵄩
󵄩
󵄩
󵄩
󵄩
∇ (𝑤

ℎ𝑙
− 𝑢

ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

0,𝜔𝜅

+ℎ
𝜅

󵄨
󵄨
󵄨
󵄨
󵄨
∇ (𝑤

ℎ𝑙
− 𝑢

ℎ𝑙
)

󵄨
󵄨
󵄨
󵄨
󵄨

2

1,𝜔𝜅

)

≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑤
ℎ𝑙

− 𝑢
ℎ𝑙
󵄩
󵄩
󵄩
󵄩
󵄩

2

ℎ𝑙 ,𝜔𝜅

.

(84)

Thus,

󵄨
󵄨
󵄨
󵄨
󵄨
𝜂
ℎ𝑙
(𝑤

ℎ𝑙
, 𝜅) − 𝜂

ℎ𝑙
(𝑢
ℎ𝑙
, 𝜅)

󵄨
󵄨
󵄨
󵄨
󵄨
≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
ℎ𝑙
(𝜆
ℎ𝑙
𝑢
ℎ𝑙
) − 𝑢

ℎ𝑙
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝜅

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑤
ℎ𝑙

− 𝑢
ℎ𝑙
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,𝜔𝜅

.

(85)

Combining (82), (85), and (30), we get

󵄨
󵄨
󵄨
󵄨
𝑅
2

󵄨
󵄨
󵄨
󵄨
≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑤
ℎ𝑙

− 𝑢
ℎ𝑙
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

≲ 𝛿
3

ℎ𝑙−1
(𝜆) + 𝛿

2

ℎ𝑙
(𝜆) . (86)

Hence, from Condition 1, we know that 𝑅
2
is a small quantity

of higher order than 𝜂
ℎ𝑙
(𝑤

ℎ𝑙
, Ω). Using (81), we obtain that 𝑅

2

is also a small quantity of higher order than 𝜂
ℎ𝑙
(𝑢
ℎ𝑙
, Ω).

Therefore, by (28), (73), (81), and (86), we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑢

ℎ𝑙
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,Ω

=

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝑇

ℎ𝑙
) (𝜆

ℎ𝑙
𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,Ω

+ ‖𝑅‖ℎ𝑙 ,Ω

≤ 𝐶
1
𝜂
ℎ𝑙
(𝑇
ℎ𝑙
(𝜆
ℎ𝑙
𝑢
ℎ𝑙
) , Ω) + ‖𝑅‖ℎ𝑙 ,Ω

≤ 𝐶
1
𝜂
ℎ𝑙
(𝑢
ℎ𝑙
, Ω)

+ 𝐶
1
(𝜂
ℎ𝑙
(𝑇
ℎ𝑙
(𝜆
ℎ𝑙
𝑢
ℎ𝑙
) , Ω) − 𝜂

ℎ𝑙
(𝑢
ℎ𝑙
, Ω))

+ ‖𝑅‖ℎ𝑙 ,Ω

≤ 𝐶
1
𝜂
ℎ𝑙
(𝑢
ℎ𝑙
, Ω) + 𝐶

1

󵄩
󵄩
󵄩
󵄩
𝑅
2

󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,Ω

+ ‖𝑅‖ℎ𝑙 ,Ω

≤ (𝐶
1
+ 𝛿) 𝜂

ℎ𝑙
(𝑢
ℎ𝑙
, Ω) ,

(87)

which is (78).
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Similarly, by (28) and (74), we get

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑢

ℎ𝑙
󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,Ω

=

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝑇

ℎ𝑙
) (𝜆

ℎ𝑙
𝑢
ℎ𝑙
)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,Ω

+ ‖𝑅‖ℎ𝑙 ,Ω

≥ 𝐶
2
𝜂
ℎ𝑙
(𝑇
ℎ𝑙
(𝜆
ℎ𝑙
𝑢
ℎ𝑙
) , Ω) + ‖𝑅‖ℎ𝑙 ,Ω

≥ 𝐶
2
𝜂
ℎ𝑙
(𝑢
ℎ𝑙
, Ω)

+ 𝐶
2
(𝜂
ℎ𝑙
(𝑇
ℎ𝑙
(𝜆
ℎ𝑙
𝑢
ℎ𝑙
) , Ω) − 𝜂

ℎ𝑙
(𝑢
ℎ𝑙
, Ω))

+ ‖𝑅‖ℎ𝑙 ,Ω

≥ 𝐶
2
𝜂
ℎ𝑙
(𝑢
ℎ𝑙
, Ω) + 𝐶

2

󵄩
󵄩
󵄩
󵄩
𝑅
2

󵄩
󵄩
󵄩
󵄩ℎ𝑙 ,Ω

+ ‖𝑅‖ℎ𝑙 ,Ω

≥ (𝐶
2
+ 𝛿) 𝜂

ℎ𝑙
(𝑢
ℎ𝑙
, Ω) ,

(88)

and thus (79) holds.
By (61) and (28), we get

𝐸
ℎ𝑙
(𝑢, 𝑢

ℎ𝑙
) ≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑇

ℎ𝑙
(𝜆𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙

− 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩ℎ𝑙

≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙

− 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

ℎ𝑙

,

(89)

and, by substituting the above relation into (60), we obtain

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
ℎ𝑙

− 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
≲

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
ℎ𝑙

− 𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

ℎ𝑙

, (90)

which together with (78) yields (80). This completes the
proof.

5. Adaptive Finite Element Algorithm Based
on Multiscale Discretizations

As we know, The following Algorithm 10 is fundamental and
important; see [14, 16] for its detailed theoretical results.

Algorithm 10. Choose parameter 0 < 𝜃 < 1.

Step 1. Pick any initial mesh 𝜋
ℎ0
with mesh size ℎ

0
.

Step 2. Solve (5) on 𝜋
ℎ0
for discrete solution (𝜆

ℎ0
, 𝑢
ℎ0
).

Step 3. 𝑙 ⇐ 0.

Step 4. Compute the local indicators 𝜂
ℎ𝑙
(𝑢
ℎ𝑙
, 𝜅).

Step 5. Construct 𝜋̂
ℎ𝑙

⊂ 𝜋
ℎ𝑙

by Marking Strategy 𝐸 and
parameter 𝜃.

Step 6. Refine 𝜋
ℎ𝑙
to get a new mesh 𝜋

ℎ𝑙+1
.

Step 7. Solve (5) on 𝜋
ℎ𝑙+1

for discrete solution (𝜆
ℎ𝑙+1

, 𝑢
ℎ𝑙+1

).

Step 8. 𝑙 ⇐ 𝑙 + 1, and go to Step 4.

Marking Strategy 𝐸. Give parameter 0 < 𝜃 < 1.

Step 1.Construct aminimal subset 𝜋̂
ℎ𝑙
of𝜋

ℎ𝑙
by selecting some

elements in 𝜋
ℎ𝑙
such that

∑

𝜅∈𝜋̂ℎ𝑙

𝜂
2

ℎ𝑙
(𝑢
ℎ𝑙
, 𝜅) ≥ 𝜃𝜂

2

ℎ𝑙
(𝑢
ℎ𝑙
, Ω) . (91)

Step 2.Mark all the elements 𝜋̂
ℎ𝑙
.

𝜂
ℎ𝑙
(𝑢
ℎ𝑙
, 𝜅) and 𝜂

ℎ𝑙
(𝑢
ℎ𝑙
, Ω) are defined as (76) and (77),

respectively, with 𝑢
ℎ𝑙 and 𝜆

ℎ𝑙 replaced by 𝑢
ℎ𝑙
and 𝜆

ℎ𝑙
.

We have the following adaptive algorithm on the basis of
Scheme 3.

Algorithm 11. Choose parameter 0 < 𝜃 < 1.

Step 1. Pick any initial mesh 𝜋
ℎ0
with mesh size ℎ

0
.

Step 2. Solve (5) on 𝜋
ℎ0
for discrete solution (𝜆

ℎ0
, 𝑢
ℎ0
).

Step 3. 𝑙 ⇐ 0, 𝜆
0
⇐ 𝜆

ℎ0 .

Step 4. Compute the local indicators 𝜂
ℎ𝑙
(𝑢
ℎ𝑙
, 𝜅).

Step 5. Construct 𝜋̂
ℎ𝑙

⊂ 𝜋
ℎ𝑙

by Marking Strategy 𝐸 and
parameter 𝜃.

Step 6. Refine 𝜋
ℎ𝑙
to get a new mesh 𝜋

ℎ𝑙+1

Step 7. Find 𝑢
󸀠
∈ 𝑉

ℎ𝑙+1
such that

𝑎
ℎ𝑙+1

(𝑢
󸀠
, 𝜓) − 𝜆

0
𝑏 (𝑢

󸀠
, 𝜓) = 𝑏 (𝑢

ℎ𝑙
, 𝜓) , ∀𝜓 ∈ 𝑉

ℎ𝑙+1
. (92)

Set 𝑢ℎ𝑙+1 = 𝑢
󸀠
/‖𝑢

󸀠
‖
ℎ𝑙+1

and compute the Rayleigh quotient

𝜆
ℎ𝑙+1

=

𝑎
ℎ𝑙+1

(𝑢
ℎ𝑙+1

, 𝑢
ℎ𝑙+1

)

𝑏 (𝑢
ℎ𝑙+1 , 𝑢

ℎ𝑙+1)

. (93)

Step 8. 𝜆
0
⇐ 𝜆

ℎ𝑙+1 , 𝑙 ⇐ 𝑙 + 1 and go to Step 4.

Marking Strategy 𝐸 in Algorithm 11 will be the same as
that in Algorithm 10, except for replacing 𝑢

ℎ𝑙
with 𝑢

ℎ𝑙 .
Note that when |𝜆

0
− 𝜆| is too small, (92) is an almost

singular linear equation. Although it has no difficulty in
solving (92) numerically (see Lecture 27.4 in [29]), one would
like to think of selecting a proper integer 𝑙

0
≥ 0. When 𝑙 ≥ 𝑙

0
,

set 𝜆
ℎ𝑙

= 𝜆
ℎ𝑙0 in (92). So, we can establish the following

algorithm (see e.g., Scheme 3.2 in [24]).

Algorithm 12. Choose parameter 0 < 𝜃 < 1.

Step 1–Step 7. Execute Step 1–Step 7 of Algorithm 11.

Step 8. If 𝑙 < 𝑙
0
, 𝜆

0
⇐ 𝜆

ℎ𝑙+1 , 𝑙 ⇐ 𝑙 + 1, go to Step 4; else
𝑙 ⇐ 𝑙 + 1, go to Step 4.

Marking Strategy 𝐸 in Algorithm 12 will be the same as
that in Algorithm 11.
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(a) (b)

Figure 1: The initial mesh𝐻 = √2/16.

(a) (b)

Figure 2: The adaptive meshes of 1st eigenvalue after 5th iteration by Algorithm 10 (a) and Algorithm 11 (b).

6. Numerical Experiments

In this section, we will report two numerical examples for
Algorithms 10 and 11 to illustrate the theoretical results in
this paper. We use MATLAB 2012 to solve Examples 1 and
2. Our program is compiled under the package of Chen. We
take 𝜃 = 0.5 in two Algorithms.

For reading convenience, we use the following notations
in our tables.

𝑙
∗: The 𝑙

∗th iteration of Algorithm 10

𝜆
𝑘,ℎ𝑙∗

:The 𝑘th approximate eigenvalue derived from
the 𝑙

∗th iteration obtained by Algorithm 10

dof
𝑘,𝑙
∗ :The degrees of freedom of the 𝑙∗th iteration for

computing 𝜆
𝑘,ℎ𝑙∗

CPU
𝑘,𝑙
∗(𝑠): The total CPU time(s) for computing

𝜆
𝑘,ℎ𝑙∗

|𝜆
𝑘,ℎ𝑙∗

− 𝜆
𝑘
|: the error of 𝑘th approximate eigenvalue

𝜆
𝑘,ℎ𝑙∗

𝑙: The 𝑙th iteration of Algorithm 11

𝜆
ℎ𝑙

𝑘
:The 𝑘th approximate eigenvalue derived from the

𝑙th iteration obtained by Algorithm 11

dof
𝑘,𝑙
: The degrees of freedom of the 𝑙th iteration for

computing 𝜆
ℎ𝑙

𝑘
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(a) (b)

Figure 3: The adaptive meshes of 5th eigenvalue after 5th iteration by Algorithm 10 (a) and Algorithm 11 (b).
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Figure 4: The error curves of two algorithms on 𝐿-shaped domain.

CPU
𝑘,𝑙
(𝑠): The total CPU time(s) for computing 𝜆

ℎ𝑙

𝑘

|𝜆
ℎ𝑙

𝑘
−𝜆

𝑘
|:The error of 𝑘th approximate eigenvalue 𝜆ℎ𝑙

𝑘
.

Example 1. We use Algorithms 10 and 11 to compute the
approximate eigenvalues of (1) on the 𝐿-shaped domain Ω =

((0, 2) × (0, 2)) \ ([1, 2] × [1, 2]) (see Figure 1(a)).
The first and fifth eigenvalues of (1) are 𝜆

1
≈ 9.639723844

and 𝜆
5

≈ 31.912636 on this domain, respectively. The
associated numerical results are presented in Table 1 and

Figures 1(a), 2, 3, and 4. Figure 1(a) gives the uniform initial
mesh with 𝐻 = √2/16. Figures 2 and 3 show the adaptive
meshes of the first and fifth eigenvalues after the fifth iteration
by two algorithms, respectively. It is indicated in Figure 4 that
the error curves of the first and fifth approximate eigenvalues
and the curves of the associated a posteriori error estimators
obtained by Algorithms 10 and 11 are approximately parallel
to the line with slope −1, respectively; this coincides with our
theory in Section 4.
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Table 1: The 1st and 5th eigenvalues obtained by two algorithms on 𝐿-shaped domain with𝐻 = √2/16.

𝑘 𝑙
∗ dof

𝑘,𝑙
∗ 𝜆

𝑘,ℎ
𝑙
∗

CPU
𝑘,𝑙
∗ (s) 𝑙 dof

𝑘,𝑙
𝜆
ℎ𝑙

𝑘
CPU

𝑘,𝑙
(s)

1 5 6615 9.624308 0.43 5 6615 9.624308 0.26
1 10 28350 9.636503 1.83 10 28350 9.636503 0.99
1 15 122122 9.638997 9.27 15 122122 9.638997 5.17
1 19 387527 9.639505 35.6 19 387527 9.639505 19.3
1 20 520999 9.639556 52.0 20 520999 9.639556 26.6
1 21 — — — 21 692323 9.639608 38.2
5 5 8319 31.83478 0.62 5 8319 31.83478 0.35
5 10 38601 31.89705 3.07 10 38601 31.89705 1.75
5 15 171591 31.90928 17.1 15 171591 31.90928 9.79
5 18 414327 31.91127 47.9 18 414327 31.91127 26.7
5 19 550331 31.91156 68.6 19 550331 31.91156 37.0
5 20 — — — 20 743563 31.91187 53.0

Table 2: The 1st and 6th eigenvalues obtained by two algorithms on slit domain with𝐻 = √2/16.

𝑘 𝑙
∗ dof

𝑘,𝑙
∗ 𝜆

𝑘,ℎ
𝑙
∗

CPU
𝑘,𝑙
∗ (s) 𝑙 dof

𝑘,𝑙
𝜆
ℎ𝑙

𝑘
CPU

𝑘,𝑙
(s)

1 5 5229 8.329697 0.43 5 5229 8.329697 0.25
1 10 17488 8.361012 1.33 10 17491 8.361012 0.79
1 15 64863 8.368891 5.14 15 64863 8.368891 2.90
1 20 249713 8.370756 23.4 20 249713 8.370756 12.9
1 23 569429 8.371082 61.5 23 569429 8.371082 31.2
1 24 — — — 24 748279 8.371148 44.0
6 5 8733 30.39428 0.69 5 8721 30.39422 0.41
6 10 35253 30.50367 3.21 10 35212 30.50363 1.68
6 15 141116 30.52867 16.2 15 140930 30.52866 8.20
6 19 426746 30.53371 58.8 19 426194 30.53371 28.9
6 20 566328 30.53432 82.6 20 565526 30.53431 39.1
6 21 — — — 21 743261 30.53464 54.9

(a) (b)

Figure 5: The adaptive meshes of 1st eigenvalue after 5th iteration by Algorithm 10 (a) and Algorithm 11 (b).
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(a) (b)

Figure 6: The adaptive meshes of 6th eigenvalue after 5th iteration by Algorithm 10 (a) and Algorithm 11 (b).
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Figure 7: The error curves of two algorithms on slit domain.

But from Table 1, using Algorithm 11, we will spendmuch
less time in the case of the samenumber of degrees of freedom
but get the same accuracy to Algorithm 10. In addition,
Algorithm 10, due to not having enough memory, can not
proceed, while Algorithm 11 can have one more iteration;
thus, more accurate numerical results will be obtained.

Example 2. We use Algorithms 10 and 11 to compute the
approximate eigenvalues of (1) onΩ = ((0, 2)×(0, 2))\([1, 2]×

{1}) with a slit (see Figure 1(b)).

The first and sixth eigenvalues of (1) are 𝜆
1

≈

8.3713297112 and 𝜆
6
≈ 30.536 on this domain, respectively.

The associated numerical results are presented in Table 2 and
Figures 5, 6, and 7. Figure 7 show that the error curves of
the first and sixth approximate eigenvalues and the curves of
the associated a posteriori error estimators obtained by Algo-
rithms 10 and 11 are approximately parallel to the line with
slope −1, respectively, which suffices to support our theory.

From Table 2, using Algorithm 11, compared with
Algorithm 10, we can get the same accurate results in the case
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of the almost same degrees of freedom, but the CPU time is
significantly decreased.

Remark 13. Based on the work of [30], we would like to
believe that 𝜆

ℎ𝑙 and Rayleigh quotient 𝑎(𝐼
𝑐

ℎ𝑙
𝑢
ℎ𝑙
, 𝐼
𝑐

ℎ𝑙
𝑢
ℎ𝑙
)/𝑏

(𝐼
𝑐

ℎ𝑙
𝑢
ℎ𝑙
, 𝐼
𝑐

ℎ𝑙
𝑢
ℎ𝑙
) of 𝐼

𝑐

ℎ𝑙
𝑢
ℎ𝑙 are the lower and upper bounds of

the exact eigenvalue 𝜆, respectively. To see this point, the
numerical results of Tables 1 and 2 also illustrate that the
C-R element eigenvalues approximate the exact ones of the
Laplace operator from below. Thus, we can establish iterative
control condition by computing 𝜆

ℎ𝑙 and 𝑎(𝐼
c
ℎ𝑙
𝑢
ℎ𝑙
, 𝐼
𝑐

ℎ𝑙
𝑢
ℎ𝑙
)/

𝑏(𝐼
𝑐

ℎ𝑙
𝑢
ℎ𝑙
, 𝐼
𝑐

ℎ𝑙
𝑢
ℎ𝑙
) for the two algorithms.

Remark 14. For Algorithm 12, by calculating, in the case of
the almost same number of degrees of freedom, we can get
the same accurate results to Algorithm 11, and CPU time is
almost the same; thus, we do not list the associated numerical
results in this paper.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by National Natural Science
Foundation of China (Grant no. 11161012) and Science and
Technology Foundation of Guizhou Province of China (no.
[2011]2111). The authors cordially thank the referees and the
editor for their valuable comments and suggestions that led
to the improvement of this paper.

References

[1] W. Dahmen, T. Rohwedder, R. Schneider, and A. Zeiser, “Adap-
tive eigenvalue computation: complexity estimates,”Numerische
Mathematik, vol. 110, no. 3, pp. 277–312, 2008.

[2] X. Dai, J. Xu, and A. Zhou, “Convergence and optimal com-
plexity of adaptive finite element eigenvalue computations,”
Numerische Mathematik, vol. 110, no. 3, pp. 313–355, 2008.

[3] V. Heuveline and R. Rannacher, “A posteriori error control for
finite approximations of elliptic eigenvalue problems,”Advances
in Computational Mathematics, vol. 15, no. 1–4, pp. 107–138,
2001.

[4] J. Han and Y. Yang, “A class of spectral element methods and
its a priori/a posteriori error estimates for 2nd-order elliptic
eigenvalue problems,” Abstract and Applied Analysis, vol. 2013,
Article ID 262010, 14 pages, 2013.

[5] D. Mao, L. Shen, and A. Zhou, “Adaptive finite element
algorithms for eigenvalue problems based on local averaging
type a posteriori error estimates,” Advances in Computational
Mathematics, vol. 25, no. 1–3, pp. 135–160, 2006.

[6] V. Mehrmann and A. Miedlar, “Adaptive computation of
smallest eigenvalues of self-adjoint elliptic partial differential
equations,” Numerical Linear Algebra with Applications, vol. 18,
no. 3, pp. 387–409, 2011.

[7] T. Rohwedder, R. Schneider, and A. Zeiser, “Perturbed pre-
conditioned inverse iteration for operator eigenvalue problems

with applications to adaptive wavelet discretization,” Advances
in Computational Mathematics, vol. 34, no. 1, pp. 43–66, 2011.

[8] Y. Yang, Y. Zhang, and H. Bi, “Multigrid discretization and
iterative algorithm for mixed variational formulation of the
eigenvalue problem of electric field,” Abstract and Applied
Analysis, vol. 2012, Article ID 190768, 25 pages, 2012.

[9] H. Bi, Y. Yang, and H. Li, “Local and parallel finite element
discretizations for eigenvalue problems,” SIAM Journal on
Scientific Computing, vol. 35, no. 6, pp. 2575–2597, 2013.

[10] H. Li andY. Yang, “The adaptive finite elementmethod based on
multi-scale discretizations for eigenvalue problems,” Computers
& Mathematics with Applications, vol. 65, no. 7, pp. 1086–1102,
2013.

[11] Y. Yang and H. Bi, “Two-grid finite element discretization
schemes based on shifted-inverse power method for elliptic
eigenvalue problems,” SIAM Journal on Numerical Analysis, vol.
49, no. 4, pp. 1602–1624, 2011.

[12] M. Crouzeix and P.-A. Raviart, “Conforming and nonconform-
ing finite element methods for solving the stationary Stokes
equations. I,” RAIRO—Analyse Numérique, vol. 7, no. 3, pp. 33–
75, 1973.

[13] R. G. Durán, L. Gastaldi, and C. Padra, “A posteriori error
estimators for mixed approximations of eigenvalue problems,”
Mathematical Models & Methods in Applied Sciences, vol. 9, no.
8, pp. 1165–1178, 1999.

[14] Y. Li, “A posteriori error analysis of nonconforming methods
for the eigenvalue problem,” Journal of Systems Science &
Complexity, vol. 22, no. 3, pp. 495–502, 2009.

[15] C. Lovadina, M. Lyly, and R. Stenberg, “A posteriori estimates
for the Stokes eigenvalue problem,” Numerical Methods for
Partial Differential Equations, vol. 25, no. 1, pp. 244–257, 2009.

[16] A. D. Russo and A. E. Alonso, “A posteriori error estimates
for nonconforming approximations of Steklov eigenvalue prob-
lems,” Computers & Mathematics with Applications, vol. 62, no.
11, pp. 4100–4117, 2011.

[17] M. G. Armentano and R. G. Durán, “Asymptotic lower bounds
for eigenvalues by nonconforming finite element methods,”
Electronic Transactions on Numerical Analysis, vol. 17, pp. 93–
101, 2004.

[18] L. Chen, iFEM: An Innovation Finite Element Methods Package
in MATLAB, 2008.
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