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This paper develops a novel model and protocol used in some specific scenarios, in which the participants of multiple groups
with different permissions can finish the signature together. We apply the secret sharing scheme based on difference equation to
the private key distribution phase and secret reconstruction phrase of our threshold signature scheme. In addition, our scheme can
achieve the signature success because of the punishment strategy of the repeated rational secret sharing. Besides, the bit commitment
and verification method used to detect players’ cheating behavior acts as a contributing factor to prevent the internal fraud. Using
bit commitments, verifiable parameters, and time sequences, this paper constructs a dynamic game model, which has the features
of threshold signature management with different permissions, cheat proof, and forward security.

1. Introduction

Secret sharing (SS) scheme, first proposed by Shamir [1] in
the paper “How to share a secret,” is a significant method
used for the important information management. There are
other SS schemes presented by Blakeley [2] and Asmuth
and Bloom [3]. These (𝑡, 𝑛)-threshold schemes above split
the secret to 𝑛 shares and distribute these shares to 𝑛 legal
players, meaning that all the players in the secret sharing
system have the same permissions. However, in some specific
situations, like in a company, managers and employees are
supposed to have different authority in the confidential
secret management. As a result, all the SS schemes are not
suitable to be applied to such scenario. Later, many scholars
devoted themselves to the weighted threshold SS schemes,
which can solve the above problem. Shamir was concerned
with weighted threshold SS in his paper “How to share a
secret”—the president of a company has three shares, the
vice presidents have two shares, and others have one share.
Later, Morillo et al. [4] developed some main properties
related to the information ratio, which measures a secret
sharing system’s security. After that, many researchers used
their work to develop weight SS schemes, and some are with

bipartite [5–7]. Chan and Chang [8] developed a new (𝑡, 𝑛)-
threshold scheme based on differential equations, which was
completely different from the mechanism of weighted SS
scheme and shared the same notion with Li [9]. Instead of
the traditional weighted threshold SS schemes, which have
the symmetrical permissions limitation, they proposed (𝑡

1
+

𝑡
2
, 𝑛
1
+ 𝑛
2
)-threshold SS scheme that is based on homoge-

neous constant coefficient linear difference equation. In the
scheme, all players are divided into two groups (denoted
by 𝐴, 𝐵) with the different secret management authority;
just 𝑡
1
players from 𝐴 and 𝑡

2
players from 𝐵 can recover

the original secret information. For example, a company
divides its business secret into (𝑛

1
+ 𝑛
2
) shares, in which 𝑛

1

shares are possessed by 𝑛
1
specific employees and 𝑛

2
shares

are distributed to 𝑛
2
managers. Any 𝑡

1
employees and 𝑡

2

managers can retrieve the business secret.
Threshold signature is based on SS, which was first

proposed by Desmedt and Frankel [10] and based on RSA
signature mechanism. Shamir [11] introduced the concept
of signature authentication based on identity. Paterson and
Schuldt [12] presented efficient identity-based signatures in
the standard model. In this paper, to illustrate our model, we
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adoptOkamoto’s signaturemethod [13], which is based on the
identification scheme and is provably secure.

Another important issue about the traditional SS scheme
is that they are all based on the assumption that every player
is either honest ormalicious. However, in practice, players are
more likely to be selfish, trying to maximize their own utility.
Halpern and Teague [14] introduced the notion of rational
secret sharing (RSS) in 2004 and presented a randomized
protocol for a 𝑡 ≥ 3, 𝑛 > 3 SS scheme, which can achieve Nash
equilibrium after repeated elimination of weakly dominated
strategy. Gordon and Katz [15] improved Halpern’s protocol
to 𝑡 ≥ 2, 𝑛 > 2 conditions. The mechanism proposed by
Maleka et al. [16] is called repeated rational secret sharing
(RRSS), in which the distributor needs to do second-time
segmentation of the secret shares and made the players share
the subshares repeatedly. Maleka’s method uses punishment
strategies to prevent players from finking, which is different
from Halpern and Teague’s RSS protocol, in which some
rounds of secret sharing are meaningless.

In this paper, we present a rational threshold signature
model, in which the participants are divided into two sets
with the different permissions. We adopt the SS scheme
based on the difference equations to distribute shares and
recover the original secrets. In the recover phrase, players
exchange their subshares repeatedly based on Maleka’s RRSS
scheme. In our model, we use several modules to manage the
functions, respectively. The parameter sequence generator is
used to generate the parameters of the difference equations
and parameter distributor is used to distribute the parameters
to the participants as their shares. Rounds controller is
used to generate the random number of rounds so that the
players cannot know when the repeated games will end. Bit
commitment module is utilized for the players to commit
their own subshares and verify others’. Besides, when a player
cheats in a specific round by sending the wrong subshare,
the verifiable module can detect it and the protocol will be
stopped so that nobody can acquire the secret.

2. Relative Works

2.1. The Model of Li Bin Scholar. The model is outlined as
follows.

Maker constructs homogeneous constant coefficient lin-
ear differential equation:

𝑎
𝑛
+

𝑡
1

∑
𝑖=1

𝑏
𝑖
𝑎
𝑛−𝑖

= 0 (𝑏
𝑖
∈ 𝑍
𝑞
) , (1)

Master key: 𝑘 = 𝑎
𝑁

(𝑁 > 𝑛
1
),

Shadow keys of participants in set 𝐴 are (𝑎
𝑖
, 𝑏
1
) (𝑖 =

0, 1, . . . , 𝑛
1
− 1),

Shadow keys of participants in set 𝐵 are
(𝑁, 𝑏
2
, . . . , 𝑏

𝑡
1

).

The general term formula of homogeneous constant
coefficient linear differential equation is

𝑎
𝑛
=

𝑡
1

∑
𝑖=1

𝑐
𝑖
𝑓
𝑖
(𝑛) . (2)

Because coefficient determinant is nondegenerate
second-order tensor,

Δ
𝑡×𝑡

=



𝑓
1
(0) 𝑓

2
(0) ⋅ ⋅ ⋅ 𝑓

𝑡
(0)

𝑓
1
(1) 𝑓

2
(1) ⋅ ⋅ ⋅ 𝑓

𝑡
(1)

...
... d

...
𝑓
1
(𝑡 − 1) 𝑓

2
(𝑡 − 1) ⋅ ⋅ ⋅ 𝑓

𝑡
(𝑡 − 1)

𝑡×𝑡

̸= 0. (3)

Participants in set 𝐴 calculate constant vector:

𝑐 = (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑡
1

)
𝑇

. (4)

Any participant in set 𝐵 makes 𝑛 = 𝑁 can obtain the
system master key:

𝑎
𝑁

=

𝑡
1

∑
𝑖=1

𝑐
𝑖
𝑓
𝑖
(𝑁) (𝑁 > 𝑛

1
) . (5)

2.2. Problems. The model mentioned above is a big innova-
tion in the field of threshold structure; however, if applied
directly to the threshold signature, while in practical use,
some problems may exist as follows.

(1) The permissions in this model have limitations. The
second component of (𝑛

1
+ 𝑛
2
, 𝑡
1

+ 1)-threshold
shared structure on behalf of the second category
participants with special privileges; these participants
have excessive permissions, because anyone of them
can represent the group. Thus, weexpand the second
component into (𝑛

1
+ 𝑛
2
, 𝑡
1
+ 𝑡
2
) structure. Wei et

al.’s scholars [17, 18] at Shandong University have
proposed the definition of such structure. However,
when this scheme is implemented, its two groups
both use the polynomial ring, which possesses the
symmetrical nature, thus it will break the different
privileges characteristic of the homogeneousconstant
coefficient linear differential equation. This paper
promotes (𝑛

1
+𝑛
2
, 𝑡
1
+1) structure based on homoge-

neous constant coefficient linear differential equation,
extends permissions, in the meantime, and improves
the original proposal.

(2) This model cannot resist conspiracy attacks, because
of that when greater than or equal to the (𝑡

1
,0) thresh-

old number of participants work out the constant
vector group of equation (4), at the same time, the
equation (2) is determined. Conspires can get the the
private key of the participants of the first set, using
the general term formula, and one copy of the private
key of the second set’s participant can be used to
conjecture the others’ private keys in the second set.

(3) Themodel cannot resist internal fraud.When put into
practical use, the model does not have a verifiable,
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and the participants’ fraud is undetectable. If there
are no validation measures, the participants may run
this protocol arbitrarily, or send their false shares, and
these cannot be tolerated.

(4) The model has the dealer, who is the trusted third
party. In the distributed network environment, the
parameters is generated by amachine or by the secure
multiparty computation.

(5) This model does not have the rational characteristics.
When the signature private keys are generated, and
when the first set’s participants compute the equation
(2)—after computing the general term formula, the
participants in the second set have no motive to
expose their private key to the participants in the first
set, after they generate their private keys. This loses
fairness.

3. Protocol Model

3.1. The Structure of Model. The structure of the model is
shown in Figure 1.

(1) Parameter Sequence Generator. Each time while in the
signature step, the registers in parameters sequence generator
dynamically generate the next state parameters according
to the last state parameters. Each signature call the module
once; the use of time series technology makes the model have
forward security.

The initial vector in parameter sequence generator is

𝑎
𝑇
0 = (𝑎

𝑇
0

𝑛
, 𝑎
𝑇
0

𝑛−1
, . . . , 𝑎

𝑇
0

𝑛−𝑡
1

)
𝑇

,

𝑏
𝑇
0 = (𝑏

𝑇
0

1
, 𝑏
𝑇
0

2
, . . . , 𝑏

𝑇
0

𝑡
1

)
𝑇

.

(6)

The iterative formulas of parameter sequence generator
are as follows:

𝑎
𝑇
𝑖+1 = (𝑎

𝜌𝑇
𝑖

𝑛
, 𝑎
𝜌𝑇
𝑖

𝑛−1
, . . . , 𝑎

𝜌𝑇
𝑖

𝑛−𝑡
1

)
𝑇

mod 𝑞

(𝑖 ≥ 0 ∧ 𝑖 ∈ 𝑍
+
, 𝜌∈
𝑅
𝐺𝐹(𝑞)

∗

) ,

𝑏
𝑇
𝑖+1 = (𝑏

𝜌𝑇
𝑖

1
, 𝑏
𝜌𝑇
𝑖

2
, . . . , 𝑏

𝜌𝑇
𝑖

𝑡
1

)
𝑇

mod 𝑞

(𝑖 ≥ 0 ∧ 𝑖 ∈ 𝑍
+
, 𝜌∈
𝑅
𝐺𝐹(𝑞)

∗

) .

(7)

Other parameters are generated like this way.

Theorem 1. The model has forward security.

Proof. On the completion of the last signature, in next sig-
nature step, the parameter sequence generator precompiled
the iteration values in registers. After iteration, according to
recurrence relations (7), the last data in registers will not exist.
That is to say, this time’s signature data in registers will cover
the last data in them. According to the recurrence relations

(7), if an attacker wants to get last data in registers, he or she
must calculate mode square root:

𝑎
𝑇
𝑖

𝑘
=
𝜌√𝑎
𝑇
𝑖+1

𝑘
mod 𝑞,

(𝑖 ≥ 0 ∧ 𝑖 ∈ 𝑍
+
, 𝑘 = 𝑛, . . . , 𝑛 − 𝑡

1
∧ 𝜌∈
𝑅
𝐺𝐹(𝑞)

∗

) ,

𝑏
𝑇
𝑖

𝑘
=
𝜌√𝑏
𝑇
𝑖+1

𝑘
mod 𝑞,

(𝑖 ≥ 0 ∧ 𝑖 ∈ 𝑍
+
, 𝑘 = 1, . . . , 𝑡

1
∧ 𝜌∈
𝑅
𝐺𝐹(𝑞)

∗

) .

(8)

The mode square root in polynomial time is computa-
tionally infeasible, and themode indices are random; attacker
cannot predict. So the model has forward security.

(2) Rounds Controller. This model, which runs multiple
rounds in the signature process, is a limited time repetitions
dynamic game. It is vital in the model and controls the
operation of the entire process. Here we use the idea of
stochastic process [19] to construct model.

Theorem 2. The distribution of round obeys Poisson distribu-
tion with parameter 𝜆.

Proof. In the condition of time limited game process, note
that the number of deceptions in each round is 𝑘, with the
probability satisfying the following formula:

Pr
𝑘
(𝑟
0
, 𝑟) = Pr {𝑁 (𝑟

0
, 𝑟) = 𝑘} (𝑘 ∈ 𝑍) . (9)

Participants’ behavior is independent in each round.
Assuming the number of rounds has continuity, that is to

say, the process of game is taken as continuous function with
time,

Pr
1
(𝑟, 𝑟 + Δ𝑟) = Pr {𝑁 (𝑟, 𝑟 + Δ𝑟) = 1}

= 𝜆Δ𝑟 + 𝑜 (Δ𝑟) (𝜆 > 0 ∧ ∀Δ𝑟 → 0) ,

∞

∑
𝑖=2

Pr
𝑖
(𝑟, 𝑟 + Δ𝑟) =

∞

∑
𝑖=2

Pr {𝑁 (𝑟, 𝑟 + Δ𝑟) = 𝑖}

= 𝑜 (Δ𝑟) (𝜆 > 0 ∧ ∀Δ𝑟 → 0) ,

(10)

and it satisfies that

𝑁(0) = 0 + 𝑜 (𝜀) . (11)

This means that, the probability of cracking the system
with 𝜀 computational advantages can be negligible, when
the threshold signature process is not performed. The model
satisfies the four conditions mentioned above and meets the
definition of Poisson process with 𝜆 intensity. That is,

𝑁(𝑟) − 𝑁 (𝑟
0
) ∼ 𝜋 (𝜆 (𝑟 − 𝑟

0
)) . (12)

Theorem 3. The expectations rounds of this model are 𝜆, each
time the model convergence time complexity is 𝑂(𝜆).
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Figure 1: The structure diagram of model.

Proof. Differential equations are established for the rounds
(𝑟
0
, 𝑟
1
, . . . , 𝑟∗) respectively, based on the four conditions

mentioned above

Pr
𝑘
(𝑟
0
, 𝑟) = Pr {𝑁 (𝑟

0
, 𝑟) = 𝑘}

=
[𝜆 (𝑟 − 𝑟

0
)]
𝑘

𝑘!
𝑒
−𝜆(𝑟−𝑟

0
)

(𝑟, 𝑘 ∈ 𝑍) .

(13)

The mathematical expectation is

𝐸 [𝑁 (𝑟) − 𝑁 (𝑟
0
)] = 𝜆 (𝑟 − 𝑟

0
) . (14)

So the expectations rounds of this model are 𝜆, each time the
model convergence time complexity is 𝑂(𝜆).

(3) Parameter Distributor. Amachine can analog the behavior
of distributor (maker) and can be a trusted server in the
distributed network.

(4) Pedersen Bit Commitment Module. Pedersen bit commit-
ment protocol [20] is a security protocol taken as commit-
ment to the bit stream information. In each time of signature,

the system generates coefficients of homogeneous constant
coefficients differential equations, and the coefficients of
algebraic curved 𝐹(𝑥) with order 𝑛

2
− 1, which correspond

to the participants in set 𝐵. After storing the coefficients in
the binary bits formation, we note them as form of 𝑚

𝑖
(𝑖 ∈

𝑍 ∧ 𝑚
𝑖
∈ {0, 1}), in the form of bits stream. The parameter

distributor is also attached with the bit commitment model
to prevent it from attacks.

Theorem 4. The model can detect whether the parameter
distributor is under attack or not.

Proof. The model adapts the Pedersen’s bit stream commit-
ment protocol.

Parameter distributor selects a random number
𝜌∈
𝑅
𝐺𝐹(𝑝max{𝑛

1
,𝑛
2
})
∗, timestamp information 𝑡, and secure

hash function𝐻(𝑚
𝑖
, 𝑡) (𝑖 ∈ 𝑍 ∧ 𝑚

𝑖
∈ {0, 1}).

To make bit stream and timestamp above hash process.
The primitive element of group 𝐺𝐹(𝑝

max{𝑛
1
,𝑛
2
}) is 𝑔; publish

𝛿 = 𝑔
𝜌
𝑦
𝐻(𝑚
𝑖
,𝑡) mod 𝑝

max{𝑛
1
,𝑛
2
}

(𝑖 ∈ 𝑍 ∧ 𝑚
𝑖
∈ {0, 1}) . (15)

The triple (𝜌,𝑚
𝑖
, 𝑡) will be publish to the public, right after

the end of the signature process. Set 𝐴 and set 𝐵 participants
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can verify commitment to make sure whether parameter
distributor is being attacked or not.

(5) Verifiable Parameter Distribution Module. Using the idea
of Feldman’s [21] verification. First, publicize bivariate one-
way function 𝐻(𝑥, 𝑦). In each threshold signature process,
parameter distributor generates polynomial with 𝑛

1
−1 orders

which corresponds to set 𝐴 participants:

𝐺 (𝑥) =

𝑛
1
−1

∑
𝑖=1

𝑢
𝑖
𝑥 mod 𝑝

𝑛
1 . (16)

Our model uses the primitive element in the finite fields
𝐺𝐹(𝑝𝑛1), which is 𝑔

1
, to compute the number of the operation

rounds, which is 𝑟∗, according to the Poisson distribution
with parameter 𝜆, and then distribute the points sequence:

(𝑥
1𝑖
, 𝑦
1𝑖
) = (𝐻(𝑠

1𝑖
, 𝑔
𝑟
∗

1
) , 𝐺 (𝑥

1𝑖
)) (𝑖 = 0, 1, . . . , 𝑛

1
− 1) .

(17)

Then it arbitrarily selects 𝑛
1
−𝑡
1
points in the field of𝐹

𝑝
𝑛1 (𝑥, 𝑦)

except the ones in the equation (17), and publish them to the
public.

Then it saves the vector

𝑠
1𝑖

(𝑖 = 0, 1, . . . , 2𝑛
1
− 𝑡
1
− 1) , (18)

and calls Pedersen’s bit commitment module.
After that, it broadcasts:

𝑉
𝑖
= 𝑔
𝑢
𝑖

1
mod 𝑝

𝑛
1 (𝑖 = 0, 1, . . . , 𝑛

1
− 1) . (19)

Send each participant in set 𝐴:

TPK
𝑖
= [𝑎
𝑖
+ 𝐺 (0)] mod 𝑝

𝑛
1 ,

(𝑖 = 1, 2, . . . , 𝑛
1
, 𝑎
𝑖
∈ 𝐺𝐹(𝑞)

∗

, 𝐺 (0) ∈ 𝐺𝐹(𝑝
𝑛
1)
∗

> sup 𝑎
𝑖
) .

(20)

In the set 𝐵, the parameter distributor generates the primitive
element, which is 𝑔

2
, in the infinite field 𝐺𝐹(𝑝𝑛2), according

to this polynomial with 𝑛
2
− 1 orders:

𝐿 (𝑥) =

𝑛
2
−1

∑
𝑖=1

𝑙
𝑖
𝑥 mod 𝑝

𝑛
2 . (21)

And then, with the rounds number 𝑟∗ noted before, the
system distributes publish the points sequence:

(𝑥
2𝑖
, 𝑦
2𝑖
) = (𝐻(𝑠

2𝑖
, 𝑔
𝑟
∗

2
) , 𝐿 (𝑥

2𝑖
))

(𝑖 = 0, 1, . . . , 𝑛
2
− 1) .

(22)

We adopt (𝑛
2
, 𝑡
2
) threshold structure constructed by matrix

method. 𝑡
2
players in set 𝐵 participate in the repeated games

and recover the secret 𝑆 using the published 𝑛
2
− 𝑡
2
points.

As a result, the players in set 𝐴 can input 𝑆 after they get the
general term formula of homogeneous constant coefficient
linear differential equation.

Save vector

𝑠
2𝑖

(𝑖 = 0, 1, . . . , 2𝑛
2
− 𝑡
2
− 1) . (23)

And call Pedersen’s bit commitment module.
After that, it broadcasts:

𝑊
𝑖
= 𝑔
𝑙
𝑖

2
mod 𝑝

𝑛
2 (𝑖 = 0, 1, . . . , 𝑛

2
− 1) . (24)

Send each participant in set 𝐵:

TPK
𝑗
= [𝑆 + 𝐿 (0)] mod 𝑝

𝑛
2 ,

(𝑗 = 1, 2, . . . , 𝑛
2
, 𝑆 ∈ 𝐺𝐹(𝑝)

∗

, 𝐿 (0) ∈ 𝐺𝐹(𝑝
𝑛
2)
∗

> 𝑆) .
(25)

Theorem 5. The model is verifiable.

Proof. When distributing point’s sequence and broadcasting
corresponding authentication information, participants can
simultaneously verify the information.

Set 𝐴 participants verify

𝑔
𝐺(𝑥
1𝑖
)

1
=

𝑛
1
−1

∏
𝑗=0

𝑉
𝑥
𝑗

1𝑖

𝑖
mod 𝑝

𝑛
1 (𝑖 = 0, 1, . . . , 𝑛

1
− 1) . (26)

Set 𝐵 participants verify

𝑔
𝐿(𝑥
2𝑖
)

2
=

𝑛
2
−1

∏
𝑗=0

𝑊
𝑥
𝑗

2𝑖

𝑖
mod 𝑝

𝑛
2 (𝑖 = 0, 1, . . . , 𝑛

2
− 1) . (27)

If the verification succeeds, participants can trust the infor-
mation sent by others.

(6) Participants. Participants in two different permissions
together constitute the threshold structure (𝑛

1
+ 𝑛
2
, 𝑡
1
+ 𝑡
2
).

In addition, |𝐴| = 𝑛
1
|𝐵| = 𝑛

2
, and the threshold values are

|𝐴|threshold = 𝑡
1
and |𝐵|threshold = 𝑡

2
.

(7) Okamoto Signature Module. After calculating the thresh-
old signature private key, take TSK = 𝑎

𝑆
as the first private key

component of the signature module, while the second private
key component is generated by public key signature method;
select private keys; and publicize public keys, respectively.
The model adopts Okamoto signature algorithm to signature
finally.

Theorem 6. The model can resist conspiracy attack.

Proof. The second component of the private key in Okamoto
signature algorithm can avoid conspiracy attacks which are
performed by using general term formula to get other par-
ticipants’ private keys when meeting the threshold condition
to calculate homogeneous linear differential equations with
constant coefficients general term formula in original model.
The second component of everyone’s private key has to be
kept privately by each individual. On condition that the
second component of the private key ensures the privacy, the
threshold signature cannot be forged. Furthermore, we can
establish a mechanism, that is when there is a dispute, the
system will check every participant involving the process of
signature arise disputes.
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3.2. Improved Threshold Model. We adopt (𝑛
2
, 𝑡
2
) threshold

structure constructed by matrix method. 𝑡
2
players in set 𝐵

participate in the repeated games and recover the secret 𝑆

using the published 𝑛
2
− 𝑡
2
points. As a result, the players

in set 𝐴 can input 𝑆 after they get the general term formula
of homogeneous constant coefficient linear differential equa-
tion.

Make two field extensions:

[𝐺𝐹 (𝑝
𝑛
1) : 𝐺𝐹 (𝑞)]=[𝐺𝐹 (𝑝

𝑛
1) : 𝐺𝐹 (𝑝)] [𝐺𝐹 (𝑝) : 𝐺𝐹 (𝑞)] ,

[𝐺𝐹 (𝑝
𝑛
2) : 𝐺𝐹 (𝑞)]=[𝐺𝐹 (𝑝

𝑛
2) : 𝐺𝐹 (𝑝)] [𝐺𝐹 (𝑝) : 𝐺𝐹 (𝑞)] .

(28)

Expansion order of algebraic number field 𝐺𝐹(𝑞) is

𝑄
1
= [𝐺𝐹 (𝑝

𝑛
1) : 𝐺𝐹 (𝑞)] = 𝑛

1
∗ [

𝑝 − 1

𝑞
] ,

𝑄
2
= [𝐺𝐹 (𝑝

𝑛
2) : 𝐺𝐹 (𝑞)] = 𝑛

2
∗ [

𝑝 − 1

𝑞
] .

(29)

Remove the noise terms 𝐿(0) and 𝐺(0) to get coefficients
information of homogeneous constant coefficient linear dif-
ferential equation.

3.3. Dynamic Game Model

Definition 7. TheComputable complete and perfect informa-
tion dynamic game 𝜏 = [𝑃, 𝑇, 𝐴, 𝑆, 𝑅,𝐻, 𝐼, 𝑂, 𝑈] satisfies:

Participants are noted as 𝑃 =

{Simulator, 𝑃
𝑖
} (Simulator represents the nature

and parameter distributor).
The set of Types is 𝑇 = {𝑇

𝑖
} (𝑇
𝑖
∈ {honesty, fraud}).

Actions set is 𝐴 = {𝐴
𝑖
} (𝐴
𝑖
∈ {honesty, fraud}).

Strategy set is 𝑆 = {𝑆
𝑖
}𝜑 : (𝑇

𝑖
, 𝐻
𝑖
, 𝐼
𝑖
, 𝐴
𝑖
) → 𝑆

𝑖
.

Rounds set is 𝑅 < 𝑂(𝜆) ∧ 𝑅 ∈ 𝑍+.

Full history set 𝐻 = {ℎ | ℎ = ⨁
𝑘

𝑖=1
𝐴
𝑖
} (𝑖 ∈ 𝑅 ∧ 0 ≤

𝑘 ≤ 𝑅) is depicted as game tree, whose root is empty
history node 0.
The information set 𝐼 = {𝐼

𝑖
} can be tested and is

perfect.
Outcome set is 𝑂 = {𝑂

𝑖
}𝛾 : (𝐴

𝑖
, 𝑆
𝑖
) → 𝑂

𝑖
.

Utility function set is 𝑈 = {𝑈
𝑖
} 𝛾 ∘ 𝜑 :

(𝑇
𝑖
, 𝐻
𝑖
, 𝐼
𝑖
, 𝐴
𝑖
, 𝑆
𝑖
, 𝑂
𝑖
) → 𝑈

𝑖
and satisfies 𝜕2𝑈

𝑖
< 0.

The above game 𝜏 can be calculated in polynomial
time.

Definition 8. Computable complete and perfect information
dynamic game with 𝑡

1
+ 𝑡
2
elastic equilibrium will reach the

equilibrium results, under the conditions that it satisfies the
Definition 7 and that each participants is rational. That is,
𝑈(𝜎
𝑖
, 𝜎
−𝑖
) < 𝑈(𝜎∗

𝑖
, 𝜎
−𝑖
), 𝜎 is multiple real variable function

𝜎 : (𝑇
𝑖
, 𝐻
𝑖
, 𝐼
𝑖
, 𝐴
𝑖
, 𝑆
𝑖
, 𝑂
𝑖
, 𝑈
𝑖
) → 𝑈(𝜎

𝑖
, 𝜎
−𝑖
).

Theorem 9. The model converges to computable complete
and perfect information dynamic game with 𝑡

1
+ 𝑡
2
elastic

equilibrium.

Proof. Participants who accord with threshold signature con-
ditions possess superiority of Pr = 𝜀 (0 < 𝜀 < 1).They can get
threshold signature private key without the normal operation
of the model. Definitions of utility functions are as follows:

𝑈
++

(0,𝑖)
: participants’ ideal utility without the normal oper-

ation of the model to obtain the threshold signature private
key;

𝑈
+

(𝑟,𝑖)
(0 ≤ 𝑟 ≤ 𝑟∗): the utility that participant 𝑖 gets

signature private key and others do not get it in 𝑟 round;
𝑈
−

(𝑟,𝑖)
(0 ≤ 𝑟 ≤ 𝑟∗): utility that participant 𝑖 does not

comply with the normal execution of the model when model
run 𝑟 round;

𝑈
(𝑟,𝑖)

(0 ≤ 𝑟 ≤ 𝑟∗): utility that participant 𝑖 complies with
the normal execution of the model when model run 𝑟 round;

𝑈
(𝑟
∗
,𝑖)
: normal utility that participant 𝑖 always complies

with the operation of the model obtains threshold signature
private key when model reaches the last one round;

𝑈
−

(𝑟,all) (0 ≤ 𝑟 ≤ 𝑟∗): utility that all participants do not
obtain the threshold signature private key. Illustrate that there
are some participants had deceived cause model abnormal
termination.

Utility function satisfies the strong partial:𝑈++
(0,𝑖)

> 𝑈+
(𝑟,𝑖)

>

𝑈
(𝑟
∗
,𝑖)

> 𝑈−
(𝑟,all).

Define events as follows.

A: participant uses the advantage of Pr = 𝜀 (0 < 𝜀 <

1) to crack threshold signature private key.

B: participant implements protocol.

C: participant takes honesty policy in round 𝑟.

D: participant takes fraud policy in round 𝑟.

We denote the utility of departing from the protocol as
𝑈exception and denote the expected utility as 𝐸(𝑈exception). We
can get the equation as follows.

𝑈exception = 𝜀𝑈 (Pr (𝐴)) + (1 − 𝜀)𝑈 (Pr (𝐵)) ,

𝑈 (Pr (𝐵))

= 𝑈 (Pr (𝐵 | 𝐶)Pr (𝐶) + Pr (𝐵 | 𝐷)Pr (𝐷))

= 𝜆𝑈
(𝑟
∗
,𝑖)

+ (1 − 𝜆)

𝑟

∑
𝑖=1

𝑈
−

(𝑟,𝑖)

= 𝜆𝑈
(𝑟
∗
,𝑖)

+ (1 − 𝜆)
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×

𝑟

∑
𝑖=1

[

[

1

𝐺𝐹(𝑝)

∗


𝐺𝐹(𝑝)

∗

𝑈
+

(𝑟,𝑖)

+
(𝐺𝐹(𝑝)

∗

− 1)
2


𝐺𝐹(𝑝)

∗


𝐺𝐹(𝑝)

∗

𝑈
−

(𝑟,all)
]

]

,

𝑈exception

= 𝜀𝑈
++

(0,𝑖)
+ (1 − 𝜀)

× [

[

𝑈
(𝑟
∗
,𝑖)

+ (1 − 𝜆)

×

𝑟

∑
𝑖=1

(
1


𝐺𝐹(𝑝)

∗


𝐺𝐹(𝑝)

∗

𝑈
+

(𝑟,𝑖)

+
(𝐺𝐹(𝑝)

∗

− 1)
2


𝐺𝐹(𝑝)

∗


𝐺𝐹(𝑝)

∗

𝑈
−

(𝑟,all))
]

]

,

[𝐺𝐹 (𝑝) : 𝐺𝐹 (𝑞)] =
𝑝 − 1

𝑞
.

(30)

In our protocol,

𝑈exception < 𝑈
(𝑟
∗
,𝑖)
. (31)

Distribution function satisfies

𝑟
∗
= 𝜓 (𝜆) . (32)

The following formulas are met:

𝜆 < Φ ∗ [

[

𝑈
(𝑟
∗
,𝑖)

− 𝜀𝑈++
(0,𝑖)

1 − 𝜀

−

𝑟

∑
𝑖=1

(
1


𝐺𝐹(𝑝)

∗


𝐺𝐹(𝑝)

∗

𝑈
+

(𝑟,𝑖)

+
(𝐺𝐹(𝑝)

∗

− 1)
2


𝐺𝐹(𝑝)

∗


𝐺𝐹(𝑝)

∗

𝑈
−

(𝑟,all))
]

]

,

(33)

in which

Φ = 1 × (𝑈
(𝑟
∗
,𝑖)

−

𝑟

∑
𝑖=1

(
1


𝐺𝐹(𝑝)

∗


𝐺𝐹(𝑝)

∗

𝑈
+

(𝑟,𝑖)

+
(𝐺𝐹(𝑝)

∗

− 1)
2


𝐺𝐹(𝑝)

∗


𝐺𝐹(𝑝)

∗

𝑈
−

(𝑟,all)))

−1

.

(34)

The above equation can determine the range of param-
eters selection, so that the model converges to computable
complete and perfect information dynamic game with 𝑡

1
+ 𝑡
2

elastic equilibrium.

Theorem 10. The model can resist inner fraud.

Proof. According to Theorem 9, a rational participant will
not depart from the protocol execution in any round. The
model overcomes the sensitivity of backward induction and
adopts mixed strategy equilibrium. If participants adopted
a deceptive strategy in the model execution of any round,
this caused the decrease in revenue of participants to 𝑈

−

(𝑟,all).
When the protocol terminates, punishment strategies can be
used, thus putting an end to deceiving behavior effectively. So
the model can prevent inner fraud.

4. Protocol Procedure

4.1. Parameters Generation Process. Determine the order of
set 𝐴 and set 𝐵; determine the threshold value according to
the requirements, respectively. Select big prime 𝑞, 𝑝 meets
𝑞 | (𝑝 − 1). Select primitive element 𝑔

1
in finite field 𝐺𝐹(𝑝𝑛1)

and 𝑔
2
in finite field 𝐺𝐹(𝑝𝑛2). The participants in set 𝐴 and

set 𝐵 select signature private key as the second component of
the Okamoto signature, respectively.

Parameter sequence generator generates coefficient con-
stants vector of homogeneous constant coefficient linear
differential equation:

𝑎
0
= (𝑎
0

1
, 𝑎
0

2
, . . . , 𝑎

0

𝑛−𝑡
1

) (𝑎
0

𝑖
∈ 𝑍
𝑞
) ,

𝑏
0
= (𝑏
0

1
, 𝑏
0

2
, . . . , 𝑏

0

𝑛−𝑡
1

) (𝑏
0

𝑖
∈ 𝑍
𝑞
) .

(35)

Superscript represents signature number of times; 0
represents the first signature.

4.2. Dynamic Games Process. Rounds controller according
to Poisson distribution with parameter 𝜆 secret generates
threshold signature round 𝑟

∗. According to the number of
participants in set 𝐴 and set 𝐵, the threshold value generates
coefficient constants vector of polynomial 𝐺(𝑥) and 𝐿(𝑥),
respectively:

𝑢
0
= (𝑢
0

1
, 𝑢
0

2
, . . . , 𝑢

0

𝑛
1

) (𝑢
0

𝑖
∈ 𝑍
𝑞
𝑛1 ) ,

𝑙
0
= (𝑙
0

1
, 𝑙
0

2
, . . . , 𝑙

0

𝑛
2

) (𝑙
0

𝑖
∈ 𝑍
𝑞
𝑛2 ) .

(36)

Superscript signature represents the number of rounds; 0
represents the first round.

Parameter distributor according to (17) and (22) dis-
tributes and publicizes points. Participants in set 𝐴 and set
𝐵 can use the verifiable parameter distribution module for
verification. If there is no cheating behavior, the protocol
continues to execute. Otherwise, the verifiable parameter
distributionmodule goes to the interrupt processing. In every
round of the games, the players in set 𝐴 and set 𝐵 use the
published points sequence and generate 𝐺(0)

𝑟 and 𝐿(0)
𝑟,

respectively.
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Table 1: Several models comparison.

Model Verifiable Bit
commitment

Resist
conspiracy
attack

Forward
security permission Convergence time Range of parameters

Halpern and Teague No No No No different 𝑂(
5

𝛼3
)(0 < 𝛼 < 1)

𝛼2

𝛼2 + (1 − 𝛼)
2
𝑈
+
(𝜎
𝑖
, 𝜎
−𝑖
)

+
(1 − 𝛼)

2

𝛼2 + (1 − 𝛼)
2
𝑈−(𝜎
𝑖
, 𝜎
−𝑖
)

> 𝑈(𝜎∗
𝑖
, 𝜎
−𝑖
)

Gordon and Katz No No No No different 𝑂(
1

𝛽
)(0 < 𝛽 < 1) 𝛽 ≤

𝑈(𝜎
∗

𝑖
, 𝜎
−𝑖
) − 𝑈
−
(𝜎
𝑖
, 𝜎
−𝑖
)

𝑈+(𝜎
𝑖
, 𝜎
−𝑖
) − 𝑈−(𝜎

𝑖
, 𝜎
−𝑖
)

Computable
complete and
perfect information
dynamic game

Yes Yes Yes Yes different 𝑂(𝜆)(𝜆 > 0) 𝜆 <
𝑈
(𝑟
∗
,𝑖)

− 𝜀𝑈
++

(0,𝑖)

(1 − 𝜀) ∗ 𝑈
(𝑟
∗
,𝑖)

Parameter distributor verifies, respectively,

[TPK
𝑖
− 𝐺
𝑟
(0)] mod 𝑝

𝑛
1
?

= 𝑎
𝑖
,

(𝐺
𝑟
(0) ∈ 𝐺𝐹(𝑝

𝑛
1)
∗

> sup 𝑎
𝑖
, 𝑖 = 1, 2, . . . , 𝑛

1
) ,

[TPK
𝑗
− 𝐿
𝑟
(0)] mod 𝑝

𝑛
2
?

= 𝑆,

(𝑆 ∈ 𝐺𝐹(𝑝)
∗

∧ 𝐿
𝑟
(0) ∈ 𝐺𝐹(𝑝

𝑛
2)
∗

> 𝑆, 𝑗 = 1, 2, . . . , 𝑛
2
) .

(37)

If 𝑟 = 𝑟∗and (37) holds, calculate (2), and then

TSK = 𝑎S (𝑆 > 𝑛
1
+ 𝑛
2
) . (38)

If 𝑟 ̸= 𝑟∗ and (37) does not hold,𝐺(0)
𝑟and 𝐿𝑟(0) equal the

expected value and the protocol enters into the next round.
If 𝑟 ̸= 𝑟

∗ and (37) does not hold, meanwhile, 𝐺(0)
𝑟

and 𝐿𝑟(0) do not equal the expected value, someone of the
players have cheated. At this time, the parameter distributor
can perceive the cheating behavior so that the player cannot
obtain the signature private key. According to Theorem 10,
the rational participants will not deceive.

4.3. Threshold Signature Process. The Okamoto signature
module is used to complete the feature of signature.

Okamoto signature algorithm contains two private keys:
the first is threshold signature private key just generated, and
the second is each participator’s signature private key in set𝐴
and set 𝐵. Only after verification, parameter distributor can
call Okamoto signature module. Two private key generation
equations are as follows:

TSK
1
= 𝑎
𝑆

(𝑠 > 𝑛
1
+ 𝑛
2
) ,

TSK
2
=

𝑡
1
+𝑡
2
−1

∏
𝑖=0

SHA(𝑚)
𝑆𝐾
𝑖 .

(39)

Verify equation
𝑡
1
+𝑡
2
−1

∏
𝑖=0

TSK𝑃𝐾𝑖
2

?

= SHA (𝑚) . (40)

𝑚 is message sequence, and SHA is secure hash function.
We use the equation (41) to complete signature.

(𝜎
1
, 𝜎
2
, 𝜎
3
) = Okamoto (TSK

1
,TSK
2
) . (41)

Validation process can use standard Okamoto algorithm.

4.4. Several Models Comparison. Table 1 is several models
comparison. The parameters range of this model uses the
limiting form of (31), (32), (33), and (34).

5. Conclusion

This paper proposed computable complete and perfect infor-
mation dynamic game with 𝑡

1
+ 𝑡
2
elastic equilibrium, based

on the homogeneous constant coefficient linear differen-
tial equation. We constructs a dynamic game model and
protocol using time sequences, bit commitments, Feldman’s
verification menthod, and Okamoto’s signature permissions.
The model achieves two different threshold signature per-
missions. We proved that, during the game, no participant
has the tendency of departing from normal operation, so
that the model achieves the purpose of preventing fraud.
Our method expands the idea of permission and overcomes
five inherent problems in homogeneous constant coefficient
linear differential equation.
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the optimization of bipartite secret sharing schemes,” Designs,
Codes and Cryptography, vol. 63, no. 2, pp. 255–271, 2012.

[8] C.-W. Chan and C.-C. Chang, “A new (t, n)-threshold scheme
based on difference equations,” in Combinatorics, Algorithms,
Probabilistic and Experimental Methodologies, pp. 94–106,
Springer, Berlin, Germany, 2007.

[9] B. Li, “Differential secret sharing scheme based on special access
secret sharing scheme,” Journal of Sichuan University (Natural
Science), vol. 43, no. 1, pp. 78–83, 2006.

[10] Y.Desmedt andY. Frankel, “Shared generation of authenticators
and signatures,” in Proceedings of Advances in Cryptology-
CRYPTO '91, Santa Barbara, Calif, USA, 1991, pp. 457–469,
Springer, Berlin, Germany, 1992.

[11] A. Shamir, “Identity-based cryptosystems and signature
schemes,” inAdvances in Cryptology, vol. 196 of Lecture Notes in
Computer Science, pp. 47–53, Springer, Berlin, Germany, 1985.

[12] K. G. Paterson and J. C. N. Schuldt, “Efficient identity-based sig-
natures secure in the standard model,” in Information Security
and Privacy, vol. 4058 of Lecture Notes in Computer Science, pp.
207–222, Springer, Berlin, Germany, 2006.

[13] T. Okamoto, “Provable secure and practical identification
schemes and corresponding signature schemes,” in Advances in
Cryptology-CRYPTO ’92, vol. 740 of Lecture Notes in Computer
Science, pp. 31–53, Springer, Berlin, Germany, 1992.

[14] J. Halpern and V. Teague, “Rational secret sharing and mul-
tiparty computation: extended abstract,” in Proceedings of the
36th Annual ACM Symposium on Theory of Computing (STOC
'04), pp. 623–632, New York, NY, USA, 2004.

[15] S. D. Gordon and J. Katz, “Rational secret sharing, revisited,”
in Security and Cryptography for Networks, vol. 4116 of Lecture
Notes in Computer Science, pp. 229–241, Springer, Berlin, Ger-
many, 2006.

[16] S. Maleka, A. Shareef, and C. P. Rangan, “The deterministic
protocol for rational secret sharing,” in Proceedings of the
22nd IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’08), pp. 1–7, IEEE, April 2008.

[17] D. Wei and X. Qiuliang, “Special permission-based rational
secret sharing scheme,” China Electronic Business: Communica-
tions Market, no. 2, pp. 180–184, 2009.

[18] W. Dong, Secret sharing based on game theory and application of
the theory [M.S. thesis], Shandong University, 2011.

[19] F. Z. Ben, Stochastic Process, Science Press, Beijing, China, 2011.
[20] Q. Weidong, Crypto Graphic Protocols Foundation, Higher

Education Press, Beijing, China, 2009.
[21] P. Feldman, “A practical scheme for non-interactive verifiable

secret sharing,” in Proceedings of the 28th IEEE Symposium on
Foundations of Computer Science, pp. 427–437, 1987.


