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This paper focuses on a class of stochastic differential equations with mixed delay based on Lyapunov stability theory, Itô formula,
stochastic analysis, and inequality technique. A sufficient condition for existence and uniqueness of the adapted solution to such
systems is established by employing fixed point theorem. Some sufficient conditions of exponential stability and corollaries for such
systems are obtained by using Lyapunov function. By utilizing Doob’s martingale inequality and Borel-Cantelli lemma, it is shown
that the exponentially stable in the mean square of such systems implies the almost surely exponentially stable. In particular, our
theoretical results show that if stochastic differential equation is exponentially stable and the time delay is sufficiently small, then
the corresponding stochastic differential equation with mixed delay will remain exponentially stable. Moreover, time delay upper
limit is solved by using our theoretical results when the system is exponentially stable, and they are more easily verified and applied
in practice.

1. Introduction

The nondeterministic (i.e., stochastic) phenomena are fre-
quently encountered in many practical systems. These sys-
tems should be described by stochastic differential equations
(SDEs for short) instead of ordinary ones. On the other
hand, time delays are included in many practical systems,
such as networks control systems, traffic systems, produc-
tion process control systems, and population and economic
dynamic systems, that is, the current and future states of
the systems dependent on their departed states. In current
years, the study of analysis and synthesis of stochastic time
delay systems, which are described by stochastic delayed
differential equations (SDDEs for short), is a popular topic
in the field of control theory [1–7]. Because the existence of
time delay is often the reason of instability and deteriorates
the control performance, the studies on time delay systems
stability and control have important theoretical and practical
values.

A real dynamic system is influenced by both stochastic
disturbances and time delays, so when we consider the
behavior of a dynamic system, we use the stochastic delayed

differential equation and the stochastic functional differential
equation (SFDE for short) as modeling tools to investigate
stability of stochastic dynamic systems with discrete delays
or distributed delays. So far, these topics have received a lot
of attention and there are so many references about them.
For example, Cong [1] and Li et al. [2] obtained exponential
stability conditions of linear stochastic neutral delay systems.
Mao [8], Mao and Shah [9], Zhu and Hu [10], Zhu and Hu
[11], S. Xie and L. Xie [12], and Zhu et al. [13] established
some stability criteria of the stochastic system with discrete
delays. An improved delay-dependent stability criterion is
derived for stochastic delay systems by a strict LMI in [14].
Hu and Wu [15], Wu et al. [16], Yin et al. [17], and Zhou
et al. [18] established some stability criteria of the stochastic
system with distributed delays. However, discrete delays and
distributed delays always coexist in real dynamic systems;
thus, it is reasonable to consider them together and it leads
us to investigate stochastic differential equations with mixed
delays (SMDDEs for short).

Although stochastic differential systems with mixed
delays received increasing attention recently, there is a little
previous literature, as systematic research on such system
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has not been developed yet. For example, Zhu and Song
[19] obtained some exponential stability results for a class
of impulsive nonlinear stochastic differential equations with
mixed delays by Razumikhin technique, but these sufficient
conditions only ensure the exponential stability of the trivial
solution in the mean square and did not give a bound
for the time delay 𝛿. Deng et al. [20] and L. Xu and D.
Xu [21] focused on the corresponding study of exponential
stability of neural network model. Thus, this paper aims to
fill the gap in a sense. In this paper, we investigate not only
the exponential stability in the mean square but also the
almost surely exponential stability for a class of SMDDEs
based on Lyapunov stability theory, Itô formula, stochastic
analysis, inequality technique, and so on. We first consider
the existence and uniqueness of the adapted solution by
employing fixed point theorem. Next, some sufficient con-
ditions of exponential stability and corollaries for stochastic
differential systems with mixed delays are obtained by using
Lyapunov function. By utilizing Doob’s martingale inequality
and Borel-Cantelli lemma, it is shown that the exponentially
stable in the mean square of SMDDE implies the almost
surely exponentially stable. The obtained results generalize
and improve some recent results (for instance, [19–21]).
In particular, our theoretical results show that if SDE is
exponentially stable and the time delay is sufficiently small,
then the corresponding SMDDE will remain exponentially
stable. Moreover, the time delay upper limit is solved by
using our theoretical results when the system is exponentially
stable, and they are more easily verified and applied in
practice. It should be mentioned that the approach provided
here is different from those used in [19–21]. Finally, we present
a simple example to illustrate the effectiveness of our stable
results.

The rest of this paper is organized as follows. In Section 2,
we give the preliminary results about SMDDEs. Main results
and proofs for SMDDEs are provided in Section 3. Section
4 presents a simple example to illustrate our stable results.
Section 5 lists some concluding remarks.

2. Preliminaries

Throughout this paper and unless specified, we let 𝑊(𝑡) =
(𝑊
1
(𝑡), . . . ,𝑊

𝑚
(𝑡))
𝑇 be an m-dimensional Brownian motion

defined on a complete probability space (Ω,F, 𝑃) with a
natural filtration {F

𝑡
}
𝑡≥0

(i.e., F
𝑡
= 𝜎{𝑊(𝑠) : 0 ≤ 𝑠 ≤ 𝑡}

and augmented by all the P-null sets in F). Denote by | ⋅ |
the Euclidean norm. If 𝐴 is a vector or matrix, its transpose
is denoted by𝐴𝑇. If𝐴 is a matrix, denote by ‖𝐴‖ the operator
norm of 𝐴; that is, ‖𝐴‖ = sup{|𝐴𝑥| : |𝑥| = 1}. 𝜉(⋅) ∈ 𝐶[−𝛿, 0]
is the initial path of 𝑥, where 𝛿 > 0 is a given finite time
delay and 𝐶[−𝛿, 0] is the set of continuous functions from
[−𝛿, 0] into𝑅𝑛.Moreover, denote by𝐿𝑝

F0
(−𝛿, 0; 𝑅

𝑛
) the family

of 𝑅𝑛-valued adapted stochastic processes 𝜉(𝑠), −𝛿 ≤ 𝑠 ≤ 0

such that 𝜉(𝑠) isF
0
-measurable and 𝐸sup

−𝛿≤𝑡≤0
|𝜉(𝑡)|
𝑝
< +∞

(𝑝 > 1).
We also use the notation 𝐿2F(𝑠, 𝑟; 𝑅

𝑛
) = {𝜙(𝑡) : {𝜙(𝑡), 𝑠 ≤

𝑡 ≤ 𝑟} which is 𝑅𝑛-valued adapted stochastic processes s.t.
∫
𝑟

𝑠
𝐸|𝜙(𝑡)|

2
𝑑𝑡 < ∞}.

We consider the following stochastic differential equa-
tions with mixed delays:

𝑑𝑥 (𝑡) = 𝑏 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡)) 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡)) 𝑑𝑊 (𝑡) , 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜉 (𝑡) , 𝑡 ∈ [−𝛿, 0] ,

(1)

where 𝑏 ∈ 𝐶(𝑅+ ×𝑅𝑛 ×𝑅𝑛 ×𝑅𝑛, 𝑅𝑛) and 𝜎 ∈ 𝐶(𝑅+ ×𝑅𝑛 ×𝑅𝑛 ×
𝑅
𝑛
, 𝑅
𝑛×𝑚

) represent the nonlinear uncertainties and

𝑦 (𝑡) = ∫

0

−𝛿

𝑒
𝜇𝑠
𝑥 (𝑡 + 𝑠) 𝑑𝑠, 𝑧 (𝑡) = 𝑥 (𝑡 − 𝛿) (2)

represent given functional of the path segment 𝑥
𝑡
:= {𝑥(𝑡 +

𝑠); 𝑠 ∈ [−𝛿, 0]} of 𝑥; 𝜇 ∈ 𝑅
+ is the given averaging

parameter. Furthermore, we always assume that 𝑏(𝑡, 0, 0, 0) =
𝜎(𝑡, 0, 0, 0) ≡ 0 for the stability purpose of this paper.

For simplicity, in what follows, we write 𝜓 = 𝜓(𝑡)

sometimes, where 𝜓 = 𝑥, 𝑦, 𝑧, 𝜉.
To develop our theories and results, we need to intro-

duce the following concepts and important inequalities. For
stochastic system, exponential stability in mean square and
almost surely exponential stability are generally used [13].

Definition 1. The trivial solution of (1) is said to be 𝑝th
moment exponentially stable, if there exists a positive con-
stant 𝜀 such that

lim sup
𝑡→∞

1

𝑡
ln (𝐸𝑥(𝑡; 𝜉)


𝑝

) ≤ −𝜀 (3)

for any 𝜉 ∈ 𝐿𝑝
F0
(−𝛿, 0; 𝑅

𝑛
).

Especially, 𝑝 = 2, and it is called mean square exponen-
tially stable.

Definition 2. The trivial solution of (1) is said to be almost
surely exponentially stable. If there exists a positive constant
𝜂 such that

lim sup
𝑡→∞

1

𝑡
ln 𝑥 (𝑡; 𝜉)

 ≤ −𝜂 a.s. (4)

for any 𝜉 ∈ 𝐿𝑝
F0
(−𝛿, 0; 𝑅

𝑛
).

Lemma 3 (see [22]). For any real matrices 𝜉
1
, 𝜉
2
∈ 𝑅
𝑛 and a

constant 𝜃 > 0, the following matrix inequality holds:

2𝜉
1

𝑇
𝜉
2
≤ 𝜃𝜉
1

𝑇
𝜉
1
+
1

𝜃
𝜉
2

𝑇
𝜉
2
. (5)

Lemma 4 (Cauchy-Schwarz inequality). Let 𝑓 and 𝑔 be real
functions which are continuous on the closed interval [𝑎, 𝑏].
Then,

(∫

𝑏

𝑎

𝑓(𝑡)𝑔(𝑡)𝑑𝑡)

2

≤ ∫

𝑏

𝑎

𝑓(𝑡)
2
𝑑𝑡 ⋅ ∫

𝑏

𝑎

𝑔(𝑡)
2
𝑑𝑡. (6)
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3. Main Results

3.1. Existence and Uniqueness Result of the Solution for SMD-
DEs. Wemake the following assumptions for the coefficients
of (1).

(H3.1) Let 𝑇 ∈ (0,∞) be fixed time duration,
∀𝑥, 𝑦, 𝑧, 𝑥


, 𝑦

, 𝑧

∈ 𝑅
𝑛, 𝑡 ∈ [0, 𝑇], and there

exists a constant 𝐶 > 0 such that

𝑏 (𝑡, 𝑥, 𝑦, 𝑧) − 𝑏 (𝑡, 𝑥


, 𝑦

, 𝑧

)


+

𝜎 (𝑡, 𝑥, 𝑦, 𝑧) − 𝜎 (𝑡, 𝑥


, 𝑦

, 𝑧

)


≤ 𝐶 (

𝑥 − 𝑥

+

𝑦 − 𝑦

+

𝑧 − 𝑧

)

(7)

(H3.2) sup
0≤𝑡≤𝑇

(|𝑏(𝑡, 0, 0, 0) + 𝜎(𝑡, 0, 0, 0)|) < +∞.

Theorem 5. Let (H3.1) and (H3.2) hold. Then for any 𝜉(𝑡) ∈
𝐿
2

F0
(−𝛿, 0; 𝑅

𝑛
), (1) has a unique t-continuous adapted solution,

denoted by 𝑥(𝑡; 𝜉) and 𝐸sup
0≤𝑡≤𝑇

|𝑥(𝑡)|
2
< +∞. So (1) has a

trivial solution 𝑥(𝑡; 0) = 0.

Inspired by the literature [23], we present the proof of the
Theorem 5 as follows.

Proof. Let us define a norm in Banach space 𝐿2F(−𝛿, 𝑇; 𝑅
𝑛
) as

follows:

𝜒(⋅)
𝜃 = (𝐸[∫

𝑇

−𝛿

𝑒
−𝜃𝑠𝜒 (𝑠)


2

𝑑𝑠])

1/2

, 𝜃 > 0. (8)

Clearly it is equivalent to the original norm of 𝐿2F(−𝛿, 𝑇; 𝑅
𝑛
).

We consider

𝑥 (𝑡) = 𝜉 (0) + ∫

𝑡

0

𝑏 (𝑠, 𝜒, 𝑦
𝜒
, 𝑧
𝜒
) 𝑑𝑠

+ ∫

𝑡

0

𝜎 (𝑠, 𝜒, 𝑦
𝜒
, 𝑧
𝜒
) 𝑑𝑊 (𝑠) , 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜉 (𝑡) , 𝑡 ∈ [−𝛿, 0] ,

(9)

where 𝑦
𝜒
= ∫
0

−𝛿
𝑒
𝜇𝑠
𝜒(𝑡+ 𝑠)𝑑𝑠, 𝑧

𝜒
= 𝜒(𝑡−𝛿). Define a mapping

𝑇 : 𝐿
2

F(−𝛿, 𝑇; 𝑅
𝑛
) → 𝐿

2

F(−𝛿, 𝑇; 𝑅
𝑛
) such that 𝑇(𝜒(⋅)) = 𝑥(⋅).

We desire to prove that 𝑇 is a contraction mapping under
the norm |𝜒(⋅)|

𝜃
. For arbitrary 𝜒(⋅), 𝜒(⋅) ∈ 𝐿

2

F(−𝛿, 𝑇; 𝑅
𝑛
),

set 𝑇(𝜒(⋅)) = 𝑥(⋅), 𝑇(𝜒

(⋅)) = 𝑥


(⋅) and 𝜒(⋅) = 𝜒(⋅) − 𝜒


(⋅),

𝑥(⋅) = 𝑥(⋅) − 𝑥

(⋅). Then, 𝑥(⋅) satisfies

𝑥 (𝑡) = ∫

𝑡

0

[𝑏 (𝑠, 𝜒, 𝑦
𝜒
, 𝑧
𝜒
) − 𝑏 (𝑠, 𝜒


, 𝑦


𝜒
, 𝑧


𝜒
)] 𝑑𝑠

+ ∫

𝑡

0

[𝜎 (𝑠, 𝜒, 𝑦
𝜒
, 𝑧
𝜒
) − 𝜎 (𝑠, 𝜒


, 𝑦


𝜒
, 𝑧


𝜒
)] 𝑑𝑊 (𝑠) ,

𝑡 ≥ 0,

𝑥 (𝑡) = 0, 𝑡 ∈ [−𝛿, 0] .

(10)

Applying Itô’s formula to 𝑒−𝜃𝑡|𝑥(𝑡)|2, we have

𝑑 (𝑒
−𝜃𝑡
|𝑥 (𝑡)|

2
)

= −𝜃𝑒
−𝜃𝑡
|𝑥 (𝑡)|

2
𝑑𝑡 + 𝑒

−𝜃𝑡
𝑑|𝑥 (𝑡)|

2

= −𝜃𝑒
−𝜃𝑡
|𝑥 (𝑡)|

2
𝑑𝑡 + 𝑒

−𝜃𝑡

× {2𝑥 (𝑡)

× [(𝑏 (𝑠, 𝜒, 𝑦
𝜒
, 𝑧
𝜒
) − 𝑏 (𝑠, 𝜒


, 𝑦


𝜒
, 𝑧


𝜒
)) 𝑑𝑡

+ (𝜎 (𝑠, 𝜒, 𝑦
𝜒
, 𝑧
𝜒
) − 𝜎 (𝑠, 𝜒


, 𝑦


𝜒
, 𝑧


𝜒
)) 𝑑𝑊 (𝑡)]

+

𝜎 (𝑠, 𝜒, 𝑦

𝜒
, 𝑧
𝜒
) − 𝜎 (𝑠, 𝜒


, 𝑦


𝜒
, 𝑧


𝜒
)


2

𝑑𝑡} .

(11)

Integrating from 0 to 𝑇 and taking the expectation in the
above, we get

𝜃𝐸∫

𝑇

0

𝑒
−𝜃𝑡
|𝑥(𝑡)|
2
𝑑𝑡

= 2𝐸∫

𝑇

0

𝑒
−𝜃𝑡
𝑥 (𝑡)


𝑏 (𝑡, 𝜒, 𝑦

𝜒
, 𝑧
𝜒
) − 𝑏 (𝑡, 𝜒


, 𝑦


𝜒
, 𝑧


𝜒
)

𝑑𝑡

+ 𝐸∫

𝑇

0

𝑒
−𝜃𝑡

𝜎 (𝑠, 𝜒, 𝑦
𝜒
, 𝑧
𝜒
) − 𝜎 (𝑠, 𝜒


, 𝑦


𝜒
, 𝑧


𝜒
)


2

𝑑𝑡.

(12)

Lemma 3 yields

𝜃𝐸∫

𝑇

0

𝑒
−𝜃𝑡
|𝑥(𝑡)|
2
𝑑𝑡

≤ 𝐸∫

𝑇

0

𝑒
−𝜃𝑡
(|𝑥 (𝑡)|

2
+

𝑏 (𝑡, 𝜒, 𝑦

𝜒
, 𝑧
𝜒
) − 𝑏 (𝑡, 𝜒


, 𝑦


𝜒
, 𝑧


𝜒
)


2

) 𝑑𝑡

+ 𝐸∫

𝑇

0

𝑒
−𝜃𝑡

𝜎 (𝑠, 𝜒, 𝑦
𝜒
, 𝑧
𝜒
) − 𝜎 (𝑠, 𝜒


, 𝑦


𝜒
, 𝑧


𝜒
)


2

𝑑𝑡.

(13)

Then by (H3.1), we obtain

𝜃𝐸∫

𝑇

0

𝑒
−𝜃𝑡
|𝑥(𝑡)|
2
𝑑𝑡

≤ 𝐸∫

𝑇

0

𝑒
−𝜃𝑡
(|𝑥(𝑡)|

2
+ (𝐶 (

𝜒 (𝑡)
 +

𝑦
𝜒
(𝑡)

+

�̂�
𝜒
(𝑡)

))
2

) 𝑑𝑡

+ 𝐸∫

𝑇

0

𝑒
−𝜃𝑡
(𝐶 (

𝜒 (𝑡)
 +

𝑦
𝜒
(𝑡)

+

�̂�
𝜒
(𝑡)

))
2

𝑑𝑡.

(14)

Thus,

(𝜃 − 1) 𝐸∫

𝑇

0

𝑒
−𝜃𝑡
|𝑥(𝑡)|
2
𝑑𝑡

≤ 6𝐶
2
⋅ 𝐸 [∫

𝑇

0

𝑒
−𝜃𝑡𝜒(𝑡)


2

𝑑𝑡 + ∫

𝑇

0

𝑒
−𝜃𝑡

𝑦
𝜒
(𝑡)


2

𝑑𝑡

+ ∫

𝑇

0

𝑒
−𝜃𝑡

�̂�
𝜒
(𝑡)


2

𝑑𝑡] ,

(15)
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where

∫

𝑇

0

𝑒
−𝜃𝑡

�̂�
𝜒
(𝑡)


2

𝑑𝑡

= ∫

𝑇−𝛿

−𝛿

𝑒
−𝜃(𝑟+𝛿)𝜒 (𝑟)


2

𝑑𝑟 (𝑟 = 𝑡 − 𝛿)

= 𝑒
−𝜃𝛿

∫

𝑇−𝛿

−𝛿

𝑒
−𝜃𝑟𝜒 (𝑟)


2

𝑑𝑟

≤ ∫

𝑇−𝛿

−𝛿

𝑒
−𝜃𝑡𝜒 (𝑡)


2

𝑑𝑡 ≤ ∫

𝑇

−𝛿

𝑒
−𝜃𝑡𝜒 (𝑡)


2

𝑑𝑡.

(16)

Lemma 4 yields

𝑦 (𝑡)

2

=



∫

0

−𝛿

𝑒
𝜇𝑠
𝑥 (𝑡 + 𝑠) 𝑑𝑠



2

≤ ∫

0

−𝛿

𝑒
2𝜇𝑠
𝑑𝑠 ⋅ ∫

0

−𝛿

|𝑥(𝑡 + 𝑠)|
2
𝑑𝑠

=
(1 − 𝑒

−2𝜇𝛿
)

2𝜇
⋅ ∫

𝑡

𝑡−𝛿

|𝑥 (𝑟)|
2
𝑑𝑟 (𝑟 = 𝑡 + 𝑠)

≤
1

2𝜇
⋅ ∫

𝑡

𝑡−𝛿

|𝑥 (𝑟)|
2
𝑑𝑟.

(17)

It then follows from (17) that

∫

𝑇

0

𝑒
−𝜃𝑡

𝑦
𝜒
(𝑡)


2

𝑑𝑡

≤
1

2𝜇
⋅ ∫

𝑇

0

𝑒
−𝜃𝑡
(∫

𝑡

𝑡−𝛿

𝜒 (𝑟)

2

𝑑𝑟) 𝑑𝑡

=
1

2𝜇
⋅ ∫

𝑇

−𝛿

𝜒 (𝑟)

2

(∫

(𝑟+𝛿)∧𝑇

0∨𝑟

𝑒
−𝜃𝑡
𝑑𝑡) 𝑑𝑟

≤
1

2𝜇
⋅ ∫

𝑇

−𝛿

𝜒 (𝑟)

2

𝑒
−𝜃𝑟
((𝑟 + 𝛿) ∧ 𝑇 − 0 ∨ 𝑟) 𝑑𝑟

≤
𝛿

2𝜇
⋅ ∫

𝑇

−𝛿

𝑒
−𝜃𝑟𝜒 (𝑟)


2

𝑑𝑟.

(18)

Then,

(𝜃 − 1) 𝐸∫

𝑇

0

𝑒
−𝜃𝑡
|𝑥(𝑡)|
2
𝑑𝑡

≤ 6𝐶
2
⋅ 𝐸 [∫

𝑇

−𝛿

𝑒
−𝜃𝑡𝜒 (𝑡)


2

𝑑𝑡 +
𝛿

2𝜇
⋅ ∫

𝑇

−𝛿

𝑒
−𝜃𝑟𝜒 (𝑟)


2

𝑑𝑟

+∫

𝑇

−𝛿

𝑒
−𝜃𝑡𝜒 (𝑡)


2

𝑑𝑡]

≤ 3𝐶
2
(4 +

𝛿

𝜇
) ⋅ 𝐸∫

𝑇

−𝛿

𝑒
−𝜃𝑡𝜒(𝑡)


2

𝑑𝑡.

(19)

Let 𝜃 = 6𝐶2(4 + (𝛿/𝜇)) + 1; then the above yields

𝐸∫

𝑇

−𝛿

𝑒
−𝜃𝑡
|𝑥(𝑡)|
2
𝑑𝑡 ≤

1

2
𝐸∫

𝑇

−𝛿

𝑒
−𝜃𝑡𝜒 (𝑡)


2

𝑑𝑡. (20)

That is,

|𝑥(⋅)|𝜃 =
1

√2

𝜒(⋅)
𝜃. (21)

This implies that 𝑇 is a strict contraction mapping. Then it
follows from the fixed point theorem that (1) has a unique
solution in 𝐿2F(−𝛿, 𝑇; 𝑅

𝑛
). Since 𝑏 and 𝜎 satisfy (H3.1) and

(H3.2), we can easily derive that 𝐸sup
0≤𝑡≤𝑇

|𝑥(𝑡)|
2
< +∞ and

𝑥(𝑡; 𝜉) is continuous with respect to 𝑡 ∈ [0, 𝑇]. Furthermore,
by 𝑏(𝑡, 0, 0, 0) = 𝜎(𝑡, 0, 0, 0) ≡ 0, (1) has a trivial solution
𝑥(𝑡; 0) = 0.

For simplicity, in what follows we write 𝑥(𝑡; 𝜉) = 𝑥(𝑡).

3.2. Exponential Stability for SMDDEs. We make the follow-
ing assumptions for the coefficients of (1).

(H3.3)There exist nonnegative constants 𝛼, 𝛽, for any 𝑡 ≥
0 such that

𝑏 (𝑡, 𝑥, 𝑦, 𝑧)
 ≤ 𝛼 (|𝑥| +

𝑦
 + |𝑧|) (22)

and for any (𝑡, 𝑥, 𝑦, 𝑧) ∈ 𝑅+ × 𝑅𝑛 × 𝑅𝑛 × 𝑅𝑛 such that

𝑡𝑟 [𝜎
𝑇
(𝑡, 𝑥, 𝑦, 𝑧) 𝜎 (𝑡, 𝑥, 𝑦, 𝑧)] ≤ 𝛽 (|𝑥|

2
+
𝑦

2

+ |𝑧|
2
) .

(23)

(H3.4) By (H3.1), one has |𝑏(𝑡, 𝑥, 𝑦, 𝑧) − 𝑏(𝑡, 𝑥, 𝑥, 𝑥)| ≤ 𝐶(|𝑥 −
𝑦| + |𝑥 − 𝑧|).

In the study of mean square exponential stability, it is
often to use a quadratic function as the Lyapunov function;
that is, 𝑉(𝑡, 𝑥) = 𝑥

𝑇
𝐺𝑥, where 𝐺 is a symmetric positive

definite 𝑛 × 𝑛matrix.

Theorem 6. Let (H3.3) and (H3.4) hold; then the trivial
solution of (1) is exponentially stable in the mean square.
Assume that there exist symmetric positive definite 𝑛 × 𝑛

matrices 𝐺 and a constant 𝜆 > 0 such that

2𝑥
𝑇
𝐺𝑏 (𝑡, 𝑥, 𝑥, 𝑥) ≤ −𝜆|𝑥|

2
,

∀ (𝑡, 𝑥, 𝑥, 𝑥) ∈ 𝑅
+
× 𝑅
𝑛
× 𝑅
𝑛
× 𝑅
𝑛
,

(24)

𝜆 > ‖𝐺‖ 𝛽(2 +
𝛿

𝜇
)

+ 4𝐶 ‖𝐺‖√1 +
𝛿

𝜇
+ (6𝛿𝛼2 + 2𝛽) (2 +

𝛿

𝜇
) 𝛿.

(25)

In order to prove Theorem 6, we need three lemmas,
proofs of which are left in appendix.
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Lemma 7. Fix the initial data 𝜉(𝑡) arbitrarily. Then,

∫

𝑡

𝛿

𝑒
𝜀𝑠
∫

𝑠

𝑠−𝛿

𝐸|𝑥(𝜏)|
2
𝑑𝜏𝑑𝑠 ≤ 𝛿𝑒

𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝜏
⋅ 𝐸|𝑥 (𝜏)|

2
𝑑𝜏, (26)

∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥(𝑠 − 𝛿)|

2
𝑑𝑠 ≤ 𝑐

11
𝑒
𝜀𝛿
+ 𝑒
𝜀𝛿
⋅ ∫

𝑡−𝛿

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥(𝑠)|

2
𝑑𝑠

(27)

for any 𝑡 ≥ 𝛿, where 𝑐
11
is a constant larger than ∫0

−𝛿
𝐸|𝜉(𝑠)|

2
𝑑𝑠.

Lemma 8. Fix the initial data 𝜉(𝑡) arbitrarily. Then,

∫

𝑡

𝛿

𝑒
𝜀𝑠
∫

𝑠

𝑠−𝛿

𝐸
𝑦 (𝜏)


2

𝑑𝜏 𝑑𝑠

≤
𝛿
2

𝜇
𝑐
12
𝑒
2𝜀𝛿
+
𝛿
2

𝜇
𝑒
2𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥 (𝑠)|

2
𝑑𝑠,

(28)

∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸
𝑦(𝑠)


2

𝑑𝑠 ≤
𝛿

𝜇
𝑐
12
𝑒
𝜀𝛿
+
𝛿

𝜇
𝑒
𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥(𝑠)|

2
𝑑𝑠 (29)

for any 𝑡 ≥ 𝛿.

Lemma 9. Let (H3.3) and (H3.4) hold. Then,

∫

𝑡

𝛿

𝑒
𝜀𝑠
∫

𝑠

𝑠−𝛿

𝐸|𝑥 (𝜏 − 𝛿)|
2
𝑑𝜏𝑑𝑠

≤ 𝛿𝑐
1
𝑒
2𝜀𝛿
+ 𝛿𝑒
2𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥 (𝑠)|

2
𝑑𝑠,

(30)

∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥 (𝑠) − 𝑥 (𝑠 − 𝛿)|

2
𝑑𝑠

≤ 𝑐
2
+ (6𝛿𝛼

2
+ 2𝛽) ⋅ 𝛿𝑒

𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
𝐸|𝑥 (𝑠)|

2
𝑑𝑠

+ (6𝛿𝛼
2
+ 2𝛽)

⋅ (
𝛿

𝜇
+ 1) [𝑐

1
𝛿𝑒
2𝜀𝛿
+ 𝛿𝑒
2𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
𝐸|𝑥 (𝑠)|

2
𝑑𝑠]

(31)

for any 𝑡 ≥ 𝛿, where 𝑐
2
is a constant larger than ∫𝛿

0
𝑒
𝜀𝑠
𝐸|𝑥(𝑠)

−𝑥(𝑠 − 𝛿)|
2
𝑑𝑠.

Based on the above Lemmas 7–9, we now carry out a
proof for Theorem 6.

Proof of Theorem 6. Fix the initial data 𝜉(𝑡) arbitrarily. Apply-
ing Itô’s formula to 𝑥𝑇𝐺𝑥, we have

𝑑 (𝑥
𝑇
𝐺𝑥) = 𝑑𝑥

𝑇
⋅ 𝐺𝑥 + 𝑥

𝑇
𝐺 ⋅ 𝑑𝑥 + 𝑑𝑥

𝑇
⋅ 𝐺 ⋅ 𝑑𝑥

= 2𝑥
𝑇
𝐺𝑏 (𝑡, 𝑥, 𝑦, 𝑧) 𝑑𝑡 + 2𝑥

𝑇
𝐺𝜎 (𝑡, 𝑥, 𝑦, 𝑧) 𝑑𝑊 (𝑡)

+ 𝑡𝑟 [𝜎
𝑇
(𝑡, 𝑥, 𝑦, 𝑧) 𝐺𝜎 (𝑡, 𝑥, 𝑦, 𝑧)] 𝑑𝑡.

(32)

Combining Lemmas 3 and (24) as well as (H3.4), we can
estimate the first item of (32) as follows:

2𝑥
𝑇
𝐺𝑏 (𝑡, 𝑥, 𝑦, 𝑧)

= 2𝑥
𝑇
𝐺𝑏 (𝑡, 𝑥, 𝑥, 𝑥) + 2𝑥

𝑇
𝐺 [𝑏 (𝑡, 𝑥, 𝑦, 𝑧) − 𝑏 (𝑡, 𝑥, 𝑥, 𝑥)]

≤ −𝜆|𝑥|
2
+ 𝜃|𝑥|

2
+ (

‖𝐺‖
2

𝜃
) ⋅

𝑏 (𝑡, 𝑥, 𝑦, 𝑧) − 𝑏 (𝑡, 𝑥, 𝑥, 𝑥)

2

≤ −𝜆|𝑥|
2
+ 𝜃|𝑥|

2
+ (

‖𝐺‖
2

𝜃
) ⋅ 2𝐶

2
(
𝑥 − 𝑦


2

+ |𝑥 − 𝑧|
2
)

≤ −𝜆|𝑥|
2
+ 𝜃|𝑥|

2

+
4𝐶
2

𝜃
‖𝐺‖
2
(|𝑥|
2
+
𝑦

2

) +
2𝐶
2

𝜃
‖𝐺‖
2
|𝑥 − 𝑧|

2
,

(33)

where 𝜃 = 2𝐶‖𝐺‖√1 + (𝛿/𝜇) + (6𝛿𝛼2 + 2𝛽)(2 + (𝛿/2𝜇))𝛿.
By (24), the last item of (32) yields

𝑡𝑟 [𝜎
𝑇
(𝑡, 𝑥, 𝑦, 𝑧) 𝐺𝜎 (𝑡, 𝑥, 𝑦, 𝑧)] ≤ ‖𝐺‖ 𝛽 (|𝑥|

2
+
𝑦

2

+ |𝑧|
2
) .

(34)

Substituting the above two into (32), we get

𝑑 [𝑥
𝑇
𝐺𝑥] ≤ [−𝜆|𝑥|

2
+ 𝜃|𝑥|

2
+
4𝐶
2

𝜃
‖𝐺‖
2
(|𝑥|
2
+
𝑦

2

)

+
2𝐶
2

𝜃
‖𝐺‖
2
|𝑥 − 𝑧|

2
]𝑑𝑡

+ ‖𝐺‖ 𝛽 (|𝑥|
2
+
𝑦

2

+ |𝑧|
2
) 𝑑𝑡

+ 2𝑥
𝑇
𝐺𝜎 (𝑡, 𝑥, 𝑦, 𝑧) 𝑑𝑊 (𝑡)

≤ (−𝜆 + 𝜃 + ‖𝐺‖ 𝛽 +
4𝐶
2

𝜃
‖𝐺‖
2
) |𝑥|
2
𝑑𝑡

+ (‖𝐺‖ 𝛽 +
4𝐶
2

𝜃
‖𝐺‖
2
)
𝑦

2

𝑑𝑡 + ‖𝐺‖ 𝛽|𝑧|
2
𝑑𝑡

+
2𝐶
2

𝜃
‖𝐺‖
2
|𝑥 − 𝑧|

2
𝑑𝑡

+ 2𝑥
𝑇
𝐺𝜎 (𝑡, 𝑥, 𝑦, 𝑧) 𝑑𝑊 (𝑡) .

(35)

For small enough 𝜀 > 0, we derive

‖𝐺‖ (𝛽 + 𝜀) + 𝜃 +
4𝐶
2

𝜃
‖𝐺‖
2
+ ‖𝐺‖ 𝛽(1 +

𝛿

𝜇
) 𝑒
𝜀𝛿

+
1

𝜃
(2𝐶 ‖𝐺‖)

2
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⋅ [(6𝛿𝛼
2
+ 2𝛽 +

1

𝜇
) 𝛿𝑒
𝜀𝛿

+ (6𝛿𝛼
2
+ 2𝛽) ⋅ (1 +

𝛿

𝜇
) 𝛿𝑒
2𝜀𝜏
]

≥ ‖𝐺‖ (𝛽 + 𝜀)

+ 𝜃 +
4𝐶
2

𝜃
‖𝐺‖
2
+ ‖𝐺‖ 𝛽(1 +

𝛿

𝜇
) +

(2𝐶 ‖𝐺‖)
2

𝜃

⋅ [(6𝛿𝛼
2
+ 2𝛽 +

1

𝜇
) 𝛿 + (6𝛿𝛼

2
+ 2𝛽)

⋅ (1 +
𝛿

𝜇
) 𝛿]

> ‖𝐺‖ 𝛽(2 +
𝛿

𝜇
) + 𝜃 +

(2𝐶 ‖𝐺‖)
2

𝜃

⋅ [1 +
𝛿

𝜇
+ (6𝛿𝛼

2
+ 2𝛽)(2 +

𝛿

𝜇
) 𝛿] .

(36)

If (25) holds, then we can choose 𝜀 > 0 small enough such
that

𝜆 = ‖𝐺‖ (𝛽 + 𝜀) + 𝜃 +
4𝐶
2

𝜃
‖𝐺‖
2
+ ‖𝐺‖ 𝛽(1 +

𝛿

𝜇
) 𝑒
𝜀𝛿

+
(2𝐶 ‖𝐺‖)

2

𝜃
[(6𝛿𝛼

2
+ 2𝛽 +

1

𝜇
) 𝛿𝑒
𝜀𝛿
+ (6𝛿𝛼

2
+ 2𝛽)

⋅ (1 +
𝛿

𝜇
) 𝛿𝑒
2𝜀𝛿
] .

(37)

Applying Itô’s formula to 𝑒𝜀𝑡𝑥𝑇𝐺𝑥, we derive

𝑒
𝜀𝑡
𝑥
𝑇
𝐺𝑥 = 𝜉

𝑇
(0) 𝐺𝜉 (0) + 𝜀∫

𝑡

0

𝑒
𝜀𝑠
𝑥
𝑇
𝐺𝑥𝑑𝑠 + ∫

𝑡

0

𝑒
𝜀𝑠
𝑑 [𝑥
𝑇
𝐺𝑥] ,

for any 𝑡 ≥ 0.
(38)

Substituting (35) into the above yields

𝑒
𝜀𝑡
𝑥
𝑇
𝐺𝑥 ≤ 𝜉

𝑇
(0) 𝐺𝜉 (0) + 𝜀∫

𝑡

0

𝑒
𝜀𝑠
𝑥
𝑇
𝐺𝑥𝑑𝑠

+ ∫

𝑡

0

𝑒
𝜀𝑠
⋅ 2𝑥
𝑇
𝐺𝜎 (𝑠, 𝑥, 𝑦, 𝑧) 𝑑𝑊 (𝑠)

+ ∫

𝑡

0

𝑒
𝜀𝑠
[(−𝜆 + 𝜃 + ‖𝐺‖ 𝛽 +

4𝐶
2

𝜃
‖𝐺‖
2
) |𝑥|
2

+ (‖𝐺‖ 𝛽 +
4𝐶
2

𝜃
‖𝐺‖
2
)
𝑦

2

+ ‖𝐺‖ 𝛽|𝑧|
2
+
2𝐶
2

𝜃
‖𝐺‖
2
|𝑥 − 𝑧|

2
]𝑑𝑠.

(39)

Taking the expectation in the above, we have

𝐸 (𝑒
𝜀𝑡
𝑥
𝑇
𝐺𝑥)

≤ 𝐸 (𝜉
𝑇
(0) 𝐺𝜉 (0))

− [𝜆 − 𝜃 − ‖𝐺‖ (𝛽 + 𝜀) −
4𝐶
2

𝜃
‖𝐺‖
2
]∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥|
2
𝑑𝑠

+ (‖𝐺‖ 𝛽 +
4𝐶
2

𝜃
‖𝐺‖
2
)∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸
𝑦

2

𝑑𝑠

+ ‖𝐺‖ 𝛽∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑧|
2
𝑑𝑠

+
2𝐶
2

𝜃
‖𝐺‖
2
∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥 − 𝑧|

2
𝑑𝑠.

(40)

Now we apply Lemmas 7–9 to the last three terms on the
right-hand side of (40) to get an estimate of 𝐸(𝑒𝜀𝑡𝑥𝑇𝐺𝑥) as
follows:

𝐸 (𝑒
𝜀𝑡
𝑥
𝑇
𝐺𝑥)

≤ 𝐸 (𝜉
𝑇
(0) 𝐺𝜉 (0)) − [𝜆 − 𝜃 − ‖𝐺‖ (𝛽 + 𝜀) −

4𝐶
2

𝜃
‖𝐺‖
2
]

× ∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥 (𝑠)|

2
𝑑𝑠

+ (‖𝐺‖ 𝛽 +
4𝐶
2

𝜃
‖𝐺‖
2
)
𝛿

𝜇
(𝑐
1
𝑒
𝜀𝛿
+ 𝑒
𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥 (𝑠)|

2
𝑑𝑠)

+ ‖𝐺‖ 𝛽(𝑐1𝑒
𝜀𝛿
+ 𝑒
𝜀𝛿
∫

𝑡−𝛿

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥 (𝑠)|

2
𝑑𝑠)

+
2𝐶
2

𝜃
‖𝐺‖
2
{𝑐
2
+ (6𝛿𝛼

2
+ 2𝛽) ⋅ 𝛿𝑒

𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥 (𝑠)|

2
𝑑𝑠

+ (6𝛿𝛼
2
+ 2𝛽) ⋅ (

𝛿

𝜇
+ 1)

× [𝑐
1
𝛿𝑒
2𝜀𝛿
+ 𝛿𝑒
2𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥 (𝑠)|

2
𝑑𝑠]}

≤ 𝐸 (𝜉
𝑇
(0) 𝐺𝜉 (0)) − [𝜆 − 𝜃 − ‖𝐺‖ (𝛽 + 𝜀) −

4𝐶
2

𝜃
‖𝐺‖
2
]

× ∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥(𝑠)|

2
𝑑𝑠

+ ‖𝐺‖ 𝛽(1 +
𝛿

𝜇
)(𝑐
1
𝑒
𝜀𝛿
+ 𝑒
𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥 (𝑠)|

2
𝑑𝑠)

+
(2𝐶 ‖𝐺‖)

2

𝜃
{𝑐
2
+
𝛿

𝜇
𝑐
1
𝑒
𝜀𝛿
+ (6𝛿𝛼

2
+ 2𝛽 +

1

𝜇
)

× 𝛿𝑒
𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
𝐸|𝑥 (𝑠)|

2
𝑑𝑠 + (6𝛿𝛼

2
+ 2𝛽)
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⋅ (
𝛿

𝜇
+ 1)

×(𝑐
1
𝛿𝑒
2𝜀𝛿
+ 𝛿𝑒
2𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
𝐸|𝑥 (𝑠)|

2
𝑑𝑠)}

= 𝑐
4

(41)

for 𝑡 ≥ 𝜏, where

𝑐
4
= 𝐸 (𝜉

𝑇
(0) 𝐺𝜉 (0)) + ‖𝐺‖ 𝛽(

𝛿

𝜇
+ 1) 𝑐

1
𝑒
𝜀𝛿
+
(2𝐶 ‖𝐺‖)

2

𝜃

⋅ [𝑐
2
+
𝛿

𝜇
𝑐
1
𝑒
𝜀𝛿
+ (6𝛿𝛼

2
+ 2𝛽)(

𝛿

𝜇
+ 1) 𝑐

1
𝛿𝑒
2𝜀𝛿
] .

(42)

Since 𝐺 is positive definite,

𝑥
𝑇
𝐺𝑥 ≥ 𝜆min (𝐺) |𝑥|

2
, (43)

where 𝜆min(𝐺) > 0 is the smallest eigenvalue of 𝐺.
Then,

𝐸 (𝑒
𝜀𝑡
𝑥
𝑇
(𝑡) 𝐺𝑥 (𝑡)) ≥ 𝐸 (𝑒

𝜀𝑡
𝜆min (𝐺) |𝑥 (𝑡)|

2
) . (44)

It then follows from (41) that

𝐸|𝑥(𝑡)|
2
≤ [

𝑐
4

𝜆min (𝐺)
] ⋅ 𝑒
−𝜀𝑡 for any 𝑡 ≥ 𝜏. (45)

Hence,

1

𝑡
ln (𝐸|𝑥 (𝑡)|2) ≤ 1

𝑡
ln([ 𝑐

4

𝜆min (𝐺)
] ⋅ 𝑒
−𝜀𝑡
)

= −𝜀 +
1

𝑡
ln [ 𝑐

4

𝜆min (𝐺)
] .

(46)

This easily yields

lim sup
𝑡→∞

1

𝑡
ln (𝐸|𝑥(𝑡)|2) ≤ −𝜀. (47)

Then (1) is exponentially stable in the mean square.

Theorem 10. Let 𝜀 > 0, under the same assumption as
Theorem 6, if

lim sup
𝑡→∞

1

𝑡
ln (𝐸|𝑥 (𝑡)|2) ≤ −𝜀. (48)

Then,

lim sup
𝑡→∞

1

𝑡
ln (|𝑥 (𝑡)|) ≤ − 𝜀

2
a.s. (49)

Proof. let 𝜀 > 0, under the same assumption as Theorem 6. It
follows from (48) that

1

𝑡
ln (𝐸|𝑥(𝑡)|2) ≤ −𝜀 + 1

𝑡
⋅ ln𝑀 (50)

for all 𝑡 ≥ 𝛿,𝑀 > 0. Then

𝐸|𝑥(𝑡)|
2
≤ 𝑀𝑒
−𝜀𝑡
. (51)

For 𝑡 ∈ [𝑘𝛿, (𝑘 + 1)𝛿], 𝑘 = 2, 3, . . ., we have

𝐸( sup
𝑘𝛿≤𝑡≤(𝑘+1)𝛿

𝐸|𝑥 (𝑡)|
2
) ≤ 𝑀𝑒

−𝜀𝑘𝛿
. (52)

Let 𝜀
0

∈ (0, 𝜀) be arbitrary. By Doob’s martingale
inequality, it follows from (52) that

𝑃(𝜔 : sup
𝑘𝛿≤𝑡≤(𝑘+1)𝛿

|𝑥 (𝑡)| > 𝑒
−(𝜀−𝜀0)𝑘𝛿/2) ≤ 𝑐

4
𝑒
−𝜀0𝑘𝛿. (53)

Thus, it follows from the Borel-Cantelli lemma that, for
almost all 𝜔 ∈ Ω, there exists 𝑘

0
(𝜔), and 𝑘 ≥ 𝑘

0
(𝜔),

𝑃(𝜔 : sup
𝑘𝛿≤𝑡≤(𝑘+1)𝛿

|𝑥 (𝑡)| ≤ 𝑒
−(𝜀−𝜀0)𝑘𝛿/2) = 1. (54)

So, for 𝑘𝛿 ≤ 𝑡 ≤ (𝑘 + 1)𝛿, 𝑘 ≥ 𝑘
0
(𝜔),

ln |𝑥 (𝑡)| ≤ −
(𝜀 − 𝜀
0
) 𝑘𝛿

2
a.s. (55)

This easily yields

lim sup
𝑡→∞

1

𝑡
ln |𝑥 (𝑡)| ≤ −

𝜀 − 𝜀
0

2
a.s. (56)

Since 𝜀
0
is arbitrary, we must have

lim sup
𝑡→∞

1

𝑡
ln |𝑥 (𝑡)| ≤ − 𝜀

2
a.s. (57)

Remark 11. The exponentially stable in the mean square of
SMDDE (1) implies the almost surely exponentially stable. In
general, Theorem 10 is still true for 𝑝th moment exponential
stability.

Let us single out two important special cases.

Case 1. If 𝜎(𝑡, 𝑥, 𝑦, 𝑧) ≡ 0, then (1) reduces to nonlinear
deterministic differential equation with mixed delay

𝑑𝑥 (𝑡) = 𝑏 (𝑡, 𝑥, 𝑦, 𝑧) 𝑑𝑡, 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜉 (𝑡) , 𝑡 ∈ [−𝛿, 0] .

(58)

Applying Theorem 6 to (58), we obtain the following
useful result.

Corollary 12. Let (H3.4) and condition (22) hold, then the
trivial solution of (58) is exponentially stable in the mean
square. Assume that there exists a symmetric positive definite
𝑛 × 𝑛matrices 𝐺 and a constant 𝜆 > 0 such that

2𝑥
𝑇
𝐺𝑏 (𝑡, 𝑥, 𝑥, 𝑥) ≤ −𝜆|𝑥|

2
,

∀ (𝑡, 𝑥, 𝑥, 𝑥) ∈ 𝑅
+
× 𝑅
𝑛
× 𝑅
𝑛
× 𝑅
𝑛
,

(59)

𝜆 > 4𝐶 ‖𝐺‖√1 +
𝛿

𝜇
+ 6𝛿2𝛼2 (2 +

𝛿

𝜇
). (60)
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Remark 13. The bound for the time delay 𝛿when SMDDE (1)
is exponentially stable follows from (25), and the bound for
the corresponding deterministic case follows from (60).

Case 2. If the time delay 𝛿 = 0, then (1) reduces to nonlinear
SDE

𝑑𝑥 (𝑡) = 𝑏 (𝑡, 𝑥 (𝑡) , 0, 𝑥 (𝑡)) 𝑑𝑡 + 𝜎 (𝑡, 𝑥 (𝑡) , 0, 𝑥 (𝑡)) 𝑑𝑊 (𝑡) ,

𝑡 ≥ 0.

(61)

Corollary 14. If SDE (61) is exponentially stable and the time
delay 𝛿 is sufficiently small, then the corresponding SMDDE (1)
will remain exponentially stable.

Proof. SMDDE (1) can be rewritten as

𝑑𝑥 (𝑡) = 𝑏 (𝑡, 𝑥 (𝑡) , 0, 𝑥 (𝑡)) 𝑑𝑡 + 𝜎 (𝑡, 𝑥 (𝑡) , 0, 𝑥 (𝑡)) 𝑑𝑊 (𝑡)

− [𝑏 (𝑡, 𝑥 (𝑡) , 0, 𝑥 (𝑡))

−𝑏 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡))] 𝑑𝑡

− [𝜎 (𝑡, 𝑥 (𝑡) , 0, 𝑥 (𝑡))

−𝜎 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡))] 𝑑𝑊 (𝑡) .

(62)

It is clear that if the time delay 𝛿 is sufficiently small, then
SMDDE (1) is regarded as the perturbed system of the
corresponding SDE (61) (without delay). On the other hand,
the perturbation term

[𝑏 (𝑡, 𝑥 (𝑡) , 0, 𝑥 (𝑡)) − 𝑏 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡))] 𝑑𝑡

+ [𝜎 (𝑡, 𝑥 (𝑡) , 0, 𝑥 (𝑡)) − 𝜎 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡))] 𝑑𝑊 (𝑡)

(63)

could be so small that the perturbed equation (1) would
behave in a similar way as (61) asymptotically. Applying
Theorem 5 and Remark 12 in [15], we derive SMDDE (1)
which will remain exponentially stable.

4. Example

Let us now present a simple example to illustrate our results
which can help us find the time delay upper limit.

Example 1. Let us now consider a two-dimensional SMDDE

𝑑𝑥 (𝑡) = 𝑏 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡)) 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡)) 𝑑𝑊 (𝑡) ,

(64)

where

𝑏 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡))

:= (
𝑏
1

𝑏
2

) = (
−0.5𝑥

1
− 0.5𝑦

1
− 0.5𝑧

1
+ 0.5𝑥

2
sin𝑥
1
𝑥
2

−0.7𝑥
2
− 0.3𝑦

2
− 0.5𝑧

2
− 0.5𝑥

1
sin𝑥
1
𝑥
2

)

(65)

for 𝑥 = (𝑥
1
, 𝑥
2
)
𝑇
, 𝑦 = (𝑦

1
, 𝑦
2
)
𝑇, 𝑧 = (𝑧

1
, 𝑧
2
)
𝑇 in 𝑅2, and

𝜎(𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)): 𝑅+ × 𝑅2 × 𝑅2 × 𝑅2 → 𝑅
2 × 2 represent

the nonlinear uncertainties.𝑊(𝑡) is a given two-dimensional
Brownian motion,

𝑦 (𝑡) = ∫

0

−𝛿

𝑒
𝜇𝑠
𝑥 (𝑡 + 𝑠) 𝑑𝑠, 𝑧 (𝑡) = 𝑥 (𝑡 − 𝛿) (66)

represent given functionals of the path segment 𝑥
𝑡
:= {𝑥(𝑡 +

𝑠); 𝑠 ∈ [−𝛿, 0]} of 𝑥, 𝜇 ∈ 𝑅+ is the given averaging parameter,
and 𝛿 > 0 is a given finite time delay.

For convenience, let us choose 𝐺 to be the second-
order identity matrix, and 𝜇 = 1. We assume that, for any
(𝑡, 𝑥, 𝑦, 𝑧) ∈ 𝑅

+
× 𝑅
2
× 𝑅
2
× 𝑅
2,

𝑡𝑟 [𝜎
𝑇
(𝑡, 𝑥, 𝑦) 𝜎 (𝑡, 𝑥, 𝑦)] ≤ 0.1 (|𝑥|

2
+
𝑦

2

+ |𝑧|
2
) . (67)

Via a simple calculation, it is easy to estimate that

2𝑥
𝑇
𝑏 (𝑡, 𝑥, 𝑥, 𝑥) ≤ −3|𝑥|

2
,

𝑏 (𝑡, 𝑥, 𝑦, 𝑧) − 𝑏 (𝑡, 𝑥, 𝑥, 𝑥)
 ≤ 0.5 (

𝑥 − 𝑦
 + |𝑥 − 𝑧|) ,

𝑏 (𝑡, 𝑥, 𝑦, 𝑧)
 ≤ 1.72 (|𝑥| +

𝑦
 + |𝑧|) ;

(68)

that is, ‖𝐺‖ = 1, 𝜆 = 3, 𝐶 = 0.5, 𝛼 = 1.72, 𝛽 = 0.1, and 𝜇 = 1.
By plugging these into (25), it is easy to find 𝛿 < 0.1396;

that is, if 𝛿 < 0.1396, then (64) is exponentially stable in the
mean square and is also almost surely exponentially stable.

If 𝜎(𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) ≡ 0, by plugging ‖𝐺‖ = 1, 𝜆 =

3, 𝐶 = 0.5, 𝛼 = 1.72, and 𝜇 = 1 into (60), then, we
would conclude that (64) is exponentially stable provided
𝛿 < 0.1677.

Remark 15. Figures 1 and 2 give the simulation results of
Example 1 when 𝜎 ̸= 0, 𝛿 < 0.1396 (Figure 1) and 𝜎 ≡ 0,
𝛿 < 0.1677 (Figure 2). The parameter values used in the
calculations are ‖𝐺‖ = 1, 𝜆 = 3, 𝐶 = 0.5, 𝛼 = 1.72, 𝜇 = 1,
and 𝛿 = 0.1.

5. Concluding Remarks

In this paper, we investigate not only the exponential stability
in the mean square but also the almost surely exponential
stability for a class of SMDDEs based on Lyapunov stability
theory, Itô formula, stochastic analysis, inequality technique,
and so on. We first consider the existence and uniqueness
of the adapted solution by employing fixed point theorem.
Next, some sufficient conditions of exponential stability and
corollaries for stochastic differential systems with mixed
delays are obtained by using Lyapunov function. Theorem 10
shows that the exponentially stable in the mean square of
SMDDE implies the almost surely exponentially stable. The
obtained results generalize and improve some recent results
(for instance, [19–21]). In particular, our theoretical results
show that if SDE is exponentially stable and the time delay
is sufficiently small, then the corresponding SMDDE will
remain exponentially stable. Moreover, the time delay upper



Journal of Applied Mathematics 9

0 5 10 15 20

0

10

20

30

40

St
at

e r
es

po
ns

e

−50

−40

−30

−20

−10

Time (t)

x
1
(t)

x
2
(t)

Figure 1: The simulation results of Example 1 when 𝜎 ̸= 0, 𝛿 <

0.1396.
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Figure 2: The simulation results of Example 1 when 𝜎 ≡ 0, 𝛿 <

0.1677.

limit is solved by using our theoretical results when the
system is exponentially stable, and they are more easily
verified and applied in practice. It should be mentioned that
the approach provided here is different from those used in
[19–21]. Finally, we present a simple example to illustrate
the effectiveness of our stable results. Another challenging
problem is to study a class of stochastic differential equations
with mixed variable delays or a class of stochastic control
systems with correlated state and observation noises (for
instance, [24]).Wehope to study these problems in forthcom-
ing papers.

Appendix

We now present proofs of Lemmas 7–9.

Proof of Lemma 7. For any 𝑡 ≥ 𝛿, we easily get

∫

𝑡

𝛿

𝑒
𝜀𝑠
∫

𝑠

𝑠−𝛿

𝐸|𝑥 (𝜏)|
2
𝑑𝜏 𝑑𝑠

= ∫

𝑡

0

𝐸|𝑥 (𝜏)|
2
(∫

(𝜏+𝛿)∧𝑡

𝜏∨𝛿

𝑒
𝜀𝑠
𝑑𝑠)𝑑𝜏

≤ ∫

𝑡

0

𝐸|𝑥(𝜏)|
2
⋅ 𝑒
𝜀[(𝜏+𝛿)∧𝑡]

[((𝜏 + 𝛿) ∧ 𝑡) − (𝜏 ∨ 𝛿)] 𝑑𝜏

≤ 𝛿𝑒
𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝜏
⋅ 𝐸|𝑥 (𝜏)|

2
𝑑𝜏,

∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥(𝑠 − 𝛿)|

2
𝑑𝑠

= ∫

𝛿

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥(𝑠 − 𝛿)|

2
𝑑𝑠 + ∫

𝑡

𝛿

𝑒
𝜀𝑠
⋅ 𝐸|𝑥(𝑠 − 𝛿)|

2
𝑑𝑠

≤ 𝑒
𝜀𝛿
∫

𝛿

0

𝐸|𝑥 (𝑠 − 𝛿)|
2
𝑑𝑠 + 𝑒

𝜀𝛿
∫

𝑡

𝛿

𝑒
𝜀(𝑠−𝛿)

⋅ 𝐸|𝑥 (𝑠 − 𝛿)|
2
𝑑𝑠

𝑒
𝜀𝛿
∫

0

−𝛿

𝐸
𝜉 (𝜏)


2

𝑑𝜏 + 𝑒
𝜀𝛿
∫

𝑡−𝛿

0

𝑒
𝜀𝜏
⋅ 𝐸|𝑥 (𝜏)|

2
𝑑𝜏 (𝜏 = 𝑠 − 𝛿)

≤ 𝑐
11
𝑒
𝜀𝛿
+ 𝑒
𝜀𝛿
∫

𝑡−𝛿

0

𝑒
𝜀𝜏
⋅ 𝐸|𝑥 (𝜏)|

2
𝑑𝜏

(A.1)

for any 𝑡 ≥ 𝛿, where 𝑐
11
≥ ∫
0

−𝛿
𝐸|𝜉(𝜏)|

2
𝑑𝜏.

Proof of Lemma 8. Similar to (26), for any 𝑡 ≥ 𝛿, we have

∫

𝑡

𝛿

𝑒
𝜀𝑠
∫

𝑠

𝑠−𝛿

𝐸
𝑦(𝜏)


2

𝑑𝜏 𝑑𝑠 ≤ 𝛿𝑒
𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝜏
⋅ 𝐸
𝑦 (𝜏)


2

𝑑𝜏. (A.2)

For 𝑡 ≥ 𝛿, it then follows from (17) that

∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸
𝑦 (𝑠)


2

𝑑𝑠

≤
1

2𝜇
∫

𝑡

0

𝑒
𝜀𝑠
∫

𝑠

𝑠−𝛿

𝐸|𝑥(𝜏)|
2
𝑑𝜏 𝑑𝑠

=
1

2𝜇
[∫

𝛿

0

𝑒
𝜀𝑠
∫

𝑠

𝑠−𝛿

𝐸|𝑥 (𝜏)|
2
𝑑𝜏 𝑑𝑠

+∫

𝑡

𝛿

𝑒
𝜀𝑠
∫

𝑠

𝑠−𝛿

𝐸|𝑥 (𝜏)|
2
𝑑𝜏 𝑑𝑠] .

(A.3)

Similar to (26) and substituting (26) into the above, we obtain
(29); that is

∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸
𝑦 (𝑠)


2

𝑑𝑠

≤
𝛿

2𝜇
𝑒
𝜀𝛿
∫

𝛿

−𝛿

𝑒
𝜀𝑠
⋅ 𝐸|𝑥(𝑠)|

2
𝑑𝑠
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+
𝛿

2𝜇
𝑒
𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥 (𝑠)|

2
𝑑𝑠

≤
𝛿

2𝜇
𝑐
12
𝑒
𝜀𝛿
+
𝛿

2𝜇
𝑒
𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥(𝑠)|

2
𝑑𝑠

≤
𝛿

𝜇
𝑐
12
𝑒
𝜀𝛿
+
𝛿

𝜇
𝑒
𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥 (𝑠)|

2
𝑑𝑠,

(A.4)

where 𝑐
12
≥ ∫
𝛿

−𝛿
𝑒
𝜀𝑠
⋅ 𝐸|𝑥(𝑠)|

2
𝑑𝑠.

Substituting (29) into (A.2) yields

∫

𝑡

𝛿

𝑒
𝜀𝑠
∫

𝑠

𝑠−𝛿

𝐸
𝑦 (𝜏)


2

𝑑𝜏𝑑𝑠

≤
𝛿
2

𝜇
𝑐
12
𝑒
2𝜀𝛿
+
𝛿
2

𝜇
𝑒
2𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥 (𝑠)|

2
𝑑𝑠.

(A.5)

The relation (28) in Lemma 8 is then proved.

Proof of Lemma 9. Similar to (26), for any 𝑡 ≥ 𝛿, we have

∫

𝑡

𝛿

𝑒
𝜀𝑠
∫

𝑠

𝑠−𝛿

𝐸|𝑥(𝜏 − 𝛿)|
2
𝑑𝜏 𝑑𝑠 ≤ 𝛿𝑒

𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝜏
⋅ 𝐸|𝑥 (𝜏 − 𝛿)|

2
𝑑𝜏.

(A.6)

Substituting (27) into the above inequality yields

∫

𝑡

𝛿

𝑒
𝜀𝑠
∫

𝑠

𝑠−𝛿

𝐸|𝑥(𝜏 − 𝛿)|
2
𝑑𝜏 𝑑𝑠

≤ 𝛿𝑒
𝜀𝛿
(𝑐
11
𝑒
𝜀𝛿
+ 𝑒
𝜀𝛿
∫

𝑡−𝛿

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥(𝑠)|

2
𝑑𝑠)

< 𝛿𝑐
11
𝑒
2𝜀𝛿
+ 𝛿𝑒
2𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥(𝑠)|

2
𝑑𝑠.

(A.7)

The relation (30) in Lemma 9 is then proved.
On the other hand, for 𝑠 ≥ 𝛿, we have

𝑥 (𝑠) − 𝑥 (𝑠 − 𝛿)

= ∫

𝑠

𝑠−𝛿

𝑏 (𝑡, 𝑥, 𝑦, 𝑧) 𝑑𝑡 + ∫

𝑠

𝑠−𝛿

𝜎 (𝑡, 𝑥, 𝑦, 𝑧) 𝑑𝑊 (𝑡) .

(A.8)

By (22) and (23), it follows from Lemmas 3-4 that

𝐸|𝑥 − 𝑧|
2

≤ 2𝐸


∫

𝑠

𝑠−𝛿

𝑏(𝑡, 𝑥, 𝑦, 𝑧)𝑑𝑡



2

+ 2𝐸


∫

𝑠

𝑠−𝛿

𝜎(𝑡, 𝑥, 𝑦, 𝑧)𝑑𝑊(𝑡)



2

≤ 2𝛿 ⋅ 𝐸∫

𝑠

𝑠−𝛿

𝑏 (𝑡, 𝑥, 𝑦, 𝑧)

2

𝑑𝑡

+ 2𝐸∫

𝑠

𝑠−𝛿

𝑡𝑟 [𝜎
𝑇
(𝑡, 𝑥, 𝑦, 𝑧) 𝜎 (𝑡, 𝑥, 𝑦, 𝑧)] 𝑑𝑡

≤ 2𝛿 ⋅ 𝐸∫

𝑠

𝑠−𝛿

3𝛼
2
(|𝑥|
2
+
𝑦

2

+ |𝑧|
2
) 𝑑𝑡

+ 2𝛽 ⋅ 𝐸∫

𝑠

𝑠−𝛿

(|𝑥|
2
+
𝑦

2

+ |𝑧|
2
) 𝑑𝑡

= (6𝛿𝛼
2
+ 2𝛽)∫

𝑠

𝑠−𝛿

(𝐸|𝑥|
2
+ 𝐸

𝑦

2

+ 𝐸|𝑧|
2
) 𝑑𝑡.

(A.9)

Similar to (27), for 𝑡 ≥ 𝛿, we have

∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥 − 𝑧|

2
𝑑𝑠

= ∫

𝛿

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥 (𝑠) − 𝑥 (𝑠 − 𝛿)|

2
𝑑𝑠

+ ∫

𝑡

𝛿

𝑒
𝜀𝑠
⋅ 𝐸|𝑥 (𝑠) − 𝑥 (𝑠 − 𝛿)|

2
𝑑𝑠

≤ 𝑐
2
+ (6𝛿𝛼

2
+ 2𝛽)

⋅ (∫

𝑡

𝛿

𝑒
𝜀𝑠
∫

𝑠

𝑠−𝛿

𝐸|𝑥|
2
𝑑𝑡 𝑑𝑠

+∫

𝑡

𝛿

𝑒
𝜀𝑠
∫

𝑠

𝑠−𝛿

𝐸
𝑦

2

𝑑𝑡 𝑑𝑠 + ∫

𝑡

𝛿

𝑒
𝜀𝑠
∫

𝑠

𝑠−𝛿

𝐸|𝑧|
2
𝑑𝑡 𝑑𝑠) ,

(A.10)

where 𝑐
2
≥ ∫
𝛿

0
𝑒
𝜀𝑠
⋅ 𝐸|𝑥(𝑠) − 𝑥(𝑠 − 𝛿)|

2
𝑑𝑠.

Substituting (26), (28), and (30) into (A.10), for 𝑡 ≥ 𝛿, we
get

∫

𝑡

0

𝑒
𝜀𝑠
⋅ 𝐸|𝑥 (𝑠) − 𝑥 (𝑠 − 𝛿)|

2
𝑑𝑠

≤ 𝑐
2
+ (6𝛿𝛼

2
+ 2𝛽) ⋅ 𝛿𝑒

𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
𝐸|𝑥 (𝑠)|

2
𝑑𝑠

+ (6𝛿𝛼
2
+ 2𝛽) ⋅ (

𝛿

𝜇
𝑐
12
+ 𝑐
11
)

× [𝛿𝑒
2𝜀𝛿
+ 𝛿𝑒
2𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
𝐸|𝑥 (𝑠)|

2
𝑑𝑠]

≤ 𝑐
2
+ (6𝛿𝛼

2
+ 2𝛽) ⋅ 𝛿𝑒

𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
𝐸|𝑥 (𝑠)|

2
𝑑𝑠

+ (6𝛿𝛼
2
+ 2𝛽) ⋅ (

𝛿

𝜇
+ 1)

× [𝑐
1
𝛿𝑒
2𝜀𝛿
+ 𝛿𝑒
2𝜀𝛿
∫

𝑡

0

𝑒
𝜀𝑠
𝐸|𝑥 (𝑠)|

2
𝑑𝑠] ,

(A.11)

where 𝑐
1
= max{𝑐

11
, 𝑐
12
}.
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