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A viral infection model with saturated incidence rate and viral infection with delay is derived and analyzed; the incidence rate
is assumed to be a specific nonlinear form 𝛽𝑥V/(1 + 𝛼V). The existence and uniqueness of equilibrium are proved. The basic
reproductive number𝑅

0
is given.Themodel is divided into two cases: with or without delay. In each case, by constructing Lyapunov

functionals, necessary and sufficient conditions are given to ensure the global stability of the models.

1. Introduction

In recent years, study of infectious disease model has been
a hot issue; the main cause of infectious disease is the virus
invasion. As we know, viral cytopathicity within target cells
is very common. A number of mathematical models have
been used to study virus dynamics. In 1996, Nowak et al. [1]
designed a simple but natural mathematical model based on
ordinary differential equation. The model is as follows:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝑥 (𝑡) − 𝛽𝑥 (𝑡) V (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝛽𝑥 (𝑡) V (𝑡) − 𝑎𝑦 (𝑡) ,

𝑑V (𝑡)
𝑑𝑡

= 𝜅𝑦 (𝑡) − 𝛾V (𝑡) ,

(1)

where 𝑥(𝑡) denotes the number of uninfected cells, 𝑦(𝑡) the
numbers of infected cells, and V(𝑡) the numbers of free viral
particles at time 𝑡, respectively. Inmodel (1), uninfected target
cells are assumed to be produced at a constant rate 𝜆 and died
at rate 𝑑𝑥. Infection of target cells by in-host free viruses is
assumed to occur at a bilinear rate 𝛽𝑥V; infected cells are lost
at a rate 𝑎𝑦. Free viruses are produced by infected cells at a
rate 𝜅𝑦, in which 𝜅 is the average number of viral particles

produced over the lifetime of a single infected cell. Free
viral particles die at a rate 𝛾V. For model (1), Korobeinikov
[2] established the condition of global stability in 2004.
Some other viral dynamical models were proposed by later
researchers; see for example [3–8].

In [7], Wodarz and Levy pointed out that the term 𝑎𝑦(𝑡)
in model (1) should consist of two parts: one is the natural
death of infected cells, the other is viral cytopathicity. In 2012,
Li et al. [4] assumed that infected cells burst and then release
viral particles (i.e., viral cytopathicity occurs) after uninfected
cells were infected by a constant period of time 𝜏; that is,
the time period of viral cytopathicity within target cells is
𝜏. They incorporated the delay of viral cytopathicity within
target cells and built a new model:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝑥 (𝑡) − 𝛽𝑥 (𝑡) V (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝛽𝑥 (𝑡) V (𝑡) − 𝛽𝑒−𝑑𝜏𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) − 𝑑𝑦 (𝑡) ,

𝑑V (𝑡)
𝑑𝑡

= 𝜅𝛽𝑒−𝑑𝜏𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) − 𝛾V (𝑡) .

(2)

By constructing Lyapunov functionals, necessary and suffi-
cient conditions were obtained ensuring the global stability
of the model.
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In models (1) and (2), the researcher studied the viral
dynamics with bilinear incidence rate𝛽𝑥V. As we know, as the
viral particles diffuse in the body, the person often takes some
actions when V gets large. In order to describe the inhibitory
effect from the uninfected cells when the number of viral
cytopathicity is large enough, following the idea of [9], we
propose an incidence rate 𝛽𝑥V/(1 + 𝛼V), where 𝛽V measures
the infection force of the viral, and 𝛼 reflects the level of
inhibitory action.

Similar to the discussions in [4], we assume that the
viral cytopathicity has time delay. When the delay of viral
cytopathicity within target cells is 𝜏 and the natural death rate
of per target cell is 𝑑, the number of infected cells at time
𝑡 (𝑡 > 𝜏) can be represented by

𝑦 (𝑡) = ∫
𝑡

𝑡−𝜏

𝛽𝑥 (𝜃) V (𝜃)
1 + 𝛼V (𝜃)

𝑒−𝑑(𝑡−𝜃)𝑑𝜃, for 𝑡 > 𝜏, (3)

where 𝑒−𝑑(𝑡−𝜃) is the probability that target cells survive from
time 𝜃 to time 𝑡, and (𝛽𝑥(𝜃)V(𝜃)/(1 + 𝛼V(𝜃)))𝑒−𝑑(𝑡−𝜃) is the
number of target cells being infected at time 𝜃 and still
surviving at time 𝑡.

Differentiating 𝑦(𝑡) of (3), we get
𝑑𝑦 (𝑡)

𝑑𝑡
= −𝑑∫

𝑡

𝑡−𝜏

𝛽𝑥 (𝜃) V (𝜃)
1 + 𝛼V (𝜃)

𝑒−𝑑(𝑡−𝜃)𝑑𝜃 +
𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

− 𝑒−𝑑𝜏
𝛽𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)

=
𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

− 𝛽𝑒−𝑑𝜏
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
− 𝑑𝑦 (𝑡) ,

(4)

where 𝛽𝑒−𝑑𝜏(𝑥(𝑡−𝜏)V(𝑡−𝜏)/(1+𝛼V(𝑡−𝜏))) is the transfer rate
of the infected cells being used to produce free viruses at time
𝑡; the recruitment rate of free virus at time 𝑡 is 𝜅𝛽𝑒−𝑑𝜏(𝑥(𝑡 −
𝜏)V(𝑡−𝜏)/(1+𝛼V(𝑡−𝜏))), in which 𝜅 is the average number of
viral particles produced by an infected target cell when viral
cytopathicity occurs, which implies that the recruitment of
virus at time 𝑡 depends on the number of target cells that were
newly infected at time 𝑡 − 𝜏 and still alive at time 𝑡. Therefore
following the model (2), we obtain a basic viral dynamical
model of delay differential equations:
𝑑𝑥 (𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝑥 (𝑡) −

𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

,

𝑑𝑦 (𝑡)

𝑑𝑡
=

𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

− 𝛽𝑒−𝑑𝜏
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
− 𝑑𝑦 (𝑡) ,

𝑑V (𝑡)
𝑑𝑡

= 𝜅𝛽𝑒−𝑑𝜏
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
− 𝛾V (𝑡) .

(5)

Since the variable 𝑦 does not appear in the first and
the third equations of (5), we only focus on the following
equations:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝑥 (𝑡) −

𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

,

𝑑V (𝑡)
𝑑𝑡

= 𝜅𝛽𝑒−𝑑𝜏
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
− 𝛾V (𝑡) ,

(6)

which has the same dynamics with system (5).

Let 𝑏 = 𝜅𝑒−𝑑𝜏, by (6), we have

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝑥 (𝑡) −

𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

,

𝑑V (𝑡)
𝑑𝑡

= 𝛽𝑏
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
− 𝛾V (𝑡) ,

(7)

where all the parameters are assumed to be positive.
The rest of this paper is organized as follows. In the

next section we will derive the infection-free equilibrium
and the infection equilibrium. In Section 3, we carry out a
qualitative analysis of the model, and stability conditions for
the infection-free equilibrium and the infection equilibrium
are derived, respectively. A brief conclusion will be given in
Section 4.

2. Positive Solutions and Equilibria

Due to the biological meaning of the components (𝑥(𝑡), V(𝑡)),
we consider system (7) with the following initial conditions:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝑥 (𝑡) −

𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

,

𝑑V (𝑡)
𝑑𝑡

= 𝛽𝑏
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
− 𝛾V (𝑡) ,

𝑥 (𝜃) = 𝜑
1 (𝜃) ≥ 0, 𝜑

1 (0) > 0, 𝜃 ∈ [−𝜏, 0] ,

V (𝜃) = 𝜑
2
(𝜃) ≥ 0, 𝜑

2
(0) > 0, 𝜃 ∈ [−𝜏, 0] .

(8)

Equation (8) is a system of retarded differential equations in
𝐶 = 𝐶([−𝜏, 0],R2). 𝐶 is a Banach space of continuous map-
pings from [−𝜏, 0] intoR2 with norm ‖ 𝜓 ‖= sup

−𝜏≤𝜃≤0
|𝜓(𝜃)|

for 𝜓 ∈ 𝐶. We denote

𝐶+ = {(𝜑
1
, 𝜑
2
) ∈ 𝐶 | 𝜑

1 (0) > 0, 𝜑
2 (0) > 0,

𝜑
1
(𝜃) ≥ 0, 𝜑

2
(𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0]} .

(9)

As usual, for any continuous function 𝑥 ∈ 𝐶([−𝜏, +∞),R)
and any given 𝑡 ≥ 0, 𝑥

𝑡
is defined as 𝑥

𝑡
∈ 𝐶([−𝜏, 0]R), 𝑥

𝑡
(𝜃) =

𝑥(𝑡 + 𝜃), for any 𝜃 ∈ [−𝜏, 0].

Theorem 1. All the solutions (𝑥(𝑡), V(𝑡))𝑇 of (8) under the
initial conditions are positive on [0,∞).

Proof. Assume that there is a 𝑡
1
(𝑡
1
> 0) such that 𝑥(𝑡

1
) = 0;

then by 𝑥(0) > 0 and the continuity of 𝑥, there is 𝑡∗ = inf{𝑡 >
0, 𝑥(𝑡) = 0} > 0 such that 𝑥(𝑡) > 0 for 𝑡 ∈ [0, 𝑡∗). Then we
have 𝑥(𝑡∗) ≤ 0. However, 𝑥(𝑡∗) = 𝜆 > 0 by the first equation
of (8); this is a contradiction. Therefore 𝑥(𝑡) > 0 for all 𝑡 > 0.

From the second equation of (8)

𝑑V (𝑡)
𝑑𝑡

= 𝛽𝑏
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
− 𝛾V (𝑡) . (10)
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Multiplying 𝑒𝛾𝑡 in both sides of the above equation and
integrating it from 0 to 𝑡, we have

∫
𝑡

0

𝑒𝛾𝜃𝑑V (𝜃) + ∫
𝑡

0

𝑒𝛾𝜃𝛾V (𝜃) 𝑑𝜃

= ∫
𝑡

0

𝑒𝛾𝜃𝛽𝑏
𝑥 (𝜃 − 𝜏) V (𝜃 − 𝜏)

1 + 𝛼V (𝜃 − 𝜏)
𝑑𝜃,

𝑒𝛾𝑡V (𝑡) − V (0) = ∫
𝑡

0

𝑒𝛾𝜃𝛽𝑏
𝑥 (𝜃 − 𝜏) V (𝜃 − 𝜏)

1 + 𝛼V (𝜃 − 𝜏)
𝑑𝜃,

V (𝑡) = [V (0) + ∫
𝑡

0

𝑒𝛾𝜃𝛽𝑏
𝑥 (𝜃 − 𝜏) V (𝜃 − 𝜏)

1 + 𝛼V (𝜃 − 𝜏)
𝑑𝜃] 𝑒−𝛾𝑡.

(11)

Let 𝜂 = 𝜃 − 𝜏

V (𝑡) = [V (0) + ∫
𝑡−𝜏

−𝜏

𝑒𝛾(𝜂+𝜏)𝛽𝑏
𝑥 (𝜂) V (𝜂)
1 + 𝛼V (𝜂)

𝑑𝜂] 𝑒−𝛾𝑡. (12)

Since 𝑥(𝑡) ≥ 0, V(𝑡) ≥ 0, and V(0) > 0 for −𝜏 ≤ 𝑡 ≤ 0, then
V(𝑡) > 0 for 0 ≤ 𝑡 < 𝜏.

Further, when 𝜏 ≤ 𝑡 < 2𝜏, we have

V (𝑡) = {V (0) + ∫
0

−𝜏

𝑒𝛾(𝜂+𝜏)𝛽𝑏
𝑥 (𝜂) V (𝜂)
1 + 𝛼V (𝜂)

𝑑𝜂

+∫
𝑡−𝜏

0

𝑒𝛾(𝜂+𝜏)𝛽𝑏
𝑥 (𝜂) V (𝜂)
1 + 𝛼V (𝜂)

𝑑𝜂} 𝑒−𝛾𝑡.

(13)

By the fact that 𝑥(𝜂) ≥ 0 and V(𝜂) ≥ 0 for −𝜏 ≤ 𝜂 < 0, then

∫
0

−𝜏

𝑒𝛾(𝜂+𝜏)𝛽𝑏
𝑥 (𝜂) V (𝜂)
1 + 𝛼V (𝜂)

𝑑𝜂 ≥ 0. (14)

Also 𝑥(𝜂) > 0 and V(𝜂) > 0 for 0 ≤ 𝜂 < 𝜏; then

∫
𝑡−𝜏

0

𝑒𝛾(𝜂+𝜏)𝛽𝑏
𝑥 (𝜂) V (𝜂)
1 + 𝛼V (𝜂)

𝑑𝜂 > 0. (15)

Consequently, V(𝑡) > 0 for 𝜏 ≤ 𝑡 < 2𝜏, which implies that
V(𝑡) > 0 holds true for 0 ≤ 𝑡 < 2𝜏.

We assume that for a positive integer 𝑘, V(𝑡) > 0 for 0 ≤
𝑡 < 𝑘𝜏. When 𝑘𝜏 ≤ 𝑡 < (𝑘 + 1)𝜏, we have

V (𝑡) = {V (0) + ∫
(𝑘−1)𝜏

−𝜏

𝑒𝛾(𝜂+𝜏)𝛽𝑏
𝑥 (𝜂) V (𝜂)
1 + 𝛼V (𝜂)

𝑑𝜂

+∫
𝑡−𝜏

(𝑘−1)𝜏

𝑒𝛾(𝜂+𝜏)𝛽𝑏
𝑥 (𝜂) V (𝜂)
1 + 𝛼V (𝜂)

𝑑𝜂} 𝑒−𝛾𝑡.

(16)

Then similar discussions show that V(𝑡) > 0 for 𝑘𝜏 ≤ 𝑡 <
(𝑘 + 1)𝜏. Hence, V(𝑡) > 0 for all 𝑡 > 0.

Theorem 2. All the solutions (𝑥(𝑡), V(𝑡))𝑇 of (8) under the
initial conditions are ultimately bounded.

Proof. For any solution (𝑥(𝑡), V(𝑡))𝑇 of (8), define a function
𝑓(𝑡) = 𝑏𝑥(𝑡 − 𝜏) + V(𝑡). Then the derivative of 𝑓(𝑡) is

𝑑𝑓 (𝑡)

𝑑𝑡
= 𝑏

𝑑𝑥 (𝑡 − 𝜏)

𝑑𝑡
+
𝑑V (𝑡)
𝑑𝑡

= 𝑏𝜆 − 𝑏𝑑𝑥 (𝑡 − 𝜏) − 𝛽𝑏
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)

+ 𝛽𝑏
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
− 𝛾V (𝑡)

= 𝑏𝜆 − 𝑏𝑑𝑥 (𝑡 − 𝜏) − 𝛾V (𝑡)

≤ 𝑏𝜆 − 𝜌𝑓 (𝑡) ,

(17)

where 𝜌 = min{𝑑, 𝛾}.
Integrating both sides of inequality above from 0 to 𝑡, we

have

𝑓 (𝑡) ≤
𝑏𝜆

𝜌
+ (𝑓 (0) −

𝑏𝜆

𝜌
) 𝑒−𝜌𝑡. (18)

It means that 𝑏𝑥
𝑡
(−𝜏) + V

𝑡
(0) ≤ 𝑏𝜆/𝜌 for any 𝑡 ≥ 0 as long as

𝑏𝜑
1
(−𝜏) + 𝜑

2
(0) ≤ 𝑏𝜆/𝜌. Also,

lim sup
𝑡→∞

𝑓 (𝑡) ≤
𝑏𝜆

𝜌
. (19)

From the first equation of (8), we have

𝑑𝑥 (𝑡)

𝑑𝑡
≤ 𝜆 − 𝑑𝑥 (𝑡) . (20)

Similar discussion shows that

𝑥 (𝑡) ≤
𝜆

𝑑
+ (𝑥 (0) −

𝜆

𝑑
) 𝑒−𝑑𝑡. (21)

Then 𝑥
𝑡
(0) ≤ 𝜆/𝑑 for any 𝑡 ≥ 0 as long as 𝜑

1
(0) ≤ 𝜆/𝑑.

Moreover,

lim sup
𝑡→∞

𝑥 (𝑡) ≤
𝜆

𝑑
. (22)

Thus, the region

Ω = {(𝜑
1
, 𝜑
2
) ∈ 𝐶+ : 𝜑

1
(0) ≤

𝜆

𝑑
, 𝑏𝜑
1
(−𝜏) + 𝜑

2
(0) ≤

𝑏𝜆

𝜌
}

(23)

is an invariant set and an attractor of system (8) with initial
condition (𝜑

1
, 𝜑
2
) ∈ 𝐶+.

In what follows, we study the existence of equilibria.
We consider algebraic equations

𝜆 − 𝑑𝑥 −
𝛽𝑥V
1 + 𝛼V

= 0,

𝛽𝑏
𝑥V

1 + 𝛼V
− 𝛾V = 0.

(24)
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It is easy to see that system (24) always has an infection-
free equilibrium𝐸

1
(𝜆/𝑑, 0). To find the other equilibrium, we

assume V ̸= 0. By the second equation of (24), we have

𝛽𝑏𝑥

1 + 𝛼V
= 𝛾. (25)

Then

𝑥 =
𝛾 (1 + 𝛼V)

𝛽𝑏
. (26)

We put 𝑥 into the first equation of (24); then

𝜆 −
𝑑𝛾 (1 + 𝛼V)

𝛽𝑏
−
𝛽𝛾 (1 + 𝛼V) V
𝛽𝑏 (1 + 𝛼V)

= 0,

𝛽𝑏𝜆 − 𝑑𝛾 = (𝑑𝛾𝛼 + 𝛽𝛾) V.

(27)

Thus the positive root 𝐸
2
exists if and only if 𝛽𝑏𝜆 − 𝑑𝛾 > 0.

For system (8), define the basic reproduction number [10] as
follows

𝑅
0
=
𝛽𝑏𝜆

𝑑𝛾
. (28)

It is easy to see that

(i) If 𝑅
0
≤ 1, then system (8) has a unique equilibrium

𝐸
1
(𝜆/𝑑, 0), which corresponds to the case that viruses

die out, and it is called infection-free equilibrium.
(ii) If𝑅

0
> 1, then system (8) has two equilibria, one is the

infection-free equilibrium 𝐸
1
(𝜆/𝑑, 0) and the other is

a positive equilibrium 𝐸
2
((𝛾+𝛼𝑏𝜆)/𝑏(𝑑𝛼+𝛽), 𝑑(𝑅

0
−

1)/(𝑑𝛼 + 𝛽)).

3. Stability of the Equilibrium

In this section, we consider the stability of the equilibrium.
There are two cases, 𝜏 = 0 and 𝜏 > 0.

3.1. Local Stability of Equilibria. First we consider the case of
𝜏 = 0. In this case system (8) is reduced to a system of ordi-
nary differential equations. In order to examine local stability
of an equilibrium, we should compute the eigenvalues of the
linearized operator for system (8) at the equilibrium.

By a direct computation, the Jacobianmatrix is as follows:

(

−𝑑 −
𝛽V

1 + 𝛼V
, −

𝛽𝑥

(1 + 𝛼V)2

𝛽𝑏
V

1 + 𝛼V
, 𝛽𝑏

𝑥

(1 + 𝛼V)2
− 𝛾

) . (29)

Consider infection-free equilibrium 𝐸
1
(𝜆/𝑑, 0). The char-

acteristic equation is obtained by the standard method as
follows.

It is obvious that 𝜇
1
= −𝑑 < 0, and 𝜇

2
= 𝛽𝑏𝜆/𝑑 − 𝛾 =

𝛾(𝑅
0
− 1) are the characteristic roots of the characteristic

equation. Therefore, we have the following theorem.

Theorem 3. (i) If 𝑅
0

< 1, then infection-free equilibrium
𝐸
1
(𝜆/𝑑, 0) is locally asymptotically stable.
(ii) If 𝑅

0
> 1, then infection-free equilibrium 𝐸

1
(𝜆/𝑑, 0) is

unstable.
(iii) If 𝑅

0
= 1, then infection-free equilibrium 𝐸

1
(𝜆/𝑑, 0) is

degenerated.

Now, local stability of the infection equilibrium 𝐸
2
((𝛾 +

𝛼𝑏𝜆)/𝑏(𝑑𝛼+𝛽), 𝑑(𝑅
0
−1)/(𝑑𝛼+𝛽)) is considered. Aswe know,

infection equilibrium𝐸
2
((𝛾+𝛼𝑏𝜆)/𝑏(𝑑𝛼+𝛽), 𝑑(𝑅

0
−1)/(𝑑𝛼+

𝛽)) exists if and only if 𝑅
0
> 1.

Theorem 4. If 𝑅
0
> 1, then the infection equilibrium 𝐸

2
is

locally asymptotically stable.

Proof. Set 𝑓(𝑥, V) = 𝛽𝑥V/(1 + 𝛼V). Then system (8) at the
equilibrium 𝐸

2
(𝑥∗, V∗) has Jacobian matrix

𝐴 = (

−𝑑 −
𝜕𝑓

𝜕𝑥
(𝑥∗, V∗) , −

𝜕𝑓

𝜕V
(𝑥∗, V∗)

𝑏
𝜕𝑓

𝜕𝑥
(𝑥∗, V∗) , 𝑏

𝜕𝑓

𝜕V
(𝑥∗, V∗) − 𝛾

) . (30)

A direct computation shows that the characteristic equation
is

ℎ (𝜇) = 𝜇2 + [𝑑 + 𝛾 +
𝜕𝑓

𝜕𝑥
(𝑥∗, V∗) − 𝑏

𝜕𝑓

𝜕V
(𝑥∗, V∗)] 𝜇

+ 𝑑𝛾 − 𝑏𝑑
𝜕𝑓

𝜕V
(𝑥∗, V∗) + 𝛾

𝜕𝑓

𝜕𝑥
(𝑥∗, V∗) = 0.

(31)

By Hurwitz criterion, all of the eigenvalues of characteristic
equation have negative real parts if and only if

𝑑 + 𝛾 +
𝜕𝑓

𝜕𝑥
(𝑥∗, V∗) − 𝑏

𝜕𝑓

𝜕V
(𝑥∗, V∗) > 0,

𝑑𝛾 − 𝑏𝑑
𝜕𝑓

𝜕V
(𝑥∗, V∗) + 𝛾

𝜕𝑓

𝜕𝑥
(𝑥∗, V∗) > 0.

(32)

Indeed,

𝑑 + 𝛾 +
𝜕𝑓

𝜕𝑥
(𝑥∗, V∗) − 𝑏

𝜕𝑓

𝜕V
(𝑥∗, V∗)

=
(𝑑 + 𝛾) (1 + 𝛼V∗)2 + 𝛽V∗ (1 + 𝛼V∗) − 𝑏𝛽𝑥∗

(1 + 𝛼V∗)2

=
(𝛼2𝑑 + 𝛼2𝛾 + 𝛼𝛽) V∗2 + (2𝛼𝑑 + 2𝛾𝛼 + 𝛽) V∗ − 𝑏𝛽𝑥∗ + 𝑑 + 𝛾

(1 + 𝛼V∗)2

=
(𝛼2𝑑 + 𝛼2𝛾 + 𝛼𝛽) V∗2 + (2𝛼𝑑 + 𝛾𝛼 + 𝛽) V∗ + 𝑑

(1 + 𝛼V∗)2
> 0,

𝑑𝛾 − 𝑏𝑑
𝜕𝑓

𝜕V
(𝑥∗, V∗) + 𝛾

𝜕𝑓

𝜕𝑥
(𝑥∗, V∗)

=
𝑑𝛾(1 + 𝛼V∗)2 − 𝑏𝑑𝛽𝑥∗ + 𝛾𝛽V∗ + 𝛾𝛽𝛼V∗2

(1 + 𝛼V∗)2

=
(𝛼2𝑑𝛾 + 𝛼𝛾𝛽) V∗2 + (𝑑𝛼𝛾 + 𝛾𝛽) V∗

(1 + 𝛼V∗)2
> 0.

(33)

This implies that all the eigenvalues of characteristic equation
have negative real parts. Then the infection equilibrium 𝐸

2
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is locally asymptotically stable. This completes the proof of
theorem.

Now we consider the case 𝜏 > 0. By linearizing system
(8) at the infection-free equilibrium𝐸

1
(𝜆/𝑑, 0), we obtain the

characteristic equation as follows:

(𝜇 + 𝑑) (𝜇 + 𝛾 − 𝑒−𝜇𝜏𝛽𝑏
𝜆

𝑑
) = 0. (34)

It is easy to see that 𝜇
1
= −𝑑 < 0; hence we only need to

discuss the roots of the following equation:

ℎ (𝜇, 𝜏) = 𝜇 + 𝛾 − 𝑒−𝜇𝜏𝛽𝑏
𝜆

𝑑
= 0. (35)

Theorem 5. When 𝜏 > 0, then
(i) If 𝑅

0
< 1, then the infection-free equilibrium

𝐸
1
(𝜆/𝑑, 0) is locally asymptotically stable.

(ii) If 𝑅
0

> 1, then the infection-free equilibrium
𝐸
1
(𝜆/𝑑, 0) is unstable.

(iii) If 𝑅
0

= 1, then the infection-free equilibrium
𝐸
1
(𝜆/𝑑, 0) is degenerated.

Proof. (i) By implicit function theorem for complex variables,
we know that the roots of (35) are continuous on the
parameter 𝜏.

If 𝑅
0
< 1, then 0 is not a root of (35) for all 𝜏 > 0. Note

that all complex roots of (35) must come in conjugate pairs
and the root of (35) is negative for 𝜏 = 0. Thus, all roots of
(35) have negative real parts for small 𝜏; that is, 0 < 𝜏 = 1.
Suppose that there exists a positive number 𝜏 = 𝜏

0
such that

(35) has a pair of purely imaginary roots 𝜆 = ±𝜔𝑖; here 𝜔 is a
positive number. We have

𝜔𝑖 + 𝛾 − 𝑒−𝜔𝑖𝜏0𝛽𝑏
𝜆

𝑑
= 0. (36)

Then

𝛽𝑏
𝜆

𝑑
cos𝜔𝜏

0
= 𝛾,

𝛽𝑏
𝜆

𝑑
sin𝜔𝜏

0
= −𝜔.

(37)

Summing up the square of both equations in (37) we obtain

𝜔2 = 𝛽2𝑏2
𝜆2

𝑑2
− 𝛾2 =

𝛽2𝑏2𝜆2 − 𝛾2𝑑2

𝑑2
=
𝑅2
0
𝑑2𝛾2 − 𝛾2𝑑2

𝑑2

= 𝛾2 (𝑅2
0
− 1) .

(38)

When 𝑅
0
< 1, then 𝜔2 < 0. It is a contradiction with 𝜔2 >

0 which leads to the nonexistence of 𝜏
0
. This contradiction

proves the result.
(ii) When 𝜇 = 0, and 𝑅

0
> 1, then

ℎ (0, 𝜏) = 𝛾 − 𝛽𝑏
𝜆

𝑑
= 𝛾 (1 − 𝑅

0
) < 0,

lim
𝜇→∞

ℎ (𝜇, 𝜏) = +∞.

(39)

Therefore equationmust have a positive real root for all 𝜏 > 0.

(iii) If 𝑅
0
= 1, it is easy to know that 𝜇 = 0 is a root of (35)

for all 𝜏 > 0, which leads to conclusion. (iii) This completes
the proof of theorem.

Now we consider the local stability of the infection
equilibrium𝐸

2
((𝛾+𝛼𝑏𝜆)/𝑏(𝑑𝛼+𝛽), 𝑑(𝑅

0
−1)/(𝑑𝛼+𝛽)). As we

know, the infection equilibrium𝐸
2
((𝛾+𝛼𝑏𝜆)/𝑏(𝑑𝛼+𝛽), 𝑑(𝑅

0
−

1)/(𝑑𝛼 + 𝛽)) exists if and only if 𝑅
0
> 1. By computation, the

associated transcendental characteristic equation of (8) at 𝐸
2

becomes

𝜇2 + 𝐴𝜇 + 𝐵 − (𝐶𝜇 + 𝐷) 𝑒−𝜇𝜏 = 0, (40)

where

𝐴 = 𝑑 + 𝛾 +
𝜕𝑓

𝜕𝑥
(𝑥∗, V∗) , 𝐵 = (𝑑 +

𝜕𝑓

𝜕𝑥
(𝑥∗, V∗)) 𝛾,

𝐶 = 𝑏
𝜕𝑓

𝜕V
(𝑥∗, V∗) , 𝐷 = 𝑑𝑏

𝜕𝑓

𝜕V
(𝑥∗, V∗) .

(41)

Theorem 6. When 𝜏 > 0, if 𝑅
0

> 1, then the infection
equilibrium 𝐸

2
is locally asymptotically stable.

Proof. By implicit function theorem for complex variables,
we know that the root of (40) is continuous on the parameter
𝜏. If 𝑅

0
> 1, then all roots of (40) have negative real parts

as 𝜏 = 0 and (40) has no zero root for all 𝜏 > 0. Thus, all
roots of (40) have negative real parts for very small 𝜏; that is,
0 < 𝜏 ≪ 1. Assume that there exists a positive 𝜏

0
such that

(40) has a pair of purely imaginary roots ±𝜔𝑖, 𝜔 > 0. Then
𝜔 > 0must satisfy

−𝜔2 + 𝐴𝜔𝑖 + 𝐵 − (𝐶𝜔𝑖 + 𝐷) (cos𝜔𝜏
0
− 𝑖 sin𝜔𝜏

0
) = 0. (42)

Separating the real and imaginary parts, we have

𝐶𝜔 sin𝜔𝜏
0
+ 𝐷 cos𝜔𝜏

0
= 𝐵 − 𝜔2,

𝐷 sin𝜔𝜏
0
− 𝐶𝜔 cos𝜔𝜏

0
= −𝐴𝜔

(43)

which implies that

𝜔4 + (𝐴2 − 2𝐵 − 𝐶2) 𝜔2 + 𝐵2 − 𝐷2 = 0. (44)

Direct computation shows that

𝐵2 − 𝐷2 = [𝛾(𝑑 +
𝜕𝑓

𝜕𝑥
(𝑥∗, V∗))]

2

− [𝑑𝑏
𝜕𝑓

𝜕V
(𝑥∗, V∗)]

2

= [𝛾
𝜕𝑓

𝜕𝑥
(𝑥∗, V∗) + 𝛾𝑑 − 𝑑𝑏

𝜕𝑓

𝜕V
(𝑥∗, V∗)]

× [𝛾
𝜕𝑓

𝜕𝑥
(𝑥∗, V∗) + 𝛾𝑑 + 𝑑𝑏

𝜕𝑓

𝜕V
(𝑥∗, V∗)] > 0,
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𝐴2 − 2𝐵 − 𝐶2 = 𝑑2 + 𝛾2 + (
𝜕𝑓

𝜕𝑥
(𝑥∗, V∗))

2

+ 2𝑑
𝜕𝑓

𝜕𝑥
(𝑥∗, V∗)

− 𝑏2(
𝜕𝑓

𝜕V
(𝑥∗, V∗))

2

= (𝑑 +
𝜕𝑓

𝜕𝑥
(𝑥∗, V∗))

2

− 𝑏2(
𝜕𝑓

𝜕V
(𝑥∗, V∗))

2

+ 𝛾2

= ((𝑑2 + 𝛾2) (1 + 𝛼V∗)4 + 𝛽2(V∗)2(1 + 𝛼V∗)2

+ 2𝑑𝛽V∗(1 + 𝛼V∗)3 − 𝑏2𝛽2(𝑥∗)
2
)

× ((1 + 𝛼V∗)4)
−1

.

(45)

Let

𝐻(𝑥∗, V∗) = (𝑑2 + 𝛾2) (1 + 𝛼V∗)4 + 𝛽2(V∗)2(1 + 𝛼V∗)2

+2 𝑑𝛽V∗(1 + 𝛼V∗)3 − 𝑏2𝛽2(𝑥∗)
2
.

(46)

Note that 1 + 𝛼V∗ = (𝛽𝑏/𝛾)𝑥∗,

𝐻(𝑥∗, V∗)

= (𝑑2 + 𝛾2)
𝛽4𝑏4

𝛾4
(𝑥∗)
4
+ 𝛽2(V∗)2

𝛽2𝑏2

𝛾2
(𝑥∗)
2

+ 2𝑑𝛽V∗
𝛽3𝑏3

𝛾3
(𝑥∗)
3
− 𝛽2𝑏2(𝑥∗)

2

= (𝑥∗)
2
[
𝛽4𝑏2

𝛾4
(𝑏2𝑑2(𝑥∗)

2
+ 𝛾2(V∗)2 + 2𝛾𝑑𝑏V∗𝑥∗)

+
𝛽4𝑏4

𝛾2
(𝑥∗)
2
− 𝑏2𝛽2]

= (𝑥∗)
2
[
𝛽4𝑏2

𝛾4
(𝑏𝑑𝑥∗ + 𝛾V∗)2 +

𝛽2𝑏2

𝛾2
(𝛽2𝑏2(𝑥∗)

2
− 𝛾2)]

= (𝑥∗)
2
[
𝛽4𝑏2

𝛾4
(𝑏𝑑𝑥∗ + 𝛾V∗)2 + 𝛽2𝑏2 (𝛼2(V∗)2 + 2𝛼V∗)]

> 0.

(47)

By Hurwitz criterion, (44) has no positive roots, which
implies the nonexistence of 𝜏

0
. Thus all roots of (40) have

negative real parts for 𝜏 > 0.

3.2. Global Stability of Equilibria. In the section, we study the
global stability of equilibria; we first consider the infection-
free equilibrium 𝐸

1
.

Theorem 7. When 𝜏 = 0,
(i) If 𝑅

0
≤ 1, then infection-free equilibrium 𝐸

1
(𝜆/𝑑, 0) is

globally asymptotically stable.

(ii) If 𝑅
0

> 1, then infection equilibrium 𝐸
2
(𝑥∗, V∗) is

globally asymptotically stable.

Proof. (i) Define a Lyapunov function as what follows

𝑉 (𝑥, V) = 𝑥 −
𝜆

𝑑
ln𝑥 +

V
𝑏
+
𝜆

𝑑
ln 𝜆

𝑑
−
𝜆

𝑑
,

𝑑𝑉(𝑥, V)
𝑑𝑡

(8)

=
𝑥 − 𝜆/𝑑

𝑥
(𝜆 − 𝑑𝑥 −

𝛽𝑥V
1 + 𝛼V

) +
1

𝑏
(
𝛽𝑏𝑥V
1 + 𝛼V

− 𝛾V)

= −
(𝑑𝑥 − 𝜆)2

𝑑𝑥
+

𝛽𝑥V
1 + 𝛼V

(1 −
𝑑𝑥 − 𝜆

𝑑𝑥
) −

𝛾

𝑏
V

= −
(𝑑𝑥 − 𝜆)2

𝑑𝑥
+ (

𝛽𝜆

𝑑 (1 + 𝛼V)
−
𝛾

𝑏
) V

= −
(𝑑𝑥 − 𝜆)2

𝑑𝑥
+
𝛾

𝑏
(𝑅
0
− 1) V −

𝛽𝛾

𝑑

𝛼V2

1 + 𝛼V
.

(48)

It means that 𝑑𝑉(𝑥, V)/𝑑𝑡|
(8)

is negative semidefinite as 𝑅
0
≤

1. Moreover, the last equality of the above equation shows
that the largest invariant set of system (8) on the region
{(𝑥, V)𝑇 ∈ R2

+
: 𝑑𝑉/𝑑𝑡 = 0} is the singleton {𝐸

1
}. Therefore,

the infection-free equilibrium 𝐸
1
is global asymptotically

stability.
(ii) We rewrite the system (8)

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝑥 (𝑡) −

𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

= 𝑄 (𝑥, V) ,

𝑑V (𝑡)
𝑑𝑡

= 𝛽𝑏
𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

− 𝛾V (𝑡) = 𝑃 (𝑥, V) .

(49)

Choose a Dulac function

𝐷(𝑥, V) =
1 + 𝛼V
𝛽V

. (50)

We have

𝜕 (𝐷𝑃)

𝜕V
+
𝜕 (𝐷𝑄)

𝜕𝑥
= −

𝛾𝛼

𝛽
− 𝑑

1 + 𝛼V
𝛽V

− 1 < 0. (51)

Thus system (49) does not have nontrivial periodic orbits in
Ω. The conclusion follows.

Theorem 8. When 𝜏 > 0, if 𝑅
0

≤ 1, then infection-free
equilibrium 𝐸

1
(𝜆/𝑑, 0) is globally asymptotically stable.
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Proof. Define a functional 𝑔 : 𝐶+ → R as follows:

𝑔 (𝜑
1
, 𝜑
2
) =

1

2
[𝜑
1
(0) −

𝜆

𝑑
]
2

+
𝜆

𝑑
[𝜑
2
(0) + 𝛽𝑏∫

0

−𝜏

𝜑
1 (𝜃) 𝜑2 (𝜃)

1 + 𝛼𝜑
2
(𝜃)

𝑑𝜃] .

(52)

For any 𝑡 ≥ 0, 𝑥
𝑡
, V
𝑡
∈ 𝐶, then

𝑔 (𝑥
𝑡
, V
𝑡
) =

𝑏

2
[𝑥 (𝑡) −

𝜆

𝑑
]
2

+
𝜆

𝑑
[V (𝑡) + 𝛽𝑏∫

𝑡

𝑡−𝜏

𝑥 (𝜃) V (𝜃)
1 + 𝛼V (𝜃)

𝑑𝜃] ,

𝑑𝑔 (𝑥
𝑡
, V
𝑡
)

𝑑𝑡
= 𝑏 (𝑥 (𝑡) −

𝜆

𝑑
)
𝑑𝑥 (𝑡)

𝑑𝑡
+
𝜆

𝑑

𝑑V (𝑡)
𝑑𝑡

+
𝛽𝑏𝜆

𝑑
[
𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

−
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
]

= 𝑏 [𝑥 (𝑡) −
𝜆

𝑑
] [𝜆 − 𝑑𝑥 (𝑡) −

𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

]

+
𝜆

𝑑
[𝛽𝑏

𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

− 𝛾V (𝑡)]

= − 𝑏𝑑[𝑥 (𝑡) −
𝜆

𝑑
]
2

− 𝛽𝑏
𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

[𝑥 (𝑡) −
𝜆

𝑑
]

+
𝜆

𝑑
[𝛽𝑏

𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

− 𝛾V (𝑡)]

= − 𝑏(𝑑 +
𝛽V (𝑡)

1 + 𝛼V (𝑡)
) [𝑥 (𝑡) −

𝜆

𝑑
]
2

+
𝜆V (𝑡)
𝑑

(
𝛽𝑏𝜆

𝑑 (1 + 𝛼V (𝑡))
− 𝛾)

= − 𝑏(𝑑 +
𝛽V (𝑡)

1 + 𝛼V (𝑡)
) [𝑥 (𝑡) −

𝜆

𝑑
]
2

+
𝜆V (𝑡) 𝛾

𝑑
(

𝑅
0

1 + 𝛼V (𝑡)
− 1)

= − 𝑏(𝑑 +
𝛽V (𝑡)

1 + 𝛼V (𝑡)
) [𝑥 (𝑡) −

𝜆

𝑑
]
2

+
𝜆V (𝑡) 𝛾

𝑑
(𝑅
0
− 1) −

𝛼V (𝑡) 𝑅
0

1 + 𝛼V (𝑡)

≤ − 𝑏(𝑑 +
𝛽V (𝑡)

1 + 𝛼V (𝑡)
) [𝑥 (𝑡) −

𝜆

𝑑
]
2

+
𝜆V (𝑡) 𝛾

𝑑
(𝑅
0
− 1) .

(53)

Then,

𝑑𝑔 (𝜑
1
, 𝜑
2
)

𝑑𝑡

(8)
= −𝑏(𝑑 +

𝛽𝜑
2
(0)

1 + 𝛼𝜑
2 (0)

) [𝜑
1
(0) −

𝜆

𝑑
]
2

+
𝜆𝜑
2
(0) 𝛾

𝑑
(𝑅
0
− 1) −

𝛼𝜑
2
(0) 𝑅
0

1 + 𝛼𝜑
2
(0)

.

(54)

When 𝑅
0
≤ 1, we have 𝑑𝑔(𝑥

𝑡
, V
𝑡
)/𝑑𝑡 ≤ 0. It is easy to know,

when 𝑅
0
≤ 1 the largest invariant set of system (8) on the

region {(𝜑
1
, 𝜑
2
) ∈ 𝐶+ : 𝑑𝑔(𝜑

1
, 𝜑
2
)/𝑑𝑡 = 0} is the singleton

{𝐸
1
}. By Lassalle invariant principle for autonomous retarded

differential equations [11], infection-free equilibrium 𝐸
1
is

globally asymptotically stable. This completes the proof.

Theorem 9. When 𝜏 > 0, if 𝑅
0

> 1, then the infection
equilibrium 𝐸

2
(𝑥∗, V∗) is globally asymptotically stable.

Proof. Let𝑉(𝑡) = V(𝑡+𝜏) and𝑋(𝑡) = 𝑥(𝑡); system (8) becomes

𝑑𝑋 (𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝑋 (𝑡) −

𝛽𝑋 (𝑡) 𝑉 (𝑡 − 𝜏)

1 + 𝛼𝑉 (𝑡 − 𝜏)
,

𝑑𝑉 (𝑡)

𝑑𝑡
= 𝛽𝑏

𝑋 (𝑡) 𝑉 (𝑡 − 𝜏)

1 + 𝛼𝑉 (𝑡 − 𝜏)
− 𝛾𝑉 (𝑡) .

(55)

Denote 𝑢(𝑥) = 𝑥/(1 + 𝛼𝑥). Evaluating both sides of (55)
at 𝐸
2
, we obtain

𝜆 = 𝑑𝑥∗ + 𝛽𝑥∗𝑢 (V∗) , 𝛾V∗ = 𝛽𝑏𝑥∗𝑢 (V∗) . (56)

Define a Lyapunov functional 𝐿 : 𝐶+ → R as follows:

𝐿 (𝜑
1
, 𝜑
2
) =

1

𝛽𝑢 (V∗)
𝐿
1
(𝜑
1
, 𝜑
2
) +

V∗

𝛽𝑏𝑥∗𝑢 (V∗)
𝐿
2
(𝜑
1
, 𝜑
2
)

+ 𝐿
3
(𝜑
1
, 𝜑
2
) ,

(57)

where

𝐿
1
(𝜑
1
, 𝜑
2
) =

𝜑
1
(0)

𝑥∗
− 1 − ln

𝜑
1
(0)

𝑥∗
,

𝐿
2
(𝜑
1
, 𝜑
2
) =

𝜑
2
(0)

V∗
− 1 − ln

𝜑
2
(0)

V∗
,

𝐿
3
(𝜑
1
, 𝜑
2
) = ∫

0

−𝜏

(
𝜑
2 (𝜃)

V∗
− 1 − ln

𝜑
2 (𝜃)

V∗
)𝑑𝜃.

(58)

Thus, 𝐿(𝜑
1
, 𝜑
2
) ≥ 0 with equality if and only if 𝜑

1
(0)/𝑥∗ =

𝜑
2
(0)/V∗ = 1.
For any 𝑡 ≥ 0,𝑋

𝑡
, 𝑉
𝑡
∈ 𝐶, then

𝐿
1
(𝑋
𝑡
, 𝑉
𝑡
) =

𝑋 (𝑡)

𝑥∗
− 1 − ln 𝑋 (𝑡)

𝑥∗
,

𝐿
2
(𝑋
𝑡
, 𝑉
𝑡
) =

𝑉 (𝑡)

V∗
− 1 − ln 𝑉 (𝑡)

V∗
,

𝐿
3
(𝑋
𝑡
, 𝑉
𝑡
) = ∫
0

−𝜏

(
𝑉 (𝑡 + 𝜃)

V∗
− 1 − ln 𝑉 (𝑡 + 𝜃)

V∗
)𝑑𝜃.

(59)
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We calculate derivatives of 𝐿
1
(𝑋
𝑡
, 𝑉
𝑡
), 𝐿
2
(𝑋
𝑡
, 𝑉
𝑡
), and

𝐿
3
(𝑋
𝑡
, 𝑉
𝑡
) with respect to the system (55):

𝑑𝐿
1
(𝑋
𝑡
, 𝑉
𝑡
)

𝑑𝑡

=
1

𝑥∗
(1 −

𝑥∗

𝑋
) (𝜆 − 𝑑𝑋 − 𝛽𝑋𝑢 (𝑉 (𝑡 − 𝜏)))

=
1

𝑥∗
(1 −

𝑥∗

𝑋
) (𝑑𝑥∗ + 𝛽𝑥∗𝑢 (V∗) − 𝑑𝑋 − 𝛽𝑋𝑢 (𝑉 (𝑡 − 𝜏)))

= −𝑑
(𝑋 − 𝑥∗)

2

𝑋𝑥∗
+ 𝛽𝑢 (V∗) (1 −

𝑥∗

𝑋
)(1 −

𝑋𝑢 (𝑉 (𝑡 − 𝜏))

𝑥∗𝑢 (V∗)
)

= −𝑑
(𝑋 − 𝑥∗)

2

𝑋𝑥∗

+ 𝛽𝑢 (V∗) (1 −
𝑥∗

𝑋
+
𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
−
𝑋𝑢 (𝑉 (𝑡 − 𝜏))

𝑥∗𝑢 (V∗)
) ,

𝑑𝐿
2
(𝑋
𝑡
, 𝑉
𝑡
)

𝑑𝑡

=
1

V∗
(1 −

V∗

𝑉
) (𝛽𝑏𝑋𝑢 (𝑉 (𝑡 − 𝜏)) − 𝛾𝑉)

=
1

V∗
(1 −

V∗

𝑉
)(𝛽𝑏𝑥∗𝑢 (V∗)

𝑋𝑢 (𝑉 (𝑡 − 𝜏))

𝑥∗𝑢 (V∗)
− 𝛾

𝑉V∗

V∗
)

= 𝛽𝑏
𝑥∗

V∗
𝑢 (V∗) (1 −

V∗

𝑉
)(

𝑋

𝑥∗
𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
−

𝑉

V∗
)

= 𝛽𝑏
𝑥∗

V∗
𝑢 (V∗)

× (1 −
V∗

𝑉

𝑋

𝑥∗
𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
+

𝑋

𝑥∗
𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
−

𝑉

V∗
) ,

𝑑𝐿
3
(𝑋
𝑡
, 𝑉
𝑡
)

𝑑𝑡

= ∫
0

−𝜏

𝑑

𝑑𝑡
(
𝑉 (𝑡 + 𝜃)

V∗
− 1 − ln 𝑉 (𝑡 + 𝜃)

V∗
)𝑑𝜃

=
𝑉 (𝑡)

V∗
− ln 𝑉 (𝑡)

V∗
−
𝑉 (𝑡 − 𝜏)

V∗
+ ln 𝑉 (𝑡 − 𝜏)

V∗
.

(60)

We obtain

𝑑𝐿 (𝑋
𝑡
, 𝑉
𝑡
)

𝑑𝑡

= −
𝑑

𝛽𝑢 (V∗)
(𝑋 − 𝑥∗)

2

𝑋𝑥∗
+ 1 −

𝑥∗

𝑋

+
𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
−
𝑋𝑢 (𝑉 (𝑡 − 𝜏))

𝑥∗𝑢 (V∗)
+ 1 −

V∗

𝑉

𝑋

𝑥∗
𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)

+
𝑋

𝑥∗
𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
−

𝑉

V∗
+

𝑉

V∗
− ln 𝑉

V∗
−
𝑉 (𝑡 − 𝜏)

V∗

+ ln 𝑉 (𝑡 − 𝜏)

V∗

= −
𝑑

𝛽𝑢 (V∗)
(𝑋 − 𝑥∗)

2

𝑋𝑥∗
+ 2 −

𝑥∗

𝑋
+
𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)

−
V∗

𝑉

𝑋

𝑥∗
𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)

− ln 𝑉

V∗
−
𝑉 (𝑡 − 𝜏)

V∗
+ ln 𝑉 (𝑡 − 𝜏)

V∗
.

(61)

By adding and subtracting the quantity ln((𝑋/𝑥∗)(𝑢(𝑉(𝑡 −
𝜏))/𝑢(V∗))), we have

𝑑𝐿 (𝑋
𝑡
, 𝑉
𝑡
)

𝑑𝑡

= −
𝑑

𝛽𝑢 (V∗)
(𝑋 − 𝑥∗)

2

𝑋𝑥∗
+ 2 −

𝑥∗

𝑋

+
𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
−
V∗

𝑉

𝑋

𝑥∗
𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)

−
𝑉 (𝑡 − 𝜏)

V∗
+ ln 𝑉 (𝑡 − 𝜏)

V∗
+ ln( 𝑋

𝑥∗
V∗

𝑉

𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
)

− ln( 𝑋

𝑥∗
) − ln(𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
)

= −
𝑑

𝛽𝑢 (V∗)
(𝑋 − 𝑥∗)

2

𝑋𝑥∗
− (

𝑥∗

𝑋
− 1 + ln 𝑋

𝑥∗
)

− (
𝑋

𝑥∗
V∗

𝑉

𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
− 1

− ln( 𝑋

𝑥∗
V∗

𝑉

𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
))

+
𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
−
𝑉 (𝑡 − 𝜏)

V∗

+ ln 𝑉 (𝑡 − 𝜏)

V∗
− ln(𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
) .

(62)

Then,

𝑑𝐿 (𝜑
1
, 𝜑
2
)

𝑑𝑡
= −

𝑑

𝛽𝑢 (V∗)
(𝜑
1 (0) − 𝑥∗)

2

𝜑
1
(0) 𝑥∗

− (
𝑥∗

𝜑
1
(0)

− 1 + ln
𝜑
1
(0)

𝑥∗
)

− (
𝜑
1 (0)

𝑥∗
V∗

𝜑
2
(0)

𝑢 (𝜑
2 (−𝜏))

𝑢 (V∗)
− 1

− ln(
𝜑
1 (0)

𝑥∗
V∗

𝜑
2
(0)

𝑢 (𝜑
2 (−𝜏))

𝑢 (V∗)
))
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+
𝑢 (𝜑
2 (−𝜏))

𝑢 (V∗)
−
𝜑
2
(−𝜏)

V∗

+ ln
𝜑
2 (−𝜏)

V∗
− ln(

𝑢 (𝜑
2 (−𝜏))

𝑢 (V∗)
) .

(63)

It is easy to know that 𝑢(𝜑
2
(−𝜏))/𝑢(V∗) − 𝜑

2
(−𝜏)/V∗ +

ln(𝜑
2
(−𝜏)/V∗) − ln(𝑢(𝜑

2
(−𝜏))/𝑢(V∗)) ≤ 0, and 𝑢(𝜑

2
(−𝜏))/

𝑢(V∗) − 𝜑
2
(−𝜏)/V∗ + ln(𝜑

2
(−𝜏)/V∗) − ln(𝑢(𝜑

2
(−𝜏))/𝑢(V∗)) = 0

if and only if 𝜑
2
(−𝜏)/V∗ = 1. It follows that 𝑑𝐿(𝜑

1
, 𝜑
2
)/𝑑𝑡 ≤ 0,

and 𝑑𝐿(𝜑
1
, 𝜑
2
)/𝑑𝑡 = 0 if and only if 𝜑

1
(0)/𝑥∗ = 𝜑

2
(0)/V∗ =

𝜑
2
(−𝜏)/V∗ = 1. By classical stability theory for functional

differential equations, 𝐸
2
is globally asymptotically stable.

This completes the proof.

4. Conclusion

The viral infection model addressed in this paper has satu-
rated incidence rate and viral infection with delay. The basic
reproductive number𝑅

0
is given.When𝑅

0
< 1, for themodel

with or without delay time, the infection-free equilibrium is
globally asymptotically stable, which implies that the viral
infection goes extinct eventually; when 𝑅

0
> 1, the infection

equilibrium is globally asymptotically stable, which implies
that the viral infection persists in the body of the host.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was partially supported by National Natural
Science Foundation of China (no. 11371107 and no. 11031002),
Research Fund for the Doctoral Program of Higher Edu-
cation of China (no. 20124410110001), and Program for
Changjiang Scholars and Innovative Research Team in Uni-
versity (IRT1226).

References

[1] M. A. Nowak, S. Bonhoeffer, A. M. Hill, R. Boehme, H. C.
Thomas, and H. Mcdade, “Viral dynamics in hepatitis B virus
infection,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 93, no. 9, pp. 4398–4402, 1996.

[2] A. Korobeinikov, “Global properties of basic virus dynamics
models,” Bulletin of Mathematical Biology, vol. 66, no. 4, pp.
879–883, 2004.

[3] A. M. Elaiw, “Global properties of a class of HIV models,”
Nonlinear Analysis: Real World Applications, vol. 11, no. 4, pp.
2253–2263, 2010.

[4] J. Li, X. Song, and F. Gao, “Global stability of a viral infection
model with two delays and two types of target cells,”The Journal
of Applied Analysis and Computation, vol. 2, no. 3, pp. 281–292,
2012.

[5] R. Qesmi, J. Wu, J. Wu, and J. M. Heffernan, “Influence of
backward bifurcation in a model of hepatitis B and C viruses,”
Mathematical Biosciences, vol. 224, no. 2, pp. 118–125, 2010.

[6] D. Sansonno, A. R. Iacobelli, V. Cornacchiulo et al., “Detection
of hepatitis C virus (HIV) proteins by immunouorescence and
HCVRNAgenomic sequences by nonisotopic in situ hybridiza-
tion in bone marrow and peripheral blood mononnuclear
cells of chronically HCV infected,” Clinical & Experimental
Immunology, vol. 103, pp. 414–421, 1996.

[7] D. Wodarz and D. N. Levy, “Human immunodeficiency virus
evolution towards reduced replicative fitness in vivo and the
development of AIDS,” Proceedings of the Royal Society B:
Biological Sciences, vol. 274, no. 1624, pp. 2481–2490, 2007.

[8] X. Zhou, X. Song, and X. Shi, “A differential equation model
of HIV infection of CD4+ T-cells with cure rate,” Journal of
Mathematical Analysis and Applications, vol. 342, no. 2, pp.
1342–1355, 2008.

[9] V. Capasso and G. Serio, “A generalization of the Kermack-
McKendrick deterministic epidemic model,”Mathematical Bio-
sciences, vol. 42, no. 1-2, pp. 43–61, 1978.

[10] P. van denDriessche and J.Watmough, “Reproduction numbers
and sub-threshold endemic equilibria for compartmental mod-
els of disease transmission,”Mathematical Biosciences, vol. 180,
pp. 29–48, 2002.

[11] J. Hale, Theory of Functional Differential Equations, Springer,
New York, NY, USA, 2nd edition, 1977.


