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In the paper, by using multiple-scale method, the Benjamin-Ono-Burgers-MKdV (BO-B-MKdV) equation is obtained which
governs algebraic Rossby solitary waves in stratified fluids. This equation is first derived for Rossby waves. By analysis and
calculation, some conservation laws are derived from the BO-B-MKdV equation without dissipation. The results show that the
mass, momentum, energy, and velocity of the center of gravity of algebraic Rossby waves are conserved and the presence of a small
dissipation destroys these conservations.

1. Introduction

Nonlinear waves are crucial for the dynamics of the ocean
and atmosphere [1–4]; Rossby waves hold a central position
in nonlinear waves. In the past decades, much attention
has been paid to the Rossby solitary waves. A number
of analytical studies of evolution equations governing such
waves have been carried out. According to the governing
equation, Rossby solitary waves could roughly be divided
into two categories: one is the classical solitary waves and
the evolution of Rossby waves obeys the KdV type equation,
such as KdV equation [5, 6], MKdV equation [7, 8], and
Boussinesq equation [9]; the outstanding feature of this
type solitary waves is that they are very stable and such
a set of solitary waves are called soliton; the other is the
algebraic solitary waves and the behavior of Rossby waves
is governed by an integrodifferential equation, including
Benjamin-Ono (BO) equation [10, 11], Intermediate-Long-
Wave (ILW) equation [12], and Boussinesq-BO equation [13];
furthermore, the waveform of the algebraic solitary waves
vanishes algebraically as |𝑥| → ∞.

The aim of the paper is to derive a new equation which
governs the behavior of algebraic Rossby solitarywaves. From
the quasigeostrophic potential vorticity equation in stratified

fluids, a new equation (BO-B-MKdV) is generated and is
suitable for describing the evolution of Rossby solitary waves.
The BO-B-MKdV equation includes dissipation effect and
dispersion effect. It is a meaningful expanding for the results
in [6, 10]. Based on the BO-B-MKdV equation, the con-
servation laws associated with the equation and dissipation
effect are discussed and some conserved quantities of Rossby
solitary waves are obtained.

2. Mathematics Model

The adiabatic potential vorticity equation is in the following
form [14]:

(
𝜕

𝜕𝑡
+
𝜕Ψ

𝜕𝑥

𝜕

𝜕𝑦
−
𝜕Ψ

𝜕𝑦

𝜕

𝜕𝑥
) [∇
2
Ψ + 𝑓 +

𝑓

𝜌
𝑠

(
𝜌
𝑠

𝑠

𝜕Ψ

𝜕𝑧
)] = 0,

(1)

where Ψ is the dimensionless stream function; 𝑠 = 𝑁
2
/𝑓,

𝑁(𝑧) is the Brunt-Vaisala frequency and is a measure of
stability of the stratification; 𝑓 is called Coriolis parameter;
𝜌
𝑠
is density; and ∇

2
= 𝜕
2
/𝜕𝑥
2
+ 𝜕
2
/𝜕𝑦
2 denotes the two-

dimensional Laplace operator.
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The lower boundary condition can be obtained from the
thermal equation including dissipation as follows:

(
𝜕

𝜕𝑡
+
𝜕Ψ

𝜕𝑥

𝜕

𝜕𝑦
−
𝜕Ψ

𝜕𝑦

𝜕

𝜕𝑥
)
𝜕Ψ

𝜕𝑧
+ 𝜆𝑠(

𝜕
2
Ψ

𝜕𝑥2
+
𝜕
2
Ψ

𝜕𝑦2
) = 0,

(2)

where 𝜆 > 0 is dissipation coefficient.
In order to consider the role of nonlinearity, assume the

following shear flows:

𝑈 =

{{

{{

{

𝑢
1

𝑦 < −𝐿,

𝑢 (𝑦, 𝑧) −𝐿 ≥ 𝑦 ≤ 𝐿,

𝑢
2

𝑦 > 𝐿,

(3)

where 𝑢
1
, 𝑢
2
are constants. For simplicity, 𝑢(𝑦) is assumed to

be smooth across 𝑦 = −𝐿 and 𝑦 = 𝐿. In order to consider
weakly nonlinear perturbation on a zonal flow, assume

Ψ = −∫
𝑦

(𝑈 (𝑠, 𝑧) + 𝜀
2
𝛼) 𝑑𝑠 + 𝜀𝜓, (4)

and then in the domain [−𝐿, 𝐿], we take 𝜆 = 𝜀3𝜆
0
. Equations

(1) and (2) can be written as the following perturbation
equations:

[
𝜕

𝜕𝑡
+ (𝑢 + 𝜀

2
𝛼)

𝜕

𝜕𝑥
+ 𝜀 (

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
−
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
)]

× [∇
2
𝜓 +

𝑓

𝜌
𝑠

𝜕

𝜕𝑧
(
𝜌
𝑠

𝑠

𝜕𝜓

𝜕𝑧
)] + 𝛽

𝜕𝜓

𝜕𝑥
= 0,

[
𝜕

𝜕𝑡
+ (𝑢 + 𝜀

2
𝛼)

𝜕

𝜕𝑥
+ 𝜀 (

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
−
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
)]

×
𝜕𝜓

𝜕𝑧
−
𝜕𝑢

𝜕𝑧

𝜕𝜓

𝜕𝑥
+ 𝜀
3
𝜆
0
𝑠∇
2
𝜓 = 0,

𝑧 = 0,

(5)

where 𝛽 = 𝛽 − (𝜕
2
𝑢/𝜕𝑦
2
) − (𝑓/𝜌

𝑠
)(𝜕/𝜕𝑧)((𝜌

𝑠
/𝑠)(𝜕𝑢/𝜕𝑧)) and

𝛽 is a constant. The upper boundary condition is as follows:

𝜌
𝑠
𝜓 → 0, 𝑧 → ∞. (6)

In the domains (−∞, −𝐿) and (𝐿,∞), the parameter 𝛽 is
smaller than that in the domain [−𝐿, 𝐿]; herewe assume𝛽 = 0
for |𝑦| > 𝐿. Then, the governing equations in these areas are

[
𝜕

𝜕𝑡
+ (𝑢
1,2
+ 𝜀
2
𝛼)

𝜕

𝜕𝑥
+ 𝜀 (

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
−
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
)]

× [∇
2
𝜓 +

𝑓

𝜌
𝑠

𝜕

𝜕𝑧
(
𝜌
𝑠

𝑠

𝜕𝜓

𝜕𝑧
)] = 0,

𝑦
 > 𝐿.

(7)

Here, the subscript denotes that for 𝑦 < −𝐿 and for 𝑦 > 𝐿,
respectively.

In order to achieve a balance between nonlinearity and
dispersion, we introduce the following stretching transfor-
mation and the perturbation expansion of 𝜓in in the domain
[−𝐿, 𝐿]:

𝑋 = 𝜀𝑥, 𝑇 = 𝜀
3
𝑡, 𝑦 = 𝑦, 𝑧 = 𝑧;

𝜓in = 𝜓1 (𝑋, 𝑦, 𝑇) + 𝜀𝜓2 (𝑋, 𝑦, 𝑇) + ⋅ ⋅ ⋅ .
(8)

Separating 𝜓
1
as 𝜓
1
= 𝐴(𝑋, 𝑇)𝜙

1
(𝑦, 𝑧), defining the operator

𝐿 as

𝐿 =
𝜕
2

𝜕𝑦2
+
𝑓

𝜌
𝑠

𝜕

𝜕𝑧
(
𝜌
𝑠

𝑠

𝜕

𝜕𝑧
) +

𝛽

𝑢
, (9)

then substituting (8) into (5), we get 𝑂(𝜀):

𝐿 (𝜙
1
(𝑦, 𝑧)) = 0;

𝑢
𝜕𝜙
1

𝜕𝑧
−
𝜕𝑢

𝜕𝑧
𝜙
1
= 0, 𝑧 = 0;

𝜌
𝑠
𝜙
1
→ 0, 𝑧 → ∞.

(10)

Equation (10) is an eigenvalue problem and describes the
space structure of the wave along direction. 𝐴(𝑋, 𝑇) is the
unknown amplitude in the order 𝑂(𝜀) and needs to solve
higher order equations.

Assuming 𝜓
2
= (1/2)𝐴

2
(𝑋, 𝑇)𝜙

2
(𝑦, 𝑧), proceeding to

𝑂(𝜀
2
), we obtain

𝐿 (𝜙
2
(𝑦, 𝑧)) = (

𝛽

𝑢
)
𝑦

𝜙
2

1

𝑢
;

𝜌
𝑠
𝜙
2
→ 0, 𝑧 → ∞;

𝑢
𝜕𝜙
2

𝜕𝑧
−
𝜕𝑢

𝜕𝑧
𝜙
2
= −(𝜙

1

𝜕
2
𝜙
1

𝜕𝑦𝜕𝑧
−
𝜕𝜙
1

𝜕𝑦

𝜕𝜙
1

𝜕𝑧
) , 𝑧 = 0.

(11)

To 𝑂(𝜀3), we have

𝑢𝐿(
𝜕𝜓
3

𝜕𝑋
) = (

𝜕𝐴

𝜕𝑇
+ 𝛼

𝜕𝐴

𝜕𝑋
)
𝛽𝜙
1

𝑢

+ 𝐴
2 𝜕𝐴

𝜕𝑋

{

{

{

𝜙
1
𝜙
2

2𝑢
(
𝛽

𝑢
)
𝑦

−
𝜙
3

1

2
[
1

𝑢
(
𝛽

𝑢
)
𝑦

]

𝑦

}

}

}

− 𝑢𝜙
1

𝜕
3
𝐴

𝜕𝑋3
;

𝑢
𝜕

𝜕𝑧

𝜕𝜓
3

𝜕𝑋
−
𝜕𝑢

𝜕𝑧

𝜕𝜓
3

𝜕𝑋

= −𝑢(
𝜕𝐴

𝜕𝑇
+ 𝛼

𝜕𝐴

𝜕𝑋
)
𝜕𝜙
1

𝜕𝑧
− 𝐴
2 𝜕𝐴

𝜕𝑋

× (
𝜙
1

2

𝜕
2
𝜙
2

𝜕𝑦𝜕𝑧
−
𝜕𝜙
1

𝜕𝑦

𝜕𝜙
2

𝜕𝑧
+ 𝜙
2

𝜕
2
𝜙
1

𝜕𝑦𝜕𝑧

−
1

2

𝜕𝜙
2

𝜕𝑦

𝜕𝜙
1

𝜕𝑧
) + 𝐴𝜆

0
𝑠
𝜕
2
𝜙
1

𝜕𝑦2
, 𝑧 = 0;

𝜌
𝑠
𝜓
3
→ 0, 𝑧 → ∞.

(12)
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Multiplying both the sides of the first equation of (12) by
𝜌
𝑠
𝜙
1
/𝑢 and integrating it over 𝑦 and 𝑧 lead to

∫
+∞

0

𝜕

𝜕𝑋
𝜌
𝑠
[𝜙
1

𝜕

𝜕𝑦
𝜓
3
− 𝜓
3

𝜕

𝜕𝑦
𝜙
1
]


𝐿

−𝐿

𝑑𝑧

+ ∫
𝐿

−𝐿

𝜕

𝜕𝑋

𝑓𝜌
𝑠

𝑠
[𝜙
1

𝜕

𝜕𝑧
𝜓
3
− 𝜓
3

𝜕

𝜕𝑧
𝜙
1
]


+∞

0

𝑑𝑦

= (
𝜕

𝜕𝑇
+ 𝛼

𝜕

𝜕𝑋
)𝐴∫

𝐿

−𝐿

∫
+∞

0

𝜌
𝑠

𝜙
2

1

𝑢2
𝛽𝑑𝑦𝑑𝑧

−
𝜕
3

𝜕𝑋3
∫
𝐿

−𝐿

𝜌
𝑠
𝜙
2

1
𝑑𝑦𝑑𝑧 + 𝐴

2 𝜕𝐴

𝜕𝑋

× ∫
𝐿

−𝐿

∫
+∞

0

{

{

{

𝜌
𝑠
𝜙
2

1
𝜙
2

2𝑢2
(
𝛽

𝑢
)
𝑦

−
𝜌
𝑠
𝜙
4

1

2𝑢
[
1

𝑢
(
𝛽

𝑢
)
𝑦

]

𝑦

}

}

}

𝑑𝑦𝑑𝑧.

(13)

In (13), if the boundary conditions of 𝜙
1
and 𝜓

3
are known,

the equation governing the amplitude 𝐴 will be determined.
So in the following, we will consider the boundary conditions
of 𝜙
1
and 𝜓

3
.

For the two external regions of |𝑦| > 𝐿, consider the
following transformations:

𝑇 = 𝜀
3
𝑡, 𝜉 = 𝑥, 𝑦 = 𝑦, 𝑍 = 𝜀𝑧 (14)

and the external stream function 𝜓ex is set to

𝜓ex = �̃� (𝜉, 𝑦, 𝑍, 𝑇, 𝜀) . (15)

Substituting (14) and (15) into (7) based on the lowest-order
equation of the external region, we can obtain

(
𝜕
2

𝜕𝜉2
+
𝜕
2

𝜕𝑦2
) �̃� (𝜉, 𝑦, 𝑍, 𝑇, 𝜀) = 0. (16)

The solution of (16) satisfies

�̃� =
±𝑃

𝜋
∫
+∞

−∞

�̃�
 𝜉=𝜉
𝑦=±𝐿

(𝑦 ∓ 𝐿) 𝑑𝜉


(𝑦 ∓ 𝐿)
2

+ (𝜉 − 𝜉)
2
,

𝜕�̃�

𝜕𝑦
=
±𝑃

𝜋
∫
+∞

−∞

�̃�
 𝜉=𝜉
𝑦=±𝐿

[(𝜉 − 𝜉

)
2

− (𝑦 ∓ 𝐿)
2

] 𝑑𝜉


[(𝑦 ∓ 𝐿)
2

+ (𝜉 − 𝜉)
2

]
2
,

(17)

where the upper and the lower signs denote that for𝑦 > 𝐿 and
for 𝑦 < −𝐿, respectively, and 𝑃 stands for the principal value
of the integration. Assuming that the inner solution matches
smoothly with the outer solutions at 𝑦 = ±𝐿, then we obtain

(𝜓
1
+ 𝜀𝜓
2
+ 𝜀
2
𝜓
3
)
𝑦=±𝐿

= �̃�
𝑦=±𝐿 + 𝑂 (𝜀

3
) ,

𝜕 (𝜓
1
+ 𝜀𝜓
2
+ 𝜀
2
𝜓
3
)

𝜕𝑦

𝑦=±𝐿

=
𝜕�̃�

𝜕𝑦

𝑦=±𝐿
+ 𝑂 (𝜀

3
) .

(18)

Then by employing (18), we get

𝐴𝜙
1
(±𝐿) = �̃�

𝑦=±𝐿, 𝜓
2

𝑦=±𝐿 = 𝜓
3

𝑦=±𝐿 = 0,

𝜕�̃�

𝜕𝑦
= ∓𝜀
2
𝜙
1
(±𝐿)

𝜕
2J (𝐴 (𝑋, 𝑇))

𝜕𝑋2
,

𝜕𝜓
3

𝜕𝑦

𝑦=±𝐿
= ∓𝜙
1
(±𝐿)

𝜕
2J (𝐴 (𝑋, 𝑇))

𝜕𝑋2
,

(19)

where J(𝐴(𝑋, 𝑇)) ≡ (𝑃/𝜋) ∫
+∞

−∞
𝐴(𝑋

, 𝑇) ln |𝑋 − 𝑋


|𝑑𝑋
.

Combining (13) with (19), with the help of (10), (11), and (12),
yields

𝜕𝐴

𝜕𝑇
+ 𝛼

𝜕𝐴

𝜕𝑋
+ 𝑎
1
𝐴
2 𝜕𝐴

𝜕𝑋
+ 𝑎
2

𝜕
3
𝐴

𝜕𝑋3
+ 𝑎
3
𝐴

+ 𝑎
4

𝜕
3

𝜕𝑋3
J (𝐴 (𝑋, 𝑇)) = 0,

(20)

and then (20) can be rewritten as follows:

𝜕𝐴

𝜕𝑇
+ 𝛼

𝜕𝐴

𝜕𝑋
+ 𝑎
1
𝐴
2 𝜕𝐴

𝜕𝑋
+ 𝑎
2

𝜕
3
𝐴

𝜕𝑋3
+ 𝑎
3
𝐴

+ 𝑎
4

𝜕
2

𝜕𝑋2
H (𝐴 (𝑋, 𝑇)) = 0,

(21)

where

𝑎 = {∫
𝐿

−𝐿

[∫
+∞

0

𝜌
2
𝛽

𝑢2
𝜙
2

1
𝑑𝑧 −

𝑓𝜌
𝑠

𝑠𝑢
𝜙
1

𝜕𝜙
1

𝜕𝑧

𝑧=0
]𝑑𝑦}

−1

,

𝑎
1
= 𝑎∫
𝐿

−𝐿

[

[

∫
+∞

0

𝜌
𝑠
𝜙
2

1
𝜙
2

2𝑢2
(
𝛽

𝑢
)
𝑦

−
𝜌
𝑠
𝜙
4

1

2𝑢
(
1

𝑢
(
𝛽

𝑢
)
𝑦

)

𝑦

𝑑𝑧

−
𝑓𝜌
𝑠

𝑠𝑢
𝜙
1
(
𝜙
1

2𝑢

𝜕
2
𝜙
2

𝜕𝑦 𝜕𝑧
−

1

2𝑢

𝜕𝜙
2

𝜕𝑦

𝜕𝜙
1

𝜕𝑧
)

−
1

𝑢

𝜕𝜙
1

𝜕𝑦

𝜕𝜙
2

𝜕𝑧
+
𝜙
2

𝑢

𝜕
2
𝜙
1

𝜕𝑦 𝜕𝑧

𝑧=0

]

]

𝑑𝑦,

𝑎
2
= −𝑎∫

𝐿

−𝐿

∫
+∞

0

𝜌
𝑠
𝜙
2

1
𝑑𝑧 𝑑𝑦,

𝑎
3
= −𝑎∫

𝐿

−𝐿

𝜆
0
𝑓𝜌
𝑠
𝜙
1

𝑢

𝜕
2
𝜙
1

𝜕𝑦2

𝑧=0
𝑑𝑦,

𝑎
4
= 𝑎∫
+∞

0

𝜌
𝑠
𝜙
2

1



𝐿

−𝐿
𝑑𝑧,

H (𝐴 (𝑋, 𝑇)) ≡
𝑃

𝜋
∫
+∞

−∞

𝐴(𝑋

, 𝑇)

(𝑋 − 𝑋)
𝑑𝑋


(22)

is the well-known Hilbert transform.
Equation (21) is an integrodifferential equation including

dissipation effect and dispersion effect. In the absence of
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dissipation effect and 𝑎
4

= 0, (21) degenerates to the
MKdV equation; in the absence of dissipation effect 𝑎

3
𝐴 and

dispersion effect 𝐴
𝑋𝑋𝑋

, (21) degenerates to the generalized
BO equation. Because the term 𝑎

3
𝐴 expresses the dissipation

effect and has the same physical meaning with the term
𝜕
2
𝐴/𝜕𝑋

2 in Burgers equation, so we call (21) BO-B-MKdV
equation. As we know that the BO-B-MKdV equation is
first obtained here. This equation is greatly different from
the common equation to describe algebraic Rossby solitary
waves, such as the BO equation [10] and the BO-Burgers
equation; it includes the dissipation effect and dispersion
effect and has stronger nonlinearity.

3. Conservation Laws

Conservation laws are a common feature of mathematical
physics and describe physical properties that remain constant
throughout the various processes that occur in the physical
world. In physics, “to conserve” somethingmeans “to result in
no net loss of ” that particular component. It is very important
in the analysis of unsteady problems of wave propagation.
As is known, some famous soliton equations have some
conserved quantities. For example, it is also proved that the
BO equation has four conservation laws in [15]. One of the
goals of the present paper is to investigate the following
questions. Has the BO-B-MKdV equation also conservation
laws in the absence of dissipation effect? How to change these
conservation quantities in the presence of dissipation effect?

Here, we assume that when |𝑋| → ∞, 𝐴, 𝐴
𝑋
, 𝐴
𝑋𝑋

, and
𝐴
𝑋𝑋𝑋

→ 0. First, (21) can be expressed as follows:

𝜕𝐴

𝜕𝑇
= −

𝜕

𝜕𝑋
[𝛼𝐴 +

1

3
𝑎
1
𝐴
3
+ 𝑎
2

𝜕
2
𝐴

𝜕𝑋2
+ 𝑎
4

𝜕

𝜕𝑋
H (𝐴 (𝑋, 𝑇))]

− 𝑎
3
𝐴.

(23)

Integrating (23) with respect to 𝑋 over (−∞, +∞), then we
have

𝐶
1
= ∫
+∞

−∞

𝐴𝑑𝑋 = exp (−𝑎
3
𝑇)∫
+∞

−∞

𝐴 (𝑋, 0) 𝑑𝑋. (24)

From (24), we find that 𝐶
1
decreases exponentially with

the increasing of time 𝑇 and the coefficient 𝑎
3
, while 𝑎

3

relates to the dissipation coefficient 𝜆
0
. This shows that the

dissipation effect causes themass of solitarywaves to decrease
exponentially. When the dissipation effect is absent, the mass
of the solitary waves is conserved.

In the following, we multiply (21) by 𝐴(𝑋, 𝑇) and reorga-
nize the terms to obtain

1

2

𝜕𝐴
2

𝜕𝑇
= −

𝜕

𝜕𝑋
[
1

2
𝛼𝐴
2
+
1

4
𝑎
1
𝐴
4
+ 𝑎
2
𝐴
𝜕
2
𝐴

𝜕𝑋2
+
1

2
𝐴
2

𝑋

+ 𝑎
4
𝐴

𝜕

𝜕𝑋
H (𝐴 (𝑋, 𝑇))] − 𝐴

𝑋
H (𝐴

𝑋
)

− 𝑎
3
𝐴
2
.

(25)

Based on the property of the Hilbert operator H :

∫
+∞

−∞
𝑓(𝑋)H(𝑓(𝑋))𝑑𝑋 = 0, in which 𝑓(𝑋) is an arbitrary

function vanishing at infinity and carrying on the integration
with respect to𝑋 over (−∞, +∞) leads to

𝐶
2
= ∫
+∞

−∞

𝐴
2
𝑑𝑋 = exp (−2𝑎

3
𝑇)∫
+∞

−∞

𝐴
2
(𝑋, 0) 𝑑𝑋. (26)

Equation (26) shows that themomentumof the solitarywaves
is conserved without dissipation. Because of the dissipation
effect, the momentum of the solitary waves also decreases
exponentially with the increasing of time 𝑇 and the dissipa-
tive coefficient 𝜆

0
. The rate of decline of momentum is faster

than the rate of mass.
From (24) and (26), we have obtained the conserva-

tion of mass and momentum of the solitary waves, now
without regard to the dissipation effect, by adding (𝐴

2
−

(𝑎
4
/𝑎
1
)H(𝐴

𝑋
)) × (21) to (𝜕/𝜕𝑋) (21) × [𝐴

𝑋
+ (𝑎
4
/𝑎
1
)H(𝐴)]

and integrating it, by virtue of the relation

𝜕
2H (𝐴)

𝜕𝑋2
= H(

𝜕
2
𝐴

𝜕𝑋2
) , ∫

+∞

−∞

(𝑢HV + VH𝑢) 𝑑𝑋 = 0,

(27)

after tedious calculation, we obtain

𝑑𝐶
3

𝑑𝑇
=

𝑑

𝑑𝑇
∫
+∞

−∞

[
1

3
𝐴
3
+
1

2
𝐴
2

𝑋
+
𝑎
4

𝑎
1

𝜕𝐴

𝜕𝑋
H (𝐴)] 𝑑𝑋 = 0.

(28)

𝐶
3
is regarded as the energy of the solitary waves. So we can

conclude that the energy of the solitary waves is conserved
without dissipation.

Finally, let us define a quantity related to the phase of the
solitary waves:

𝐶
4
=

𝑑

𝑑𝑇
∫
+∞

−∞

𝑋𝐴𝑑𝑋. (29)

Then, employing the momentum of the solitary waves 𝐶
2
is

a time-invariant quantity and the above assumptions 𝐴, 𝐴
𝑋
,

𝐴
𝑋𝑋

, and𝐴
𝑋𝑋𝑋

vanish as |𝑋| → ∞ as well as 𝜆
0
= 0; we are

easy to deduce 𝑑𝐶
4
/𝑑𝑇 = 0. We construct the velocity of the

center of gravity for the ensemble of such waves 𝐶
4
= 𝐶
4
/𝐶
1

[15]. Then, because 𝐶
1
and 𝐶

4
are time-invariant quantities,

we are easy to obtain 𝑑𝐶
4
/𝑑𝑇 = 0; that is, the velocity of the

center of gravity is conserved without dissipation.

4. Conclusions

In this paper, a new governing equation is derived by the
multiple-scale method to describe the amplitude of algebraic
Rossby solitary waves in stratified fluids under the influ-
ence of dissipation. By analysis and calculation, we obtain
four conserved quantities as mass, momentum, energy, and
velocity of the center of gravity of algebraic Rossby solitary
waves without dissipation and draw the conclusion that the
dissipation effect causes themass, themomentum, the energy,
and the velocity of the center of gravity to vary. In fact, after
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the above four conservation laws are given, we can wonder
whether there exist other conservation laws and whether
there is no limit as KdV equation, which remain to be studied
in the future. In addition, we will also explore to study the
blocking phenomenon in the ocean and atmosphere by using
the mathematical model that we establish in this paper in the
future.
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