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We conduct some investigations concerning the solvability of a nonlinear integral equation of Erdélyi-Kober type. To facilitate
our study we will first consider a nonlinear integral equation of Volterra-Stieltjes type. Since the mentioned Erdélyi-Kober integral
equation turns out to be a special case of that of Volterra-Stieltjes type, we can apply the obtained results to the Erdélyi-Kober
integral equation. Examples illustrating the obtained results will be also included.

1. Introduction

Differential and integral operators of noninteger order play
an important role in several branches of appliedmathematics,
engineering, physics, mathematical physics, and so forth.
Differential and integral equations involving operators of the
mentioned type are called equations of fractional order (see
[1–4], e.g.). Such equations are used to describe nonlinear
oscillations of earthquakes, the fluid dynamic traffic model,
and the media with fractional mass dimension and they are
used in the theory of viscoelasticity as well as in electrochem-
istry, for instance [1–8]. It is also worthwhile mentioning that
differential and integral equations are also applied in biology
and economics [2, 4, 7].

Our aim in this paper is to study the solvability of the
so-called nonlinear integral equations of Erdélyi-Kober type.
Let us mention that integral equations of that type can be
utilized in describing the generalized grey Brownian motion
as a diffusion process. Other examples of integral equations of
Erdélyi-Kober type are indicated in [9], for example (cf. also
[10–12]).

The approach which will be used in this paper to study
nonlinear integral equations of Erdélyi-Kober integral equa-
tions depends on considering some class of Volterra-Stieltjes
integral equations of such a type that the mentioned Erdélyi-
Kober integral equations turn out to be special cases of those

integral equations of Volterra-Stieltjes type. Such an approach
allows us not only to conduct our investigations in a more
convenient way but also to obtain more general results.

2. Notation, Definitions, and Auxiliary Facts

In this section we collect notation, definitions, and auxiliary
facts which will be utilized in our further considerations.
Throughout the paper we will denote by R the set of real
numbers and byR

+
the interval [0,∞). If 𝐸 is a Banach space

with the norm ‖ ⋅ ‖ and the zero element 𝜃, then 𝐵(𝑥, 𝑟) will
denote closed ball centered at 𝑥 and with radius 𝑟. We write
𝐵
𝑟
to denote the ball 𝐵(𝜃, 𝑟).
The investigations of this paper will be conducted in the

classical Banach function space 𝐶(𝐼), where 𝐼 = [0, 1] is the
unit interval. Obviously, the interval [0, 1] can be replaced
by any interval [𝑎, 𝑏]. We will assume that the space 𝐶(𝐼)
is endowed with the standard maximum norm ‖ ⋅ ‖; that is,
‖𝑥‖ = max{|𝑥(𝑡)| : 𝑡 ∈ 𝐼}.

If 𝑥 is an arbitrary function from the space 𝐶(𝐼), then the
symbol 𝜔(𝑥, 𝜀) will denote the modulus of continuity of the
function 𝑥 defined in the standard way:

𝜔 (𝑥, 𝜀) = sup {|𝑥 (𝑡) − 𝑥 (𝑠)| : 𝑡, 𝑠 ∈ 𝐼, |𝑡 − 𝑠| ≤ 𝜀} , (1)

for any 𝜀 ≥ 0.
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Further, we recall some facts concerning functions of
bounded variation [13].

At the beginning let us assume that 𝑥 is a real function
defined on a given interval [𝑎, 𝑏]. Then, by the symbol ⋁𝑏

𝑎
𝑥

we will denote the variation of the function 𝑥 on the interval
[𝑎, 𝑏]. If the variation⋁𝑏

𝑎
𝑥 is finite, we say that 𝑥 is of bounded

variation on the interval [𝑎, 𝑏]. In the case when 𝑢(𝑡, 𝑠) = 𝑢 :
[𝑎, 𝑏]× [𝑐, 𝑑] → R and [𝑝, 𝑞] is an arbitrary subinterval of the
interval [𝑎, 𝑏], we denote by ⋁𝑞

𝑡=𝑝
𝑢(𝑡, 𝑠) the variation of the

function 𝑡 → 𝑢(𝑡, 𝑠) on the interval [𝑝, 𝑞], where 𝑠 is a fixed
number in the interval [𝑐, 𝑑]. Similarly we define the quantity
⋁
𝑞

𝑠=𝑝
𝑢(𝑡, 𝑠).
Other facts concerning functions of bounded variation

may be found in [13].
If 𝑥 and 𝜑 are two real functions defined on the interval

[𝑎, 𝑏], then under some additional conditions [13, 14] we can
define the Stieltjes integral (in the Riemann-Stieltjes sense)

∫
𝑏

𝑎

𝑥 (𝑡) 𝑑𝜑 (𝑡) (2)

of the function 𝑥 with respect to the function 𝜑. In such
a situation we will say that 𝑥 is Stieltjes integrable on the
interval [𝑎, 𝑏] with respect to the function 𝜑.

Let us notice that several conditions are known which
guarantee the Stieltjes integrability [13–15]. One of the most
frequently used requires that 𝑥 be continuous and 𝜑 be of
bounded variation on [𝑎, 𝑏].

Further on, we will apply a few properties of the Stieltjes
integral contained in formulated lemmas below [13].

Lemma 1. If 𝑥 is Stieltjes integrable on the interval [𝑎, 𝑏] with
respect to a function 𝜑 of bounded variation, then


∫
𝑏

𝑎

𝑥 (𝑡) 𝑑𝜑 (𝑡)


≤ ∫
𝑏

𝑎

|𝑥 (𝑡)| 𝑑 (

𝑡

⋁
𝑎

𝜑) . (3)

Lemma 2. Let 𝑥
1
, 𝑥
2
be Stieltjes integrable functions on the

interval [𝑎, 𝑏] with respect to a nondecreasing function 𝜑, such
that 𝑥

1
(𝑡) ≤ 𝑥

1
(𝑡) for 𝑡 ∈ [𝑎, 𝑏]. Then,

∫
𝑏

𝑎

𝑥
1
(𝑡) 𝑑𝜑 (𝑡) ≤ ∫

𝑏

𝑎

𝑥
2
(𝑡) 𝑑𝜑 (𝑡) . (4)

In the sequel we will also consider the Stieltjes integrals
having the form

∫
𝑏

𝑎

𝑥 (𝑠) 𝑑
𝑠
𝑔 (𝑡, 𝑠) , (5)

where 𝑔 : [𝑎, 𝑏] × [𝑎, 𝑏] → R and the symbol 𝑑
𝑠
indicates

the integration with respect to 𝑠. The details concerning the
integral of such a kind will be given later. Let us only mention
that integral (5) allows us to represent the Erdélyi-Kober
integral equation in the more convenient form as a particular
case of the Volterra-Stieltjes integral equation (cf. the next
section).

3. Introductory Facts concerning
Erdélyi-Kober Integral Equations

In this section we provide a few preliminary facts concerning
the integral equations of Erdélyi-Kober type. The theory of
those equations was initiated by the papers of Erdélyi and
Kober [16–18].

Integral equations of Erdélyi-Kober type can be presented
in the form of singular nonlinear integral equations having
the form:

𝑥 (𝑡) = 𝑎 (𝑡) +
1

Γ (𝛼)
∫
𝑡

0

𝑠
𝛾𝑚
𝑓 (𝑡, 𝑠, 𝑥 (𝑠))

(𝑡𝑚 − 𝑠𝑚)
1−𝛼
𝑑𝑠, (6)

where 𝑚, 𝛾, 𝛼 are positive constants, 𝛼 ∈ (0, 1), and 𝑡 ∈ 𝐼 =
[0, 1]. Moreover, Γ(𝛼) is the gamma function.

This equation can be written in a more general form:

𝑥 (𝑡) = 𝑎 (𝑡) +
𝑡
−𝑚(𝛾+𝛼)

Γ (𝛼)
∫
𝑡

0

𝑠
𝛾𝑚
𝑓 (𝑡, 𝑠, 𝑥 (𝑠))

(𝑡𝑚 − 𝑠𝑚)
1−𝛼
𝑑𝑠 (7)

(cf. [12]), but the function 𝑡−𝑚(𝛾+𝛼) can be linked with the
function 𝑓(𝑡, 𝑠, 𝑥(𝑠)) and such an approach allows us to
convert (7) to the form (6).

Notice that taking 𝛾 = 1 − 1/𝑚 (for𝑚 ≥ 1), we transform
(6) to the form

𝑥 (𝑡) = 𝑎 (𝑡) +
1

Γ (𝛼)
∫
𝑡

0

𝑠
𝑚−1
𝑓 (𝑡, 𝑠, 𝑥 (𝑠))

(𝑡𝑚 − 𝑠𝑚)
1−𝛼

𝑑𝑠, (8)

so we obtain (with the accuracy to the constant 𝑚) the
Erdélyi-Kober integral equation of the form

𝑥 (𝑡) = 𝑎 (𝑡) +
1

Γ (𝛼)
∫
𝑡

0

𝑚𝑠
𝑚−1
𝑓 (𝑡, 𝑠, 𝑥 (𝑠))

(𝑡𝑚 − 𝑠𝑚)
𝛼−1

𝑑𝑠. (9)

In what follows we will consider (6) which will be written
in the form

𝑥 (𝑡) = 𝑎 (𝑡) +
1

Γ (𝛼)
∫
𝑡

0

𝑚𝑠
𝑚−1
𝑠
𝛾𝑚−𝑚+1

𝑓 (𝑡, 𝑠, 𝑥 (𝑠))

(𝑡𝑚 − 𝑠𝑚)
1−𝛼

𝑑𝑠. (10)

In order to simplify the investigations we will assume that
𝛾 > 1− 1/𝑚 since in such a case we have that 𝛾𝑚−𝑚+1 > 0.

Particularly, this condition is satisfied for 𝑚 ∈ (0, 1].
Under such an assumption the above equation can be con-
sidered in a more handy form as follows:

𝑥 (𝑡) = 𝑎 (𝑡) +
1

Γ (𝛼)
∫
𝑡

0

𝑚𝑠
𝑚−1
𝑠
𝑝
𝑓 (𝑡, 𝑠, 𝑥 (𝑠))

(𝑡𝑚 − 𝑠𝑚)
1−𝛼

𝑑𝑠, (11)

where 𝑝 = const, 𝑝 > 0, and 𝑡 ∈ 𝐼.
It is a key point in our considerations to observe that the

fractional order integral equation of Erdélyi-Kober type (11)
can be written as the integral equation of Volterra-Stieltjes
type having the form

𝑥 (𝑡) = 𝑎 (𝑡) +
𝛼

Γ (𝛼)
∫
𝑡

0

𝑠
𝑝

𝑓 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑
𝑠
𝑔 (𝑡, 𝑠) , (12)
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where the function 𝑔 = 𝑔(𝑡, 𝑠) appearing in our equation has
the form

𝑔 (𝑡, 𝑠) = 𝑡
𝛼𝑚

− (𝑡
𝑚

− 𝑠
𝑚

)
𝛼

, (13)

for (𝑡, 𝑠) ∈ Δ = {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 1}.
Indeed, we have

𝑑
𝑠
𝑔 (𝑡, 𝑠) =

𝜕

𝜕𝑠
𝑔 (𝑡, 𝑠) 𝑑𝑠 = (−𝛼) (𝑡

𝑚

− 𝑠
𝑚

)
𝛼−1

(−𝑚) 𝑠
𝑚−1

𝑑𝑠

= 𝛼(𝑡
𝑚

− 𝑠
𝑚

)
𝛼−1

𝑚𝑠
𝑚−1

𝑑𝑠

= 𝛼
𝑚𝑠
𝑚−1

(𝑡𝑚 − 𝑠𝑚)
1−𝛼
𝑑𝑠.

(14)

Hence we see that nonlinear Erdélyi-Kober integral equation
(11) is a particular case of nonlinear Volterra-Stieltjes integral
equation (12).

This observation will be very essential in our further
investigations which will be conducted in next sections.

4. Main Result

This section is devoted to the study of the nonlinear Volterra-
Stieltjes integral equation (12). In our investigations we will
impose the below formulated hypotheses (cf. [19]).

(i) 𝑎 ∈ 𝐶(𝐼).
(ii) The function 𝑔(𝑡, 𝑠) = 𝑔 : Δ → R is continuous on

the triangle Δ = {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 1}.
(iii) The function 𝑠 → 𝑔(𝑡, 𝑠) is of bounded variation on

the interval [0, 𝑡], for each fixed 𝑡 ∈ 𝐼.
(iv) For any 𝜀 > 0, there exists 𝛿 > 0 such that, for all 𝑡

1
,

𝑡
2
∈ 𝐼 with 𝑡

1
< 𝑡
2
and 𝑡
2
− 𝑡
1
≤ 𝛿, the following

inequality holds:
𝑡
1

⋁
𝑠=0

[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)] ≤ 𝜀. (15)

(v) 𝑔(𝑡, 0) = 0 for any 𝑡 ∈ 𝐼.
(vi) 𝑓 : Δ × R → R is continuous and such that
|𝑓(𝑡, 𝑠, 𝑥)| ≤ 𝜙(|𝑥|), for all (𝑡, 𝑠) ∈ Δ and for each
𝑥 ∈ R, where 𝜙 : R

+
→ R

+
is a nondecreasing

function.

In order to formulate our last assumption we will need to
recall a few auxiliary facts coming from [19] and concerning
the function 𝑔 = 𝑔(𝑡, 𝑠) (cf. also [20]).

We will assume that 𝑔 satisfies assumptions (ii)–(v)
formulated above.

We start with the following lemma.

Lemma 3. The function

𝑞 →

𝑞

⋁
𝑠=0

𝑔 (𝑡, 𝑠) (16)

is continuous on the interval [0, 𝑡] for any fixed 𝑡 ∈ 𝐼.

Lemma 4. Let assumptions (ii)–(iv) be satisfied. Then, for an
arbitrarily fixed number 𝑡

2
∈ 𝐼 (𝑡

2
> 0) and for any 𝜀 > 0,

there exists 𝛿 > 0 such that if 𝑡
1
∈ 𝐼, 𝑡
1
< 𝑡
2
and 𝑡
2
− 𝑡
1
≤ 𝛿,

then
𝑡
2

⋁
𝑠=𝑡
1

𝑔 (𝑡
2
, 𝑠) ≤ 𝜀. (17)

Lemma 5. Under assumptions (ii)–(iv), the function

𝑡 →

𝑡

⋁
𝑠=0

𝑔 (𝑡, 𝑠) (18)

is continuous on the interval 𝐼.

Further, let us observe that based on Lemma 5 we infer
that there exists a positive constant𝐾 such that

𝐾 = sup{
𝑡

⋁
𝑠=0

𝑔 (𝑡, 𝑠) : 𝑡 ∈ 𝐼} . (19)

Now, we are prepared to formulate our last assumption.
(vii) There exists a positive solution 𝑟

0
of the inequality

‖𝑎‖ +
𝛼

Γ (𝛼)
𝐾𝜙 (𝑟) ≤ 𝑟. (20)

The main result of the paper is contained in the formu-
lated theorem below.

Theorem 6. Under assumptions (i)–(vii) there exists at least
one solution of (12) belonging to the ball 𝐵

𝑟
0

of the space 𝐶(𝐼).

Proof. Let us consider the operator 𝐹 defined on the space
𝐶(𝐼) in the following way:

(𝐹𝑥) (𝑡) = 𝑎 (𝑡) +
𝛼

Γ (𝛼)
∫
𝑡

0

𝑠
𝑝

𝑓 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑
𝑠
𝑔 (𝑡, 𝑠) . (21)

for 𝑥 ∈ 𝐶(𝐼) and for arbitrarily fixed 𝑡 ∈ 𝐼.
Then, taking into account the imposed assumptions we

infer that the function 𝐹𝑥 is well defined.
For further purposes, to make our proof more transpar-

ent, we introduce two functions𝑀 = 𝑀(𝜀) and 𝑁 = 𝑁(𝜀)
defined in the following way:

𝑀(𝜀) = sup{
𝑡
1

⋁
𝑠=0

[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)] : 𝑡

1
, 𝑡
2
∈ 𝐼,

𝑡
1
< 𝑡
2
, 𝑡
2
− 𝑡
1
≤ 𝜀} ,

𝑁 (𝜀) = sup{
𝑡
2

⋁
𝑠=𝑡
1

𝑔 (𝑡
2
, 𝑠) : 𝑡

1
, 𝑡
2
∈ 𝐼, 𝑡
1
< 𝑡
2
, 𝑡
2
− 𝑡
1
≤ 𝜀} .

(22)

Observe that in virtue of assumption (iv) and Lemma 4 we
conclude easily that𝑀(𝜀) → 0 and𝑁(𝜀) → 0 as 𝜀 → 0.
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Now, choose arbitrarily a function𝑥 ∈ 𝐶(𝐼) and a number
𝜀 > 0. Next, fix 𝑡

1
, 𝑡
2
∈ 𝐼 such that |𝑡

2
−𝑡
1
| ≤ 𝜀. Without loss of

generality we can assume that 𝑡
1
< 𝑡
2
. Then, keeping in mind

our assumptions and Lemmas 1 and 2, we have

(𝐹𝑥) (𝑡2) − (𝐹𝑥) (𝑡1)


≤
𝑎 (𝑡2) − 𝑎 (𝑡1)



+
𝛼

Γ (𝛼)


∫
𝑡
2

0

𝑠
𝑝

𝑓 (𝑡
2
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
2
, 𝑠)

− ∫
𝑡
1

0

𝑠
𝑝

𝑓 (𝑡
1
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
1
, 𝑠)


≤ 𝜔 (𝑎, 𝜀) +
𝛼

Γ (𝛼)


∫
𝑡
2

0

𝑠
𝑝

𝑓 (𝑡
2
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
2
, s)

− ∫
𝑡
2

0

𝑠
𝑝

𝑓 (𝑡
1
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
2
, 𝑠)


+
𝛼

Γ (𝛼)


∫
𝑡
2

0

𝑠
𝑝

𝑓 (𝑡
1
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
2
, 𝑠)

− ∫
𝑡
1

0

𝑠
𝑝

𝑓 (𝑡
1
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
2
, 𝑠)


+
𝛼

Γ (𝛼)


∫
𝑡
1

0

𝑠
𝑝

𝑓 (𝑡
1
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
2
, 𝑠)

− ∫
𝑡
1

0

𝑠
𝑝

𝑓 (𝑡
1
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
1
, 𝑠)


≤ 𝜔 (𝑎, 𝜀)

+
𝛼

Γ (𝛼)


∫
𝑡
2

0

𝑠
𝑝

[𝑓 (𝑡
2
, 𝑠, 𝑥 (𝑠)) − 𝑓 (𝑡

1
, 𝑠, 𝑥 (𝑠))] 𝑑

𝑠

×𝑔 (𝑡
2
, 𝑠)


+
𝛼

Γ (𝛼)


∫
𝑡
2

𝑡
1

𝑠
𝑝

𝑓 (𝑡
1
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
𝑠
, 𝑠)



+
𝛼

Γ (𝛼)


∫
𝑡
1

0

𝑠
𝑝

𝑓 (𝑡
1
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)]


≤ 𝜔 (𝑎, 𝜀)

+
𝛼

Γ (𝛼)
∫
𝑡
2

0

𝑠
𝑝 𝑓 (𝑡2, 𝑠, 𝑥 (𝑠)) − 𝑓 (𝑡1, 𝑠, 𝑥 (𝑠))

 𝑑𝑠

× (

𝑠

⋁
𝑞=0

𝑔 (𝑡
2
, 𝑞))

+
𝛼

Γ (𝛼)
∫
𝑡
2

𝑡
1

𝑠
𝑝 𝑓 (𝑡1, 𝑠, 𝑥 (𝑠))

 𝑑𝑠(

𝑠

⋁
𝑞=0

𝑔 (𝑡
2
, 𝑞))

+
𝛼

Γ (𝛼)
∫
𝑡
1

0

𝑠
𝑝 𝑓 (𝑡1, 𝑠, 𝑥 (𝑠))

 𝑑𝑠

× (

𝑠

⋁
𝑞=0

[𝑔 (𝑡
2
, 𝑞) − 𝑔 (𝑡

1
, 𝑞)])

≤ 𝜔 (𝑎, 𝜀) +
𝛼

Γ (𝛼)
∫
𝑡
2

0

𝑠
𝑝

𝜔
1

‖𝑥‖
(𝑓, 𝜀) 𝑑

𝑠
(

𝑠

⋁
𝑞=0

𝑔 (𝑡
2
, 𝑞))

+
𝛼

Γ (𝛼)
∫
𝑡
2

𝑡
1

𝑠
𝑝

𝜙 (|𝑥 (𝑠)|) 𝑑
𝑠
(

𝑠

⋁
𝑞=0

𝑔 (𝑡
2
, 𝑞))

+
𝛼

Γ (𝛼)
∫
𝑡
1

0

𝑠
𝑝

𝜙 (|𝑥 (𝑠)|) 𝑑
𝑠
(

𝑠

⋁
𝑞=0

[𝑔 (𝑡
2
, 𝑞) − 𝑔 (𝑡

1
, 𝑞)])

≤ 𝜔 (𝑎, 𝜀) +
𝛼

Γ (𝛼)
𝜔
1

‖𝑥‖
(𝑓, 𝜀) ∫

𝑡
2

0

𝑑
𝑠
(

𝑠

⋁
𝑞=0

𝑔 (𝑡
2
, 𝑞))

+
𝛼

Γ (𝛼)
𝜙 (‖𝑥‖) ∫

𝑡
2

𝑡
1

𝑑
𝑠
(

𝑠

⋁
𝑞=0

𝑔 (𝑡
2
, 𝑞))

+
𝛼

Γ (𝛼)
𝜙 (‖𝑥‖) ∫

𝑡
1

0

𝑑
𝑠
(

𝑠

⋁
𝑞=0

[𝑔 (𝑡
2
, 𝑞) − 𝑔 (𝑡

1
, 𝑞)])

= 𝜔 (𝑎, 𝜀) +
𝛼

Γ (𝛼)
𝜔
1

‖𝑥‖
(𝑓, 𝜀)

𝑡
2

⋁
𝑠=0

𝑔 (𝑡
2
, 𝑠)

+
𝛼

Γ (𝛼)
𝜙 (‖𝑥‖)

𝑡
2

⋁
𝑠=𝑡
1

𝑔 (𝑡
2
, 𝑠)

+
𝛼

Γ (𝛼)
𝜙 (‖𝑥‖)

𝑡
1

⋁
𝑠=0

[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)]

≤ 𝜔 (𝑎, 𝜀) +
𝛼

Γ (𝛼)
[𝐾𝜔
1

‖𝑥‖
(𝑓, 𝜀) + 𝜙 (‖𝑥‖)𝑁 (𝜀)

+𝜙 (‖𝑥‖)𝑀 (𝜀) ] ,

(23)

where we denoted

𝑤
1

𝑟
(𝑓, 𝜀) = sup {𝑓 (𝑡2, 𝑠, 𝑥) − 𝑓 (𝑡1, 𝑠, 𝑥)

 : 𝑡1, 𝑡2 ∈ 𝐼,

𝑡2 − 𝑡1
 ≤ 𝜀, 𝑥 ∈ [−𝑟, 𝑟]} .

(24)

Further, let us observe that in view of the uniform continuity
of the function 𝑓 on the set Δ × [−‖𝑥‖, ‖𝑥‖] we infer that
𝜔
1

‖𝑥‖
(𝑓, 𝜀) → 0 as 𝜀 → 0. Moreover, invoking assumption

(i) and the properties of the functions𝑀(𝜀) and𝑁(𝜀) defined
by (22), we conclude that the function 𝐹𝑥 is continuous on
the interval 𝐼.Thismeans that the operator𝐹 transforms𝐶(𝐼)
into itself.

In what follows we show that the operator𝐹 is continuous
on the space 𝐶(𝐼). To this end fix arbitrarily a number 𝜀 > 0
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and take 𝑥, 𝑦 ∈ 𝐶(𝐼) such that ‖𝑥 − 𝑦‖ ≤ 𝜀. Then, in view of
Lemmas 1 and 2, for an arbitrarily fixed 𝑡 ∈ 𝐼 we obtain

(𝐹𝑥) (𝑡) − (𝐹𝑦) (𝑡)


≤
𝛼

Γ (𝛼)


∫
𝑡

0

𝑠
𝑝

𝑓 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑
𝑠
𝑔 (𝑡, 𝑠)

−∫
𝑡

0

𝑠
𝑝

𝑓 (𝑡, 𝑠, 𝑦 (𝑠)) 𝑑
𝑠
𝑔 (𝑡, 𝑠)



≤
𝛼

Γ (𝛼)
∫
𝑡

0

𝑠
𝑝 𝑓 (𝑡, 𝑠, 𝑥 (𝑠)) − 𝑓 (𝑡, 𝑠, 𝑦 (𝑠))

 𝑑𝑠

× (

𝑠

⋁
𝑞=0

𝑔 (𝑡, 𝑞)) .

(25)

Hence, denoting by 𝑃 the number

𝑃 = ‖𝑥‖ + 𝜀 (26)

and introducing the notation

𝜔
𝑃
(𝑓, 𝜀) = sup {𝑓 (𝑡, 𝑠, 𝑥) − 𝑓 (𝑡, 𝑠, 𝑦)

 : (𝑡, 𝑠) ∈ Δ,

𝑥, 𝑦 ∈ [−𝑃, 𝑃] ,
𝑥 − 𝑦

 ≤ 𝜀} ,
(27)

we obtain the following estimate:

|(𝐹𝑥) (𝑡) − (𝐹𝑥) (𝑡)| ≤
𝛼

Γ (𝛼)
𝜔
𝑃
(𝑓, 𝜀) ∫

𝑡

0

𝑠
𝑝

𝑑
𝑠
(

𝑠

⋁
𝑞=0

𝑔 (𝑡, 𝑞))

≤
𝛼

Γ (𝛼)
𝜔
𝑃
(𝑓, 𝜀) ∫

𝑡

0

𝑑
𝑠
(

𝑠

⋁
𝑞=0

𝑔 (𝑡, 𝑞))

≤
𝛼

Γ (𝛼)
𝜔
𝑃
(𝑓, 𝜀)

𝑡

⋁
𝑠=0

𝑔 (𝑡, 𝑠)

≤
𝛼

Γ (𝛼)
𝐾𝜔
𝑃
(𝑓, 𝜀) .

(28)

Now, applying the fact that the function 𝑓 is uniformly
continuous on the setΔ×[−𝑃, 𝑃], we conclude that𝜔

𝑃
(𝑡, 𝜀) →

0 as 𝜀 → 0. Combining this fact with estimate (27) we deduce
that the operator 𝐹 is continuous on the space 𝐶(𝐼).

Further on, let us fix arbitrarily 𝑥 ∈ 𝐶(𝐼). Then, applying
Lemmas 1 and 2 and arguing as above, for 𝑡 ∈ 𝐼, we obtain

|(𝐹𝑥) (𝑡)| ≤ |𝑎 (𝑡)| +
𝛼

Γ (𝛼)


∫
𝑡

0

𝑠
𝑝

𝑓 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑
𝑠
𝑔 (𝑡, 𝑠)



≤ ‖𝑎‖

+
𝛼

Γ (𝛼)
∫
𝑡

0

𝑠
𝑝 𝑓 (𝑡, 𝑠, 𝑥 (𝑠))

 𝑑𝑠(

𝑠

⋁
𝑞=0

𝑔 (𝑡, 𝑞))

< ‖𝑎‖ +
𝛼

Γ (𝛼)
𝜙 (‖𝑥‖) ∫

𝑡

0

𝑑
𝑠
(

𝑠

⋁
𝑞=0

𝑔 (𝑡, 𝑞))

≤ ‖𝑎‖ +
𝛼

Γ (𝛼)
𝜙 (‖𝑥‖)

𝑡

⋁
𝑠=0

𝑔 (𝑡, 𝑠)

≤ ‖𝑎‖ +
𝛼

Γ (𝛼)
𝐾𝜙 (‖𝑥‖) .

(29)

Now, invoking assumption (vii) we deduce that there exists a
number 𝑟

0
> 0 such that the operator 𝐹 transforms the ball

𝐵
𝑟
0

into itself.
In what follows let us choose a number 𝜀 > 0. Next, take

arbitrary numbers 𝑡
1
, 𝑡
2
∈ 𝐼 such that 𝑡

1
< 𝑡
2
and 𝑡
2
− 𝑡
1
≤ 𝜀.

Then, for arbitrarily fixed element 𝑥 ∈ 𝐵
𝑟
0

, in view of estimate
(23), we obtain

(𝐹𝑥) (𝑡2) − (𝐹𝑥) (𝑡1)


≤ 𝜔 (𝑎, 𝜀)

+
𝛼

Γ (𝛼)
[𝐾𝜔
1

𝑟
0

+ 𝜙 (𝑟
0
)𝑁 (𝜀) + 𝜙 (𝑟

0
)𝑀 (𝜀)] .

(30)

Then, based on the properties of the functions 𝜀 → 𝜔(𝑎, 𝜀),
𝜀 → 𝜔

1

𝑟
0

(𝑓, 𝜀), 𝜀 → 𝑀(𝜀), and 𝜀 → 𝑁(𝜀), from (29) and
the Arzéla-Ascoli criterion for relative compactness in the
space 𝐶(𝐼), we conclude that the subset 𝐹(𝐵

𝑟
0

) of the ball 𝐵
𝑟
0

is relatively compact in the space 𝐶(𝐼). Thus, applying the
Schauder fixed point principle, we conclude that the operator
𝐹 has at least one fixed point 𝑥 belonging to the ball 𝐵

𝑟
0

.
Obviously, the function 𝑥 = 𝑥(𝑡) is a solution of (12) and the
proof is complete.

5. Further Discussions and an Example

In this section we discuss, first of all, the applicability of
assumption (iv). Observe that assumption (iv) seems to be
not convenient to be used in a concrete situation. Indeed, we
show that the mentioned assumption can be replaced by an
assumption which is more convenient and is suitable for the
use if we consider the Erdélyi-Kober integral equation (11).

Namely, we will utilize the following assumption.
(iv) For arbitrary 𝑡

1
, 𝑡
2
∈ 𝐼 such that 𝑡

1
< 𝑡
2
the function

𝑠 → 𝑔(𝑡
2
, 𝑠) − 𝑔(𝑡

1
, 𝑠) is nonincreasing on the interval [0, 𝑡

1
].

It can be shown [19] the following assertion.

Theorem 7. Let 𝑔(𝑡, 𝑠) = 𝑔 : Δ → R. If the function 𝑔 satisfies
assumptions (ii), (𝑖V), and (v), then 𝑔 satisfies assumption (iv).

Now, we focus on the study of the solvability of the
Erdélyi-Kober integral equation (11). As we pointed out in
Section 3, (11) is a special case of (12) if we assume that the
function 𝑔 = 𝑔(𝑡, 𝑠) has the form (13).

In what follows we show that the function 𝑔(𝑡, 𝑠) defined
by (13) satisfies assumptions (ii)–(v) formulated before
Theorem 6.
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In order to prove this assertion, observe that it is rather
obvious that the function 𝑔 defined by (13) satisfies assump-
tions (ii) and (v). To prove that 𝑔 satisfies (iii), let us notice
that

𝜕𝑔

𝜕𝑠
= 𝛼𝑚𝑠

𝑚−1

(𝑡
𝑚

− 𝑠
𝑚

)
𝛼−1

=
𝛼𝑚𝑠
𝑚−1

(𝑡𝑚 − 𝑠𝑚)
1−𝛼
> 0, (31)

for all 𝑠 ∈ [0, 𝑡). This means that the function 𝑠 → 𝑔(𝑡, 𝑠) is
nondecreasing on the interval [0, 𝑡] and allows us to deduce
that the function 𝑔 defined by (13) satisfies assumption (iii).

To prove that there is satisfied assumption (iv), fix
arbitrary 𝑡

1
, 𝑡
2
∈ 𝐼 such that 𝑡

1
< 𝑡
2
. Consider the function

𝐺 = 𝐺(𝑠) defined by the formula

𝐺 (𝑠) = 𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)

= 𝑡
𝛼𝑚

2
− (𝑡
𝑚

2
− 𝑠
𝑚

)
𝛼

− 𝑡
𝛼𝑚

1
+ (𝑡
𝑚

1
− 𝑠
𝑚

)
𝛼

,
(32)

for 𝑠 ∈ [0, 𝑡
1
]. Then we get

𝐺


(𝑠) = 𝛼𝑚𝑠
𝑚−1

[(𝑡
𝑚

2
− 𝑠
𝑚

)
𝛼−1

− (𝑡
𝑚

1
− 𝑠
𝑚

)
𝛼−1

]

= 𝛼
𝑛

𝑠
𝑚−1

[
1

(𝑡𝑚
2
− 𝑠𝑚)
1−𝛼
−

1

(𝑡𝑚
1
− 𝑠𝑚)
1−𝛼
] .

(33)

It is easily seen that 𝐺(𝑠) < 0 for 𝑠 ∈ [0, 𝑡
1
) which permits us

to infer that the function 𝑔 = 𝑔(𝑡, 𝑠) defined by (13) satisfies
assumption (iv).

Summing up, we conclude that the function 𝑔 defined in
(13) satisfies assumptions (ii)–(v).

On the basis of the above established facts we can
formulate the following existence result concerning integral
equation (11).

Theorem 8. Assume that there are satisfied assumptions (i)
and (vi), and the following one.

(vii) There exists a positive solution 𝑟
0
of the inequality

‖𝑎‖ +
𝛼

Γ (𝛼)
𝜙 (𝑟) ≤ 𝑟. (34)

Then (11) has at least one solution in the space 𝐶(𝐼)
belonging to the ball 𝐵

𝑟
0

.

Indeed, the above theorem is an easy consequence of
the above established facts concerning the function 𝑔(𝑡, 𝑠)
defined by (13) and Theorem 6 as well as the equality 𝐾 = 1,
where𝐾 is the constant defined by (19).

Now, we illustrate our result contained in Theorem 8 by
an example.

Example 9. Let us consider the following nonlinear integral
equation of Erdélyi-Kober type:

𝑥 (𝑡) = 𝑡 exp 𝑡

+
1

Γ (1/2)
∫
𝑡

0

(4/3) 𝑠
7/3
(𝑡 + sin 𝑠2 + 3√𝑥2 (𝑠))

(𝑡4/3 − 𝑠4/3)
1/2

𝑑𝑠,

(35)

for 𝑡 ∈ 𝐼 = [0, 1]. Observe that this equation can be rewritten
in the form of (11); that is,

𝑥 (𝑡) = 𝑡 exp 𝑡

+
1

Γ (1/2)
∫
𝑡

0

(4/3) 𝑠
1/3
𝑠
2
(𝑡 + sin 𝑠2 + 3√𝑥2 (𝑠))

(𝑡4/3 − 𝑠4/3)
1/2

𝑑𝑠.

(36)

Notice that (35) is a particular case of (11) if we put 𝑎(𝑡) =
𝑡 exp 𝑡, 𝛼 = 1/2,𝑚 = 4/3, 𝑝 = 2, and

𝑓 (𝑡, 𝑠, 𝑥) = 𝑡 + sin 𝑠2 + 𝑥2/3. (37)

Now we verify that the above indicated components of (35)
satisfy the assumptions of Theorem 8. Indeed, the function
𝑎 = 𝑎(𝑡) is a member of the space 𝐶(𝐼) and ‖𝑎‖ = 𝑒. Further,
we have that 𝑓 is continuous on the set Δ × R and the
following estimate holds for arbitrary 𝑡, 𝑠 ∈ R

+
and 𝑥 ∈ R:

𝑓 (𝑡, 𝑠, 𝑥)
 ≤ 𝑡 +


sin 𝑠2 + 𝑥

2/3

≤ 2 + 𝑥
2/3

. (38)

This implies that the function𝑓 satisfies assumption (vi) with
the function 𝜙(𝑟) = 2 + 𝑟2/3 being nondecreasing on R

+
.

Further, let us take into account inequality (33) which in our
case has the form

𝑒 +
1

2Γ (1/2)
(2 + 𝑟

2/3

) ≤ 𝑟 (39)

or equivalently

𝑒 +
1

2√𝜋
(2 + 𝑟

2/3

) ≤ 𝑟. (40)

Let us write the above inequality in a more transparent form:

𝑒 +
1

√𝜋
+
1

2√𝜋
𝑒
2/3

≤ 𝑟. (41)

Then, it is easily seen that the number 𝑟
0
= 4 seems to be a

“sufficiently” optimal solution of inequality (40).

On the basis of Theorem 8 we conclude that (35) has at
least one solution in the space 𝐶(𝐼) belonging to the ball 𝐵

4
.

Remark 10. It is worthwhile mentioning that the term 𝑠𝑝
appearing both in (11) and in (12) has no significance in our
considerations and can be included in the function 𝑓 =
𝑓(𝑡, 𝑠, 𝑥). Nevertheless, we have separated that term since it
will play certain role in our further study of nonlinear Erdélyi-
Kober integral equations considered in spaces of functions
defined on the half-axis R

+
.

Details will appear elsewhere.
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