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We construct the conservation laws for a variable coefficient variant Boussinesq system, which is a third-order system of two partial
differential equations. This system does not have a Lagrangian and so we transform it to a system of fourth-order, which admits a
Lagrangian. Noether’s approach is then utilized to obtain the conservation laws. Lastly, the conservation laws are presented in terms
of the original variables. Infinite numbers of both local and nonlocal conserved quantities are derived for the underlying system.

1. Introduction

Thefirst type of variant Boussinesq equations [1, 2] is given by

𝑢
𝑡
+ V
𝑥
+ 𝑢𝑢
𝑥
= 0, (1a)

V
𝑡
+ (𝑢V)

𝑥
+ 𝑢
𝑥𝑥𝑥

= 0, (1b)

and was introduced as a model for water waves [3]. Wang in
his paper [4] obtained the solitary wave solutions of ((1a) and
(1b)) by using homogeneous balance method. The periodic
wave solutions of ((1a) and (1b)) were derived in [5] by using
ansatz method and the multisolitary wave solutions were
obtained in [6] using the homogeneous balance method. Xu
et al. [7] obtained traveling wave solutions of ((1a) and (1b)).
Conservation laws for ((1a) and (1b)) were derived in [8].

Conservation laws play a vital role in the solution process
of differential equations (DEs) because they describe physical
properties that remain constant throughout the various pro-
cesses that occur in the physical world. Thus it is very impor-
tant to compute conservation laws for differential equations.
One can see from the various published papers (see, e.g., [9–
11]) that conservation laws have been used in studying the
existence, uniqueness, and stability of solutions of nonlinear
partial differential equations. They have also been applied in
the development and use of numerical methods (see, e.g.,

[12, 13]). Most importantly, conserved vectors associated with
Lie point symmetries have been used to derive exact solutions
of some partial differential equations [14–16].

In this paper, we study the variable coefficient variant
Boussinesq system:

𝑢
𝑡
+ 𝛼 (𝑡) V

𝑥
+ 𝛽 (𝑡) 𝑢𝑢

𝑥
= 0, (2a)

V
𝑡
+ 𝛽 (𝑡) (𝑢V)

𝑥
+ 𝜓 (𝑡) 𝑢

𝑥𝑥𝑥
= 0, (2b)

which generalizes the system ((1a) and (1b)). In ((2a) and
(2b)), 𝛼(𝑡), 𝛽(𝑡), and 𝜓(𝑡) are arbitrary functions of 𝑡, with
𝜓(𝑡) describing the different diffusion strength, 𝑢 = 𝑢(𝑥, 𝑡)

representing the field of a horizontal velocity, and V = V(𝑥, 𝑡)
representing the amplitude describing the deviation from the
equilibrium position of the liquid.

The objective of the present study is to construct conser-
vation laws for the system ((2a) and (2b)).

The paper is organized as follows. In Section 2 we briefly
give the preliminaries concerning the Noether symmetry
approach. Section 3 obtains the conservation laws for the sys-
tem ((2a) and (2b)). Finally, in Section 4 concluding remarks
are presented.
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2. Preliminaries

Here we present some salient features of Noether operators
concerning the system of two partial differential equations.
These results will be utilized in Section 3. The reader is
referred to [8, 17–19] for further details.

Consider the vector field

𝑋 =𝜉
1
(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑡

+ 𝜉
2
(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑥

+ 𝜂
1
(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑈

+ 𝜂
2
(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑉

,

(3)

which has the second-order prolongation

𝑋
[2]

= 𝜉
1
(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑡

+ 𝜉
2
(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑦

+ 𝜂
1
(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑢

+ 𝜂
2
(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑉

+ 𝜁
1

𝑡

𝜕

𝜕𝑈
𝑡

+ 𝜁
2

𝑡

𝜕

𝜕𝑉
𝑡

+ 𝜁
1

𝑥

𝜕

𝜕𝑈
𝑥

+ 𝜁
2

𝑥

𝜕

𝜕𝑉
𝑥

+ 𝜁
1

𝑥𝑥

𝜕

𝜕𝑈
𝑥𝑥

+ ⋅ ⋅ ⋅ ,

(4)

where
𝜁
1

𝑡
= 𝐷
𝑡
(𝜂
1
) − 𝑈
𝑡
𝐷
𝑡
(𝜉
1
) − 𝑈
𝑥
𝐷
𝑡
(𝜉
2
) ,

𝜁
1

𝑥
= 𝐷
𝑥
(𝜂
1
) − 𝑈
𝑡
𝐷
𝑥
(𝜉
1
) − 𝑈
𝑥
𝐷
𝑥
(𝜉
2
) ,

𝜁
2

𝑡
= 𝐷
𝑡
(𝜂
2
) − 𝑉
𝑡
𝐷
𝑡
(𝜉
1
) − 𝑉
𝑥
𝐷
𝑡
(𝜉
2
) ,

𝜁
2

𝑥
= 𝐷
𝑥
(𝜂
2
) − 𝑉
𝑡
𝐷
𝑥
(𝜉
1
) − 𝑉
𝑥
𝐷
𝑥
(𝜉
2
) ,

𝜁
1

𝑥𝑥
= 𝐷
𝑥
(𝜁
1

𝑥
) − 𝑈
𝑡
𝐷
𝑥
(𝜉
1
) − 𝑈
𝑥
𝐷
𝑥
(𝜉
2
) ,

(5)

with

𝐷
𝑡
=

𝜕

𝜕𝑡

+ 𝑈
𝑡

𝜕

𝜕𝑈

+ 𝑉
𝑡

𝜕

𝜕𝑉

+ 𝑈
𝑡𝑡

𝜕

𝜕𝑈
𝑡

+ 𝑉
𝑡𝑡

𝜕

𝜕𝑉
𝑡

+ 𝑈
𝑥𝑡

𝜕

𝜕𝑈
𝑥

+ 𝑉
𝑥𝑡

𝜕

𝜕𝑉
𝑥

+ ⋅ ⋅ ⋅ ,

𝐷
𝑥
=

𝜕

𝜕𝑥

+ 𝑈
𝑥

𝜕

𝜕𝑈

+ 𝑉
𝑥

𝜕

𝜕𝑉

+ 𝑈
𝑥𝑥

𝜕

𝜕𝑈
𝑥

+ 𝑉
𝑥𝑥

𝜕

𝜕𝑉
𝑥

+ 𝑈
𝑥𝑡

𝜕

𝜕𝑈
𝑡

+ 𝑉
𝑥𝑡

𝜕

𝜕𝑉
𝑡

+ ⋅ ⋅ ⋅ .

(6)

The Euler-Lagrange operators are defined by
𝛿

𝛿𝑈

=

𝜕

𝜕𝑈

− 𝐷
𝑡

𝜕

𝜕𝑈
𝑡

− 𝐷
𝑥

𝜕

𝜕𝑈
𝑥

+ 𝐷
2

𝑡

𝜕

𝜕𝑈
𝑡𝑡

+ 𝐷
2

𝑥

𝜕

𝜕𝑈
𝑥𝑥

+ 𝐷
𝑥
𝐷
𝑡

𝜕

𝜕𝑈
𝑥𝑡

− ⋅ ⋅ ⋅ ,

𝛿

𝛿𝑉

=

𝜕

𝜕𝑉

− 𝐷
𝑡

𝜕

𝜕𝑉
𝑡

− 𝐷
𝑥

𝜕

𝜕𝑉
𝑥

+ 𝐷
2

𝑡

𝜕

𝜕𝑉
𝑡𝑡

+ 𝐷
2

𝑥

𝜕

𝜕𝑉
𝑥𝑥

+ 𝐷
𝑥
𝐷
𝑡

𝜕

𝜕𝑉
𝑥𝑡

− ⋅ ⋅ ⋅ .

(7)

Consider a system of two partial differential equations of two
independent variables, 𝑡 and 𝑥, namely,

𝐸
1
(𝑡, 𝑥, 𝑈, 𝑉, 𝑈

𝑥
, 𝑉
𝑥
, 𝑈
𝑡
, 𝑉
𝑡
, 𝑈
𝑡𝑡
, 𝑉
𝑡𝑡
, 𝑈
𝑥𝑥
, 𝑉
𝑥𝑥
, ⋅ ⋅ ⋅ ) = 0,

(8a)

𝐸
2
(𝑡, 𝑥, 𝑈, 𝑉, 𝑈

𝑥
, 𝑉
𝑥
, 𝑈
𝑡
, 𝑉
𝑡
, 𝑈
𝑡𝑡
, 𝑉
𝑡𝑡
, 𝑈
𝑥𝑥
, 𝑉
𝑥𝑥
, ⋅ ⋅ ⋅ ) = 0,

(8b)

which has a second-order Lagrangian 𝐿; that is, ((8a) and
(8b)) are equivalent to the Euler-Lagrange equations:

𝛿𝐿

𝛿𝑈

= 0,

𝛿𝐿

𝛿𝑉

= 0. (9)

Definition 1. The vector field 𝑋, of the form (3), is called a
Noether operator corresponding to a Lagrangian 𝐿 of ((8a)
and (8b)) if

𝑋
[2]

(𝐿) + {𝐷
𝑡
(𝜉
1
) + 𝐷
𝑥
(𝜉
2
)} 𝐿 = 𝐷

𝑡
(𝐵
1
) + 𝐷
𝑥
(𝐵
2
)

(10)

for some gauge functions 𝐵1(𝑡, 𝑥, 𝑈, 𝑉) and 𝐵2(𝑡, 𝑥, 𝑈, 𝑉).

We recall the following theorem.

Theorem 2 (Noether [17]). If 𝑋, as given in (3), is a Noether
point symmetry generator corresponding to a Lagrangian 𝐿 of
(8a) and (8b), then the vector 𝑇 = (𝑇

1
, 𝑇
2
) with components,

𝑇
1
= 𝜉
1
𝐿 +𝑊

1 𝛿𝐿

𝜕𝑈
𝑡

+𝑊
2 𝛿𝐿

𝜕𝑉
𝑡

− 𝐷
𝑡
(𝑊
1
)

𝛿𝐿

𝜕𝑈
𝑡𝑡

− 𝐷
𝑡
(𝑊
2
)

𝛿𝐿

𝜕𝑉
𝑡𝑡

− 𝐵
1
,

𝑇
2
= 𝜉
2
𝐿 +𝑊

1 𝛿𝐿

𝜕𝑈
𝑥

+𝑊
2 𝛿𝐿

𝜕𝑉
𝑥

− 𝐷
𝑥
(𝑊
1
)

𝛿𝐿

𝜕𝑈
𝑥𝑥

− 𝐷
𝑥
(𝑊
2
)

𝛿𝐿

𝜕𝑉
𝑥𝑥

− 𝐵
2
,

(11)

is a conserved vector for ((8a) and (8b)) associated with the
operator𝑋, where𝑊1 = 𝜂

1
−𝑈
𝑡
𝜉
1
−𝑈
𝑥
𝜉
2 and𝑊2 = 𝜂

2
−𝑉
𝑡
𝜉
1
−

𝑉
𝑥
𝜉
2 are the Lie characteristics functions.

3. Conservation Laws of System ((2a) and (2b))
Consider the variable coefficient variant Boussinesq system
((2a) and (2b)); namely,

𝑢
𝑡
+ 𝛼 (𝑡) V

𝑥
+ 𝛽 (𝑡) 𝑢𝑢

𝑥
= 0,

V
𝑡
+ 𝛽 (𝑡) 𝑢V

𝑥
+ 𝛽 (𝑡) V𝑢

𝑥
+ 𝜓 (𝑡) 𝑢

𝑥𝑥𝑥
= 0.

(12)

Here we note that the system ((2a) and (2b)) does not admit a
Lagrangian. Nevertheless, we can transform the system ((2a)
and (2b)) into a variational formby setting𝑢 = 𝑈

𝑥
and V = 𝑉

𝑥
.

Thus, the system ((2a) and (2b)), with this transformation,
becomes a fourth-order system, namely

𝑈
𝑡𝑥
+ 𝛼 (𝑡) 𝑉

𝑥𝑥
+ 𝛽 (𝑡) 𝑈

𝑥
𝑈
𝑥𝑥

= 0, (13a)

𝑉
𝑡𝑥
+ 𝛽 (𝑡) 𝑈

𝑥
𝑉
𝑥𝑥

+ 𝛽 (𝑡) 𝑉
𝑥
𝑈
𝑥𝑥

+ 𝜓 (𝑡) 𝑈
𝑥𝑥𝑥𝑥

= 0 (13b)
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and has a second-order Lagrangian given by

𝐿 =

1

2

[𝜓 (𝑡) 𝑈
2

𝑥𝑥
− 𝛼 (𝑡) 𝑉

2

𝑥
− 𝛽 (𝑡) 𝑈

2

𝑥
𝑉
𝑥
− 𝑉
𝑡
𝑈
𝑥
− 𝑈
𝑡
𝑉
𝑥
] .

(14)

Substituting the value of 𝐿 from (14) to (1) and splitting with
respect to the derivatives of 𝑢 and V yield the linear overde-
termined system of PDEs; namely

𝜉
1

𝑈
= 0, 𝜉

1

𝑉
= 0, 𝜉

2

𝑉
= 0, 𝜉

2

𝑈
= 0,

𝜉
1

𝑥
= 0, 𝜂

2

𝑈
= 0, 𝜂

1

𝑉
= 0, 𝜂

2

𝑥
= 0,

2𝛽 (𝑡) 𝜂
1

𝑈
+ 𝛽 (𝑡) 𝜉

1

𝑡
+ 𝛽 (𝑡) 𝜂

2

𝑉
+ 𝛽

(𝑡) 𝜉
1
− 2𝛽 (𝑡) 𝜉

2

𝑥
= 0,

𝜓

(𝑡) 𝜉
1
+ 2𝜓 (𝑡) 𝜂

1

𝑈
− 3𝜓 (𝑡) 𝜉

2

𝑥
+ 𝜓 (𝑡) 𝜉

1

𝑡
= 0, 𝜂

1

𝑈𝑈
= 0,

𝛼

(𝑡) 𝜉
1
+ 2𝛼 (𝑡) 𝜂

2

𝑉
− 𝛼 (𝑡) 𝜉

2

𝑥
+ 𝛼 (𝑡) 𝜉

1

𝑡
= 0,

2𝜂
1

𝑥𝑈
− 𝜉
2

𝑥𝑥
= 0,

𝜂
1

𝑥𝑥
= 0, 𝜂

2

𝑉
+ 𝜂
1

𝑈
= 0, 𝜉

2

𝑡
− 𝛽 (𝑡) 𝜂

1

𝑥
= 0,

−𝜂
2

𝑡
= 2𝐵
2

𝑈
, 𝐵

1

𝑈
= 0, −𝜂

1

𝑡
= 2𝐵
2

𝑉
,

−𝜂
1

𝑥
= 2𝐵
1

𝑉
, 𝐵

1

𝑡
+ 𝐵
2

𝑥
= 0.

(15)

After some tedious and lengthy calculations, the above system
yields

𝜉
1
= 𝑎 (𝑡) ,

𝜉
2
= 𝑐
1
𝑥 + 𝑐
2
∫𝛽 (𝑡) 𝑑𝑡 + 𝑐

3
,

𝜂
1
= ℎ (𝑡) 𝑈 + 𝑐

2
𝑥 + 𝑘 (𝑡) ,

𝜂
2
= −ℎ (𝑡) 𝑉 + 𝑚 (𝑡) ,

𝐵
1
= −

𝑐
2

2

𝑉 + 𝑧 (𝑡, 𝑥) ,

𝐵
2
= −

1

2

ℎ

(𝑡) 𝑈𝑉 −

1

2

𝑚

(𝑡) 𝑈 −

1

2

𝑘

(𝑡) 𝑉 + 𝑤 (𝑡, 𝑥) ,

𝑧
𝑡
+ 𝑤
𝑥
= 0,

(16)

𝛽 (𝑡) ℎ (𝑡) + 𝛽 (𝑡) 𝑎

(𝑡) + 𝛽


(𝑡) 𝑎 (𝑡) − 2𝑐

1
𝛽 (𝑡) = 0, (17)

2𝜓 (𝑡) ℎ (𝑡) + 𝜓

(𝑡) 𝑎 (𝑡) + 𝜓 (𝑡) 𝑎


(𝑡) − 3𝑐

1
𝜓 (𝑡) = 0, (18)

2𝛼 (𝑡) ℎ (𝑡) − 𝛼 (𝑡) 𝑎

(𝑡) − 𝛼


(𝑡) 𝑎 (𝑡) + 𝑐

1
𝛼 (𝑡) = 0. (19)

The analysis of (17), (18), and (19) prompts the following two
cases.

Case 1. 𝛼(𝑡), 𝛽(𝑡), and 𝜓(𝑡) are arbitrary but not of the form
contained in Case 2.

In this case we obtain four Noether point symmetries.
These are given below together with their corresponding
gauge functions:

𝑋
1
=

𝜕

𝜕𝑥

, 𝐵
1
= 𝑧, 𝐵

2
= 𝑤, 𝑧

𝑡
+ 𝑤
𝑥
= 0,

(20)

𝑋
2
= 𝑘 (𝑡)

𝜕

𝜕𝑈

, 𝐵
1
= 𝑧, 𝐵

2
= −

1

2

𝑘

(𝑡) 𝑉 + 𝑤,

𝑧
𝑡
+ 𝑤
𝑥
= 0,

(21)

𝑋
3
= 𝑚 (𝑡)

𝜕

𝜕𝑉

, 𝐵
1
= −

1

2

𝑚

(𝑡) 𝑈 + 𝑧, 𝐵

2
= 𝑤,

𝑧
𝑡
+ 𝑤
𝑥
= 0,

(22)

𝑋
4
= ∫𝛽 (𝑡) 𝑑𝑡

𝜕

𝜕𝑥

+ 𝑥

𝜕

𝜕𝑈

, 𝐵
1
= −

1

2

𝑉 + 𝑧,

𝐵
2
= 𝑤, 𝑧

𝑡
+ 𝑤
𝑥
= 0.

(23)

Invoking Theorem 2, the four nontrivial conserved vectors
associated with these four Noether point symmetries are,
respectively,

𝑇
1

1
= 𝑢V − 𝑧, (24)

𝑇
2

1
=

𝛼 (𝑡)

2

V2 −
𝜓 (𝑡)

2

𝑢
2

𝑥
+ 𝜓 (𝑡) 𝑢𝑢

𝑥𝑥
+ 𝛽 (𝑡) 𝑢

2V − 𝑤;

(25)

𝑇
1

2
= −𝑘 (𝑡) V + 𝐷

𝑥
(

𝑘 (𝑡)

2

∫ V𝑑𝑥) − 𝑧, (26)

𝑇
2

2
= − 𝛽 (𝑡) 𝑘 (𝑡) 𝑢V − 𝜓 (𝑡) 𝑘 (𝑡) 𝑢

𝑥𝑥
+ 𝑘

(𝑡) ∫ V𝑑𝑥

− 𝐷
𝑡
(

𝑘 (𝑡)

2

∫ V𝑑𝑥) − 𝑤;

(27)

𝑇
1

3
= −𝑚 (𝑡) 𝑢 + 𝐷

𝑥
(

𝑚 (𝑡)

2

∫ 𝑢𝑑𝑥) − 𝑧, (28)

𝑇
2

3
= − 𝛼 (𝑡)𝑚 (𝑡) V −

1

2

𝛽 (𝑡)𝑚 (𝑡) 𝑢
2
+ 𝑚

(𝑡) ∫ 𝑢𝑑𝑥

− 𝐷
𝑡
(

𝑚 (𝑡)

2

∫ 𝑢𝑑𝑥) − 𝑤;

(29)

𝑇
1

4
= 𝑢V∫𝛽 (𝑡) 𝑑𝑡 − 𝑥V + 𝐷

𝑥
(

𝑥

2

∫ V𝑑𝑥) − 𝑧, (30)

𝑇
2

4
=

𝛼 (𝑡)

2

V2 ∫𝛽 (𝑡) 𝑑𝑡 −

𝜓 (𝑡)

2

𝑢
2

𝑥
∫𝛽 (𝑡) 𝑑𝑡

− 𝛽 (𝑡) 𝑥𝑢V − 𝜓 (𝑡) 𝑥𝑢
𝑥𝑥

+ 𝛽 (𝑡) 𝑢
2V∫𝛽 (𝑡) 𝑑𝑡

+ 𝜓 (𝑡) 𝑢𝑢
𝑥𝑥

∫𝛽 (𝑡) 𝑑𝑡 + 𝜓 (𝑡) 𝑢
𝑥
− 𝐷
𝑡
(

𝑥

2

∫ V𝑑𝑥) − 𝑤.

(31)
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From the above we observe that the conserved vector (24)-
(25) is a local conserved vector. In (30)-(31) one can see that
the nonlocal part within the parenthesis gives the trivial part
of the conserved vector and therefore can be set to zero.Thus,
the conserved vector (30)-(31) is a local conserved vector. It is
also interesting to notice that the conserved vectors (26)-(27)
and (28)-(29) for 𝑘(𝑡) = 1, 𝑧(𝑥, 𝑡) = 0,𝑤(𝑥, 𝑡) = 0, and𝑚(𝑡) =

1 yield the local conserved vectors:

𝑇
1

5
= V, 𝑇

2

5
= 𝛽 (𝑡) 𝑢V + 𝜓 (𝑡) 𝑢

𝑥𝑥
;

𝑇
1

6
= 𝑢, 𝑇

2

6
= 𝛼 (𝑡) V +

1

2

𝛽 (𝑡) 𝑢
2
.

(32)

Remark 3. We note that for arbitrary values of 𝑘(𝑡) and 𝑚(𝑡)

infinitely many nonlocal conservation laws exist for the vari-
able coefficient variant Boussinesq system.

Case 2. 𝛼(𝑡) = 𝛼
1
, 𝛽(𝑡) = 𝛽

1
, and𝜓(𝑡) = 𝜓

1
, where 𝛼

1
, 𝛽
1
, and

𝜓
1
are constants.
This case gives us five Noether point symmetries, namely,

𝑋
1
,𝑋
2
, and𝑋

3
, given by the generators (20)–(22) and𝑋

4
,𝑋
5

given by

𝑋
4
=

𝜕

𝜕𝑡

, 𝐵
1
= 𝑧, 𝐵

2
= 𝑤, 𝑧

𝑡
+ 𝑤
𝑥
= 0,

𝑋
5
= 𝛽
1
𝑡

𝜕

𝜕𝑥

+ 𝑥

𝜕

𝜕𝑈

, 𝐵
1
= −

1

2

𝑉 + 𝑧,

𝐵
2
= 𝑤, 𝑧

𝑡
+ 𝑤
𝑥
= 0.

(33)

The application of Theorem 2, due to Noether, gives the five
nontrivial conserved vectors:

𝑇
1

1
= 𝑢V − 𝑧, (34)

𝑇
2

1
=

1

2

𝛼
1
V2 −

1

2

𝜓
1
𝑢
2

𝑥
+ 𝜓
1
𝑢𝑢
𝑥𝑥

+ 𝛽
1
𝑢
2V − 𝑤; (35)

𝑇
1

2
= −𝑘 (𝑡) V + 𝐷

𝑥
(

𝑘 (𝑡)

2

∫ V𝑑𝑥) − 𝑧, (36)

𝑇
2

2
= −𝛽

1
𝑘 (𝑡) 𝑢V − 𝜓

1
𝑘 (𝑡) 𝑢

𝑥𝑥
+ 𝑘

(𝑡) ∫ V𝑑𝑥

− 𝐷
𝑡
(

𝑘 (𝑡)

2

∫ V𝑑𝑥) − 𝑤;

(37)

𝑇
1

3
= −𝑚 (𝑡) 𝑢 + 𝐷

𝑥
(

𝑚 (𝑡)

2

∫ 𝑢𝑑𝑥) − 𝑧, (38)

𝑇
2

3
= −𝛼

1
𝑚(𝑡) V −

1

2

𝛽
1
𝑚(𝑡) 𝑢

2
+ 𝑚

(𝑡) ∫ 𝑢𝑑𝑥

− 𝐷
𝑡
(

𝑚 (𝑡)

2

∫ 𝑢𝑑𝑥) − 𝑤,

(39)

𝑇
1

4
=

1

2

𝜓
1
𝑢
2

𝑥
−

1

2

𝛼
1
V2 −

1

2

𝛽
1
𝑢
2V − 𝑧, (40)

𝑇
2

4
= −𝜓

1
𝑢
𝑡
𝑢
𝑥
+ (𝛼
1
V +

1

2

𝛽
1
𝑢
2
)∫ V
𝑡
𝑑𝑥

+ (𝛽
1
𝑢V + 𝜓

1
𝑢
𝑥𝑥
) ∫ 𝑢
𝑡
𝑑𝑥 + ∫𝑢

𝑡
𝑑𝑥∫ V

𝑡
𝑑𝑥 − 𝑤;

(41)

𝑇
1

5
= 𝛽
1
𝑢V𝑡 − 𝑥V + 𝐷

𝑥
(

𝑥

2

∫ V𝑑𝑥) − 𝑧, (42)

𝑇
2

5
=

1

2

𝛼
1
𝛽
1
V2𝑡 −

1

2

𝜓
1
𝛽
1
𝑢
2

𝑥
𝑡 − 𝛽
1
𝑥𝑢V − 𝜓

1
𝑥𝑢
𝑥𝑥

+ 𝛽
1
𝑢
2V𝑡

+ 𝜓
1
𝑢𝑢
𝑥𝑥
𝑡 + 𝜓
1
𝑢
𝑥
− 𝐷
𝑡
(

𝑥

2

∫ V𝑑𝑥) − 𝑤,

(43)

respectively, corresponding to the above five Noether point
symmetries. We note that in this case we obtain an extra
Noether operator and hence an extra conserved vector, which
is given by (40)-(41).

Remark 4. When 𝛼
1
= 𝛽
1
= 𝜓
1
= 1, we recover the results

obtained in [8].

4. Concluding Remarks

In this paper we studied the variable coefficient variant Bou-
ssinesq system ((2a) and (2b)). This system does not have a
Lagrangian. Therefore we converted it to a fourth-order sys-
tem ((13a) and (13b)) which has a Lagrangian. Thereafter, we
utilized the Noether’s theorem to construct the conservation
laws of system ((13a) and (13b)). Finally, by reverting back to
our original variables 𝑢 and V we constructed the conser-
vation laws for the third-order variable coefficient variant
Boussinesq system.The conservation laws obtained consisted
of infinite number of local and nonlocal conserved vectors.
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