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With rapid economic growth, electricity demand is clearly increasing. It is difficult to store electricity for future use; thus, the
electricity demand forecast, especially the electricity consumption forecast, is crucial for planning and operating a power system.
Due to various unstable factors, it is challenging to forecast electricity consumption. Therefore, it is necessary to establish new
models for accurate forecasts. This study proposes a hybrid model, which includes data selection, an abnormality analysis, a
feasibility test, and an optimized grey model to forecast electricity consumption. First, the original electricity consumption data
are selected to construct different schemes (Scheme 1: short-term selection and Scheme 2: long-term selection); next, the iterative
algorithm (IA) and cuckoo search algorithm (CS) are employed to select the best parameter of GM(1,1). The forecasted day is then
divided into several smooth parts because the grey model is highly accurate in the smooth rise and drop phases; thus, the best
scheme for each part is determined using the grey correlation coefficient. Finally, the experimental results indicate that the GM(1,1)
optimized using CS has the highest forecasting accuracy compared with the GM(1,1) and the GM(1,1) optimized using the IA and
the autoregressive integrated moving average (ARIMA) model.

1. Introduction

Electricity-supply planning requires optimizing decisions on
hourly consumption for the next day and effective power sys-
tem. Correspondingly, the power systemoperator is responsi-
ble for scheduling generators and balancing the power supply
and consumption [1]. Electricity consumption reflects the
degree of economic development in a country, and much
evidence supports a causal relationship between economic
growth and energy consumption [2–10]. To promote eco-
nomic growth and fulfill power requirements in the future,
electricity consumption forecasting has become a challenging
task for electric utilities. Accurate electricity consumption
forecasts can aid power generators in scheduling their power
station operations to match the installed capacity [11]. More-
over, accurate forecasts are also a prerequisite for decision
makers to develop an optimal strategy that includes risk

reduction and improving the economic and social benefits.
Improper and inaccurate forecasts will lead to electricity
shortage, energy resourcewaste, and grid collapse [12].There-
fore, forecast electricity consumption to manage a power
system is significant. Electricity consumption shows typi-
cal nonlinear fluctuation and random behaviors, which is
influenced by various unstable factors, including climate
change and the social environment. Climate changes involve
a change in season and temperature, among other consid-
erations, and the social environment refers to law, policy,
technical progress, holidays, and the day of the week, among
other concerns [13]. On the other hand, with the increasing
complexity of power systems, many uncertain factors could
influence electricity consumption. Consequently, it is crucial
to accurately forecast electricity consumption.

A variety ofmethods have been proposed to forecast elec-
tricity consumption [14, 15], electricity load, and electricity
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prices over the last few decades, including linear regression
analysis, time series methods, and artificial intelligence.
For example, Antoch et al. [16] applied a functional linear
regression model to analyze electricity consumption data
sets in Sardinia. Mohamed and Bodger [17] used a multiple
linear regression model to forecast electricity demand in
New Zealand, in which the dependent variable was electricity
consumption and the independent variables were the gross
domestic product, average price of electricity, and population
of New Zealand. However, a linear regression analysis is
limited by a number of assumptions, such as weak exogeneity,
error independence, and a lack of predictor multicollinearity
[18]. After eliminating data noise through the empirical
model decomposition method (EMD), Dong et al. [19] first
employed the definite season index method and ARIMA
model to forecast electricity prices in New South Wales of
Australia. Ohtsuka et al. [20] presented a spatial autore-
gressive ARMA(1,1) model to forecast regional electricity
consumption in Japan. Zhao et al. [11] proposed a residual
modification model to improve forecasting precision for a
seasonal ARIMA model in China’s Northwest Power Grid.
In general, time series models only consider the data, not
other relative factors, and require high quantities of sample
data with a good statistical distribution. In addition, artificial
neural networks with the back propagation-learning algo-
rithm have attracted much attention [21–23], but artificial
intelligence approaches often suffer from low converging
rates, difficulty in parameter selection, and overfitting [24,
25].

The sample size is a key element that affects the forecast
performance, and it limits forecasting applicability under
certain situations; although it is available to obtain a suf-
ficient historical data set, it often differs from the growth
of actual electricity consumption considerably. Electricity
consumption data typically exhibit an increasing fluctuation
trend, which is unsuitable for autoregressive moving average,
exponential smoothing, and multiple linear regression mod-
els. Therefore, new forecasting models must be created for
limited samples and uncertain conditions [12]. Considering
these problems, grey-based forecasting models have recently
garnered much attention because they are especially suitable
for forecasting using uncertain and insufficient information
[26].

Grey system theory was pioneered by Ju-Long [27] and
identifies hidden original data by transforming irregular orig-
inal data into strong regular data through an accumulating
generation operator (AGO) [28]. The GM(1,1) is the main
grey theory forecastingmodel with good short-term forecast-
ing accuracy. Due to the few samples required and its fast
calculations, it is successfully used in engineering, technol-
ogy, industrial and agricultural production, economics, and
many other fields [29–34]. However, for practical GM(1,1)
applications, the forecasting accuracy may decrease when the
original data show an increasing trend [35] or when the data
samples rapidly mutate [13].

In this paper, after integrating the original data with
different selections, feasibility testing, and selecting the best
scheme for different forecasting segments, a parameter-
optimized GM(1,1) is proposed for forecasting electricity

consumption. At first, the original electricity consumption
series were used to construct different schemes from the
short- and long-term aspects. The electricity demand data at
a given hour on different days varies similarly; thus, we used
data from the same hour on different weeks. Second, through
selecting the appropriate original data, an abnormality anal-
ysis and feasibility test can be used to improve the forecast
accuracy. Third, optimization algorithms were applied to
select the best parameter 𝛼 in the GM(1,1). Based on fast
convergence and generating a good optimization solution, an
iterative algorithm and the cuckoo search algorithm can be
employed [36]. Once the best parameter is obtained using
optimizationmethods, the GM(1,1) should performwell [37].
We divided the forecasted day into several smooth parts using
certain criteria because the GM(1,1) is highly accurate in the
smooth rise and drop phases [27]. We determined the best
scheme for each part using the grey correlation coefficient
between the actual and forecasted consumptions. Finally,
the scheme with the largest grey correlation coefficient was
considered the forecasting scheme, and by combining the best
forecasts the final forecasts are obtained.

This paper is organized as follows. Section 3 introduces
the GM(1,1) and two parameter optimization algorithms,
including an iterative algorithm and a cuckoo search algo-
rithm. Section 4 describes the preprocessing procedure and
transformation of available data for a successful GM(1,1).
Section 5 discusses the simulation procedure for the pro-
posed method, experimental results, and error analyses.
Finally, Section 6 concludes this paper.

2. Our Contributions

We propose an effective hybrid method, the CSGM, to fore-
cast electricity consumption in NSW. Based on the inherent
characteristics of GM(1,1), a series of suitable concepts, which
include data selection, an abnormality analysis, a feasibility
test, and optimized algorithms, were used to improve fore-
casting accuracy. A case study shows that CSGM performs
better than the classic GM(1,1), the GM(1,1) optimized using
IA and the ARIMA model. Finally, we analyzed the forecast-
ing errors based on statistical theory, which showed that the
ARIMA electricity consumption forecasting model yielded a
significant result with a small average error but with a high
error at certain time-points; thus, ARIMA is not a suitable
consumption forecastingmodel of electricity consumption in
NSW.

3. Materials and Methods

In this section, we first introduce the classic GM(1,1) model;
next, two types of optimized algorithms are used to select the
optimal parameter in the GM(1,1) model.

3.1. The GM(1,1) Model. The GM(1,1) includes a set of differ-
ential equations with structures that vary with time rather
than a single, general first-order differential equation.
Although it is not necessary to use all of the data from the
original time series to construct the GM(1,1), the potency of
the series data must be more than four. The procedures for
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establishing and constructing a general GM(1,1) are described
below.

The GM(1,1) is a first-order and single-variable grey
model that consists of a grey differential equation.

Step 1. The original nonnegative data series 𝑋
(0) with 𝑚

samples denotes the electricity consumption in NWS, which
is expressed as follows:

𝑋
(0)

= (𝑥
(0)

(1) , 𝑥
(0)

(2) , . . . , 𝑥
(0)

(𝑚)) , (1)

where the superscript (0) represents the original series and
𝑥
(0)
(𝑘) represents the electricity demand of the data at the

time index 𝑘 for 𝑘 = 1, 2, . . . , 𝑚.

Step 2. Obtain the 1-AGO (one-time accumulating genera-
tion operation) sequence 𝑋

(1) by imposing the first-order
accumulating generator operator to 𝑋

(0), which monotoni-
cally increases and is expressed as follows:

𝑋
(1)

= (𝑥
(1)

(1) , 𝑥
(1)

(2) , . . . , 𝑥
(1)

(𝑚)) , (2)

where 𝑥(1)(𝑘) = ∑
𝑘

𝑖=1 𝑥
(0)
(𝑖), as 𝑘 = 1, 2, . . . , 𝑚.

Step 3. Thegeneral GM(1,1) is described by the following grey
differential equation:

𝑥
(0)

(𝑘) + 𝑎 ⋅ 𝑧
(1)

(𝑘) = 𝑏, 𝑘 = 2, 3, . . . , 𝑚, (3)

where 𝑎 is the grey developmental coefficient and 𝑏 is the grey
control parameter. Thus,

𝑧
(1)

(𝑘) = (1 − 𝛼) 𝑥
(1)

(𝑘) + 𝛼𝑥
(1)

(𝑘 − 1) , 𝑘 = 2, 3, . . . , 𝑚,

(4)

where 𝑧
(1)
(𝑘) is referred to as the background value of the

grey derivative and 𝛼 is the background value production
coefficient that must be optimized for the interval [0, 1]. The
GM(1,1) with 𝛼 equals 0.5 and is referred to as GM(1,1).

Step 4. Using the least-square estimation method, the
approximate values for 𝑎 and 𝑏 can be estimated as follows:

[

𝑎

𝑏
] = (𝐵

𝑇
𝐵)

−1
𝐵
𝑇
𝑌, (5)

where

𝐵 =

[

[

[

[

[

[

−𝑧
(1)

(2) 1

−𝑧
(1)

(3) 1

...
...

−𝑧
(1)

(𝑚) 1

]

]

]

]

]

]

, 𝑌 =

[

[

[

[

[

[

𝑥
(0)

(2)

𝑥
(0)

(3)

...
𝑥
(0)

(𝑚)

]

]

]

]

]

]

. (6)

Step 5. The solution to (3) can be determined after substitut-
ing the obtained parameters 𝑎 and 𝑏 into (3).𝑋(1) at time 𝑘 is
described as follows:

𝑥
(1)

(𝑘) = (𝑥
(0)

(1) −

𝑏

𝑎

) ⋅ 𝑒
−𝑎(𝑘−1)

+

𝑏

𝑎

, 𝑘 = 1, 2, . . . , 𝑚.

(7)

Step 6. To obtain the predicted values for 𝑋(0), the IAGO
(inverse accumulated generating operation) is used to estab-
lish the following grey model:

𝑥
(0)

(1) = 𝑥
(0)

(1) , 𝑘 = 1,

𝑥
(0)

(𝑘) = 𝑥
(1)

(𝑘) − 𝑥
(1)

(𝑘 − 1) , 𝑘 = 2, 3, . . . , 𝑚.

(8)

Equation (8) is then equivalent to the following:

𝑥
(0)

(𝑘) = (𝑥
(0)

(1) −

𝑏

𝑎

) ⋅ 𝑒
−𝑎(𝑘−1)

⋅ (1 − 𝑒
−𝑎
) ,

𝑘 = 1, 2, . . . , 𝑚.

(9)

From the above introduction, the general GM(1,1) con-
tains the adjustable parameter that must be determined from
the available experimental data. Therefore, how this param-
eter is optimized is important when applying the general
GM(1,1).

3.2. Parameter Optimization Using an Iterative Algorithm
(IAGM). Equation (5) shows that the parameters 𝑎 and 𝑏 are
related to the raw data series 𝑋(0) and production coefficient
𝛼, which are background values. 𝑋(0) are the historical data;
thus, the controllable parameter is 𝛼. The traditional back-
ground value in the general GM(1,1) typically takes the
following calculation equation, 𝛼 = 0.5:

𝑧
(1)

(𝑘) =

1

2

(𝑥
(1)

(𝑘) + 𝑥
(1)

(𝑘 − 1)) . (10)

Zhuan [38] proved that the accurate calculation equation for
the background value 𝑧

(1)
(𝑘) defined in (4) should satisfy

the relationship between the parameter 𝛼 and the developing
coefficient 𝑎 as follows:

𝛼 =

1

𝑎

−

1

𝑒
𝑎
− 1

. (11)

Chang et al. [39] demonstrated that the model’s forecast-
ing accuracy can be improved by optimizing the parameter
𝛼. To improve the accuracy of GM(1,1), this paper uses an
iterative algorithm [37]; the parameter 𝛼 is optimized for
GM(1,1) as follows.

Step 1. Let 𝛼 = 0.5. The parameters 𝑎 and 𝑏 are determined
using the least-square estimation method according to (5).

Step 2. Substitute the obtained 𝑎 into (11); then, recalculate
𝛼, which is denoted by 𝛼(𝑛 + 1), 𝑛 = 1, 2, . . .. Given the
arbitrarily small positive integer 𝜀, 𝛼(𝑛 + 1) and 𝛼(𝑛) are
compared. If |𝛼(𝑛 + 1) − 𝛼(𝑛)| > 𝜀, go to Step 1 and substitute
𝛼(𝑛+1) into (4) to calculate the background value 𝑧(1)(𝑘+1).
Next, GM(1,1) is reconstructed, and the forecasting process is
reapplied. If |𝛼(𝑛 + 1) − 𝛼(𝑛)| < 𝜀, stop the iteration cycle and
go to Step 3.

Step 3. The GM(1,1) forecasting model is implemented in
accordance with (7). By performing the IAGO using 𝑥(1)(𝑘),
the forecasting value 𝑥(0)(𝑘) can be obtained as shown in (9).
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3.3. Parameter Optimization Using the Cuckoo Search Algo-
rithm (CSGM). The cuckoo search algorithm (CS) is a new
optimizationmethodwith an evolutionary process. CS begins
with an initial cuckoo population with different societies,
which are composed of two types: mature cuckoos and their
eggs. The basic CS is defined by the effort to survive among
cuckoos. Certain cuckoos or their eggs die during the survival
competition. The surviving cuckoo societies immigrate to a
better environment and begin reproducing and laying eggs.

To solve an optimization problem using CS, the problem
variable values can be regarded as an array, which can be
interpreted as a habitat. For a𝑁var dimensional optimization
problem, the habitat is an arraywith 1×𝑁var, which represents
the current living position of the cuckoo. The habitat array is
defined as follows [36, 40]:

habitat = [𝑋1, 𝑋2, . . . , 𝑋𝑁var
] . (12)

A habitat’s profit is obtained by evaluating the profit
function𝑓𝑝 for the habitat with (𝑋1, 𝑋2, . . . , 𝑋𝑁var); therefore,
the following applies:

profit = 𝑓𝑝 (habitat) = 𝑓𝑝 (𝑋1, 𝑋2, . . . , 𝑋𝑁var
) . (13)

For this relationship, CS maximizes the profit function.
To use CS in cost-minimization problems, one can easily
maximize the following profit function:

profit = −cost (habitat) = −𝑓𝑐 (𝑋1, 𝑋2, . . . , 𝑋𝑁var
) . (14)

To begin the optimization algorithm, a candidate habitat
matrix with the size 𝑁pop × 𝑁var is generated, and the initial
cuckoo habitat is obtained. By nature, each cuckoo lays five to
20 eggs.These values are used as the upper and lower limits of
eggs dedicated to each cuckoo at different iterations. Another
habit of cuckoos is that they lay eggs within a maximum
distance from their habitat, which is referred to as an egg-
laying radius (ELR) and is defined as follows:

ELR = 𝛽 ×

number of current cuckoo’s eggs
total number of eggs

× (varhi − varlow) ,
(15)

where varhi and varlow are the upper and lower limits for the
variables, respectively, and 𝛽 is an integer, supposed to handle
the maximum value of ELR.

Each cuckoo begins to randomly lay eggs in another
host birds’ nest within her ELR. Figure 1(a) shows a clear
perspective of a random egg-laying event in the ELR. The
central red star is the initial habitat of the cuckoo with five
eggs, and the small yellow stars are the eggs’ new nest. Certain
eggs that are more similar to the host birds’ eggs can grow,
hatch, be fed by the host birds, and become a mature cuckoo.
Other eggs have no chance to grow, are detected by the host
birds, and are destroyed. The habitat profit maximizes the
number of surviving, hatched eggs. When young cuckoos
grow up and become mature and as the time for egg-laying
approaches, they immigrate to new and better habitats. The

ELR
New habitat Goal point

Group 1 Group 2

Group 3

(a)

𝜆
×
d

𝜑

d

Figure 1: Randomegg laying in anELR and immigration of a sample
cuckoo toward a goal habitat.

groups of cuckoos that form in different areas are recogniz-
able using the K-means clustering method, and consequently
the society with the best profit value is selected as the goal for
immigration of other cuckoos.

Cuckoomovement towards a destination habitat is clearly
shown in Figure 1. However, in this movement toward a goal
point, each cuckoo only flies 𝜆% of the total distance toward
the goal habitat with the deviation 𝜑 radians. 𝜆 and 𝜑 are
random numbers and are defined as follows [36]:

𝜆 ∼ 𝑈 (0, 1) ,

𝜑 ∼ 𝑈 (−𝜔, 𝜔) ,

(16)

where 𝜆 ∼ 𝑈(0, 1) indicates that 𝜆 is a random number uni-
formly distributed between 0 and 1.𝜔 is a parameter that con-
strains the deviation from the goal habitat, and approximately
𝜋/6 (radians) is recommended for 𝜔 for good convergence of
the cuckoo population to a global maximum profit.

4. The Available Data and Preprocessing

4.1. The Available Data. Electricity consumption data used
in this paper are collected every 30min from the Australian
EnergyMarket Operator (AEMO), New SouthWales (NSW),
Australia [41]. NSW with the largest population makes it
Australia’s most populous state; thus, accurate electricity con-
sumption forecasting is crucial for planning and operating
a power system of the city’s sustainable development. The
studied time range covers January 1st, 2013, to June 30th, 2013.
The data are sampled with a certain time interval of 30min,
so there are 48 data for one day. Figure 2 shows the variation
trend of electricity consumption throughout the studied time
range.

4.2. Abnormality Analysis and Data Preprocessing. When
power systems are actually operated, any failures in
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Figure 2: Electricity consumption data collected every 30min in NSW from January 1st, 2013, to June 30th, 2013.

measurement, recording, conversion, and transmission
losses may introduce an anomalous trend in the observed
data, which is inconsistent with most observations. On the
other hand, when the data acquisition system is normal,
special events (such as load-shedding blackouts, power
line maintenance, high-energy users, and large events) may
produce abnormal changes in electricity consumption, which
result in abnormal observations.

Suppose that the daily electricity consumption data
includes 48 sample points. The abnormality analysis and its
preprocessing are shown as follows.

Step 1. Abnormality analysis (discerning abnormal data):
data will be considered abnormal if the difference between
the data and adjacent data satisfies the following:

|𝑥 (𝑖) − 𝑥 (𝑖 − 1)| < 𝛿 (𝑖 = 2, 3, . . . , 48) , (17)

where 𝛿 is a constant.

Step 2. Compute the length of consecutive abnormal data
occurrences, which is denoted by 𝑙.

Step 3. Abnormal data preprocessing: a day with abnormal
data is the 𝑛th day, where 𝑛 is a constant. The correction
values for electricity consumption are based on normal
consumption data for the consecutive 𝑛 − 1 days before the
abnormal day and the 𝑘 normal consumption data points on

the 𝑛th day. Next, the correction values are defined as follows
[13]:

𝐷mean (𝑡) =
1

𝑛 − 1

𝑛−1

∑

𝑖=1

𝐷𝑟 (𝑖, 𝑡) , (𝑡 = 1, 2, . . . , 48) ,

𝐷𝑘 =
1

𝑘

𝑘

∑

𝑖=1

𝐷𝑟 (𝑛, 𝑡) , (𝑡 = 1, 2, . . . , 𝑘) ,

𝐷mean 𝑘 =
1

𝑘

𝑘

∑

𝑖=1

𝐷mean (𝑡) , (𝑡 = 1, 2, . . . , 𝑘) ,

𝐷𝑟 (𝑛, 𝑡) = 𝐷mean (𝑡) − (𝐷mean 𝑘 − 𝐷𝑘) ,

(𝑡 = 𝑘 + 1, . . . , 48) ,

(18)

where𝐷𝑟(𝑖, 𝑡) is the consumption data at the time-point 𝑡 on
the 𝑖th day among 𝑛 − 1 days. 𝐷mean(𝑡) is the mean of all
consumption data at the time-point 𝑡 among 𝑛 − 1 days; 𝐷𝑘
is the mean of the 𝑘 points for the normal consumption data
on the 𝑛th day;𝐷mean 𝑘 is the mean for all of the 𝑘 time-points
among the 𝑛 − 1 days; and 𝐷𝑟(𝑛, 𝑡) is the consumption value
at the time-point 𝑡 on the 𝑛th day.

We must select suitable values for 𝛿 and 𝑙 and then
preprocess the abnormal data. To select the best values, 𝛿 has
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three values, 25MWh, 50MWh, and 75MWh, and 𝑙 has two
values, 4 and 6.

4.3. Feasibility Test. The grey model is superior to traditional
forecasting approaches because it requires little sample data,
easy calculation, and relatively high accuracy for short-
term forecasting. However, Wan et al. [42] noted that a
slowly increasing data sequence is suitable for establishing a
GM(1,1), but a rapidly increasing data sequence is unsuitable
for constructing a GM(1,1). Therefore, the class ratio of the
original data is calculated to determine whether it is suitable
for directly constructing a grey model.

The class ratio 𝜎0(𝑘) is defined as follows:

𝜎
0
(𝑘) =

𝑥
(0)

(𝑘 − 1)

𝑥
(0)

(𝑘)

, 𝑘 = 2, 3, . . . 𝑚. (19)

If the values for 𝜎
0
(𝑘) (𝑘 = 2, 3, . . . , 𝑚) are in the range

𝑒
−2/(𝑚+1) to 𝑒

2/(𝑚+1), 𝑥(0) is suitable for modeling a GM(1,1).
If the values for 𝜎0(𝑘) (𝑘 = 2, 3, . . . , 𝑚) are out of the range,
𝑥
(0) must be log-transformed to force the class ratio into the

range. This procedure is the feasibility test.

5. A Case Study

5.1. Simulation Procedure. Optimized GM(1,1)s are con-
structed to select the best forecasting strategy based on the
data before the predicted day; the best forecasting strategy
is then used to predict the forecasted day. The simulation
procedure for forecasting electricity consumption based on
the optimized GM(1,1) is described as follows.

Process 1. Let the current forecasted day (CFD) be the day
before the forecasted day. Select the data for modeling the
GM(1,1) from a short-term perspective in days and a long-
term perspective in weeks:

𝐷
(0)

1𝑡 = {𝐷
(0)

1𝑡 (𝑘) | 𝑘 = 1, 2, . . . , 𝜆} ,

𝐷
(0)

2𝑡 = {𝐷
(0)

2𝑡 (𝑘) | 𝑘 = 1, 2, . . . , 𝜆} ,

(20)

where 𝐷
(0)
1𝑡 is the data used to construct the grey model at

time 𝑡 from the 𝜆 five days before the CFD, which reflects the
short-term characteristics and is referred to as Scheme 1.𝐷(0)1𝑡
is the data used to construct the grey model at time 𝑡 on the
same day for the previous 𝜆 weeks, which reflects the long-
term characteristics and is referred to as Scheme 2; 𝜆 is the
number of days used to establish the GM(1,1), and 𝜆 is fixed
at 5. 𝑡 represents the time- points for each half-hour over a
day, and 𝑡 = 1, 2, . . . , 48.

Process 2. Apply the abnormality analysis and preprocess
the abnormal data in accordance with Section 3.2. 𝛿 and
𝑙 are alterable; notably, the combination (𝛿, 𝑙) includes six
cases: (25MWh, 4), (25MWh, 6), (50MWh, 4), (50MWh, 6),
(75MWh, 4), and (75MWh, 6).Thereafter, the preprocessing
data are transformed to better suit a greymodel in accordance
with Section 3.3. The new obtained electricity consumption

series are denoted by 𝑑(0)1𝑡 for the short-term data and 𝑑(0)2𝑡 for
the long-term data.

Process 3. Construct the GM(1,1)s based on the sample data
𝑑
(0)
1𝑡 and 𝑑

(0)
2𝑡 . The parameter 𝛼 in (4) is optimized using

the iterative and cuckoo search algorithms described in
Section 2, respectively. Intuitively, the CS algorithm is more
reasonable than the iterative optimization algorithm because
historical data are used to construct the grey model, which
yield a better 𝛼 value. For the above two schemes, the
corresponding forecasted consumption at time 𝑡 on the CFD
is obtained, respectively, as follows for ̂

𝑑
(0)
1𝑡 (𝜆+1) and ̂

𝑑
(0)
2𝑡 (𝜆+

1):

̂
𝑑
(0)

1𝑡 (𝜆 + 1) =
̂
𝑑
(1)

1𝑡 (𝜆 + 1) −
̂
𝑑
(1)

1𝑡 (𝜆) , (𝑡 = 1, 2, . . . , 48) ,

̂
𝑑
(0)

2𝑡 (𝜆 + 1) =
̂
𝑑
(1)

2𝑡 (𝜆 + 1) −
̂
𝑑
(1)

2𝑡 (𝜆) , (𝑡 = 1, 2, . . . , 48) .

(21)

Process 4. We average the same days from the last five weeks
before the CFD at time 𝑡, which is denoted by𝐷5-weeks(𝑡) (𝑡 =
1, 2, . . . , 48). We divide the CFD into four parts as peaks
and valleys of the electricity consumption data to effectively
relieve the load change intensity for each segment and
to improve the GM(1,1) forecasting accuracy [13]. Upon
implementation of this method, the following simple and
effective partition method is proposed.

Part 1. The midnight part is from 0:00 to the time of
the first peak.
Part 2. The morning part is from the time of the first
peak to the time of the first valley.
Part 3. The afternoon part is from the time of the first
valley to the time of the evening peak.
Part 4. The evening part is from the time of the
evening peak to 24:00.

The grey correlation coefficients of for each part between
the two forecasting electricity consumption data and theCFD
consumption are calculated using (23), respectively. The grey
correlation coefficient of different schemes usually varies in
different parts. The scheme with the greatest grey correlation
coefficient for each part is used as the forecasting scheme; the
CFD forecasting values are obtained by linking each part of
the adopted forecasting values:

𝜀 (𝑘) =

min𝑘Δ (𝑘) + 𝜌 ⋅max𝑘Δ (𝑘)

Δ (𝑘) + 𝜌 ⋅max𝑘Δ (𝑘)

, (22)

𝑟 =

1

𝑚

𝑚

∑

𝑘=1

𝜀 (𝑘) , (23)

where 𝜀(𝑘) is the correlation coefficient at each point, 𝜌 is
typically 0.5, and 𝑟 is the grey correlation coefficient.

Process 5. After the above four processes are completed, we
determine the best forecasting scheme that corresponds to
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Figure 3: The data format for Scheme 1 and Scheme 2.

each forecasting part. Next, the CFD is shifted to the actual
forecasted day, and the simulation procedure is reapplied.
Therefore, the optimized GM(1,1) is used to forecast the
consumption series for the actual forecasted day process by
process.

Process 6.The optimizedGM(1,1) models (IAGMandCSGM)
are compared with an autoregressive integrated moving
average model (ARIMA) and GM(1,1) (GM) when the NSW
electricity consumption is forecasted.

5.2. Forecasting Electricity Consumption in the NSW

5.2.1. Analysis of Forecasting Results. We forecasted the elec-
tricity consumption data for June 26th, 2013, using the GM,
IAGM, CSGM, and ARIMAmodels. The corresponding data
format is defined in Figure 3. The above six processes were
executed, and the forecasting results are shown in Figure 4.

(1) At the top of Figure 4, the white words on the
red background show six cases (situations) in the
abnormality data analysis. Delta 𝛿 has three values,
and 𝑙 has two values; thus, a combination of six cases
will yield six different preprocessing results.

(2) From the short-term (Scheme 1) and long-term
(Scheme 2) perspectives, we selected two different
data sets formodeling and then performed the abnor-
mality analysis and feasibility test.

(3) The electricity consumption was forecasted using the
IAGM model; then, the grey correlation coefficients
were calculated for each part in Schemes 1 and 2. The
best scheme for each part was selected using the grey
correlation coefficient for the corresponding part.The
best schemes for the four parts in Case 1 are as follows.
The best scheme for Part 1 is Scheme 2; the best
scheme for the other three parts is Scheme 1. For the
remaining five cases, the rounded rectangle in orange
and green represents the best forecasting schemes for
each part. For example, in Case 4, Part 1 and Part 4
are orange and Part 2 and Part 3 are green; thus, the

best schemes in the order of the parts are Scheme 2,
Scheme 1, Scheme 1, and Scheme 2.

(4) Thereafter, the CSGM model under the best scheme
obtained using IAGM is applied to forecast the
electricity consumption. The forecasting results are
shown in Figures 4(a), 4(b), and 4(c).

(5) Figure 4(a) shows the average error for six different
cases using two different forecasting methods. For
Case 1, the average error values for IAGM and
CSGMare 4.1137% and 5.7342%, respectively, which is
unsatisfactory for electricity consumption forecasting
and management. Case 2 is also unsatisfactory, for
which the IAGM and CSGM mean error values are
7.3053% and 4.8228%, respectively. For Case 4, the
CSGM error meets the power market requirements;
however, the 4.7591% IAGM error is not satisfactory.
In addition, the other cases (Case 3, Case 5, and
Case 6) yielded smaller errors and more satisfactory
outcomes.

(6) The forecasting errors at each IAGM and ISGM time-
point are presented in Figures 4(b) and 4(c). For the
CSGM Cases 3–6 and the IAGM Cases 3, 5, and
6, the error curves show small fluctuations. Case 3,
Case 5, and Case 6 were used for the forecasting
results. For Part 1 (the midnight part), the forecasting
errors for the six cases using the two methods are
the same because the electricity consumption for the
midnight part is stable and only slightly changes.
The differences between IAGM Parts 3-4 and CSGM
are slight, whereas the forecasting errors for the
CSGM Part 2 (the morning part) were significantly
better than for the IAGM. In this study, electricity
consumption decreases with the greatest fluctuation
in the morning part from 9:00 to 15:30. The above
analysis indicates that theCSGMbettermanages large
data fluctuations than the IAGM.

(7) The best forecasting results were obtained for the
CSGM model in Case 6, for which the average error
is 2.0667%.
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Preprocessing of
abnormality data
and feasibility test
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The values of 𝛿 and l:
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l: 4.6

All possible combinations
𝛿 of l and cases:

scheme
The forecasting

a Part 1 (00:00–08:30), Part 2 (9:00–15:30),
Part 3 (16:00–18:00), Part 4 (18:30–23:30).

bThe grey correlation coefficients of IAGM model.

Grey correlation coefficients for each part.
Part 2a Part 3a Part 4aPart 1a

0.6918b
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Data selection of modeling
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The forecasting results on the actual forecasted day based on the determined scheme.
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Figure 5: The forecasting results and actual values.

Figure 5 and Table 1 show the forecasting results for
the ARIMA, GM, IAGM (Case 6), and CSGM (Case 6),
respectively. Figure 5 and Table 1 indicate the following.

(1) The four forecasting methods, except the ARIMA
model, yield good fitting results for the original
electricity consumption data.

(2) The GM forecasting results are similar to IAGM. The
forecasting curves show that the forecasting values for
the GM almost coincide with the IAGM for all four
parts.

(3) For Parts 1–3, GM, IAGM, and CSGM yield satis-
factory forecasting results. However, for Part 4, all
three models yielded relatively large errors, perhaps
because the electricity consumption fluctuation in the
evening is greater than at midnight as well as during
the morning and afternoon.

(4) A highly inaccurate estimate was observed at or near
the yielding point of the original data in all four
models.

(5) The average forecasting errors forGM, IAGM,CSGM,
and ARIMA are 2.12%, 2.13%, 2.07%, and 2.04%,
respectively, which may meet the electricity predic-
tion and management requirements.

(6) Themaximum forecasting errors for GM, IAGM, and
CSGM are similar; specifically, they are 4.39%, 4.39%,
and 4.89%, respectively. The maximum forecasting
error for the ARIMAmodel is 8.49%, which is signif-
icantly larger than that for the other three models.

(7) TheCSGMperformed better than theGMand IAGM.
Moreover, the IAGM performed similar to the GM.
Although the average ARIMA error is the lowest
among the forecastingmodels, themaximumARIMA
error is markedly higher than the other three models
and reaches 8.49%.Thus, more analyses are necessary
to determine whether ARIMA is a suitable electricity
forecasting approach.
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Figure 6: The GM, IAGM, CSGM, and ARIMA forecasting errors.

5.2.2. Forecasting Error Analysis Using Statistical Theory.
Figure 6 shows the forecasting errors for the fourmodels, and
the ARIMA error fluctuates greatly. The frequency diagram
and box plot for the forecasting errors are shown in Figure 7.
Figure 7(a) shows that the errors are mostly in the interval
0 to 3.40%. A few errors are greater than 3.40% and less
than 5.1%, and the maximum and second largest error
intervals only include the ARIMA forecasting error. These
data demonstrate that ARIMA is unsuitable for forecasting
electricity consumption in theNSW.As shown in Figure 7(b),
in addition to the ARIMA model, the other three quartiles
(the lower, median, and upper quartiles) calculated for the
other threemodels have similar variations in the range length.
The whiskers in the box plot indicate the primary range
for the data, in which the lowest data are 1.5 times the
interquartile range of the lower quartile and the highest data
are 1.5 times the interquartile range of the upper quartile (see
Figure 7(c)). The outliers, which are not included between
the whiskers, are represented by red small circles. The GM,
IAGM, and CSGM forecasting errors do not have outliers,
while the number of outliers for the ARIMA reaches 5.

On the one hand, due to the lack of large-scale storage
in the electric industry, supply is adjusted to match con-
sumption in real time. High forecasting errors will produce
an imbalance between electricity supply and consumption.
Underestimating electricity consumption will lead to an elec-
tricity shortage, and an overestimate would waste precious
energy resources [43]. In addition, the normal power grid
operation should increase the capacity reserve, which is an
additional supply to account for transmission losses. Grid
operators have the capacity in reserve to respond to electricity
high consumption periods and unplanned power plant out-
ages. A high forecasting error will lead to inaccurate capacity
reserve estimates and then to an administrative risk for the
power grid and increased operation costs. Bunn and Farmer
noted that a 1% increase in a forecasting error may lead to
a £10 million increase in the operating costs [44]. Therefore,
it is significantly important to forecast electricity demand
accurately. Accurate electricity consumption forecasts can aid
power generators in scheduling their power station opera-
tions to match the installed capacity. Small and stable errors
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Table 1: Electricity consumption forecasting results.

Time-
point

Actual value
(MWh)

GM IAGM CSGM ARIMA (2,2,1)
Forecasting

values
Errora
(%)

Forecasting
values

Error
(%)

Forecasting
values

Error
(%)

Forecasting
values

Error
(%)

0:00 4330.270 4397.628 1.56 4397.713 1.56 4411.040 1.87 4299.163 0.72
0:30 4209.265 4276.840 1.61 4276.919 1.61 4280.632 1.70 4249.257 0.95
1:00 4114.000 4185.289 1.73 4185.387 1.74 4202.551 2.15 4025.156 2.16
1:30 3982.655 4040.614 1.46 4040.685 1.46 4052.158 1.75 3985.292 0.07
2:00 3853.080 3905.699 1.37 3905.752 1.37 3904.051 1.32 3849.782 0.09
2:30 3668.835 3735.070 1.81 3735.142 1.81 3734.825 1.80 3722.507 1.46
3:00 3550.665 3614.975 1.81 3615.062 1.81 3634.288 2.36 3591.899 1.16
3:30 3443.545 3489.662 1.34 3489.750 1.34 3475.360 0.92 3431.846 0.34
4:00 3350.500 3413.786 1.89 3413.850 1.89 3407.637 1.71 3397.992 1.42
4:30 3313.335 3390.756 2.34 3390.803 2.34 3382.276 2.08 3264.648 1.47
5:00 3373.360 3429.484 1.66 3429.524 1.66 3427.320 1.60 3137.584 6.99b

5:30 3530.420 3633.135 2.91 3633.220 2.91 3628.695 2.78 3347.417 5.18b

6:00 3730.750 3832.116 2.72 3832.177 2.72 3836.934 2.85 3478.720 6.76b

6:30 4115.280 4236.704 2.95 4236.766 2.95 4220.757 2.56 3765.914 8.49b

7:00 4502.655 4647.155 3.21 4647.238 3.21 4640.427 3.06 4554.320 1.15
7:30 4712.280 4897.057 3.92 4897.194 3.92 4888.935 3.75 4626.589 1.82
8:00 4941.845 5158.762 4.39 5158.978 4.39 5158.713 4.39 4772.266 3.43
8:30 4969.065 4995.615 0.53 4995.667 0.54 4995.996 0.54 5126.765 3.17
9:00 4915.090 4977.279 1.27 4977.374 1.27 5011.611 1.96 5026.143 2.26
9:30 4874.630 4934.493 1.23 4934.557 1.23 4944.742 1.44 4898.405 0.49
10:00 4845.960 4923.899 1.61 4923.984 1.61 4902.575 1.17 4831.506 0.30
10:30 4810.585 4879.438 1.43 4879.522 1.43 4846.219 0.74 4820.355 0.20
11:00 4758.920 4806.381 1.00 4806.484 1.00 4752.485 0.14 4789.164 0.64
11:30 4665.005 4708.921 0.94 4709.015 0.94 4635.415 0.63 4706.608 0.89
12:00 4615.740 4663.379 1.03 4663.437 1.03 4605.949 0.21 4588.729 0.59
12:30 4560.465 4624.130 1.40 4624.185 1.40 4559.143 0.03 4560.645 0.00
13:00 4522.080 4569.492 1.05 4569.526 1.05 4503.554 0.41 4510.220 0.26
13:30 4510.240 4521.704 0.25 4521.722 0.25 4471.516 0.86 4483.658 0.59
14:00 4486.135 4516.147 0.67 4516.169 0.67 4470.371 0.35 4496.701 0.24
14:30 4478.710 4535.532 1.27 4535.573 1.27 4484.597 0.13 4464.722 0.31
15:00 4461.810 4528.393 1.49 4528.434 1.49 4479.814 0.40 4472.497 0.24
15:30 4437.840 4554.719 2.63 4554.768 2.63 4510.697 1.64 4446.137 0.19
16:00 4541.070 4643.533 2.26 4643.599 2.26 4610.473 1.53 4413.194 2.82
16:30 4614.100 4752.256 2.99 4752.335 3.00 4723.989 2.38 4665.412 1.11
17:00 4799.055 4956.608 3.28 4956.701 3.28 4939.399 2.92 4708.471 1.89
17:30 5122.475 5251.827 2.53 5251.924 2.53 5255.480 2.60 4878.819 4.76
18:00 5375.885 5446.141 1.31 5446.216 1.31 5465.649 1.67 5413.701 0.70
18:30 5350.900 5411.714 1.14 5411.789 1.14 5447.303 1.80 5761.367 7.67b

19:00 5269.615 5348.454 1.50 5348.550 1.50 5376.871 2.04 5685.330 7.89b

19:30 5119.510 5225.517 2.07 5225.610 2.07 5252.610 2.60 5264.521 2.83
20:00 4982.405 5131.309 2.99 5131.410 2.99 5158.740 3.54 5045.731 1.27
20:30 4905.600 5057.356 3.09 5057.450 3.10 5087.582 3.71 4846.094 1.21
21:00 4809.135 4999.369 3.96 4999.489 3.96 5036.191 4.72 4807.723 0.03
21:30 4715.035 4883.033 3.56 4883.162 3.57 4918.670 4.32 4798.520 1.77
22:00 4558.515 4757.412 4.36 4757.540 4.37 4781.606 4.89 4681.545 2.70
22:30 4602.065 4744.022 3.08 4744.124 3.09 4759.853 3.43 4430.017 3.74
23:00 4489.415 4641.814 3.39 4641.920 3.40 4655.801 3.71 4651.653 3.61
23:30 4397.565 4573.946 4.01 4574.034 4.01 4575.651 4.05 4398.089 0.01

Maximum forecasting error (%) 4.39 4.39 4.89 8.49
Average forecasting error (%) 2.12 2.13 2.07 2.04

aThe error is defined as follows: error = |Forecasting value − Actual value|/actual value ∗ 100%.
bThe forecasting error value is greater than 5%. The specific time-points are 5:00, 5:30, 6:00, 6:30, 18:30, and 19:00.



Abstract and Applied Analysis 11

[0, 1.70) [1.70, 3.40) [3.40, 5.10) [5.10, 6.80) [6.80, 8.50)
0

5

10

15

20

25

30

Error (%)

Fr
eq

ue
nc

y

GM
IAGM

CSGM
ARIMA

(a)

GM IAGM CSGM ARIMA
0
1
2
3
4
5
6
7
8

Forecasting models

Va
lu

es

(b)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1

Q1: the lower quartile

Q2: the lower median

Q3: the lower quartile

Q1 + 1.5IQR

Q1 − 1.5IQR

The interquartile 
range (IQR)

(c)

Figure 7:The frequency diagram and box plot for the GM, IAGM, CSGM, andARIMAmodels. (a)The frequency diagram of four forecasting
models.The interval on the 𝑥-axis is the range of error. (b)The box plot of four forecastingmodels. Box plots are a way of graphically depicting
groups of numerical data through their quartiles. Whiskers from the box indicate variability outside the upper and lower quartiles. Outliers
are plotted in red circles. (c) A detailed graphic presentation of a box plot. The central mark is the median, the edges of the box are the lower
and upper quartiles, the whiskers extend to the most extreme data points not considering outliers, and outliers are plotted individually.

in forecasting approaches are certainly necessary. Although
the average ARIMA error is the lowest among the four
forecasting methods, ARIMA is unsuitable for forecasting
electricity consumption in this case. The CSGM forecasting
performance is superior to the other models, and the GM
forecasting performance is similar to IAGM.

6. Conclusion

The one-day-ahead electricity consumption forecast is an
extremely important problem in electricity load planning,
secure operation, and energy expenditure/cost economy.
However, electricity consumption data are affected by mul-
tiple uncertain factors, such as climate change and the social
environment. Grey theory can be used to construct a fore-
casting model using uncertain and insufficient information,
and it meets the requirements of electricity consumption
prediction.

This paper proposes a grey-theory-based model, CSGM,
to forecast electricity consumption. First, to reflect the sim-
ilarity in electricity data for different days or weeks at
the same time-point, the original series are selected from
short- and long-term perspectives. Excellent GM(1,1) per-
formance requires a slowly increasing data series; thus, data
preprocessing includes abnormality and feasibility tests to
improve the forecasting performance. To further enhance
electricity consumption forecasting precision, two optimized
algorithms, IA and CS, are used to select suitable parameters
for GM(1,1). Finally, when the data varies smoothly, the
GM(1,1) results will be more accurate. The forecasted day is
divided into four smooth parts based on the grey correlation
coefficient for each part, and the best forecasting scheme is
determined. In addition, to evaluate the applicability of the
one-day-ahead forecast in a New South Wales power grid of
Australia, the CSGMwas comparedwith theGM, IAGM, and
ARIMA models. According to the electricity consumption
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forecasting analysis and errors, CSGM outperforms the other
models; the forecasting performance of GMand IAGMmeets
the electricity market requirement. However, ARIMA is not
suitable to forecast electricity consumption in this study
because the forecasting error is fluctuated dramatically.

Abbreviations

IA: Iterative algorithm
CS: Cuckoo search algorithm
GM: Grey model
ARIMA: Autoregressive integrated moving average

model
EMD: Empirical model decomposition
NSW: New South Wales
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IAGO: Inverse accumulated generating operation
IAGM: GM(1,1) optimized using the IA
CSGM: GM(1,1) optimized using CS
ELR: Egg-laying radius
AEMO: Australian Energy Market Operator
CFD: Current forecasted day
Scheme 1: Short-term selection
Scheme 2: Long-term selection.
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