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Radial basis function (RBF) is well known to provide excellent performance in function approximation and pattern classification.
The conventional RBF uses basis functions which rely on distance measures such as Gaussian kernel of Euclidean distance (ED)
between feature vector and neuron’s center, and so forth. In this work, we introduce a novel RBF artificial neural network (ANN)
where the basis function utilizes a linear combination of ED based Gaussian kernel and a cosine kernel where the cosine kernel
computes the angle between feature and center vectors. Novelty of the proposed work relies on the fact that we have shown that
there may be scenarios where the two feature vectors (FV) are more prominently distinguishable via the proposed cosine measure as
compared to the conventional ED measure. We discuss adaptive symbol detection for multiple phase shift keying (MPSK) signals
as a practical example to show where the angle information can be pivotal which in turn justifies our proposed RBF kernel. To
corroborate our theoretical developments, we investigate the performance of the proposed RBF for the problems pertaining to

three different domains. Our results show that the proposed RBF outperforms the conventional RBF by a remarkable margin.

1. Introduction

Computational model for neural networks was first proposed
by McCulloch and Pitts [1]. Since then, artificial neural
networks (ANN) have been recognized as a decision making
tool by many researches [2-4]. ANN is particularly very
useful in solving problems which are difficult to solve with
the conventional rule-based programming [5].

Simple but yet powerful generalization capability of ANN
had drawn the attention of numerous past and present
researchers [2, 3, 6, 7]. It all started with Rosenblatt when he
created the perceptron [8], a pattern recognition algorithm
for supervised classification.

However, Rosenblatt’s idea could not be translated into
a computer program until the development of backpropa-
gation algorithm which has so far been the most popularly
used algorithm in ANN paradigm [9]. Thereafter, immense
research was done in this field, and in last 50 years or so there
has been extraordinary growth in this domain and the result
is invention of several sophisticated algorithms [6, 10, 11].

Radial basis function (RBF) network [12] is an ANN and
its activation functions are radial basis functions. It was first
introduced by Broomhead and Lowe [10] and since then it has
become a very popular methodology to solve problems that
suit ANN paradigm [11-14]. The main advantage of RBF when
compared with other algorithms based on ANN paradigm
is the simplicity of the computation of network parameters
[12]. Another very important feature of radial basis function
neural networks is to be able to perform complex nonlinear
mappings that allow a fast linear and robust learning mech-
anism [5]. Originally, RBF networks were developed for data
interpolation in high dimensional space [12]. Nonetheless,
RBF networks have been used in diverse domains, including
pattern classification [7], time series prediction [13], system
control [14], and function approximation [15].

Some of the most commonly used basis functions are
Gaussian functions [12], multiquadric functions [12], thin
plate spline function [12], inverse multiquadric functions [12],
and so forth. There is no general rule, but the choice of a
radial basis function is highly problem specific. Also, most
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applications using RBF make use of a free shape parameter
that plays pivotal role in the accuracy of the method and
is commonly chosen with the help of cross-validation [16]
technique. It is a standard practice [12] to learn three sets of
parameters for RBF network: locations, widths, and weight
factors of RBF kernel. Enormous amount of work [17-19] has
already been done to select those parameters optimally.

In the conventional RBF kernel, mostly Gaussian of
the Euclidean distance between feature vector and neuron’s
center is used [17]. However, there can be scenarios where
Euclidean distance is not the dominant measure to find
separation among the features, for example, if two feature
vectors are separated by equal distance from a center but
separated from the center via unequal angles. In that case, the
cosine of the angle can play a vital role in differentiating the
feature vectors. We have discussed in detail such scenarios in
Section 3.

Motivated by this observation, we propose a novel RBF
kernel which consists of a linear combination of Gaussian
and cosine RBF kernels. The cosine RBF kernel computes the
cosine of the angle between supplied feature vector and the
center vector associated with that neuron.

There are some existing works in the literature that had
discussed usage of cosine measure with RBF kernels [20-26].
Karayiannis and Randolph-Gips [27] have proposed a novel
RBF which is a normalized version of the multiquadratic
radial basis function, where the cosine represents the angle
between the transformed vectors rather than the original
vectors. Liu et al. [28] have used cosine similarity measure
to achieve high performance of classification by selecting
meaningful features. They compute the cosine similarity
among the kernels rather than the original vectors. By doing
so, they transformed all the vectors to the same length,
whereas we do not perturb the feature space. Moreover, these
cosine kernels are developed for Support vector machine
(SVM). Cho and Saul [29] have used arc cosine of the angles
between inputs in their kernel.

To the best of our knowledge, the existing works in the
literature related to the idea of incorporating cosine measure
inside kernels have been used either in SVM kernel [28, 29]
without using ANN paradigm or in a transformed domain
[30] in ANN paradigm. Our work is different from all of them
in many aspects. Firstly, we proposed a cosine kernel in the
original vector space rather than in any transformed space.

Secondly, we incorporated the effect of both ED and
cosine measures with a linear combination. Finally, unlike
the existing works [27-29], we used the proposed kernel with
RBF ANN classifier.

In order to validate our theoretical developments, we
have investigated two different research problems: pattern
recognition and nonlinear plant identification.

We composed the rest of this paper in the following
manner. Section 2 provides an overview of conventional RBE
In Section 3, we describe our proposed algorithm. In Sections
4 and 5, we provide the proof-of principle of our method
with application examples. Then, in Section 6, we discuss our
results in detail.
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FIGURE 1: Architecture of the radial basis function neural network.

2. Overview of the Conventional RBF

RBF networks in their general form consist of three layers:
an input layer, a hidden layer where nonlinear activation
functions operate, and a linear output layer as shown in
Figure 1. Generally, the input is a real vector, x € R". The
network output maps the input vector to a scalar, y: R" — R,
which is achieved by employing the following equation:

N
Yi= Zwi‘Pi (Ix-al) +5; Vi=12,....N,, ()

i=1

where N and N, are the number of hidden and output layer
neurons, respectively, ¢; € R" is the center for ith neuron, w;
is output layer weight for ith neuron, b; is the bias term for
the jth output neuron, and ¢; is the basis function associated

with ith hidden neuron.

RBF solves a problem by mapping it into a high dimen-
sional space in a nonlinear manner and then applies linear
decision boundary. The concept of transformation to high
dimensional space is justified by Cover’s theorem, according
to which classification via linear separation becomes easier
by translating the features from low dimension to high
dimension [31].

The significance of adding bias to the output is to improve
the approximation quality by shifting the decision boundary.
The weights of the network govern the position of the
decision boundary in the feature space. However, during
the adaptive weight update, if bias is not used, then the
hyperplane is forced to pass through the origin of the feature
space defined by the inputs or feature vectors. Although it
is valid for some problems, in many others this separation
boundary is desired to be located somewhere else.

As a general rule, all inputs are connected to each hidden
neuron. The domain of activation function is a norm which
is typically taken to be the Euclidean distance between input
and the centers of every neuron. Most commonly used RBF
kernels are as follows [5].

Multiquadrics:

o (Ix-cl) = (-l +". @)
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Inverse multiquadrics:

1
‘Pi("x_ci“) = .
(Ix-eif + )" 9
Gaussian:
9 (Ix - ) = e 17, (4)

where 7 > 0 is a constant and f3 is spread parameter. The
sensitivity of a hidden neuron towards a data point varies
in proportion with the distance of the data point from its
center. For example, in case of a conventional ED based RBF
network that uses Gaussian in its kernel, this sensitivity can
be fine-tuned by adjusting f3; if § is large, it implies less
sensitivity and vice versa. The weights and biases are usually
updated adaptively by implying the following steepest decent
approach [32]:

w; (n+1) = w; (n) +ne () ¢; (Jx - ) 6
b (n+1) = b (n) +nen),

where # is the learning rate for the network and e(n) is the
error between the desired and the actual output of the RBF
for the nth iteration.

3. Proposed RBF

Intuition suggests that ED is not the only measure to contrast
the FVs. For example, in the case when FVs are equally
separated in distance, then the ED will be no more effective.
To deal with this issue, we proposed a generalized RBF kernel
by linearly combining the conventional ED based RBF kernel
and our proposed cosine based RBF kernel which can be
formulated as follows:

¢ (%,6) = 69 (x- ) + %9, (||x - Ci“)’ (6)

where «, o, are weightage parameters for cosine and
Euclidean kernels, respectively, which can acquire values in
this range: 0 < o, &, < 1.In (6), ¢;; (x - ¢;) and @, (IIx — )
are the cosine and the Euclidean kernels, respectively, for ith
neuron. These are defined as follows:

X G

¢ir (X ¢) = cos (6)) = fixl - ] 7

9 ([x - <)) = o Ixal’/B, (8)

where x - ¢; represents the dot product between the two
vectors. Consequently, (7) can be rewritten as follows:

L L
Zi:1 Zj:l Xj 'Cij
L 2 L 2’
\/Zj:] Xj : \/Zj:l Cj

where L is the length of each incoming feature vector x. By
observing (7), we can notice that the kernel ¢;, (x-¢;) computes
the cosine of angle between x and ¢;. Hence, ¢;; (x - ¢;) may

on (x-¢) = 9)

attain the values in the range [-1,+1]. If it returns to 1, it
implies that the x is aligned with ¢;, whereas its 0 return value
corresponds to the scenario when x is perfectly orthogonal to
¢;; and the return value of -1 indicates that x and ¢; are aligned
in opposite directions.

3.1. Some Special Scenarios Related to the Proposed RBF
Kernel. In order to get more insight into the advantage of
our proposed RBF kernel, we consider 2 feature vectors
f, and f, separated by distances d, and d, and angles 0
and 9§, respectively, from the center vector ¢ (see Figure 2).
We explore some special scenarios of the aforementioned
situation in the ensuing subsections.

3.1.1. Scenario 1. Consider

d, =d,, 0+56. (10)

In this case, we clearly see (see Figure 2(a)) that a RBF
kernel based on Euclidean distance will not be able to
differentiate between f; and f,. Using the cosine of such
angle as activation, we propose a new kernel for RBF which
can work in the described scenario. Therefore, we get rid of
the ED component from (6) by setting o, = 0 and «; =
1 and hence obtain one cosine kernel which is defined by
(7) and (9). A similar scenario is observed in our pattern
classification application dataset discussed in Section 5.2. To
support our argument, we performed a statistical analysis
using the Silhouette widths [33].

3.1.2. Scenario 2. Consider

dy#dy, 0=0. (11)
We clearly see (see Figure 2(b)) that, for this scenario, the

Euclidean kernel is more suitable than ours, so we set a, = 0

and a; = 1in (6) and the resulting kernel is defined in (6).

3.1.3. Scenario 3. Consider

d, #d,, 0#9. (12)

Form (6), it is clear that we fused the two classifiers with
certain weightage [34]. It is also evident that the weightage
parameters in (6) can be tuned according to various different
mentioned scenarios to produce good classification results.
For example, we saw that, in scenario 1, we have ; = 1
and &, = 0 and in scenario 2 they will assume value is
complementary to the scenario 1. However, in scenarios like
3 (see Figure 2(c)), weightage parameters for the kernel can
assume any values in the range (0, 1) but with one condition:
summation of «; and «, is always unity.

We have another scenario where d; = d, and also 8 =
4. In this case although individually both conventional and
our RBF will fail to produce good results, we anticipate that
proper choice weightage parameters may improve the results.
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FIGURE 2: (a) Geometric representation of scenario 1: d;, = d, but 0, #0,. (b) Geometric representation of scenario 2: d, #d, but 6, = 0,.

(c) Geometric representation of scenario 3: d, #d, but 0, #0,.

3.2. Properties of the Proposed RBF Kernel. Consider

@) ¢;(x ) = ¢;(c; x)
(ii) ¢;(x,¢;) = @i(c;,x) =1 Vx =g

(i) |p;(x, )| < 1.

The above mentioned properties can be justified with the
help of (6)-(8). For example, in (6), if we swap the orders of
x and ¢;, then the results of the equation remain unchanged;
hence, proposed kernel obeys commutative property.

Similarly, if we plug x ¢; in (6), then with the help
of (7) and (8) the right-hand side of (6) boils down to the
summation of the weightage parameters «; and «,. We have
already discussed earlier that summation of the weightage
parameters is 1 always, which justifies the second property of
our kernel.

Finally, from (7) and (8), we see that upper bounds of both
the kernels are 1; deploying this concept in (6), we can write
l@;(x, ¢;)| < 1, which is the third property.

4. Intuition from a Practical Example:
Adaptive Symbol Detection of MPSK
Modulated Symbols

In digital communication systems, MPSK modulation is a
common and well-known practice. When such signals are
transmitted through noisy channel, the symbols are dispersed
around its original locations (see Figure 3). As a result, the
system performance degrades severely. Therefore, it is crucial
to design efficient receiver capable of recovering the original
symbols without errors. For this purpose, there are many
well-known methods in the literature. However, our rationale
to discuss this problem here is to show a practical example
where the angle measure is more discriminative than the
ED measure. To get more insights, observe the scatter plot
of MPSK modulated signals (For M = 16 symbols) shown
in Figure 4. It can be clearly seen from Figure 4 that these
modulated signals have equal amplitudes but differ in their
phases. Thus, intuitively, one can say that in this scenario a
more suitable receiver will be the one which can deal with
the phases only. Therefore, our proposed kernel will be more
preferred candidate in this case. Our simulation study for
this problem presented in Section 5.1 supports our intuition
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FIGURE 3: (a) Silhouette plot for Euclidean RBF kernel: negative Silhouette indicates misclassification. (b) Silhouette plot for proposed RBF

kernel: large Silhouette widths with no negatives.
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FIGURE 4: Comparative objective function plot showing difference
in convergence for the two RBF kernels: Euclidean and proposed;
proposed kernel converges faster than its conventional counterpart.

and our proposed RBF kernel is found to be better than the
conventional ED based RBF kernel.

5. Comparative Study of the Conventional and
the Proposed RBF

In the present work, we aim to show a proof-of-principle
application for our proposed algorithm. We conducted a
comparative study by applying both the conventional RBF
and our proposed RBF to the following domains, where very
often RBF network has been used for classification.

5.1. Recovery of MPSK Modulated Signals. The problem of
adaptive recovery of MPSK modulated signals is already
described in Section 4. In this section, we present simulations
to validate the performance of the proposed kernel. Specif-
ically, we present the simulations for adaptive recovery of

QPSK signals (i.e., M = 4) in adaptive white Gaussian noise
(AWGN). In Figures 11 and 12, the scatter plots of transmitted
QPSK signals are shown for M = 16 and M = 4 respectively.
These signals, when transmitted through AWGN channel,
are dispersed as shown in Figure 10. In order to recover the
original transmitted signals, we employ our proposed RBF
kernel and compare its performance with the conventional
ED based RBF. For this purpose, we used four neurons in the
hidden layer and one in the output layer with # = 0.05 and

B=1.

5.2. Pattern Recognition: Classification of Leaves. Our dataset
is extracted from [35]. The dataset contains three features:
shape, margin, and texture for one hundred plant species
leaves and, for each feature, a 64-element vector is given per
sample of leaf. We have concatenated these features into a
single feature vector for every sample. As a result, the length
of one feature vector is 192. In order to perform a binary
classification, we had chosen samples for the species Acer
campestre and Zelkova serrata which consisted of 16 instances
per class originally.

Therefore, the problem to be solved is as follows. Given
these features, classify the leaves of the abovementioned
species with minimum possible classification error. We made
a comparative study of convergence time in terms of number
of epochs and accuracy using both approaches: conventional
ED based RBF and the proposed RBF whose results are shown
in Figures 4, 5 and 6 and are discussed in Section 5.2.

We have used adaptive kernels for both the conventional
and the proposed RBE. We tried different combinations of
#, B, and N and after exhaustive investigation we got 100%
accuracy aty = 0.05, 8= 1,and N = 6.

5.3. Control Theory: Nonlinear Plant Identification. Plants
are dynamic systems with high complexity and nonlinearity.
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FIGURE 5: (a) Testing results after 100 epochs using Euclidean RBF kernel; misclassifications exist. (b) Testing results after 150 epochs using
Euclidean RBF kernel; misclassifications still exist. (c) Testing results after 3500 epochs using Euclidean RBF kernel; 100% accuracy is achieved.

A vital step towards nonlinear plant identification is the
development of a nonlinear model [36]. Therefore, it is very
important to develop as accurate models as possible for plants
which have highly nonlinear behavior. ANN in general and
RBF to be specific have been used very often in this regard
[37-39]. The system model is shown in Figure 9. In our study,
we have considered a highly nonlinear plant whose output
and input can be mapped with the following relation:

yt)=air(t)+ayr(t—1)+asr(t-2)
(13)
+a, (cos (br (1)) + e_lr(t)l) +n(t),

where r(t) is plant’s input, n(t) is the plant’s disturbance which
we have modeled as zero mean normal distributed random
variable, a;s are polynomial coeflicients defining systems

zeros, and b > 0 is a constant. In our experiment, we have
chosen the polynomial coefficients as a; = 2, a, = —0.5,
a; =-0.1,a, = -0.7,and b = 3.

In Figure 9, p(t) is the plant’s impulse response and y(t)
is the final output of the plant.

p(t), y(¢) are estimations of p(t), y(t), respectively, and
e(t) is error in the estimation. In this study, we have generated
plant’s disturbance with a variance of 0.0025.

Since our method relies on the fact that norms of the
vectors will be greater than zero and in the plant’s input we
may have zero values in some occasion, hence we need to
modify (7) in order to be meaningful here as follows:

X
a1 (x-¢) 2cos(6;) = —————,
(Pl( ) ( ) €+"X”‘”Ci" (14)
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FIGURE 6: (a) Output after 100 epochs using proposed kernel: misclassification exists. (b) Output after 150 epochs using proposed kernel:

100% accuracy is achieved.

where the term € > 0; a very small number is added to the
denominator in order to avoid divide by zero scenario.

As before, we have used adaptive kernels for both the
conventional and the proposed RBE. We tried different
combinations of #, 8, and N but ultimately got 100% accuracy
at# = 0.05, f = 1, and N = 41. The results of this application
are shown in Figures 10-11 which are discussed in Section 5.2.

6. Results and Discussions

6.1. Recovery of MPSK Modulated Signals in Noisy Environ-
ment. In this application, we compare the total mean square
error (MSE) of our algorithm with that of conventional ED
based RBE. The MSE of the two algorithms is computed as the
sum of average value of the squared error and mathematically
it can be defined as follows:

I 2
MSE = » E(o; - o,)’,
k=1

(15)

where T is the total number of epochs, o is vector of true

symbols, o, is the vector of predicted symbols, and E is
the expectation operator showing ensemble average. For
comprehensive comparison, we investigated the performance
of the two algorithms for three values of signal-to-noise ratio
(SNR) which are 10 dB, 20 dB, and 30 dB. These results are
reported in Table 1, which show that the proposed RBF kernel
has superior performance over the conventional one.
Moreover, the scatter plot of the recovered signals at 10 dB
SNR is shown in Figure 13, which clearly shows that the effect
of noise is eliminated efficiently by the proposed RBF kernel.

TaBLE 1: Comparison of the total mean square error.

Total MSE of the proposed Total MSE of The RBF
SNR
kernel kernel
10 0.0958 0.1098
20 0.0097 0.0110
30 9.6461 x 107" 0.0011

6.2. Classification of Leaves. Through statistical data analysis,
we have evaluated our claim that, for our data, cosine RBF
is more powerful than its Euclidean counterpart. Silhouette
widths, which were first described by Rousseeuw [33], provide
a succinct graphical representation of how well each object
lies within its cluster. In other words, we can visualize how
well the algorithm associates each data point with its center.

For validation with standard approach, we used k-means
and Silhouette functions from MATLAB statistics toolbox.
The result is shown in Figure 3. Ideally, observations with
large and positive Silhouette value (~1) are well clustered,
those with Silhouette value around 0 lie between clusters, and
those with negative Silhouette value are placed in “wrong”
cluster. It is worth noticing that in Figure 3(a) where we
used Euclidean kernel some sample values are clustered as
negatives indicating misclassification. We found that it is
fixed in Figure 3(b) where we used cosine kernel.

Our observation is directly backed by testing accuracies
of both the approaches. We started our experiments with
100 epochs for both the conventional RBF kernel and our
proposed kernel and repeated the experiments for many
runs. In every subsequent run, we increased the number of
epochs by 50. However, we achieved 100% accuracy with our
kernel once it reached to 150 epochs as shown in Figure 8. In
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FIGURE 9: Comparing the actual plant’s output with the two RBF
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Figure 7, we noticed that Euclidean kernel takes 3500 epochs
to acquire 100% classification accuracy, which is much higher
than the one obtained by the proposed kernel. This fact is
also reflected in Figure 6, where we show the comparative
objective functions for the three approaches used and it is
evident from there that both the proposed kernel and only
cosine part of it work very well with this dataset, whereas the
conventional kernel takes much more epochs to minimize the
objective function.
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FIGURE 11: Transmitted symbols scatter plot for M = 16.

6.3. Nonlinear Plant Identification. The plant’s identification
error for both the RBFs is shown in Figure 10 which indicates
that our method converges faster than ED based RBE. More-
over, it can be seen from Figure 11 that the proposed kernel
emulating the plants behavior very well except in transition
phases where it produces spikes, which results due to the
state transition of the input square wave. Furthermore, the
proposed RBF has faster convergence speed as compared to
its counterpart; that is, it takes smaller number of iterations to
get accustomed again as compared to the conventional RBF
as evident from Figure 11.
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7. Conclusion

In this work, we have introduced a new generalized RBF
kernel by fusing the conventional ED kernel and the proposed
cosine kernel. The proposed RBF kernel promises good
performance in the scenarios where the angle between the
feature and center vectors is distinguishable. This fact is
also observed in our application studies where we have
shown via statistical analysis of Silhouette widths why the
proposed RBF kernel is more suitable in such scenarios.
For validating the performance of the proposed RBF kernel,
we have investigated three diverse nature of applications:

adaptive symbol detection of MPSK modulated symbols, clas-
sification of leaves, and nonlinear plant identification. Our
algorithm has outperformed the conventional RBF kernel in
terms of recognition accuracy and run time in epochs. We
have achieved 100% accuracy in case of pattern recognition
with faster convergence, for the adaptive symbol detection
example the effect of noise is eliminated more efficiently
by the proposed RBF kernel and in case of nonlinear plant
identification we observed that our kernel converges faster
and traces the nonlinear plant output function better than its
conventional counterpart. Our work promises to find more
interesting applications in other research areas too.
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RBF: Radial basis function

ED:  Euclidean distance

SVM: Support vector machine
MPSK: M-ary phase shift keying
MSE: Mean square error.
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