
Research Article
On the Stochastic Restricted 𝑟-𝑘 Class Estimator and Stochastic
Restricted 𝑟-𝑑 Class Estimator in Linear Regression Model

Jibo Wu1,2

1 School of Mathematics and Finances, Chongqing University of Arts and Sciences, Chongqing 402160, China
2Department of Mathematics and KLDAIP, Chongqing University of Arts and Sciences, Chongqing 402160, China

Correspondence should be addressed to Jibo Wu; linfen52@126.com

Received 26 November 2013; Accepted 13 December 2013; Published 2 January 2014

Academic Editor: Ram N. Mohapatra

Copyright © 2014 Jibo Wu. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The stochastic restricted 𝑟-𝑘 class estimator and stochastic restricted 𝑟-𝑑 class estimator are proposed for the vector of parameters
in a multiple linear regression model with stochastic linear restrictions. The mean squared error matrix of the proposed estimators
is derived and compared, and some properties of the proposed estimators are also discussed. Finally, a numerical example is given
to show some of the theoretical results.

1. Introduction

Theproblemofmulticollinearity or the ill-conditioneddesign
matrix in linear regression model is very well known in
statistics. In order to overcome this problem, different reme-
dies have been introduced. One of the most important
estimation methods is to consider biased estimators, such as
the principal component regression (PCR) estimator [1], the
ridge estimator (ORE) byHoerl andKennard [2], the 𝑟-𝑘 class
estimator [3], the Liu estimator (LE) by Liu [4], the 𝑟-𝑑 class
estimator [5], the 𝑟-𝑘-𝑑 class estimator [6], and the principal
component Liu-type estimator [7].

An alternative method to deal with multicollinearity
problem is to consider parameter estimation with some
restrictions on the unknown parameters, which may be exact
or stochastic restrictions [8]. When stochastic additional
restrictions on the parameter vector are supposed to hold,
Durbin [9], Theil and Goldberger [10], and Theil [11] pro-
posed the ordinary mixed estimator (OME). By grafting the
ordinary regression ridge estimator and LE into the mixed
estimation, Li and Yang [12] and Hubert and Wijekoon [13]
introduced a stochastic restricted ridge estimator (SRRE) and
stochastic restricted Liu estimator (SRLE), respectively, and
Liu et al. [14] proposed the weighted mixed almost unbiased
ridge estimator in linear regression model.

In this paper, in order to overcome multicollinearity,
we introduce a stochastic restricted 𝑟-𝑘 class estimator and
a stochastic restricted 𝑟-𝑑 class estimator for the vector of
parameters in a linear regression model when additional
stochastic linear restrictions are assumed to hold. Perfor-
mance of the proposed estimators with respect to the mean
squared error matrix (MSEM) criterion is discussed.

The rest of the paper is organized as follows. The model
specifications and the new estimators are introduced in
Section 2. Then, the superiority of the proposed estimators
is discussed in Section 3 and a numerical example is given to
illustrate the behavior of the estimators in Section 4. Finally,
some conclusion remarks are given in Section 5.

2. Model Specifications and the Estimators

Consider the linear regression model

𝑦 = 𝑋𝛽 + 𝜀, (1)

where 𝑦 is an 𝑛 × 1 vector of observation, 𝑋 is an 𝑛 × 𝑝
known design matrix of rank 𝑝, 𝛽 is a 𝑝 × 1 vector of
unknown parameters, and 𝜀 is an 𝑛× 1 vector of disturbances
with expectation 𝐸(𝜀) = 0 and variance-covariance matrix
Cov(𝜀) = 𝜎2𝐼

𝑛
.
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For the unrestricted model given by (1), the ORE pro-
posed by Hoerl and Kennard [2] and the LE presented by Liu
[4] are defined as follows:

̂
𝛽 (𝑘) = 𝑆

−1

𝑘
𝑋

𝑦 = 𝑅

𝑘
̂
𝛽OLS,

̂
𝛽 (𝑑) = (𝑆 + 𝐼)

−1
(𝑋

𝑦 + 𝑑

̂
𝛽OLS) = 𝐹𝑑

̂
𝛽OLS,

(2)

where 𝑘 > 0, 0 < 𝑑 < 1, 𝑆 = 𝑋𝑋, 𝑆
𝑘
= 𝑆 + 𝑘𝐼, 𝑅

𝑘
= 𝑆
−1

𝑘
𝑆,

𝐹
𝑑
= (𝑆 + 𝐼)

−1
(𝑆 + 𝑑𝐼), and ̂

𝛽OLS = 𝑆
−1
𝑋

𝑦 is the ordinary

least squares (OLS) estimator of 𝛽.
Now let us consider the spectral decomposition of the

matrix given as

𝑋

𝑋 = (𝑇

𝑟
, 𝑇
𝑝−𝑟
) (

Λ
𝑟

0

0 Λ
𝑝−𝑟

)(

𝑇


𝑟

𝑇


𝑝−𝑟

) , (3)

where Λ
𝑟
and Λ

𝑝−𝑟
are diagonal matrices such that that the

main diagonal elements of the 𝑟 × 𝑟 matrix Λ
𝑟
are the 𝑟

largest eigenvalues of𝑋𝑋, whileΛ
𝑝−𝑟

are the remaining𝑝−𝑟
eigenvalues. The 𝑝 × 𝑝 matrix 𝑇 = (𝑇

𝑟
, 𝑇
𝑝−𝑟
) is orthogonal

with 𝑇
𝑟
= (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑟
) consisting of its first 𝑟 columns and

𝑇
𝑝−𝑟

= (𝑡
𝑟+1
, 𝑡
𝑟+2
, . . . , 𝑡

𝑝
) consisting of the remaining 𝑝 − 𝑟

columns of the matrix 𝑇. The PCR estimator for 𝛽 can be
written as

̂
𝛽
𝑟
= 𝑇
𝑟
(𝑇


𝑟
𝑋

𝑋𝑇
𝑟
)

−1

𝑇


𝑟
𝑋

𝑦. (4)

The 𝑟-𝑘 class estimator proposed by Baye and Parker
[3] and the 𝑟-𝑑 class estimator proposed by Kaçıranlar and
Sakallıoğlu [5] are defined as

̂
𝛽
𝑟𝑘
(𝑟, 𝑘) = 𝑇

𝑟
(𝑇


𝑟
𝑋

𝑋𝑇
𝑟
+ 𝑘𝐼
𝑟
)

−1

𝑇


𝑟
𝑋

𝑦, 𝑘 > 0,

̂
𝛽
𝑟𝑑
(𝑟, 𝑑) = 𝑇

𝑟
(𝑇


𝑟
𝑋

𝑋𝑇
𝑟
+ 𝐼
𝑟
)

−1

× (𝑇


𝑟
𝑋

𝑦 + 𝑑𝑇



𝑟

̂
𝛽
𝑟
) , 0 < 𝑑 < 1.

(5)

Followed by Xu and Yang [15], the 𝑟-𝑘 class estimator and
the 𝑟-𝑑 class estimator could be rewritten as follows:

̂
𝛽
𝑟𝑘
(𝑟, 𝑘) = 𝑇

𝑟
(𝑇


𝑟
𝑋

𝑋𝑇
𝑟
+ 𝑘𝐼
𝑟
)

−1

𝑇


𝑟
𝑋

𝑦

= 𝑇
𝑟
𝑇


𝑟

̂
𝛽 (𝑘) = 𝑇

𝑟
𝑇


𝑟
𝑅
𝑘
̂
𝛽OLS,

(6)

̂
𝛽
𝑟𝑑
(𝑟, 𝑑) = 𝑇

𝑟
(𝑇


𝑟
𝑋

𝑋𝑇
𝑟
+ 𝐼
𝑟
)

−1

(𝑇


𝑟
𝑋

𝑦 + 𝑑𝑇



𝑟

̂
𝛽
𝑟
)

= 𝑇
𝑟
𝑇


𝑟

̂
𝛽 (𝑑) = 𝑇

𝑟
𝑇


𝑟
𝐹
𝑑
̂
𝛽OLS.

(7)

In addition to the model (1), let us be given some prior
information about 𝛽 in the form of a set of 𝑗 independent
stochastic linear restrictions as follows:

𝑟 = 𝑅𝛽 + 𝑒, 𝑒 ∼ (0, 𝜎
2
𝑊) , (8)

where 𝑅 is a 𝑗 × 𝑝 known matrix of rank 𝑗, 𝑒 is a 𝑗 × 1
vector of disturbances with mean 0 and dispersion matrix
𝜎
2
𝑊,𝑊 is supposed to be known and positive definite, and

the 𝑗×1 vector 𝑟 can be interpreted as a random variable with

expectation 𝐸(𝑟) = 𝑅𝛽. Therefore the restriction (9) does not
hold exactly but in the mean, and we suppose 𝑟 to be known,
that is, to be the realized value of the random vector, so that
all the expectations are conditional on 𝑟 [8]. In the following
discussions, we do not mention this separately. Furthermore,
it is also supposed that the random vector 𝜀 is stochastically
independent of 𝑒.

For the restricted model specified by (1) and (8), the
stochastic restricted ridge estimator (SRRE) proposed by Li
and Yang [12] and the stochastic restricted Liu estimator
(SRLE) proposed by Hubert and Wijekoon [13] are defined
as
̂
𝛽SRRE (𝑘) = 𝑅𝑘

̂
𝛽OME = 𝑅𝑘(𝑆 + 𝑅


𝑊
−1
𝑅)

−1

(𝑋

𝑦 + 𝑅

𝑊
−1
𝑟) ,

(9)

̂
𝛽SRLE (𝑑) = 𝐹𝑑

̂
𝛽OME = 𝐹𝑑(𝑆 + 𝑅


𝑊
−1
𝑅)

−1

(𝑋

𝑦 + 𝑅

𝑊
−1
𝑟) ,

(10)

where ̂𝛽OME = (𝑆 + 𝑅

𝑊
−1
𝑅)
−1
(𝑋

𝑦 + 𝑅


𝑊
−1
𝑟) is the well-

known ordinary mixed estimator (OME) of 𝛽.
We are now ready to propose a new stochastic restricted

𝑟-𝑘 class estimator which is defined by combing theOME and
𝑟-𝑘 class estimator and a new stochastic restricted 𝑟-𝑑 class
estimator which is defined by combing theOME and 𝑟-𝑑 class
estimator as follows:
̂
𝛽SR𝑟𝑘 (𝑟, 𝑘) = 𝑇𝑟𝑇



𝑟
𝑅
𝑘
̂
𝛽OME

= 𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
(𝑆 + 𝑅


𝑊
−1
𝑅)

−1

(𝑋

𝑦 + 𝑅

𝑊
−1
𝑟) ,

̂
𝛽SR𝑟𝑑 (𝑟, 𝑑) = 𝑇𝑟𝑇



𝑟
𝐹
𝑑
̂
𝛽OME

= 𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
(𝑆 + 𝑅


𝑊
−1
𝑅)

−1

(𝑋

𝑦 + 𝑅

𝑊
−1
𝑟) .

(11)

From (11), we can see that

(1) when 𝑅 = 0, we may conclude that ̂𝛽SR𝑟𝑘(𝑟, 𝑘) =

̂
𝛽
𝑟𝑘
(𝑟, 𝑘) and ̂𝛽SR𝑟𝑑(𝑟, 𝑑) = ̂

𝛽
𝑟𝑑
(𝑟, 𝑑);

(2) when 𝑟 = 𝑝, we may conclude that ̂𝛽SR𝑟𝑘(𝑟, 𝑘) =

̂
𝛽SRRE(𝑘) and ̂𝛽SR𝑟𝑑(𝑟, 𝑑) = ̂

𝛽SRLE(𝑑).

At the end of this section, we will list some lemmas which
are needed in the following proofs.

Lemma 1 (see [8]). Assume that square matrices 𝐴 and 𝐶 are
not singular and 𝐵 and𝐷 are matrices with proper orders; then
(𝐴 + 𝐵𝐶𝐷)

−1
= 𝐴
−1
− 𝐴
−1
𝐵(𝐶
−1
+ 𝐷𝐴
−1
𝐵)
−1
𝐷𝐴
−1.

Lemma 2 (see [16]). Let 𝐴 be a nonnegative definite matrix,
namely, 𝐴 ≥ 0 and let 𝛼 be some vector; then 𝐴 − 𝛼𝛼 ≥ 0 if
and only if 𝛼𝐴+𝛼 ≤ 1, 𝛼 ∈ R(𝐴).

Lemma 3 (see [17]). Let 𝑛 × 𝑛 matrices be 𝐴 > 0, 𝐵 ≥ 0, and
𝐴 − 𝐵 ≥ 0 ⇔ 𝜆

1
(𝐵𝐴
−1
) ≤ 1, where 𝜆

1
(𝐵𝐴
−1
) is the largest

eigenvalue of 𝐵𝐴−1.

In the next section,wewillmake comparison of the biased
estimators.
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3. Model Specifications and the Estimators

Themean squared error matrix (MSEM) of an estimator ̂𝛽 is
defined as

𝑀(
̂
𝛽) = 𝐸 (

̂
𝛽 − 𝛽) (

̂
𝛽 − 𝛽)



= Cov ( ̂𝛽) + Bias ( ̂𝛽)Bias( ̂𝛽)


,

(12)

where Cov( ̂𝛽) is the dispersion matrix and Bias( ̂𝛽) is the bias
vector. For the two given estimators ̂𝛽

1
, ̂𝛽
2
, the estimator ̂𝛽

2

is said to be superior to the estimator ̂𝛽
1
in the matrix MSE

criterion if and only if

Δ (
̂
𝛽
1
,
̂
𝛽
2
) = 𝑀(

̂
𝛽
1
) −𝑀(

̂
𝛽
2
) ≥ 0. (13)

Note that the MSEM criterion is always superior to the
scalar mean squared error criterion (MSE); we only consider
the MSEM comparisons among the estimators.

3.1. MSEM Comparisons of the 𝑟-𝑘 Class Estimator and
the Stochastic Restricted 𝑟-𝑘 (SRrk) Class Estimator. In this
subsection, we consider the MSEM comparison between the
𝑟-𝑘 class estimator and the stochastic restricted 𝑟-𝑘 (SRrk)
class estimator.

Firstly, we can compute the bias vector and the variance
of stochastic restricted 𝑟-𝑘 (SRrk) class estimator as follows:

Bias ( ̂𝛽SR𝑟𝑘 (𝑟, 𝑘)) = 𝐸 ( ̂𝛽SR𝑟𝑘 (𝑟, 𝑘)) − 𝛽

= 𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
𝛽 − 𝛽 = (𝑇

𝑟
𝑇


𝑟
𝑅
𝑘
− 𝐼) 𝛽,

Cov ( ̂𝛽SR𝑟𝑘 (𝑟, 𝑘)) = 𝜎
2
𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
𝐴𝑅
𝑘
𝑇
𝑟
𝑇


𝑟
,

(14)

where 𝐴 = (𝑆 + 𝑅𝑊−1𝑅)−1.
Therefore, theMSEM of the stochastic restricted 𝑟-𝑘 class

estimator is given by

MSEM (
̂
𝛽SR𝑟𝑘 (𝑟, 𝑘)) = 𝜎

2
𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
𝐴𝑅
𝑘
𝑇
𝑟
𝑇


𝑟

+ (𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
− 𝐼) 𝛽𝛽


(𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
− 𝐼)



.

(15)

From (6), we can compute the bias vector and the variance
of 𝑟-𝑘 class estimator as follows:

Bias ( ̂𝛽
𝑟𝑘
(𝑟, 𝑘)) = 𝐸 (

̂
𝛽
𝑟𝑘
(𝑟, 𝑘)) − 𝛽

= 𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
𝛽 − 𝛽 = (𝑇

𝑟
𝑇


𝑟
𝑅
𝑘
− 𝐼) 𝛽,

Cov ( ̂𝛽
𝑟𝑘
(𝑟, 𝑘)) = 𝜎

2
𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
𝑆
−1
𝑅
𝑘
𝑇
𝑟
𝑇


𝑟
.

(16)

Therefore, the MSEM of the 𝑟-𝑘 class estimator is given
by

MSEM (
̂
𝛽
𝑟𝑘
(𝑟, 𝑘)) = 𝜎

2
𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
𝑆
−1
𝑅
𝑘
𝑇
𝑟
𝑇


𝑟

+ (𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
− 𝐼) 𝛽𝛽


(𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
− 𝐼)



.

(17)

Now we consider the following difference of the MSEM:

Δ
1
= MSEM (

̂
𝛽
𝑟𝑘
(𝑟, 𝑘)) −MSEM (

̂
𝛽SR𝑟𝑘 (𝑟, 𝑘))

= 𝜎
2
𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
𝑆
−1
𝑅
𝑘
𝑇
𝑟
𝑇


𝑟

+ (𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
− 𝐼) 𝛽𝛽


(𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
− 𝐼)



− {𝜎
2
𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
𝐴𝑅
𝑘
𝑇
𝑟
𝑇


𝑟

+ (𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
− 𝐼) 𝛽𝛽


(𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
− 𝐼)



}

= 𝜎
2
𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
(𝑆
−1
− 𝐴)𝑅

𝑘
𝑇
𝑟
𝑇


𝑟
.

(18)

Theorem 4. The stochastic restricted 𝑟-𝑘 class estimator
̂
𝛽SRrk(𝑟, 𝑘) always dominates the 𝑟-𝑘 class estimator ̂𝛽

𝑟𝑘
(𝑟, 𝑘)

in the MSEM criterion.

Proof. By Lemma 1, we can obtain 𝐴 = (𝑆 + 𝑅

𝑊
−1
𝑅)
−1
=

𝑆
−1
− 𝑆
−1
𝑅

(𝑊 + 𝑅𝑆

−1
𝑅

)
−1
𝑅𝑆
−1; then we obtain 𝑆−1 − 𝐴 =

𝑆
−1
𝑅

(𝑊 + 𝑅𝑆

−1
𝑅

)
−1
𝑅𝑆
−1
≥ 0. Therefore, from (18), we may

conclude that Δ
1
≥ 0; that is to say, the stochastic restricted

𝑟-𝑘 class estimator ̂𝛽SR𝑟𝑘(𝑟, 𝑘) always dominates the 𝑟-𝑘 class
estimator ̂𝛽

𝑟𝑘
(𝑟, 𝑘) in the MSEM criterion.

3.2. MSEM Comparisons of the Stochastic Restricted Ridge
Estimator (SRRE) and the Stochastic Restricted 𝑟-𝑘 (SRrk)
Class Estimator. In this subsection, we consider the MSEM
comparison between the stochastic restricted ridge estimator
(SRRE) and the stochastic restricted 𝑟-𝑘 (SRrk) class estima-
tor.

Firstly, from (9), we can compute the bias vector and the
variance of stochastic restricted ridge estimator (SRRE) as
follows:

Bias ( ̂𝛽SRRE (𝑘)) = 𝐸 ( ̂𝛽SRRE (𝑘)) − 𝛽 = (𝑅𝑘 − 𝐼) 𝛽,

Cov ( ̂𝛽SRRE (𝑘)) = 𝜎
2
𝑅
𝑘
𝐴𝑅
𝑘
.

(19)

Then, we can obtain the MSEM of the SRRE as follows:

MSEM (
̂
𝛽SRRE (𝑘)) = 𝜎

2
𝑅
𝑘
𝐴𝑅
𝑘
+ (𝑅
𝑘
− 𝐼) 𝛽𝛽


(𝑅
𝑘
− 𝐼)


.

(20)

Now let us consider the following difference:

Δ
2
= MSEM (

̂
𝛽SRRE (𝑘)) −MSEM (

̂
𝛽SR𝑟𝑘 (𝑟, 𝑘))

= 𝜎
2
𝑅
𝑘
𝐴𝑅
𝑘
+ (𝑅
𝑘
− 𝐼) 𝛽𝛽


(𝑅
𝑘
− 𝐼)


− {𝜎
2
𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
𝐴𝑅
𝑘
𝑇
𝑟
𝑇


𝑟

+ (𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
− 𝐼) 𝛽𝛽


(𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
− 𝐼)



}

= 𝜎
2
𝐷 + 𝑏
1
𝑏


1
− 𝑏
2
𝑏


2
,

(21)

where 𝐷 = 𝑅
𝑘
𝐴𝑅
𝑘
− 𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
𝐴𝑅
𝑘
𝑇
𝑟
𝑇


𝑟
, 𝑏
1
= (𝑅
𝑘
− 𝐼)𝛽 and

𝑏
2
= (𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
− 𝐼)𝛽.
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Table 1: Total Research andDevelopment Expenditures as a percent
of Gross National Product by Country: 1972–1986.

Year 𝑌 𝑋
1

𝑋
2

𝑋
3

𝑋
4

1972 2.3 1.9 2.2 1.9 3.7
1975 2.2 1.8 2.2 2.0 3.8
1979 2.2 1.8 2.4 2.1 3.6
1980 2.3 1.8 2.4 2.2 3.8
1981 2.4 2.0 2.5 2.3 3.8
1982 2.5 2.1 2.6 2.4 3.7
1983 2.6 2.1 2.6 2.6 3.8
1984 2.6 2.2 2.6 2.6 4.0
1985 2.7 2.3 2.8 2.8 3.7
1986 2.7 2.3 2.7 2.8 3.8

Theorem 5. When 𝑘 > 0 and 𝜆
1
{(𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
𝐴𝑅
𝑘
𝑇
𝑟
𝑇


𝑟
)

(𝑅
𝑘
𝐴𝑅
𝑘
)
−1
} ≤ 1, then the stochastic restricted 𝑟-𝑘 class

estimator ̂
𝛽SRrk(𝑟, 𝑘) is superior to the stochastic restricted

ridge estimator ̂𝛽SRRE(𝑘) in the MSEM criterion if and only if
𝑏


2
(𝜎
2
𝐷 + 𝑏
1
𝑏


1
)
+
𝑏
2
≤ 1, 𝑏
2
∈ R (𝜎

2
𝐷 + 𝑏
1
𝑏


1
).

Proof. For 𝑘 > 0, it is easy to see that 𝑅
𝑘
= 𝑆
−1

𝑘
𝑆 > 0 and

𝐴 = (𝑆+𝑅

𝑊
−1
𝑅)
−1
> 0. Sowe can conclude that𝑅

𝑘
𝐴𝑅
𝑘
> 0.

On the other hand, 𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
𝐴𝑅
𝑘
𝑇
𝑟
𝑇


𝑟
can be rewritten as

𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
𝐴𝑅
𝑘
𝑇
𝑟
𝑇


𝑟
= 𝑇(

𝐼
𝑟
0

0 0
)𝑇

𝑅
𝑘
𝐴𝑅
𝑘
(

𝐼
𝑟
0

0 0
)𝑇

. (22)

From (22), it is easy to see that 𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
𝐴𝑅
𝑘
𝑇
𝑟
𝑇


𝑟
≥ 0.

Thus, by Lemma 2, we can obtain that 𝐷 ≥ 0 when
𝜆
1
{(𝑇
𝑟
𝑇


𝑟
𝑅
𝑘
𝐴𝑅
𝑘
𝑇
𝑟
𝑇


𝑟
)(𝑅
𝑘
𝐴𝑅
𝑘
)
−1
} ≤ 1. So from (21) and

applying Lemma 3, we have Δ
2
if and only if 𝑏

2
(𝜎
2
𝐷 +

𝑏
1
𝑏


1
)
+
𝑏
2
≤ 1, 𝑏
2
∈ R(𝜎2𝐷+𝑏

1
𝑏


1
).This theorem is proved.

3.3. MSEM Comparisons of the 𝑟-𝑑 Class Estimator and
the Stochastic Restricted 𝑟-𝑑 (SRrd) Class Estimator. In this
subsection, we consider the MSEM comparison between the
𝑟-𝑑 class estimator and the stochastic restricted 𝑟-𝑑 (SRrd)
class estimator.

Firstly, we can compute the bias vector and the variance
of stochastic restricted 𝑟-𝑑 (SRrd) class estimator as follows:

Bias ( ̂𝛽SR𝑟𝑑 (𝑟, 𝑑)) = 𝐸 ( ̂𝛽SR𝑟𝑑 (𝑟, 𝑑)) − 𝛽

= 𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
𝛽 − 𝛽 = (𝑇

𝑟
𝑇


𝑟
𝐹
𝑑
− 𝐼) 𝛽,

Cov ( ̂𝛽SR𝑟𝑑 (𝑟, 𝑑)) = 𝜎
2
𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
𝐴𝐹
𝑑
𝑇
𝑟
𝑇


𝑟
.

(23)

Therefore, we can obtain the MSEM of the stochastic
restricted 𝑟-𝑑 class estimator as follows:

MSEM (
̂
𝛽SR𝑟𝑑 (𝑟, 𝑑)) = 𝜎

2
𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
𝐴𝐹
𝑑
𝑇
𝑟
𝑇


𝑟

+ (𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
− 𝐼) 𝛽𝛽


(𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
− 𝐼)



.

(24)

From (6), we can compute the bias vector and the variance
of the 𝑟-𝑑 class estimator as follows:

Bias ( ̂𝛽
𝑟𝑑
(𝑟, 𝑑)) = 𝐸 (

̂
𝛽
𝑟𝑑
(𝑟, 𝑑)) − 𝛽

= 𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
𝛽 − 𝛽 = (𝑇

𝑟
𝑇


𝑟
𝐹
𝑑
− 𝐼) 𝛽,

Cov ( ̂𝛽
𝑟𝑑
(𝑟, 𝑑)) = 𝜎

2
𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
𝑆
−1
𝐹
𝑑
𝑇
𝑟
𝑇


𝑟
.

(25)

Then, we can obtain the MSEM of the 𝑟-𝑑 class estimator as
follows:

MSEM (
̂
𝛽
𝑟𝑑
(𝑟, 𝑑)) = 𝜎

2
𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
𝑆
−1
𝐹
𝑑
𝑇
𝑟
𝑇


𝑟

+ (𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
− 𝐼) 𝛽𝛽


(𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
− 𝐼)



.

(26)

Now we consider the following difference:

Δ
3
= MSEM (

̂
𝛽
𝑟𝑑
(𝑟, 𝑑)) −MSEM (

̂
𝛽SR𝑟𝑑 (𝑟, 𝑑))

= 𝜎
2
𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
𝑆
−1
𝐹
𝑑
𝑇
𝑟
𝑇


𝑟
+ (𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
− 𝐼) 𝛽𝛽


(𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
− 𝐼)



− {𝜎
2
𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
𝐴𝐹
𝑑
𝑇
𝑟
𝑇


𝑟

+ (𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
− 𝐼) 𝛽𝛽


(𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
− 𝐼)



}

= 𝜎
2
𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
(𝑆
−1
− 𝐴)𝐹

𝑑
𝑇
𝑟
𝑇


𝑟
.

(27)

Theorem 6. The stochastic restricted 𝑟-𝑑 class estimator
̂
𝛽SRrd(𝑟, 𝑑) always dominates the 𝑟-𝑑 class estimator ̂𝛽

𝑟𝑑
(𝑟, 𝑑)

in the MSEM criterion.

Proof. By Lemma 1, we can obtain 𝐴 = (𝑆 + 𝑅

𝑊
−1
𝑅)
−1
=

𝑆
−1
− 𝑆
−1
𝑅

(𝑊 + 𝑅𝑆

−1
𝑅

)
−1
𝑅𝑆
−1; then we obtain 𝑆−1 − 𝐴 =

𝑆
−1
𝑅

(𝑊 + 𝑅𝑆

−1
𝑅

)
−1
𝑅𝑆
−1
≥ 0. Therefore, from (27), we may

conclude that Δ
3
≥ 0; that is to say, the stochastic restricted

𝑟-𝑑 class estimator ̂𝛽SR𝑟𝑑(𝑟, 𝑑) always dominates the 𝑟-𝑑 class
estimator ̂𝛽

𝑟𝑑
(𝑟, 𝑑) in the MSEM criterion.

3.4. MSEM Comparisons of the Stochastic Restricted Liu
Estimator (SRLE) and the Stochastic Restricted 𝑟-𝑑 (SRrd)
Class Estimator. In this subsection, we consider the MSEM
comparison between the stochastic restricted Liu estimator
(SRLE) and the stochastic restricted 𝑟-𝑑 (SRrd) class estima-
tor.

Firstly, from (10), we can compute the bias vector and
the variance of stochastic restricted Liu estimator (SRLE) as
follows:

Bias ( ̂𝛽SRLE (𝑑)) = 𝐸 ( ̂𝛽SRLE (𝑑)) − 𝛽 = (𝐹𝑑 − 𝐼) 𝛽,

Cov ( ̂𝛽SRLE (𝑑)) = 𝜎
2
𝐹
𝑑
𝐴𝐹
𝑑
.

(28)

Therefore, we can obtain the MSEM of the stochastic
restricted Liu estimator (SRLE) as follows:

MSEM (
̂
𝛽SRLE (𝑑)) = 𝜎

2
𝐹
𝑑
𝐴𝐹
𝑑
+ (𝐹
𝑑
− 𝐼) 𝛽𝛽


(𝐹
𝑑
− 𝐼) .

(29)
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Table 2: Estimated MSE values of 𝑟𝑘, SRRE, and SR𝑟𝑘.

𝑘 = 0.000 𝑘 = 0.001 𝑘 = 0.003 𝑘 = 0.005 𝑘 = 0.007 𝑘 = 0.1 𝑘 = 0.2

SRRE 0.0445 0.0423 0.0391 0.0372 0.0363 0.1214 0.1653
𝑟𝑘 0.0621 0.0607 0.0588 0.0587 0.0574 0.1335 0.1726
SR𝑟𝑘 0.0331 0.0330 0.0334 0.0344 0.0358 0.1308 0.1716

Table 3: Estimated MSE values of 𝑟𝑑, SRLE, and SR𝑟𝑑.

𝑑 = 0.60 𝑑 = 0.70 𝑑 = 0.80 𝑑 = 0.85 𝑑 = 0.9 𝑑 = 0.95 𝑑 = 1.0

SRLE 0.0540 0.0435 0.0384 0.0379 0.0388 0.0409 0.0445
𝑟𝑑 0.0732 0.0633 0.0582 0.0574 0.0577 0.0593 0.0621
SR𝑟𝑑 0.0622 0.0486 0.0392 0.0362 0.0340 0.0331 0.0331

Now we consider the following difference:

Δ
4
= MSEM (

̂
𝛽SRLE (𝑑)) −MSEM (

̂
𝛽SR𝑟𝑑 (𝑟, 𝑑))

= 𝜎
2
𝐹
𝑑
𝐴𝐹
𝑑
+ (𝐹
𝑑
− 𝐼) 𝛽𝛽


(𝐹
𝑑
− 𝐼)

− {𝜎
2
𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
𝐴𝐹
𝑑
𝑇
𝑟
𝑇


𝑟

+ (𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
− 𝐼) 𝛽𝛽


(𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
− 𝐼)



}

= 𝜎
2
𝐻 + 𝑏

3
𝑏


3
− 𝑏
4
𝑏


4
,

(30)

where𝐻 = 𝐹
𝑑
𝐴𝐹
𝑑
− 𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
𝐴𝐹
𝑑
𝑇
𝑟
𝑇


𝑟
, 𝑏
3
= (𝐹
𝑑
− 𝐼)𝛽 and 𝑏

4
=

(𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
− 𝐼)𝛽.

Theorem 7. When 0 < 𝑑 < 1 and 𝜆
1
{(𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
𝐴𝐹
𝑑
𝑇
𝑟
𝑇


𝑟
)

(𝐹
𝑑
𝐴𝐹
𝑑
)
−1
} ≤ 1, then the stochastic restricted 𝑟-𝑑 class

estimator ̂
𝛽SRrd(𝑟, 𝑑) is superior to the stochastic restricted

Liu estimator ̂𝛽SRLE(𝑑) in the MSEM criterion if and only if
𝑏


4
(𝜎
2
𝐻 + 𝑏

3
𝑏


3
)
+
𝑏
4
≤ 1, 𝑏
4
∈ R(𝜎2𝐻 + 𝑏

3
𝑏


3
).

Proof. For 0 < 𝑑 < 1, it is easy to see that 𝐹
𝑑
= (𝑆 + 𝐼)

−1
(𝑆 +

𝑑𝐼) > 0 and 𝐴 = (𝑆 + 𝑅

𝑊
−1
𝑅)
−1
> 0. So we can conclude

that 𝐹
𝑑
𝐴𝐹
𝑑
> 0.

On the other hand, 𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
𝐴𝐹
𝑑
𝑇
𝑟
𝑇


𝑟
can be rewritten as

𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
𝐴𝐹
𝑑
𝑇
𝑟
𝑇


𝑟
= 𝑇(

𝐼
𝑟
0

0 0
)𝑇

𝐹
𝑑
𝐴𝐹
𝑑
(

𝐼
𝑟
0

0 0
)𝑇

. (31)

From (31), it is easy to see that 𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
𝐴𝐹
𝑑
𝑇
𝑟
𝑇


𝑟
≥ 0.

Thus, by Lemma 2, we can obtain that 𝐻 ≥ 0 when
𝜆
1
{(𝑇
𝑟
𝑇


𝑟
𝐹
𝑑
𝐴𝐹
𝑑
𝑇
𝑟
𝑇


𝑟
)(𝐹
𝑑
𝐴𝐹
𝑑
)
−1
} ≤ 1. So from (30) and

applying Lemma 3, we have Δ
4
if and only if 𝑏

4
(𝜎
2
𝐻 +

𝑏
3
𝑏


3
)
+
𝑏
4
≤ 1, 𝑏
4
∈ R(𝜎2𝐻+𝑏

3
𝑏


3
).This theorem is proved.

Remark. For practical use, we may replace the unknown
parameters in the theoremswith their appropriate estimators.

4. Numerical Example

In order to illustrate our theoretical results, we now consider
in this section the data set on Total National Research and

Development Expenditure as a Percent of Gross National
Product originally due to Gruber [18] and later considered
by Akdeniz and Erol [19]. In this paper, we use the same data,
which is presented in Table 1.

Firstly, we obtain the ordinary least squares estimator of
𝛽:

̂
𝛽OLS = 𝑆

−1
𝑋

𝑦 = (0.6455, 0.0896, 0.1436, 0.1526)

 (32)

with MSE( ̂𝛽OLS) = 0.0808 and �̂�
2

OLS = 0.0015. Consider the
following stochastic linear restrictions:

𝑟 = 𝑅𝛽 + 𝑒, 𝑅 = (1, −2, −2, −2) , 𝑒 ∼ (0, �̂�
2

OLS) . (33)

For the 𝑟-𝑘 class estimator (rk), the stochastic restricted
ridge estimator (SRRE), and the stochastic restricted 𝑟-𝑘 class
estimator (SRrk), their estimated mean squared error values
are given in Table 2. For the 𝑟-𝑑 class estimator (rd), the
stochastic restricted Liu estimator (SRLE) and the stochastic
restricted 𝑟-𝑑 class estimator (SRrd), their estimated mean
squared error values are given in Table 3. Their estimated
mean squared error values are got by replacing in the cor-
responding theoretical MSE expressions all unknown model
parameters by their OLS estimator.

From Table 2, we can see that the stochastic restricted 𝑟-𝑘
class estimator is always better than the 𝑟-𝑘 class estimator.
As fact, the stochastic restricted 𝑟-𝑘 class estimator has more
information about the unknown parameter, so this estimator
is better than the 𝑟-𝑘 class estimator. When 𝑘 is small, then
the stochastic restricted 𝑟-𝑘 class estimator is superior over
the stochastic restricted ridge estimator. However, when 𝑘
becomes big, then the stochastic restricted ridge estimator is
superior over the stochastic restricted 𝑟-𝑘 class estimator.

From Table 3, we can find that stochastic restricted 𝑟-𝑑
class estimator is always better than the 𝑟-𝑑 class estimator.
When 𝑑 is big, then the stochastic restricted 𝑟-𝑑 class
estimator is superior over the stochastic restricted Liu esti-
mator. However, when 𝑑 becomes smaller, then the stochas-
tic restricted Liu estimator is superior over the stochastic
restricted 𝑟-𝑑 class estimator.

5. Conclusion

In this paper, the stochastic restricted 𝑟-𝑘 class estimator
(SRrk) and stochastic restricted 𝑟-𝑑 class estimator (SRrd) are
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proposed and some properties of the two estimators have also
been discussed. In particular, we show that the proposed SRrk
and SRrd are proved to have smaller mean squared error than
the rk, SRRE, rd, and SRLE, respectively.
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