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Some delta-nabla type maximum principles for second-order dynamic equations on time scales are proved. By using these
maximumprinciples, the uniqueness theorems of the solutions, the approximation theorems of the solutions, the existence theorem,
and construction techniques of the lower and upper solutions for second-order linear and nonlinear initial value problems and
boundary value problems on time scales are proved, the oscillation of second-order mixed delat-nabla differential equations is
discussed and, some maximum principles for second order mixed forward and backward difference dynamic system are proved.

1. Introduction

Maximum principles are a well known tool for studying
differential equations, which can be used to receive prior
information about solutions of differential inequalities and to
obtain lower and upper solutions of differential equations and
so on. Maximum principles include continuous maximum
principles and discrete maximum principles. It is well known
that there are many results and applications for continuous
and discrete maximum principles. For example, about these
theories and applications, we can refer to [1–15] and the
references therein. On the other hand, Hilger [16] established
the theory of time scales calculus to unify the continuous
and discrete calculus in 1990. After that, ordinary dynamic
equations and partial dynamic equations on time scales have
been extensively studied by some authors. For example, about
these, we can refer to [17–23] and the references therein.
However, the study on the maximum principles on time
scales is very little, about these, we can refer to Stehik and
Thompson’s recent works [24, 25].

Inspired by the above works, we will be devoted to
study delta-nabla type maximum principles for second-order
dynamic equations on one-dimensional time scales and the
applications of these maximum principles.

This paper is organized as follows. In Section 2, we
state and prove some basic notations and results on time
scales. In Section 3, we will first prove some delta-nabla type

maximum principles for second-order dynamic equations on
time scales; then, by using these maximum principles, we get
some maximum principles for second-order mixed forward
and backward difference dynamic system and discuss the
oscillation of second-order mixed delta-nabla differential
equations. In Section 4, we apply the maximum principles
proved in Section 3 to obtain uniqueness of the solutions,
the approximating techniques of the solutions, the existence
theorem, and construction techniques of the lower and upper
solutions for second-order linear initial value problems.
In Section 5, we apply the maximum principles proved in
Section 3 to obtain uniqueness of the solutions, the approx-
imating techniques of the solutions, the existence theorem,
and construction techniques of the lower and upper solutions
for second-order linear boundary value problems. Finally,
in Section 6, we extended the results of linear operator
established in Sections 4 and 5 to nonlinear operators.

2. Preliminaries

Definition 1 (see [22]). A time scale T is a nonempty closed
subset of the real numbers.Throughout this paper, T denotes
a time scale.

Definition 2 (see [22]). Let T be a time scale. For 𝑡 ∈ T

one defines the forward jump operator 𝜎 : T → T by

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 165429, 28 pages
http://dx.doi.org/10.1155/2014/165429

http://dx.doi.org/10.1155/2014/165429


2 Abstract and Applied Analysis

𝜎(𝑡) := inf{𝑠 ∈ T : 𝑠 > 𝑡}, while the backward jump operator
𝜌 : T → T is defined by 𝜌(𝑡) := sup{𝑠 ∈ T : 𝑠 < 𝑡}. If
𝜎(𝑡) > 𝑡, one says that 𝑡 is right-scattered, while if 𝜌(𝑡) < 𝑡,
we say that 𝑡 is left-scattered. Points that are right-scattered
and left-scattered at the same time are called isolated. Also,
if 𝑡 < sup T and 𝜎(𝑡) = 𝑡, then 𝑡 is called right-dense, and if
𝑡 > inf T and 𝜌(𝑡) = 𝑡, then 𝑡 is called left-dense. Finally, the
graininess function 𝜇(𝑡) : T → [0,∞) is defined by

𝜇 (𝑡) := 𝜎 (𝑡) − 𝑡. (1)

Definition 3 (see [22]). If T has a left-scattered maximum𝑀,
then one defines T𝑘 = T − {𝑀}; otherwise T𝑘 = T . Assume
𝑓 : T → 𝑅 is a function and let 𝑡 ∈ T𝑘. Then one defines
𝑓
Δ
(𝑡) to be the number (provided it exists) with the property

that, given any 𝜀 > 0, there is a neighborhood 𝑈 of 𝑡 (i.e.,
𝑈 = (𝑡 − 𝛿, 𝑡 + 𝛿) ∩ T for some 𝛿 > 0) such that

󵄨󵄨󵄨󵄨󵄨
[𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠)] − 𝑓

Δ
(𝑡) [𝜎 (𝑡) − 𝑠]

󵄨󵄨󵄨󵄨󵄨

≤ 𝜀 |𝜎 (𝑡) − 𝑠| ∀𝑠 ∈ 𝑈.

(2)

We call 𝑓Δ(𝑡) the delta derivative of 𝑓 at 𝑡.

Definition 4 (see [22]). If T has a right-scattered minimum
𝑚, then one defines T𝑘 = T − {𝑚}; otherwise T𝑘 = T . The
backwards graininess function 𝜐(𝑡) : T → [0,∞) is defined
by

] (𝑡) := 𝑡 − 𝜌 (𝑡) . (3)

Assume 𝑓 : T → 𝑅 is a function and let 𝑡 ∈ T𝑘. Then we
define 𝑓∇(𝑡) to be the number (provided it exists) with the
property that, given any 𝜀 > 0, there is a neighborhood𝑈 of 𝑡
(i.e., 𝑈 = (𝑡 − 𝛿, 𝑡 + 𝛿) ∩ T for some 𝛿 > 0) such that

󵄨󵄨󵄨󵄨󵄨
[𝑓 (𝜌 (𝑡)) − 𝑓 (𝑠)] − 𝑓

∇
(𝑡) [𝜌 (𝑡) − 𝑠]

󵄨󵄨󵄨󵄨󵄨

≤ 𝜀
󵄨󵄨󵄨󵄨
𝜌 (𝑡) − 𝑠

󵄨󵄨󵄨󵄨
∀𝑠 ∈ 𝑈.

(4)

We call 𝑓∇(𝑡) the nabla derivative of 𝑓 at 𝑡. Define the second
derivative by 𝑢Δ∇ = (𝑢

Δ
)
∇.

Definition 5 (see [21]). Let 𝑓 : T → R. Define and denote
𝑓 ∈ 𝐶rd(T ;R) as right-dense continuous if for each 𝑡 ∈ T

lim
𝑠→ 𝑡+

𝑓 (𝑠) = 𝑓 (𝑡) , if 𝑡 ∈ T is right-dense,

lim
𝑠→ 𝑡−

𝑓 (𝑠) exists and is finite if 𝑡 ∈ T is left-dense.
(5)

Definition 6 (see[21]). Let 𝑓 : T → R. Define and denote
𝑓 ∈ 𝐶ld(T ;R) as left-dense continuous if for each 𝑡 ∈ T

lim
s→𝑡−

𝑓 (𝑠) = 𝑓 (𝑡) , if 𝑡 ∈ T is left-dense,

lim
𝑠→ 𝑡+

𝑓 (𝑠) exists and is finite if 𝑡 ∈ T is right-dense.
(6)

Theorem 7 (see [21]). Assume that 𝑓 : 𝑓 : T → R and let
𝑡 ∈ T𝑘.

(i) If 𝑓 is Δ-differentiable at 𝑡 then 𝑓 is continuous at 𝑡.
(ii) If 𝑓 is continuous at 𝑡 and 𝑡 is right-scattered then 𝑓 is

Δ-differentiable at 𝑡 with

𝑓
Δ
(𝑡) =

𝑓 (𝜎 (𝑡)) − 𝑓 (𝑡)

𝜎 (𝑡) − 𝑡
. (7)

(iii) If 𝑡 is right-dense, then𝑓 is differentiable at 𝑡 if and only
if the limit

lim
𝑠→ 𝑡

𝑓 (𝑡) − 𝑓 (𝑠)

𝑡 − 𝑠

(8)

exists as a finite number. In this case

𝑓
Δ
(𝑡) = lim
𝑠→ 𝑡

𝑓 (𝑡) − 𝑓 (𝑠)

𝑡 − 𝑠
. (9)

(iv) If 𝑓 is Δ-differentiable at 𝑡, then

𝑓 (𝜎 (𝑡)) = 𝑓 (𝑡) + 𝜇 (𝑡) 𝑓
Δ
(𝑡) . (10)

Theorem 8 (see [22]). Assume that 𝑓 : 𝑓 : T → R and let
𝑡 ∈ T𝑘.

(i) If 𝑓 is nabla differentiable at 𝑡 then 𝑓 is continuous at
𝑡.

(ii) If 𝑓 is continuous at 𝑡 and 𝑡 is left-scattered then 𝑓 is
nabla differentiable at 𝑡 with

𝑓
∇
(𝑡) =

𝑓 (𝜌 (𝑡)) − 𝑓 (𝑡)

𝜌 (𝑡) − 𝑡
. (11)

(iii) If 𝑡 is left-dense, then𝑓 is nabla differentiable at 𝑡 if and
only if the limit

lim
𝑠→ 𝑡

𝑓 (𝑡) − 𝑓 (𝑠)

𝑡 − 𝑠

(12)

exists as a finite number. In this case

𝑓
∇
(𝑡) = lim
𝑠→ 𝑡

𝑓 (𝑡) − 𝑓 (𝑠)

𝑡 − 𝑠
. (13)

(iv) If 𝑓 is nabla differentiable at 𝑡, then

𝑓 (𝜌 (𝑡)) = 𝑓 (𝑡) − ] (𝑡) 𝑓∇ (𝑡) . (14)

Theorem 9 (see [22]). If 𝑓 : T → R is Δ-differentiable and
𝑓
Δ is right-dense continuous on T𝑘, then 𝑓 is ∇-differentiable,

and

𝑓
∇
(𝑡) = {

𝑓
Δ
(𝜌 (𝑡)) 𝑡 ∈ T𝐴

lim
𝑠→ 𝑡−

𝑓
Δ
(𝑠) 𝑡 ∈ 𝐴.

(15)

If 𝑔 : T → R is ∇-differentiable and 𝑔
∇ is left-dense

continuous on T𝑘, then 𝑓 is Δ-differentiable, and

𝑔
Δ
(𝑡) {

𝑔
∇
(𝜎 (𝑡)) 𝑡 ∈ T𝐵

lim
𝑠→ 𝑡+

𝑔
∇
(𝑠) 𝑡 ∈ 𝐵,

(16)
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where

𝐴 := {𝑡 ∈ T : 𝑡 𝑖𝑠 𝑙𝑒𝑓𝑡-𝑑𝑒𝑛𝑠𝑒 𝑎𝑛𝑑 𝑟𝑖𝑔ℎ𝑡-𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑} ,

T𝐴 := T \ 𝐴,

𝐵 := {𝑡 ∈ T : 𝑡 𝑖𝑠 𝑙𝑒𝑓𝑡-𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 𝑎𝑛𝑑 𝑟𝑖𝑔ℎ𝑡-𝑑𝑒𝑛𝑠𝑒} ,

T𝐵 := T \ 𝐵.

(17)

Corollary 10 (see [22]). If 𝑓 : T → R is Δ-differentiable and
𝑓
Δ is continuous on T𝑘, 𝑔 : T → R is ∇-differentiable, and 𝑔∇

is continuous on T𝑘, then

𝑓
∇
(𝑡) = 𝑓

Δ
(𝜌 (𝑡)) 𝑓𝑜𝑟 𝑡 ∈ T𝑘,

𝑔
Δ
(𝑡) = 𝑔

∇
(𝜎 (𝑡)) 𝑓𝑜𝑟 𝑡 ∈ T

𝑘
.

(18)

Theorem 11 (see [21]). Assume 𝑓, 𝑔 : T → R are
differentiable at 𝑡 ∈ T𝑘. Then

(𝑖) the sum 𝑓 + 𝑔 : T → R is differentiable at 𝑡 with

(𝑓 + 𝑔)
Δ
(𝑡) = 𝑓

Δ
(𝑡) + 𝑔

Δ
(𝑡) ; (19)

(𝑖𝑖) for any constant 𝛼, 𝛼𝑓: T → R is differentiable at 𝑡
with

(𝛼𝑓)
Δ
(𝑡) = 𝛼𝑓

Δ
(𝑡) ; (20)

(𝑖𝑖𝑖) the product 𝑓𝑔 : T → R is differentiable at 𝑡 with

(𝑓𝑔)
Δ
(𝑡) = 𝑓

Δ
(𝑡) 𝑔 (𝑡) + 𝑓 (𝜎 (𝑡)) 𝑔

Δ
(𝑡)

= 𝑓 (𝑡) 𝑔
Δ
(𝑡) + 𝑓

Δ
(𝑡) 𝑔 (𝜎 (𝑡)) ;

(21)

(𝑖V) if 𝑔(𝑡)𝑔(𝜎(𝑡)) ̸= 0, then 𝑓/𝑔 is differentiable at 𝑡 with

(
𝑓

𝑔
)

Δ

(𝑡) =
𝑓
Δ
(𝑡) 𝑔 (𝑡) − 𝑓 (𝑡) 𝑔

Δ
(𝑡)

𝑔 (𝑡) 𝑔 (𝜎 (𝑡))
. (22)

Theorem 12 (see [22]). Assume 𝑓, 𝑔 : T → R are nabla
differentiable at 𝑡 ∈ T𝑘. Then

(𝑖) the sum 𝑓 + 𝑔: T → R is nabla differentiable at 𝑡 with

(𝑓 + 𝑔)
∇
(𝑡) = 𝑓

∇
(𝑡) + 𝑔

∇
(𝑡) ; (23)

(𝑖𝑖) for any constant 𝛼, 𝛼𝑓: T → R is nabla differentiable
at 𝑡 with

(𝛼𝑓)
∇
(𝑡) = 𝛼𝑓

∇
(𝑡) ; (24)

(𝑖𝑖𝑖) the product 𝑓𝑔 : T → R is nabla differentiable at 𝑡
with

(𝑓𝑔)
∇
(𝑡) = 𝑓

∇
(𝑡) 𝑔 (𝑡) + 𝑓 (𝜌 (𝑡)) 𝑔

∇
(𝑡)

= 𝑓 (𝑡) 𝑔
∇
(𝑡) + 𝑓

∇
(𝑡) 𝑔 (𝜌 (𝑡)) ;

(25)

(𝑖V) if 𝑔(𝑡)𝑔(𝜌(𝑡)) ̸= 0, then 𝑓/𝑔 is nabla differentiable at 𝑡
with

(
𝑓

𝑔
)

∇

(𝑡) =
𝑓
∇
(𝑡) 𝑔 (𝑡) − 𝑓 (𝑡) 𝑔

∇
(𝑡)

𝑔 (𝑡) 𝑔 (𝜌 (𝑡))
. (26)

Theorem 13 (see [22]). If 𝑓, 𝑓Δ, and 𝑓∇ are continuous, then

(𝑖) [∫
𝑡

𝑎
𝑓(𝑡, 𝑠)Δ𝑠]

Δ
= ∫
𝑡

𝑎
𝑓
Δ
(𝑡, 𝑠)Δ𝑠 + 𝑓(𝜎(𝑡), 𝑡);

(𝑖𝑖) [∫
𝑡

𝑎
𝑓(𝑡, 𝑠)Δ𝑠]

∇
= ∫
𝑡

𝑎
𝑓
∇
(𝑡, 𝑠)Δ𝑠 + 𝑓(𝜌(𝑡), 𝜌(𝑡));

(𝑖𝑖𝑖) [∫
𝑡

𝑎
𝑓(𝑡, 𝑠)∇𝑠]

Δ
= ∫
𝑡

𝑎
𝑓
Δ
(𝑡, 𝑠)∇𝑠 + 𝑓(𝜎(𝑡), 𝜎(𝑡));

(𝑖V) [∫
𝑡

𝑎
𝑓(𝑡, 𝑠)∇𝑠]

∇
= ∫
𝑡

𝑎
𝑓
∇
(𝑡, 𝑠)∇𝑠 + 𝑓(𝜌(𝑡), 𝑡).

Definition 14 (see [21]). One says that a function 𝑝 : T → R

is regressive provided 1+𝜇(𝑡)𝑝(𝑡) ̸= 0 for all 𝑡 ∈ T𝑘 holds.The
set of all regressive and rd-continuous functions 𝑓 : T → R

will be denoted byR = R(T) = R(T ,R).

Definition 15 (see [21]). One defines 𝜉ℎ(𝑧) = (1/ℎ) log(1 +
𝑧ℎ)(𝜉ℎ : Cℎ → Zℎ), where ℎ > 0. If 𝑝 ∈ R, then one defines
the exponential function by

𝑒𝑝 (𝑡, 𝑠) = exp(∫
𝑡

𝑠

𝜉𝜇(𝜏) (𝑝 (𝜏)) Δ𝜏) for 𝑠, 𝑡 ∈ T . (27)

If 𝑝 ∈ R, then the first-order linear dynamic equation

𝑦
Δ
= 𝑝 (𝑡) 𝑦 (28)

is called regressive.

Theorem 16 (see [21]). Suppose (28) is regressive and fix 𝑡0 ∈
T . Then 𝑒𝑝(⋅, 𝑡0) is a solution of the initial value problem

𝑦
Δ
= 𝑝 (𝑡) 𝑦, 𝑦 (𝑡0) = 1 (29)

on T .

Theorem 17 (see [21]). Suppose (28) is regressive; then the only
solution of (29) is given by 𝑒𝑝(⋅, 𝑡0).

Theorem 18 (see [21]). If 𝑝 ∈ R, then

(𝑖) 𝑒0(𝑡, 𝑠) = 1 and 𝑒𝑝(𝑡, 𝑡) = 1;
(𝑖𝑖) 𝑒𝑝(𝜎(𝑡), 𝑠) = (1 + 𝜇(𝑡)𝑝(𝑡))𝑒𝑝(𝑡, 𝑠);
(𝑖𝑖𝑖) 𝑒𝑝(𝑡, 𝑠) = 1/𝑒𝑝(𝑠, 𝑡);

(𝑖V) (1/𝑒𝑝(⋅, 𝑠))
Δ
= −𝑝(𝑡)/(𝑒

𝜎

𝑝
(⋅, 𝑠).

According to the above theorems and definitions, we can
obtain the following corollary.

Corollary 19. Suppose (28) is regressive and fix 𝑥0 ∈ T𝑘
𝑘
, and

if one chooses 𝑝(𝑡) = 𝛼, where 𝛼 is a positive constant, then the
following equality holds on T𝑘

𝑘
.

(𝑎) 𝑒
∇

𝛼
(𝑥, 𝑥0) = 𝛼𝑒𝛼(𝜌(𝑥), 𝑥0) = 𝛼⋅(𝑒𝛼(𝑥, 𝑥0)/(1+𝛼](𝑥))).

(𝑏) 𝑒
Δ∇

𝛼
(𝑥, 𝑥0) = 𝛼

2
⋅ (𝑒𝛼(𝑥, 𝑥0)/(1 + 𝛼](𝑥))).

Proof. (a) Since

𝑒
∇

𝛼
(𝑥, 𝑥0) = 𝑒

Δ

𝛼
(𝜌 (𝑥) , 𝑥0) = 𝛼𝑒𝛼 (𝜌 (𝑥) , 𝑥0) ,

𝑒𝛼 (𝜌 (𝑥) , 𝑥0) = 𝑒𝛼 (𝑥, 𝑥0) − ] (𝑥) 𝑒∇
𝛼
(𝑥, 𝑥0) ,

(30)
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we have

𝑒𝛼 (𝜌 (𝑥) , 𝑥0) =
𝑒𝛼 (𝑥, 𝑥0)

1 + 𝛼] (𝑥)
, (31)

and thus

𝑒
∇

𝛼
(𝑥, 𝑥0) = 𝛼 ⋅

𝑒𝛼 (𝑥, 𝑥0)

1 + 𝛼] (𝑥)
. (32)

(b) Obviously,

𝑒
Δ∇

𝛼
(𝑥, 𝑥0) = (𝛼 ⋅ 𝑒𝛼 (𝑥, 𝑥0))

∇

= 𝛼
2
𝑒𝛼 (𝜌 (𝑥) , 𝑥0)

= 𝛼
2
⋅
𝑒𝛼 (𝑥, 𝑥0)

1 + 𝛼] (𝑥)
.

(33)

Definition 20 (see [22]). One defines ̂𝜉ℎ(𝑧) = −(1/ℎ) log(1 −
𝑧ℎ)(

̂
𝜉ℎ : Cℎ → Zℎ), where ℎ > 0. If 𝑝 ∈ R], then one defines

the exponential function by

𝑒𝑝 (𝑡, 𝑠) = exp(∫
𝑡

𝑠

̂
𝜉](𝜏) (𝑝 (𝜏)) ∇𝜏) for 𝑠, 𝑡 ∈ T . (34)

If 𝑝 ∈ R], then the first-order linear dynamic equation

𝑦
∇
= 𝑝 (𝑡) 𝑦 (35)

is called regressive.

Theorem 21 (see [22]). Suppose (35) is regressive and fix 𝑡0 ∈
T . Then 𝑒𝑝(⋅, 𝑡0) is a solution of the initial value problem

𝑦
∇
= 𝑝 (𝑡) 𝑦, 𝑦 (𝑡0) = 1 (36)

on T .

Theorem 22 (see [22]). Suppose (35) is regressive; then the
only solution of (36) is given by 𝑒𝑝(⋅, 𝑡0).

Theorem 23 (see [22]). If 𝑝 ∈ R], then

(i) 𝑒0(𝑡, 𝑠) = 1 and 𝑒𝑝(𝑡, 𝑡) = 1;
(ii) 𝑒𝑝(𝜌(𝑡), 𝑠) = (1 − ](𝑡)𝑝(𝑡))𝑒𝑝(𝑡, 𝑠);
(iii) 𝑒𝑝(𝑡, 𝑠) = 1/𝑒𝑝(𝑠, 𝑡);
(iv) 𝑒𝑝(𝑡, 𝑢)𝑒𝑝(𝑢, 𝑠) = 𝑒𝑝(𝑡, 𝑠);

(v) (1/𝑒𝑝(⋅, 𝑠))
∇
= −𝑝(𝑡)/𝑒

𝜌

𝑝(⋅, 𝑠).

Definition 24 (see [22]). One defines the set R+] of all
positively ]-regressive elements ofR] by

R
+

] = {𝑝 ∈ R] : (1 − ] (𝑡) 𝑝 (𝑡)) > 0 ∀𝑡 ∈ T} . (37)

Corollary 25 (see [22]). If 𝑝 ∈ R+] and 𝑡0 ∈ T , then
𝑒𝑝(𝑡, 𝑡0) > 0.

According to the above theorems and definitions, we can
obtain the following corollary.

Corollary 26. Suppose (35) is regressive and fix 𝑥0 ∈ T𝑘
𝑘
, and

if one chooses 𝑝(𝑡) = 𝛼, where 𝛼 is a negative constant, then the
following equality holds on T𝑘

𝑘
.

(𝑎) 𝑒
Δ

𝛼
(𝑥, 𝑥0) = 𝛼𝑒𝛼(𝜎(𝑥), 𝑥0) = 𝛼(𝑒𝛼(𝑥, 𝑥0)/(1 − 𝛼𝜇(𝑥)).

(𝑏) 𝑒
∇

𝛼
(𝑥0, 𝑥) = −𝛼𝑒𝛼(𝑥0, 𝜌(𝑥)) = −𝛼(𝑒𝛼(𝑥0, 𝑥)/(1 −

𝛼](𝑥))).
(𝑐) 𝑒
Δ

𝛼
(𝑥0, 𝑥) = −𝛼 ⋅ 𝑒𝛼(𝑥0, 𝑥).

(𝑑) 𝑒
Δ∇

𝛼
(𝑥0, 𝑥) = 𝛼

2
𝑒𝛼(𝑥0, 𝜌(𝑥)) = 𝛼

2
(𝑒𝛼(𝑥0, 𝑥)/(1 −

𝛼](𝑥))).

Proof. (a) It is easy to see that

𝑒
Δ

𝛼
(𝑥, 𝑥0) = 𝑒

∇

𝛼
(𝜎 (𝑥) , 𝑥0) = 𝛼𝑒𝛼 (𝜎 (𝑥) , 𝑥0) , (38)

and we have

𝑒𝛼 (𝜎 (𝑥) , 𝑥0) = 𝑒𝛼 (𝑥, 𝑥0) + 𝜇 (𝑥) 𝑒
Δ

𝛼
(𝑥, 𝑥0)

= 𝑒𝛼 (𝑥, 𝑥0) + 𝜇 (𝑥) 𝛼𝑒𝛼 (𝜎 (𝑥) , 𝑥0) ,

(39)

which can obtain

𝑒𝛼 (𝜎 (𝑥) , 𝑥0) =
𝑒𝛼 (𝑥, 𝑥0)

1 − 𝛼𝜇 (𝑥)
, (40)

and thus

𝑒
Δ

𝛼
(𝑥, 𝑥0) = 𝛼𝑒𝛼 (𝜎 (𝑥) , 𝑥0) = 𝛼

𝑒𝛼 (𝑥, 𝑥0)

1 − 𝛼𝜇 (𝑥)
. (41)

(b) Obviously,

𝑒
∇

𝛼
(𝑥0, 𝑥) = (

1

𝑒𝛼 (𝑥, 𝑥0)
)

∇

=
−𝛼

𝑒𝛼 (𝜌 (𝑥) , 𝑥0)

= −𝛼𝑒𝛼 (𝑥0, 𝜌 (𝑥)) ,

(42)

and we have

𝑒𝛼 (𝑥0, 𝜌 (𝑥)) = 𝑒𝛼 (𝑥0, 𝑥) − ] (𝑥) 𝑒∇
𝛼
(𝑥0, 𝑥)

= 𝑒𝛼 (𝑥0, 𝑥) − ] (𝑥) [−𝛼𝑒𝛼 (𝑥0, 𝜌 (𝑥))] ,
(43)

which can obtain

𝑒𝛼 (𝑥0, 𝜌 (𝑥)) =
𝑒𝛼 (𝑥0, 𝑥)

1 − 𝛼] (𝑥)
, (44)

and therefore, we get

𝑒
∇

𝛼
(𝑥0, 𝑥) = −𝛼

𝑒𝛼 (𝑥0, 𝑥)

1 − 𝛼] (𝑥)
. (45)

(c) We have

𝑒
Δ

𝛼
(𝑥0, 𝑥) = (

1

𝑒𝛼 (𝑥, 𝑥0)
)

Δ

=
−𝑒
Δ

𝛼
(𝑥, 𝑥0)

𝑒𝛼 (𝜎 (𝑥) , 𝑥0) 𝑒𝛼 (𝑥, 𝑥0)
,

(46)
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and then

𝑒
Δ

𝛼
(𝑥0, 𝑥) =

−𝛼𝑒𝛼 (𝜎 (𝑥) , 𝑥0)

𝑒𝛼 (𝜎 (𝑥) , 𝑥0) 𝑒𝛼 (𝑥, 𝑥0)
= −𝛼𝑒𝛼 (𝑥0, 𝑥) . (47)

(d) Obviously,

𝑒
Δ∇

𝛼
(𝑥0, 𝑥) = (𝑒

Δ

𝛼
(𝑥0, 𝑥))

∇

= (−𝛼𝑒𝛼 (𝑥0, 𝑥))
∇

= 𝛼
2
𝑒𝛼 (𝑥0, 𝜌 (𝑥)) .

(48)

And hence, we get

𝑒
Δ∇

𝛼
(𝑥0, 𝑥) = 𝛼

2
𝑒𝛼 (𝑥0, 𝜌 (𝑥)) = 𝛼

2 𝑒𝛼 (𝑥0, 𝑥)

1 − 𝛼] (𝑥)
. (49)

Theorem 27 (see [22]). Let 𝑓 be a continuous function on
[𝑎, 𝑏]T , that is, delta differentiable on [𝑎, 𝑏)T . Then 𝑓 is
increasing, decreasing, nondecreasing, and nonincreasing on
[𝑎, 𝑏)T if 𝑓Δ > 0, 𝑓

Δ
< 0, 𝑓

Δ
≥ 0, 𝑓

Δ
≤ 0 for all 𝑡 ∈ [𝑎, 𝑏)T ,

respectively.

Definition 28. One says that a function 𝑓 : T → R is left-
increasing at 𝑡0 ∈ T𝑘 provided

(i) if 𝑡0 is left-scattered, then 𝑓(𝑡0) > 𝑓(𝜌(𝑡0));
(ii) if 𝑡0 is left-dense, then there is a neighbourhood 𝑈 of

𝑡0 such that 𝑓(𝑡0) > 𝑓(𝑡) for all 𝑡 ∈ 𝑈 with 𝑡0 > 𝑡.

Similarly, we say that 𝑓 is left-decreasing if in the above
(i) 𝑓(𝑡0) < 𝑓(𝜌(𝑡0)) and in (ii) 𝑓(𝑡0) < 𝑓(𝑡).

Theorem 29. Suppose 𝑓 : T → R is nabla differentiable at
𝑡0 ∈ T𝑘. If 𝑓∇(𝑡0) > 0, then 𝑓 is left-increasing. If 𝑓∇(𝑡0) < 0,
then 𝑓 is left-decreasing.

Proof. We only show 𝑓
∇
(𝑡0) > 0 as the second statement can

be shown similarly. If 𝑡0 is left-scattered, then

𝑓
∇
(𝑡0) =

𝑓 (𝜌 (𝑡0)) − 𝑓 (𝑡0)

𝜌 (𝑡0) − 𝑡0

(50)

and hence 𝑓(𝜌(𝑡0)) < 𝑓(𝑡0); that is, 𝑓 is left-increasing. Let
now 𝑡0 be left-dense. Then

𝑓
∇
(𝑡0) = lim

𝑡→ 𝑡
0

𝑓 (𝑡0) − 𝑓 (𝑡)

𝑡0 − 𝑡
(51)

and therefore for 𝜀 = 𝑓
∇
(𝑡0) there is a neighbourhood𝑈 of 𝑡0

such that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑡0) − 𝑓 (𝑡)

𝑡0 − 𝑡
− 𝑓
∇
(𝑡0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜀 (52)

for all 𝑡 ∈ 𝑈 with 𝑡 ̸= 𝑡0. Hence

0 <
𝑓 (𝑡0) − 𝑓 (𝑡)

𝑡0 − 𝑡
< 2𝑓
∇
(𝑡0) . (53)

Therefore, 𝑓(𝑡) < 𝑓(𝑡0) for all 𝑡 ∈ 𝑈 with 𝑡 < 𝑡0. Combining
what we have proved, we can get that if 𝑓∇(𝑡0) > 0, then 𝑓 is
left-increasing.

Definition 30. We say that a function 𝑓 : T → R assumes its
local left-minimum at 𝑡0 ∈ T𝑘 provided

(i) if 𝑡0 is left-scattered, then 𝑓(𝑡0) ≤ 𝑓(𝜌(𝑡0));
(ii) if 𝑡0 is left-dense, then there is a neighbourhood 𝑈 of

𝑡0 such that 𝑓(𝑡0) ≤ 𝑓(𝑡) for all 𝑡 ∈ 𝑈 with 𝑡0 > 𝑡.

Similarly, we say that 𝑓 assumes its local left-maximum if
in the above (i) 𝑓(𝑡0) ≥ 𝑓(𝜌(𝑡0)) and in (ii) 𝑓(𝑡0) ≥ 𝑓(𝑡).

Theorem 31. Suppose 𝑓 : T → R is nabla differentiable at
𝑡0 ∈ T𝑘. If 𝑓 attains its local left-minimum at 𝑡0, then 𝑓∇(𝑡0) ≤
0. If 𝑓 attains its local left-maximum at 𝑡0, then 𝑓∇(𝑡0) ≥ 0.

Proof. Suppose that 𝑓 attains its local left-minimum at 𝑡0.
To show that 𝑓∇(𝑡0) ≤ 0, we assume the opposite, that is,
𝑓
∇
(𝑡0) > 0.Then𝑓 is left-increasing byTheorem 29, contrary

to the assumption that 𝑓 attains its local left-minimum at 𝑡0.
Thus, we must have 𝑓∇(𝑡0) ≤ 0. The second statement can be
shown similarly.

Theorem 32. Let 𝑓 be a continuous function on [𝑎, 𝑏]T , that
is, nabla differentiable on (𝑎, 𝑏]T (the differentiability at 𝑏 is
understood as left-sided) and satisfies 𝑓(𝑎) = 𝑓(𝑏). Then, there
exists 𝜉, 𝜏 ∈ (𝑎, 𝑏]T such that

𝑓
∇
(𝜉) ≤ 0 ≤ 𝑓

∇
(𝜏) . (54)

Proof. Since 𝑓 is continuous function on [𝑎, 𝑏]T ,𝑓 attains
its minimum 𝑚 and its maximum 𝑀. Therefore, here exists
𝜉, 𝜏 ∈ [𝑎, 𝑏]T such that 𝑚 = 𝑓(𝜉),𝑀 = 𝑓(𝜏). Since 𝑓(𝑎) =
𝑓(𝑏), we may assume that 𝜉, 𝜏 ∈ (𝑎, 𝑏]T . Clearly 𝑓 attains its
local left-minimumat 𝜉 and its local left-maximumat 𝜏.Then,
byTheorem 31 we have 𝑓∇(𝜉) ≤ 0 and 𝑓∇(𝜏) ≥ 0.

Theorem33. Let𝑓 be a continuous function on [𝑎, 𝑏]T , that is,
nabla differentiable on (𝑎, 𝑏]T .Then𝑓 is increasing, decreasing,
nondecreasing, and nonincreasing on (𝑎, 𝑏]T if𝑓∇ > 0,𝑓∇ < 0,
𝑓
∇
≥ 0, 𝑓∇ ≤ 0 for all 𝑡 ∈ (𝑎, 𝑏]T , respectively.

Proof. Suppose the function 𝜑(𝑡) defined on [𝑎, 𝑐]T ∈ [𝑎, 𝑏]T

by

𝜑 (𝑡) = 𝑓 (𝑡) − 𝑓 (𝑎) −
𝑓 (𝑐) − 𝑓 (𝑎)

𝑐 − 𝑎
(𝑡 − 𝑎) . (55)

Clearly 𝜑(𝑡) is continuous on [𝑎, 𝑐]T and nabla differentiable
on (𝑎, 𝑐]T . Also 𝜑(𝑎) = 𝜑(𝑐) = 0, and so

𝜑
∇
(𝜉) ≤ 0 ≤ 𝜑

∇
(𝜏) (56)

for some 𝜉, 𝜏 ∈ (𝑎, 𝑐]T by Theorem 32. Hence, taking into
account that

𝜑
∇
(𝑡) = 𝑓

∇
(𝑡) −

𝑓 (𝑐) − 𝑓 (𝑎)

𝑐 − 𝑎
, (57)
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then we have

𝑓
∇
(𝜉) ≤

𝑓 (𝑐) − 𝑓 (𝑎)

𝑐 − 𝑎
≤ 𝑓
∇
(𝜏) (58)

for some 𝜉, 𝜏 ∈ (𝑎, 𝑏]T .
If 𝑓∇ > 0, 𝑓∇ < 0, 𝑓∇ ≥ 0, 𝑓∇ ≤ 0 for all 𝑡 ∈ (𝑎, 𝑐]T ,

then 𝑓(𝑐) − 𝑓(𝑎) > 0, 𝑓(𝑐) − 𝑓(𝑎) < 0, 𝑓(𝑐) − 𝑓(𝑎) ≥ 0,
𝑓(𝑐) − 𝑓(𝑎) ≤ 0, respectively. Considering the arbitrary of 𝑐,
we arrive at the statement of the theorem.

3. Delta-Nabla Type Maximum Principles

In this paper, we denote Λ := [𝑎, 𝑏]T as an interval on time
scales. We study those functions defined on Λ which belong
to D(Λ), where D(Λ) is the set of all functions 𝑢 : Λ →

R, such that 𝑢Δ is continuous on [𝑎, 𝑏)T , 𝑢
∇ is continuous on

(𝑎, 𝑏]T , and 𝑢
Δ∇ exists in (𝑎, 𝑏)T .

First we give a necessary condition that 𝑢(𝑥) ∈ D(Λ)

attains its maximum at some point 𝑥0 ∈ (𝑎, 𝑏)T .

Lemma 34. If 𝑢(𝑥) ∈ D(Λ) attains a maximum at a point
𝑥0 ∈ (𝑎, 𝑏)T , then

𝑢
Δ∇
(𝑥0) ≤ 0,

𝑢
∇
(𝑥0) ≥ 0,

𝑢
Δ
(𝑥0) ≤ 0.

(59)

The strict inequality in the last two inequalities can occur only
at left-scattered points.

Proof. Let us divide our proof into three parts.
(i) If 𝑥0 is left-scattered, then the maximality of 𝑢 at 𝑥0

implies that 𝑢∇(𝑥0) ≥ 0 and 𝑢Δ(𝑥0) ≤ 0 and consequently

𝑢
Δ∇
(𝑥0) =

𝑢
Δ
(𝑥0) − 𝑢

Δ
(𝜌 (𝑥0))

] (𝑥0)

=
𝑢
Δ
(𝑥0) − 𝑢

∇
(𝑥0)

] (𝑥0)
≤ 0.

(60)

(ii) If 𝑥0 is left-dense and right-scattered, in this case, we
have 𝑢Δ(𝑥0) ≤ 0. If there is no positive number sequence {ℎ𝑛}
such that lim𝑛→∞ℎ𝑛 = 0 and 𝑢

Δ
(𝑥0 − ℎ𝑛) ≥ 0, then there

exists a 𝛿 > 0 such that 𝑢Δ(𝑥) < 0 for each 𝑥 ∈ [𝑥0 − 𝛿, 𝑥0)T ;
by Theorem 27, a contraction with 𝑢 attains its maximum at
interior point 𝑥0 of (𝑎, 𝑏)T . Thus, there exists {ℎ𝑛} such that
lim𝑛→∞ℎ𝑛 = 0 and 𝑢Δ(𝑥0 − ℎ𝑛) ≥ 0. This yields

𝑢
Δ∇
(𝑥0) = lim

ℎ→0

𝑢
Δ
(𝑥0) − 𝑢

Δ
(𝑥0 − ℎ)

ℎ
≤ 0. (61)

Furthermore, the continuity of the delta derivative 𝑢
Δ
(𝑥)

implies that

0 ≤ lim
ℎ→0

𝑢
Δ
(𝑥0 − ℎ) = 𝑢

Δ
(𝑥0) ≤ 0, (62)

and consequently 𝑢Δ(𝑥0) = 0. Then by using Corollary 10 we
have that

𝑢
∇
(𝑥0) = 𝑢

Δ
(𝜌 (𝑥0)) = 𝑢

Δ
(𝑥0) = 0. (63)

(iii) If 𝑥0 is left-dense and right-dense, in this case the
maximality of 𝑢 at 𝑥0 and standard continuous necessary
conditions imply that

𝑢
Δ∇
(𝑥0) ≤ 0, 𝑢

∇
(𝑥0) = 𝑢

Δ
(𝑥0) = 0. (64)

According to Lemma 34, we can obtain the first simple
maximum principle for the time scale.

Corollary 35. Assuming that 𝑢(𝑥) ∈ D(Λ), if 𝑢Δ∇(𝑥0) > 0 at
some point 𝑥0 ∈ (𝑎, 𝑏)T , then 𝑢 cannot attain its maximum at
𝑥0. Moreover, if 𝑢Δ∇(𝑥) > 0 in (𝑎, 𝑏)T , then 𝑢 cannot attain its
maximum in (𝑎, 𝑏)T .

We give a variant of Corollary 35 where we weaken the
condition 𝑢Δ∇ > 0.

Theorem 36. Let 𝑢(𝑥) ∈ D(Λ). If 𝑢Δ∇(𝑥) ≥ 0 in (𝑎, 𝑏)T , then
𝑢 cannot attain its maximum in (𝑎, 𝑏)T , unless 𝑢 ≡ 𝑀.

Proof. We suppose that the result is false. Then there are
𝑥0, 𝑥1 ∈ (𝑎, 𝑏)T , such that 𝑢(𝑥0) = 𝑀 and 𝑢(𝑥1) < 𝑀. Let
us assume first that 𝑥0 < 𝑥1 and let us define a function
𝑧(𝑥) ∈ D(Λ) by

𝑧 (𝑥) := 𝑒𝛼 (𝑥, 𝑥0) − 1, (65)

where 𝛼 > 0 and 𝑒𝛼(𝑥, 𝑥0) is an exponential function on T

(see Section 2), and then

𝑧 (𝑥)

{{

{{

{

> 0, 𝑥 > 𝑥0

= 0, 𝑥 = 𝑥0

< 0. 𝑥 < 𝑥0.

(66)

Considering 𝛼 > 0 and the positivity of 𝑒𝛼, we obtain

𝑧
Δ∇
(𝑥) =

𝛼
2
𝑒𝛼 (𝑥, 𝑥0)

1 + 𝛼]
> 0. (67)

Let us define a function 𝑤(𝑥) ∈ D(Λ) by

𝑤 (𝑥) := 𝑢 (𝑥) + 𝜀𝑧 (𝑥) , (68)

where 𝜀 > 0 is chosen so that

𝜀 <
𝑀 − 𝑢 (𝑥1)

𝑧 (𝑥1)
. (69)

Since 𝑒𝛼(𝑎, 𝑥0) < 1, we have

𝑤 (𝑎) = 𝑢 (𝑎) + 𝜀𝑧 (𝑎)

< 𝑢 (𝑎)

≤ 𝑀.

(70)
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Furthermore, the definition of 𝜀 yields that

𝑤 (𝑥1) = 𝑢 (𝑥1) + 𝜀𝑧 (𝑥1)

< 𝑢 (𝑥1) + 𝑀 − 𝑢 (𝑥1) = 𝑀.

(71)

Finally, 𝑒𝛼(𝑥0, 𝑥0) = 1 derives

𝑤 (𝑥0) = 𝑀. (72)

It shows that 𝑤 attains its maximum in (𝑎, 𝑥1)T .
However,

𝑤
Δ∇

= 𝑢
Δ∇

+ 𝜀𝑧
Δ∇

> 0, (73)

which contradicts the statement of Corollary 35. If 𝑥0 > 𝑥1,

𝑧 (𝑥) := ∫

𝑏

𝑥

(∫

𝑏

𝑠

∇𝜏)Δ𝑠 − ∫

𝑏

𝑥
0

(∫

𝑏

𝑠

∇𝜏)Δ𝑠. (74)

Then we have that

𝑧 (𝑥)

{{

{{

{

< 0, 𝑥 > 𝑥0

= 0, 𝑥 = 𝑥0

> 0. 𝑥 < 𝑥0,

𝑧
Δ∇
(𝑥) = 1 > 0.

(75)

Let us define a function 𝑤(𝑥) ∈ D(Λ) by

𝑤 (𝑥) := 𝑢 (𝑥) + 𝜀𝑧 (𝑥) , (76)

where 𝜀 > 0 is chosen so that

𝜀 <
𝑀 − 𝑢 (𝑥1)

𝑧 (𝑥1)
. (77)

Since 𝑧(𝑏) := − ∫
𝑏

𝑥
0

(∫
𝑏

𝑠
∇𝜏)Δ𝑠 < 0, we have

𝑤 (𝑏) = 𝑢 (𝑏) + 𝜀𝑧 (𝑏)

< 𝑢 (𝑏)

≤ 𝑀.

(78)

Furthermore, the definition of 𝜀 yields that

𝑤 (𝑥1) = 𝑢 (𝑥1) + 𝜀𝑧 (𝑥1) < 𝑢 (𝑥1) + 𝑀 − 𝑢 (𝑥1) = 𝑀.

(79)

Finally, since 𝑧(𝑥0) = 0, we derive

𝑤 (𝑥0) = 𝑀. (80)

It shows that 𝑤 attains its maximum in (𝑥1, 𝑏)T .
However,

𝑤
Δ∇

= 𝑢
Δ∇

+ 𝜀𝑧
Δ∇

> 0, (81)

which is a contradiction with Corollary 35. The proof is
completed.

As a natural extension of the above simple maximum
principle, we consider the operator of the following type:

𝐿 [𝑢] := 𝑢
∇Δ

+ 𝑔1𝑢
Δ
+ 𝑔2𝑢

∇
. (82)

By the above results, we can obtainTheorem 37.

Theorem 37. Assume that the functions 𝑔1, 𝑔2 : [𝑎, 𝑏]T → 𝑅

satisfy

1 + ]𝑔1 ≥ 0, 𝑜𝑛 (𝑎, 𝑏)T ,

−1 + ]𝑔2 ≤ 0, 𝑜𝑛 (𝑎, 𝑏)T .

(83)

Letting 𝑢(𝑥) ∈ D(Λ), if 𝐿[𝑢](𝑥0) > 0 at some point 𝑥0 ∈
(𝑎, 𝑏)T , then 𝑢 cannot attain its maximum𝑀 at 𝑥0. Moreover,
if 𝐿[𝑢] := 𝑢

Δ∇
+ 𝑔1𝑢

Δ
+ 𝑔2𝑢

∇
> 0, for each 𝑥 ∈ (𝑎, 𝑏)T , then 𝑢

cannot attain its maximum in (𝑎, 𝑏)T .

Proof. We suppose that 𝐿[𝑢](𝑥0) > 0 at some point 𝑥0 ∈

(𝑎, 𝑏)T and 𝑢 attains its maximum at a point 𝑥0. We divide
our proof into two parts.

(i) If 𝑥0 is left-scattered, in this case, we have

𝑢
Δ∇
(𝑥0) =

𝑢
Δ
(𝑥0) − 𝑢

Δ
(𝜌 (𝑥0))

] (𝑥0)

=
𝑢
Δ
(𝑥0) − 𝑢

∇
(𝑥0)

] (𝑥0)
.

(84)

Multiplying 𝐿[𝑢](𝑥0) by ](𝑥0), we obtain

] (𝑥0) 𝐿 [𝑢] (𝑥0)

= ] (𝑥0) (𝑢
Δ∇
(𝑥0) + 𝑔1𝑢

Δ
(𝑥0) + 𝑔2𝑢

∇
(𝑥0))

= (1 + ] (𝑥0) 𝑔1) 𝑢
Δ
(𝑥0)

+ (−1 + ] (𝑥0) 𝑔2) 𝑢
∇
(𝑥0)

> 0.

(85)

However, it follows from Lemma 34 and the conditions

1 + ]𝑔1 ≥ 0, on (𝑎, 𝑏)T ,

−1 + ]𝑔2 ≤ 0, on (𝑎, 𝑏)T ,

(86)

that ](𝑥0)𝐿[𝑢](𝑥0) ≤ 0, which is a contradiction.
(ii) If 𝑥0 is left-dense, then by Lemma 34 we know that

𝑢
Δ
(𝑥0) = 𝑢

∇
(𝑥0) = 0. (87)

Therefore, 𝐿[𝑢](𝑥0) reduces to

𝐿 [𝑢 (𝑥0)] = 𝑢
Δ∇
(𝑥0) > 0, (88)

which is a contradiction with Lemma 34. Combining the
proof of (i) and (ii), we get that 𝑢 cannot attain its maximum
at 𝑥0. The proof is completed.
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Next, we weaken the condition

𝐿 [𝑢] := 𝑢
Δ∇

+ 𝑔1𝑢
Δ
+ 𝑔2𝑢

∇
> 0 (89)

to

𝐿 [𝑢] := 𝑢
Δ∇

+ 𝑔1𝑢
Δ
+ 𝑔2𝑢

∇
≥ 0. (90)

Theorem 38. Assume that the functions 𝑔1, 𝑔2 : [𝑎, 𝑏]T → 𝑅

satisfy

1 + ]𝑔1 > 0, 𝑜𝑛 (𝑎, 𝑏)T , (91)

−1 + ]𝑔2 < 0, 𝑜𝑛 (𝑎, 𝑏)T , (92)

𝑔1 + 𝑔2

1 + 𝑔1]
𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑜𝑛 𝑎𝑛𝑦 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑢𝑏𝑖𝑛𝑡𝑒𝑟V𝑎𝑙 𝑜𝑓 (𝑎, 𝑏)T .

(93)

Let 𝑢(𝑥) ∈ D(Λ) satisfy 𝐿[𝑢] := 𝑢
Δ∇

+ 𝑔1𝑢
Δ
+ 𝑔2𝑢

∇
≥ 0, for

each 𝑥 ∈ (𝑎, 𝑏)T . Then 𝑢 cannot attain its maximum in (𝑎, 𝑏)T ,
unless 𝑢 ≡ 𝑀.

Proof. Assume that 𝑢 attains its maximum at a point 𝑥0 in
(𝑎, 𝑏)T but does not identically equal𝑀. That is, 𝑢(𝑥0) = 𝑀,
and there exists 𝑥𝑝 ∈ (𝑎, 𝑏)T such that 𝑢(𝑥𝑝) < 𝑀. Let us
assume first that 𝑥0 < 𝑥𝑝 and let us define a function 𝑧(𝑥) ∈
D(Λ) by

𝑧 (𝑥) = 𝑒𝛼 (𝑥, 𝑥0) − 1. (94)

Therefore, we have

𝐿 [𝑧] = 𝑧
Δ∇

+ 𝑔1𝑧
Δ
+ 𝑔2𝑧

∇

= [(1 + ]𝑔1) 𝛼
2
+ 𝛼 ⋅ (𝑔1 + 𝑔2)]

𝑒𝛼 (𝑥, 𝑥0)

1 + 𝛼]

= 𝛼 [𝛼 +
𝑔1 + 𝑔2

1 + ]𝑔1
]
𝑒𝛼 (𝑥, 𝑥0)

1 + 𝛼]
(1 + ]𝑔1) .

(95)

Thus, by (93)we can take arbitrary𝛼 > 0, such that𝛼 > −(𝑔1+

𝑔2)/(1 + 𝑔1]) in [𝑎1, 𝑥𝑝]T , where 𝑎1 = 𝜎(𝑎) if 𝜎(𝑎) > 𝑎 and
𝑎1 ∈ (𝑎, 𝑥0)T if 𝜎(𝑎) = 𝑎. Then we have 𝐿[𝑧] > 0 in [𝑎1, 𝑥𝑝]T .
Let us define a function 𝑤(𝑥) ∈ D(Λ) by

𝑤 (𝑥) := 𝑢 (𝑥) + 𝜀𝑧 (𝑥) , (96)

where 𝜀 > 0 is chosen so that

𝜀 <

𝑀 − 𝑢 (𝑥𝑝)

𝑧 (𝑥𝑝)

. (97)

If 𝑎1 = 𝜎(𝑎) = 𝑥0, since 𝑒𝛼(𝑎, 𝑥0) < 1, we have that 𝑧(𝑎) < 0

and

𝑤 (𝑎) = 𝑢 (𝑎) + 𝜀𝑧 (𝑎)

< 𝑢 (𝑎)

≤ 𝑀.

(98)

Moreover, the definition of 𝜀 yields that

𝑤(𝑥𝑝) = 𝑢 (𝑥𝑝) + 𝜀𝑧 (𝑥𝑝) < 𝑢 (𝑥𝑝)

+𝑀 − 𝑢 (𝑥𝑝) = 𝑀.

(99)

Finally, 𝑒𝛼(𝑥0, 𝑥0) = 1 implies that 𝑤(𝑥0) = 𝑀. It follows that
𝑤 has a maximum in (𝑎, 𝑥𝑝)T . However,

𝐿 [𝑤] = 𝐿 [𝑢] + 𝜀𝐿 [𝑧] > 0, (100)

which is a contradiction withTheorem 37. If 𝑎1 < 𝑥0, then we
have𝑤(𝑎1) < 𝑀. It follows that𝑤has amaximum in (𝑎1, 𝑥𝑝)T .
This is again a contradiction withTheorem 37.Thus, we have
proved that if 𝑥0 ∈ (𝑎, 𝑏)T is a maximum point, then 𝑢(𝑥) =
𝑀 for any 𝑥 ≥ 𝑥0. Let

𝑚 = inf {𝑥 ≥ 𝑎 : 𝑢 (𝑡) = 𝑀, ∀𝑡 ∈ [𝑥, 𝑥0]T
} . (101)

From this, we obtain that 𝑢(𝑚) = 𝑀 and 𝑢Δ(𝑚) = 0. Then we
have that 𝑥0 ≥ 𝑚 > 𝑥𝑝 and 𝑢(𝑡) < 𝑀 for any 𝑥0 ∈ (𝑎,𝑚)T . If
𝑚 is left-scattered, then

𝜌 (𝑚) < 𝑚,

𝑢
Δ
(𝜌 (𝑚)) =

𝑢 (𝑚) − 𝑢 (𝜌 (𝑚))

𝑚 − 𝜌 (𝑚)
> 0,

𝑢
Δ∇
(𝑚) =

𝑢
Δ
(𝜌 (𝑚)) − 𝑢

Δ
(𝑚)

𝜌 (𝑚) − 𝑚

=
𝑢
Δ
(𝜌 (𝑚))

𝜌 (𝑚) − 𝑚
.

(102)

Since 𝐿[𝑢](𝑚) ≥ 0, we multiply 𝐿[𝑢](𝑚) by ](𝑚) and get that

0 ≤ 𝐿 [𝑢] (𝑚) ⋅ ] (𝑚)

= −𝑢
Δ
(𝜌 (𝑚)) + 𝑢

∇
(𝑚) 𝑔2 (𝑚) ] (𝑚)

= −𝑢
Δ
(𝜌 (𝑚)) + 𝑢

Δ
(𝜌 (𝑚)) 𝑔2 (𝑚) ] (𝑚)

= 𝑢
Δ
(𝜌 (𝑚)) [𝑔2 (𝑚) ] (𝑚) − 1] < 0.

(103)

This is a contradiction. If𝑚 is left-dense, let

𝑧 (𝑥) = 𝑒−𝛼 (𝑥,𝑚) − 1, (104)

where 𝛼 > 0, such that 𝛼 > (𝑔1+𝑔2)/(1+𝑔1]) in [𝑥𝑝, 𝑚]T . We
choose 𝑑 closely enough to𝑚, such that 1−𝛼𝜇 > 0, 1−𝛼] > 0

on [𝑑,𝑚]T , and

𝑤 (𝑥) := 𝑢 (𝑥) + 𝜀𝑧 (𝑥) , (105)

where 𝜀 > 0 such that

0 < 𝜀 <
𝑀 − 𝑢 (𝑑)

𝑧 (𝑑)
. (106)



Abstract and Applied Analysis 9

Therefore, we have

𝐿 [𝑧] = 𝑧
Δ∇

+ 𝑔1𝑧
Δ
+ 𝑔2𝑧

∇

= [𝛼
2
(1 + ]𝑔1) − 𝛼 (𝑔1 + 𝑔2)]

𝑒−𝛼 (𝑥,𝑚)

1 − 𝛼]

= 𝛼 [𝛼 −
𝑔1 + 𝑔2

1 + ]𝑔1
]
𝑒−𝛼 (𝑥,𝑚)

1 − 𝛼]
(1 + ]𝑔1) > 0.

(107)

Thus, 𝐿[𝑤] = 𝐿[𝑢] + 𝜀𝐿[𝑧] > 0 on [𝑑,𝑚]T . ByTheorem 37 we
know that𝑤 cannot attain its maximum in (𝑑,𝑚)T . Note that

𝑤 (𝑑) = 𝑢 (𝑑) + 𝜀𝑧 (𝑑)

< 𝑢 (𝑑) +𝑀 − 𝑢 (𝑑) = 𝑀.

(108)

We get that 𝑤(𝑚) = 𝑢(𝑚) = 𝑀 is the maximum of 𝑤 on
[𝑑,𝑚]T . Since 𝑢(𝑥) = 𝑀 for any 𝑥 ≥ 𝑚 and 𝑧(𝑥) is increasing
for 𝑥 ≥ 𝑚, we have that 𝑤Δ(𝑚) ≥ 0; however, we also have
that

𝑤
Δ
(𝑚) = 𝑢

Δ
(𝑚) + 𝜀𝑧

Δ
(𝑚)

= 𝜀𝑧
Δ
(𝑚) = −𝛼𝜀 < 0.

(109)

This is a contradiction. The proof is completed.

In Theorem 38, if we take T = R, we have the following
corollary which is the result that appeared in [3].

Corollary 39. Assuming that the function 𝑔 : [𝑎, 𝑏] → R is
bounded on any closed subinterval of (𝑎, 𝑏), if 𝑢(𝑥) ∈ D(Λ)

satisfies (𝐿 + ℎ)[𝑢] := 𝑢
󸀠󸀠
+ 𝑔𝑢
󸀠󸀠
≥ 0 in (𝑎, 𝑏), then 𝑢 cannot

attain its maximum𝑀 in (𝑎, 𝑏), unless 𝑢 ≡ 𝑀.

In Theorem 38, if we take T = Z, where Z is the set of all
integral numbers, we can obtain the following newmaximum
principle for second-ordermixedΔ and∇ difference dynamic
system.

Corollary 40. Assume that the functions 𝑔1 and 𝑔2 :

[𝑎, 𝑏]Z → R satisfy

1 + 𝑔1 (𝑘) > 0, 1 − 𝑔2 (𝑘) > 0, ∀𝑘 ∈ (𝑎, 𝑏)Z, (110)

and let 𝑢(𝑥) ∈ D(Λ); if

∇Δ𝑢 (𝑘) + 𝑔1 (𝑘) Δ𝑢 (𝑘)

+ 𝑔2 (𝑘) ∇𝑢 (𝑘) ≥ 0, ∀𝑘 ∈ (𝑎, 𝑏)Z,

(111)

then 𝑢 cannot attain its maximum𝑀 in (𝑎, 𝑏)Z, unless 𝑢 ≡ 𝑀.

To show that conditions (91), (92), and (93) are necessary
for the validity of our results, we give the following examples.

Example 41. Let T = {𝑞
𝑛
: 𝑛 ∈ Z} ∪ {0}, where Z is the set of

all integral numbers and 𝑞 > 1, and 𝑢 is defined by

𝑢 (𝑥) = {
𝑥, if 𝑥 ≤ 𝑞

8
;

𝑞
8
, if 𝑥 > 𝑞

8
.

(112)

Then

𝑢
Δ
(𝑥) =

{{

{{

{

1, if 𝑥 < 𝑞
8
;

0, if 𝑥 > 𝑞
8
,

0, if 𝑥 = 𝑞
8
,

𝑢
∇
(𝑥) =

{{

{{

{

1, if 𝑥 < 𝑞
8
;

0, if 𝑥 > 𝑞
8
,

1, if 𝑥 = 𝑞
8
,

𝑢
Δ∇
(𝑥) =

{{{

{{{

{

0, if 𝑥 < 𝑞
8
;

0, if 𝑥 > 𝑞
8
,

1

𝑞
7
(1 − 𝑞)

, if 𝑥 = 𝑞
8
.

(113)

Letting 𝑔1(𝑥) ≡ 1, 𝑔2(𝑥) ≡ 1/](𝑥), 𝑥 ∈ [𝑎, 𝑏]T = [1, 𝑞
9
]T , then

𝑢
Δ∇
(𝑥) + 𝑔1 (𝑥) 𝑢

Δ
(𝑥) + 𝑔2 (𝑥) 𝑢

∇
(𝑥)

= 𝑢
Δ∇
(𝑥) + 𝑢

Δ
(𝑥) + 𝑢

∇
(𝑥) ≥ 0.

(114)

1 + ](𝑥)𝑔1(𝑥) = 1 + 1 > 0, 1 − ](𝑥)𝑔2(𝑥) = 1 − 1 = 0 for
any 𝑥 ∈ [1, 𝑞9]T , and

𝑔1 (𝑥) + 𝑔2 (𝑥)

1 + 𝑔1 (𝑥) ] (𝑥)
=
1 + (1/] (𝑥))
1 + ] (𝑥)

=
1

] (𝑥)
(115)

is bounded on any closed subinterval of [1, 𝑞
9
]T . Thus,

conditions (91) and (93) hold, but (92) does not hold. The
conclusion of Theorem 38 also does not hold, since 𝑢 attains
its maximum 𝑞

8 in (1, 𝑞9)Z, but 𝑢 is not constant.

Example 42. Let T = {𝑞
𝑛
: 𝑛 ∈ Z} ∪ {0}, where Z is the set of

all integral numbers and 𝑞 > 1, and 𝑢 is defined by

𝑢 (𝑥) = {
𝑞
5
, if 𝑥 ≤ 𝑞

5
;

2𝑞
5
− 𝑥, if 𝑥 > 𝑞

5
.

(116)

Then

𝑢
Δ
(𝑥) =

{{

{{

{

0, if 𝑥 < 𝑞
5
;

−1, if 𝑥 > 𝑞
5
,

−1, if 𝑥 = 𝑞
5
,

𝑢
∇
(𝑥) =

{{

{{

{

0, if 𝑥 < 𝑞
5
;

−1, if 𝑥 > 𝑞
5
,

0, if 𝑥 = 𝑞
5
,

𝑢
Δ∇
(𝑥) =

{{{

{{{

{

0, if 𝑥 < 𝑞
5
;

0, if 𝑥 > 𝑞
5
,

1

𝑞
4
(1 − 𝑞)

, if 𝑥 = 𝑞
5
.

(117)

Letting 𝑔1(𝑥) = 𝑔2(𝑥) ≡ −1/](𝑥), [𝑎, 𝑏]T = [1, 𝑞
7
]T , then

𝑢
Δ∇
(𝑥) + 𝑔1 (𝑥) 𝑢

Δ
(𝑥) + 𝑔2 (𝑥) 𝑢

∇
(𝑥)

= 𝑢
Δ∇
(𝑥) − 𝑢

Δ
(𝑥) − 𝑢

∇
(𝑥) ≥ 0.

(118)
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1 + ](𝑥)𝑔1(𝑥) = 1 − 1 = 0, 1 − ](𝑥)𝑔2(𝑥) = 1 + 1 > 0 for
any 𝑥 ∈ [1, 𝑞

7
]T , and (𝑔1 + 𝑔2)/(1 + 𝑔1]) = 1 is bounded on

any closed subinterval of [1, 𝑞7]T . Thus, condition (92) holds,
but (91) does not hold; thus (93) does hold.The conclusion of
Theorem 38 also does not hold, since 𝑢 attains its maximum
𝑞
5 in (1, 𝑞7)Z, but 𝑢 is not constant.

Example 43. Let T = {1/𝑛 : 𝑛 ∈ Z} ∪ {0}, 𝑢(𝑥) = −𝑒𝛼(𝑥, 0),
[𝑎, 𝑏]T = [−1/2, 1/2]T , and 2 < 𝛼 < 3. Then

𝑢
Δ
(𝑥) = −𝛼𝑒𝛼 (𝑥, 0) ,

𝑢
∇
(𝑥) = −

𝛼

1 + 𝛼] (𝑥)
𝑒𝛼 (𝑥, 0) ,

𝑢
Δ∇
(𝑥) = −

𝛼
2

1 + 𝛼] (𝑥)
𝑒𝛼 (𝑥, 0) .

(119)

Let

𝑔1 (𝑥) =

{

{

{

−𝛼

|𝑥|
, if 𝑥 = 1

𝑛
,

0 if 𝑥 = 0;

𝑔2 (𝑥) = −𝛼,

(120)

then

𝑢
Δ∇
(𝑥) + 𝑔1 (𝑥) 𝑢

Δ
(𝑥) + 𝑔2 (𝑥) 𝑢

∇
(𝑥)

= [−
𝛼
2

1 + 𝛼] (𝑥)
− 𝛼𝑔1 (𝑥) +

𝛼
2

1 + 𝛼] (𝑥)
]

× 𝑒𝛼 (𝑥, 0)

≥ 0,

1 + ] (𝑥) 𝑔1 (𝑥) =
{

{

{

1 +
−𝛼

|𝑛 + 1|
> 0, if 𝑥 = 1

𝑛
,

1 > 0 if 𝑥 = 0,

1 − ] (𝑥) 𝑔2 (𝑥) =
{

{

{

1 +
𝛼

𝑛 (𝑛 + 1)
> 0, if 𝑥 = 1

𝑛
,

1 > 0 if 𝑥 = 0,

𝑔1 (𝑥) + 𝑔2 (𝑥)

1 + ] (𝑥) 𝑔1 (𝑥)
=

{

{

{

−𝛼𝑛 − 𝛼

1 + (−𝛼/ |𝑛 + 1|)
, if 𝑥 = 1

𝑛
,

−𝛼 if 𝑥 = 0.

(121)

These show that conditions (91) and (92) hold, but (93) does
not hold on [−1/2, 1/2]T . The conclusion of Theorem 38 also
does not hold on [−1/2, 1/2]T , since 𝑢 attains its maximum
−1 in (−1/2, 1/2)T , but 𝑢 is not constant.

Now, we establish a generalized maximum principle.

Theorem 44. Assume that the functions 𝑔1 and
𝑔2 : [𝑎, 𝑏]T → R satisfy (91), (92), and let 𝑢(𝑥) ∈ D(Λ)

and

(𝐿 + ℎ) [𝑢] := 𝑢
Δ∇

+ 𝑔1𝑢
Δ
+ 𝑔2𝑢

∇
+ ℎ𝑢, (122)

where ℎ(𝑥) ≤ 0. If (𝐿 + ℎ)[𝑢](𝑥0) > 0 at some point 𝑥0 ∈
(𝑎, 𝑏)T , then 𝑢 cannot attain its maximum𝑀 at 𝑥0. Moreover,
if (𝐿 + ℎ)[𝑢](𝑥) > 0, for each 𝑥 ∈ (𝑎, 𝑏)T , then 𝑢 cannot attain
its maximum in (𝑎, 𝑏)T .

Proof. Assume that 𝑢 attains its nonnegative maximum 𝑀

at a point 𝑥0 in (𝑎, 𝑏)T and (𝐿 + ℎ)[𝑢](𝑥0) > 0. If 𝑥0 is left-
scattered, then by Lemma 34, we have that

𝜌 (𝑥0) < 𝑥0,

𝑢
∇
(𝑥0) = 𝑢

Δ
(𝜌 (𝑥0))

=
𝑢 (𝑥0) − 𝑢 (𝜌 (𝑥0))

𝑥0 − 𝜌 (𝑥0)
≥ 0,

𝑢
Δ∇
(𝑥0) =

𝑢
Δ
(𝜌 (𝑥0)) − 𝑢

Δ
(𝑥0)

𝜌 (𝑥0) − 𝑥0

,

𝑢
Δ
(𝑥0) ≤ 0,

(123)

and then

0 < (𝐿 + ℎ) [𝑢] (𝑥0) ⋅ ] (𝑥0)

= −𝑢
Δ
(𝜌 (𝑥0)) + 𝑢

Δ
(𝑥0) + 𝑢

Δ
(𝑥0) 𝑔1 (𝑥0) ] (𝑥0)

+ 𝑢
∇
(𝑥0) 𝑔2 (𝑥0) ] (𝑥0) + ℎ (𝑥0) 𝑢 (𝑥0) ] (𝑥0)

= −𝑢
∇
(𝑥0) + 𝑢

Δ
(𝑥0) + 𝑢

Δ
(𝑥0) 𝑔1 (𝑥0) ] (𝑥0)

+ 𝑢
∇
(𝑥0) 𝑔2 (𝑥0) ] (𝑥0) + ℎ (𝑥0) 𝑢 (𝑥0) ] (𝑥0)

= 𝑢
∇
(𝑥0) [𝑔2 (𝑥0) ] (𝑥0) − 1]

+ 𝑢
Δ
(𝑥0) [1 + 𝑔1 (𝑥0) ] (𝑥0)]

+ ℎ (𝑥0) 𝑢 (𝑥0) ] (𝑥0) ≤ 0.

(124)

This is a contradiction. If 𝑥0 is left-dense, by Lemma 34 we
have that 𝑢Δ(𝑥0) = 𝑢

∇
(𝑥0) = 0 and 𝑢Δ∇(𝑥0) ≤ 0. Then

(𝐿 + ℎ) [𝑢] (𝑥0) = 𝑢
Δ∇
(𝑥0) + ℎ (𝑥0) 𝑢 (𝑥0) > 0, (125)

and ℎ(𝑥0)𝑢(𝑥0) ≤ 0 imply that 𝑢Δ∇(𝑥0) > 0. This is also a
contradiction with Corollary 35. Thus, we have that 𝑢 cannot
attain its maximum𝑀 at 𝑥0. The proof is completed.

In Theorem 44, if we take T = R, we have the follow-
ing corollary which is an improvement for the result that
appeared in [3].

Corollary 45. Let 𝑔, ℎ : [𝑎, 𝑏] → R be functions, ℎ(𝑥) ≤ 0

on [𝑎, 𝑏] and (𝐿+ℎ)[𝑢] := 𝑢
󸀠󸀠
+𝑔𝑢
󸀠
+ℎ𝑢. If (𝐿+ℎ)[𝑢](𝑥0) > 0

at some point 𝑥0 ∈ (𝑎, 𝑏), then 𝑢 cannot attain its maximum
𝑀 at 𝑥0. Moreover, if (𝐿 + ℎ)[𝑢](𝑥) > 0, for each 𝑥 ∈ (𝑎, 𝑏),
then 𝑢 cannot attain its maximum in (𝑎, 𝑏)T .

InTheorem 44, if we take T = Z, where Z is the set of all
integral numbers, we can obtain the following newmaximum
principle for second-ordermixedΔ and∇ difference dynamic
system.
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Corollary 46. Assume that the functions ℎ, 𝑔1, and 𝑔2 :

[𝑎, 𝑏]Z → R satisfy

1 + 𝑔1 (𝑘) > 0, 1 − 𝑔2 (𝑘) > 0, ∀𝑘 ∈ (𝑎, 𝑏)Z, (126)

and ℎ(𝑘) ≤ 0 on [𝑎, 𝑏]Z. Let 𝑢(𝑥) ∈ D(Λ). If for some 𝑘 ∈

(𝑎, 𝑏)Z

∇Δ𝑢 (𝑘) + 𝑔1 (𝑘) Δ𝑢 (𝑘) + 𝑔2 (𝑘) ∇𝑢 (𝑘) + ℎ (𝑘) 𝑢 (𝑘) > 0,

(127)

then 𝑢 cannot attain its maximum𝑀 at 𝑘. If

∇Δ𝑢 (𝑘) + 𝑔1 (𝑘) Δ𝑢 (𝑘) + 𝑔2 (𝑘) ∇𝑢 (𝑘)

+ ℎ (𝑘) 𝑢 (𝑘) > 0, ∀𝑘 ∈ (𝑎, 𝑏)Z,

(128)

then 𝑢 cannot attain its maximum𝑀 in (𝑎, 𝑏)Z.

Theorem47. Assume that the functions𝑔1 and𝑔2 : [𝑎, 𝑏]T →

R satisfy (91), (92), and (93), and let 𝑢(𝑥) ∈ D(Λ) satisfy

(𝐿 + ℎ) [𝑢] := 𝑢
Δ∇

+ 𝑔1𝑢
Δ
+ 𝑔2𝑢

∇
+ ℎ𝑢 ≥ 0,

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ (𝑎, 𝑏)T ,

(129)

where ℎ(𝑥) ≤ 0 and

ℎ (𝑥)

1 + ]𝑔1
𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑜𝑛 𝑎𝑛𝑦 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑢𝑏𝑖𝑛𝑡𝑒𝑟V𝑎𝑙 𝑜𝑓 (𝑎, 𝑏)T .

(130)

If 𝑢 attains a nonnegative maximum𝑀 in (𝑎, 𝑏)T , then 𝑢 ≡ 𝑀.

Proof. Assume that 𝑢 attains its nonnegative maximum𝑀 at
a point𝑥0 in (𝑎, 𝑏)T but does not identically equal𝑀.Thus, we
can choose 𝑥0, 𝑥𝑝 ∈ (𝑎, 𝑏)T , such that 𝑢(𝑥0) = 𝑀, 𝑢(𝑥𝑝) < 𝑀.
If 𝑥𝑝 > 𝑥0, we define a function 𝑧(𝑥) ∈ D(Λ) by

𝑧 (𝑥) = 𝑒𝛼 (𝑥, 𝑥0) − 1. (131)

Then

(𝐿 + ℎ) [𝑧]

= 𝑧
Δ∇

+ 𝑔1𝑧
Δ
+ 𝑔2𝑧

∇
+ ℎ𝑧

= [(1 + ]𝑔1) 𝛼
2
+ 𝛼 ⋅ (𝑔1 + 𝑔2) + ℎ (1 + 𝛼] (𝑥))

× (1 − 𝑒𝛼 (𝑥0, 𝑥)) ]
𝑒𝛼 (𝑥, 𝑥0)

1 + 𝛼]

= [𝛼
2
+ 𝛼 ⋅

𝑔1 + 𝑔2

1 + ]𝑔1

+
ℎ (1 + 𝛼] (𝑥)) (1 − 𝑒𝛼 (𝑥0, 𝑥))

1 + ]𝑔1
]

×
𝑒𝛼 (𝑥, 𝑥0) (1 + ]𝑔1)

1 + 𝛼]
.

(132)

It is similar to the proof ofTheorem 38; we choose sufficiently
larger 𝛼 such that

(𝐿 + ℎ) [𝑧] > 0 (133)

holds on (𝑎1, 𝑥𝑝)T
, where 𝑥0 ∈ (𝑎1, 𝑥𝑝)T

⊂ (𝑎, 𝑥𝑝)T
. Let us

define a function 𝑤(𝑥) ∈ D(Λ) by

𝑤 (𝑥) := 𝑢 (𝑥) + 𝜀𝑧 (𝑥) , (134)

where 𝜀 > 0 is chosen so that

𝜀 <

𝑀 − 𝑢 (𝑥𝑝)

𝑧 (𝑥𝑝)

. (135)

Since 𝑒𝛼(𝑎, 𝑥0) < 1, we have

𝑤 (𝑎) = 𝑢 (𝑎) + 𝜀𝑧 (𝑎)

< 𝑢 (𝑎)

≤ 𝑀.

(136)

Moreover, the definition of 𝜀 yields that

𝑤(𝑥𝑝) = 𝑢 (𝑥𝑝) + 𝜀𝑧 (𝑥𝑝) < 𝑢 (𝑥𝑝)

+𝑀 − 𝑢 (𝑥𝑝) = 𝑀.

(137)

Finally, 𝑒𝛼(𝑥0, 𝑥0) = 1 implies that𝑤(𝑥0) = 𝑀. It implies that
𝑤 has a maximum in (𝑎, 𝑥𝑝)T . However,

𝐿 [𝑤] ≥ (𝐿 + ℎ) [𝑤]

= (𝐿 + ℎ) [𝑢] + 𝜀 (𝐿 + ℎ) [𝑧] > 0

(138)

holds on (𝑎1, 𝑥𝑝)T . This is a contradiction with Theorem 37.
Thus, we have proved that if 𝑥0 ∈ (𝑎, 𝑏)T is a maximum point,
then 𝑢(𝑥) = 𝑀 for any 𝑥 ≥ 𝑥0. Let

𝑚 = inf {𝑥 ≥ 𝑎 : 𝑢 (𝑡) = 𝑀, ∀𝑡 ∈ [𝑥, 𝑥0]T
} . (139)

From this, we obtain that 𝑢(𝑚) = 𝑀 and 𝑢Δ(𝑚) = 0. Then
we have that 𝑥0 ≥ 𝑚 > 𝑥𝑝 and 𝑢(𝑡) < 𝑀 for any 𝑥0 ∈
(𝑎,𝑚)T . If 𝑚 is left-scattered, then it is similar to the proof
of Theorem 38; we have that

𝜌 (𝑚) < 𝑚,

𝑢
Δ
(𝜌 (𝑚)) =

𝑢 (𝑚) − 𝑢 (𝜌 (𝑚))

𝑚 − 𝜌 (𝑚)
> 0,

𝑢
Δ∇
(𝑚) =

𝑢
Δ
(𝜌 (𝑚)) − 𝑢

Δ
(𝑚)

𝜌 (𝑚) − 𝑚

=
𝑢
Δ
(𝜌 (𝑚))

𝜌 (𝑚) − 𝑚
,

(140)

0 ≤ 𝐿 [𝑢] (𝑚) ⋅ ] (𝑚)

= −𝑢
Δ
(𝜌 (𝑚)) + 𝑢

∇
(𝑚) 𝑔2 (𝑚) ] (𝑚)

+ ℎ (𝑚) 𝑢 (𝑚) ] (𝑚)

= −𝑢
Δ
(𝜌 (𝑚)) + 𝑢

Δ
(𝜌 (𝑚)) 𝑔2 (𝑚) ] (𝑚)

+ ℎ (𝑚) 𝑢 (𝑚) ] (𝑚)

= 𝑢
Δ
(𝜌 (𝑚)) [𝑔2 (𝑚) ] (𝑚) − 1]

+ ℎ (𝑚) 𝑢 (𝑚) ] (𝑚) < 0.

(141)
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This is a contradiction. If𝑚 is left-dense, let

𝑧 (𝑥) = 𝑒−𝛼 (𝑥,𝑚) − 1, (142)

where 𝛼 > 0, such that

𝛼 >
𝑔1 + 𝑔2

1 + ]𝑔1
−

ℎ

1 + ]𝑔1
(143)

in [𝑥𝑝, 𝑚]T . We choose 𝑑 closely enough to 𝑚, such that 1 −
𝛼𝜇 > 0, 1 − 𝛼] > 0 on [𝑑,𝑚]T and

𝑤 (𝑥) := 𝑢 (𝑥) + 𝜀𝑧 (𝑥) , (144)

where 𝜀 > 0 such that

0 < 𝜀 <
𝑀 − 𝑢 (𝑑)

𝑧 (𝑑)
. (145)

Therefore, we have

𝐿 [𝑧] = 𝑧
Δ∇

+ 𝑔1𝑧
Δ
+ 𝑔2𝑧

∇
+ ℎ𝑧

= [𝛼
2
(1 + ]𝑔1) − 𝛼 (𝑔1 + 𝑔2)]

×
𝑒−𝛼 (𝑥,𝑚)

1 − 𝛼]
+ ℎ (𝑒−𝛼 (𝑥,𝑚) − 1)

= 𝛼{𝛼 −
𝑔1 + 𝑔2

1 + ]𝑔1
+

ℎ

1 + ]𝑔1
(1 − 𝛼])

× (1 −
1

𝑒−𝛼 (𝑥,𝑚)
)}

𝑒−𝛼 (𝑥,𝑚)

1 − 𝛼]
(1 + ]𝑔1) > 0.

(146)

Thus, 𝐿[𝑤] = 𝐿[𝑢] + 𝜀𝐿[𝑧] > 0 on [𝑑,𝑚]T . ByTheorem 38 we
know that𝑤 cannot attain its maximum in (𝑑,𝑚)T . Note that

𝑤 (𝑑) = 𝑢 (𝑑) + 𝜀𝑧 (𝑑) < 𝑢 (𝑑) +𝑀 − 𝑢 (𝑑) = 𝑀; (147)

we get that 𝑤(𝑚) = 𝑢(𝑚) = 𝑀 is the maximum of 𝑤 on
[𝑑,𝑚]T . This implies that 𝑤Δ(𝑚) ≥ 0; however, we also have
that

𝑤
Δ
(𝑚) = 𝑢

Δ
(𝑚) + 𝜀𝑧

Δ
(𝑚) = 𝜀𝑧

Δ
(𝑚) = −𝛼𝜀 < 0. (148)

This is a contradiction. The proof is completed.

Corollary 48. Assume that ℎ(𝑥) is not always equal to 0

in Theorem 47; if 𝑢 attains its nonnegative maximum 𝑀 in
(𝑎, 𝑏)T , then the nonnegative maximum 𝑀 = 0. Especially, if
𝑢(𝑎) ≤ 0, 𝑢(𝑏) ≤ 0, then 𝑢(𝑥) < 0 for 𝑥 ∈ (𝑎, 𝑏)T , unless
𝑢(𝑥) ≡ 0.

In Theorem 47, if we take T = R, we have the following
corollary which is the result that appeared in [3].

Corollary 49. Assuming that the functions 𝑔, ℎ : [𝑎, 𝑏] → R

onin (𝑎, 𝑏) and ℎ(𝑥) ≤ 0 on [𝑎, 𝑏], if 𝑢(𝑥) ∈ D(Λ) satisfies
(𝐿 + ℎ)[𝑢] := 𝑢

󸀠󸀠
+ 𝑔𝑢
󸀠
+ ℎ𝑢 ≥ 0 in (𝑎, 𝑏), then 𝑢 cannot attain

its maximum𝑀 in (𝑎, 𝑏), unless 𝑢 ≡ 𝑀.

In Theorem 47, if we take T = Z, where Z is the set of all
integral numbers, we can obtain the following newmaximum
principle for second-ordermixedΔ and∇ difference dynamic
system.

Corollary 50. Assume that the functions ℎ, 𝑔1, and 𝑔2 :

[𝑎, 𝑏]Z → R satisfy

1 + 𝑔1 (𝑘) > 0, 1 − 𝑔2 (𝑘) > 0, ∀𝑘 ∈ (𝑎, 𝑏)Z, (149)

and ℎ(𝑘) ≤ 0 on [𝑎, 𝑏]Z. If 𝑢(𝑥) ∈ D(Λ) satisfies

∇Δ𝑢 (𝑘) + 𝑔1 (𝑘) Δ𝑢 (𝑘) + 𝑔2 (𝑘) ∇𝑢 (𝑘)

+ ℎ (𝑘) 𝑢 (𝑘) ≥ 0, ∀𝑘 ∈ (𝑎, 𝑏)Z,

(150)

then 𝑢 cannot attain its maximum𝑀 in (𝑎, 𝑏)Z, unless 𝑢 ≡ 𝑀.

All of the above results investigate the behavior of func-
tions inside the considered interval. Now, we will discuss the
behavior of functions by providing the information about the
boundary points.

Theorem 51. Let 𝑔1, 𝑔2, and ℎ satisfy (91), (92), and ℎ(𝑥) ≤ 0.
Assume that 𝑢(𝑥) ∈ D(Λ) is not constant, such that

(𝐿 + ℎ) [𝑢] := 𝑢
Δ∇

+ 𝑔1𝑢
Δ
+ 𝑔2𝑢

∇
+ ℎ𝑢 ≥ 0, (151)

for each 𝑥 ∈ (𝑎, 𝑏)T , 𝑢 has unilateral derivative at points of 𝑎, 𝑏,
and (93), (130) hold on (𝑎, 𝑏)T .

(1) If 𝑢 attains its nonnegative maximum at a point of 𝑎,
then 𝑢Δ(𝑎) < 0;

(2) If 𝑢 attains its nonnegative maximum at a point of 𝑏,
then 𝑢∇(𝑏) > 0.

Proof. We suppose that 𝑢 attains its nonnegative maximum
𝑀 at 𝑎, that is, 𝑢(𝑎) = 𝑀, and there exists a point 𝑥0 ∈ [𝑎, 𝑏]T ,
such that 𝑢(𝑥0) < 𝑀; we define a function 𝑧(𝑥) ∈ D(Λ) by

𝑧 (𝑥) = 𝑒𝛼 (𝑥, 𝑎) − 1, (152)

where 𝛼 > 0. It is similar to the proof of Theorem 38; we can
choose a larger enough 𝛼, such that

(𝐿 + ℎ) [𝑧] > 0. (153)

Moreover, we define a function 𝑤(𝑥) ∈ D(Λ) by

𝑤 (𝑥) = 𝑢 (𝑥) + 𝜀𝑧 (𝑥) , (154)

where

0 < 𝜀 <
𝑀 − 𝑢 (𝑥0)

𝑧 (𝑥0)
. (155)

Thus

(𝐿 + ℎ) [𝑤] > 0, (156)

and by using Theorem 47 to 𝑤 on [𝑎, 𝑥0]T , we get that 𝑤
attains its maximum at 𝑎 or 𝑥0. Note that𝑤(𝑎) = 𝑀 > 𝑤(𝑥0),
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and thus 𝑤 attains its maximum at 𝑎. Therefore, unilateral
derivative of 𝑤(𝑎) is not positive:

𝑤
Δ
(𝑎) = 𝑢

Δ
(𝑎) + 𝜀𝑧

Δ
(𝑎) ≤ 0. (157)

However,

𝑧
Δ
(𝑎) = 𝛼 > 0, (158)

and hence

𝑢
Δ
(𝑎) < 0. (159)

If 𝑢(𝑏) = 𝑀, we can prove 𝑢∇(𝑏) > 0 as the similar way above.
The proof is completed.

In Theorem 51, if we take T = R, we have the following
corollary which is the result that appeared in [3].

Corollary 52. Assuming that the functions 𝑔, ℎ : [𝑎, 𝑏] → R

are bounded in (𝑎, 𝑏) and ℎ(𝑥) ≤ 0 on [𝑎, 𝑏], if 𝑢(𝑥) ∈ D(Λ)

satisfies (𝐿 + ℎ)[𝑢] := 𝑢
󸀠󸀠
+ 𝑔𝑢
󸀠
+ ℎ𝑢 ≥ 0 in (𝑎, 𝑏), and 𝑢 has

unilateral derivative at points of 𝑎, 𝑏.

(1) If 𝑢 attains its nonnegative maximum at a point of 𝑎,
then 𝑢󸀠(𝑎) < 0;

(2) If 𝑢 attains its nonnegative maximum at a point of 𝑏,
then 𝑢󸀠(𝑏) > 0.

In Theorem 51, if we take T = Z, where Z is the set of all
integral numbers, we can obtain the following newmaximum
principle for second-ordermixedΔ and∇ difference dynamic
system.

Corollary 53. Assume that the functions ℎ, 𝑔1, and 𝑔2 :

[𝑎, 𝑏]Z → R satisfy

1 + 𝑔1 (𝑘) > 0, 1 − 𝑔2 (𝑘) > 0, ∀𝑘 ∈ (𝑎, 𝑏)Z, (160)

and ℎ(𝑘) ≤ 0 on [𝑎, 𝑏]Z, and assume that 𝑢(𝑥) ∈ D(Λ) satisfies

∇Δ𝑢 (𝑘) + 𝑔1 (𝑘) Δ𝑢 (𝑘) + 𝑔2 (𝑘) ∇𝑢 (𝑘)

+ ℎ (𝑘) 𝑢 (𝑘) ≥ 0, ∀𝑘 ∈ (𝑎, 𝑏)Z.

(161)

(1) If 𝑢 attains its nonnegative maximum at a point of 𝑎,
then 𝑢(𝑎 + 1) < 𝑢(𝑎);

(2) If 𝑢 attains its nonnegative maximum at a point of 𝑏,
then 𝑢(𝑏 − 1) > 𝑢(𝑏).

Next, we consider that (𝐿 + ℎ)[𝑢] ≥ 0, and ℎ(𝑥) may
take positive value. Let 𝑔1, 𝑔2, and ℎ(𝑥) satisfy (91) and (92).
Assume that we can find a function 𝑤(𝑥) ∈ D(Λ) which
satisfies

𝑤 (𝑥) > 0 for each 𝑥 ∈ Λ,

(𝐿 + ℎ) [𝑤] ≤ 0 for each 𝑥 ∈ (𝑎, 𝑏)T .

(162)

Then there exists a function 𝐹 which is predifferentiable with
region of differentiation Λ such that

𝐹
∇
(𝑥) = 𝑤 (𝑥) ∀𝑥 ∈ Λ, (163)

and therefore, 𝑤𝜎∇(𝑥) = 𝐹
Δ∇
(𝑥) since 𝑤𝜎(𝑥) = 𝐹

∇
(𝜎(𝑥)) =

𝐹
Δ
(𝑥).
We define a new function V(𝑥) ∈ D(Λ) by

V (𝑥) =
𝑢 (𝑥)

𝑤 (𝑥)
, (164)

and then V(𝑥) satisfies

VΔ∇ +
𝐹
Δ∇

+ 𝑔1𝑤
𝜎

𝑤
𝜎𝜌

VΔ +
𝑤
Δ𝜌
+ 𝑔2𝑤

𝜌

𝑤
𝜎𝜌

V∇

+
1

𝑤
𝜎𝜌
(𝐿 + ℎ) [𝑤] V ≥ 0.

(165)

Lemma 54. Assume that (91), (92), and (93) hold, and a
function 𝑤(𝑥) satisfies (162). Then, the following inequalities
hold in (𝑎, 𝑏)T ;

(𝑎) (1/𝑤
𝜎𝜌
)(𝐿 + ℎ)[𝑤] ≤ 0,

(𝑏) 1 + ]((𝐹Δ∇ + 𝑔1𝑤
𝜎
)/𝑤
𝜎𝜌
) > 0,

(𝑐) −1 + ]((𝑤Δ𝜌 + 𝑔2𝑤
𝜌
)/𝑤
𝜎𝜌
) < 0.

Moreover, if 𝑔1, 𝑔2, 𝑤Δ∇, and ℎ(𝑥) are bounded on (𝑎, 𝑏)T ,
and there exist 𝑡1 > 0, such that

1 + ]𝑔1 ≥ 𝑡1 > 0, 𝑜𝑛 (𝑎, 𝑏)T , (166)

then (𝐺1 + 𝐺2)/(1 + ]𝐺1) and 𝐻/(1 + ]𝐺1) are bounded on
(𝑎, 𝑏)T , where

𝐺1 =
𝐹
Δ∇

+ 𝑔1𝑤
𝜎

𝑤
𝜎𝜌

, 𝐺2 =
𝑤
Δ𝜌
+ 𝑔2𝑤

𝜌

𝑤
𝜎𝜌

,

𝐻 =
1

𝑤
𝜎𝜌
(𝐿 + ℎ) [𝑤] .

(167)

Proof. (a) Since

(𝐿 + ℎ) [𝑤] ≤ 0,

𝑤 (𝑥) > 0,

(168)

then

1

𝑤
𝜎𝜌
(𝐿 + ℎ) [𝑤] ≤ 0. (169)

If ](𝑥) = 0, then (b) and (c) are satisfied at 𝑥, and so we
suppose that ](𝑥) > 0.

(b) It is easy to see that

]𝐹Δ∇ (𝑥) = ]
𝐹
Δ
(𝑥) − 𝐹

Δ
(𝜌 (𝑥))

]

= 𝐹
Δ
(𝑥) − 𝐹

∇
(𝑥)

= 𝑤
𝜎
(𝑥) − 𝑤 (𝑥) .

(170)

Since ](𝑥) > 0, and hence

𝜎 (𝜌 (𝑥)) = 𝑥, (171)
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then

𝑤 (𝑥) = 𝑤
𝜎𝜌
(𝑥) , (172)

and, therefore,

1 + ]
𝐹
Δ∇

+ 𝑔1𝑤
𝜎

𝑤
𝜎𝜌

= 1 +
]𝑤𝜎∇ + ]𝑔1𝑤

𝜎

𝑤
𝜎𝜌

= 1 +
𝑤
𝜎
− 𝑤
𝜎𝜌
+ ]𝑔1𝑤

𝜎

𝑤
𝜎𝜌

= (1 + ]𝑔1)
𝑤
𝜎

𝑤
𝜎𝜌

> 0.

(173)

(c) Finally,

]𝑤Δ𝜌 = [𝑥 − 𝜌 (𝑥)]
𝑤
𝜎
(𝜌 (𝑥)) − 𝑤 (𝜌 (𝑥))

𝜎 (𝜌 (𝑥)) − 𝜌 (𝑥)
. (174)

Since ](𝑥) > 0, and hence

𝜎 (𝜌 (𝑥)) = 𝑥, (175)

thus

− 1 + ]
𝑤
Δ𝜌
+ 𝑔2𝑤

𝜌

𝑤
𝜎𝜌

=
−𝑤
𝜎𝜌
+ 𝑤
𝜎𝜌
− 𝑤
𝜌
+ ]𝑔2𝑤

𝜌

𝑤
𝜎𝜌

= (−1 + ]𝑔2)
𝑤
𝜌

𝑤
𝜎𝜌

< 0.

(176)

The boundness of (𝐺1 + 𝐺2)/(1 + ]𝐺1) and𝐻/(1 + ]𝐺1) can
be deduced by (166) and (173). The proof is completed.

FromTheorem 47,Theorem 51, and Lemma 54 we obtain
the following theorem.

Theorem 55. Assume that 𝑢(𝑥) ∈ D(Λ) satisfies (𝐿 + ℎ)[𝑢] ≥
0, and let 𝑔1, 𝑔2, 𝑤Δ∇, and ℎ(𝑥) be bounded on (𝑎, 𝑏)T , such
that (92) and (166) hold. Assume that there exists a function
𝑤(𝑥) ∈ D(Λ) satisfying (162). If V(𝑥) = 𝑢(𝑥)/𝑤(𝑥) attains its
nonnegative maximum𝑀 in (𝑎, 𝑏)T , then V(𝑥) = 𝑢(𝑥)/𝑤(𝑥) ≡

𝑀. If V(𝑎) = 𝑀, then VΔ(𝑎) < 0; if V(𝑏) = 𝑀, then V∇(𝑏) > 0.

In Theorem 55, if we take T = R, we have the following
corollary which is the result that appeared in [3].

Corollary 56. Assume that the functions 𝑔, ℎ : [𝑎, 𝑏] → R

are bounded in (𝑎, 𝑏), and 𝑢(𝑥) ∈ D(Λ) satisfies (𝐿 + ℎ)[𝑢] :=
𝑢
󸀠󸀠
+𝑔𝑢
󸀠
+ℎ𝑢 ≥ 0 in (𝑎, 𝑏). Assume that there exists a function

𝑤(𝑥) ∈ D(Λ) such that

𝑤 (𝑥) > 0 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ Λ,

(𝐿 + ℎ) [𝑤] ≤ 0 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ (𝑎, 𝑏) .

(177)

If V(𝑥) = 𝑢(𝑥)/𝑤(𝑥) attains its nonnegative maximum 𝑀 in
(𝑎, 𝑏), then V(𝑥) = 𝑢(𝑥)/𝑤(𝑥) ≡ 𝑀. If V(𝑎) = 𝑀, then V󸀠(𝑎) <
0; if V(𝑏) = 𝑀, then V󸀠(𝑏) > 0.

In Theorem 55, if we take T = Z, where Z is the
set of all integral numbers, we can obtain the following
new maximum principle for second-order mixed Δ and ∇

difference inequality.

Corollary 57. Assume that the functions ℎ, 𝑤, 𝑔1, and 𝑔2 :
[𝑎, 𝑏]Z → R satisfy 𝑤(𝑘) > 0, ∀𝑘 ∈ [𝑎, 𝑏]Z,

1 + 𝑔1 (𝑘) > 0, 1 − 𝑔2 (𝑘) > 0, ∀𝑘 ∈ (𝑎, 𝑏)Z,

∇Δ𝑤 (𝑘) + 𝑔1 (𝑘) Δ𝑤 (𝑘) + 𝑔2 (𝑘) ∇𝑤 (𝑘)

+ ℎ (𝑘)𝑤 (𝑘) ≤ 0, ∀𝑘 ∈ (𝑎, 𝑏)Z.

(178)

Let 𝑢(𝑥) ∈ D(Λ) satisfy

∇Δ𝑢 (𝑘) + 𝑔1 (𝑘) Δ𝑢 (𝑘) + 𝑔2 (𝑘) ∇𝑢 (𝑘)

+ ℎ (𝑘) 𝑢 (𝑘) ≥ 0, ∀𝑘 ∈ (𝑎, 𝑏)Z.

(179)

If V(𝑥) = 𝑢(𝑥)/𝑤(𝑥) attains its nonnegative maximum 𝑀 in
(𝑎, 𝑏)Z, then V(𝑥) = 𝑢(𝑥)/𝑤(𝑥) ≡ 𝑀. If V(𝑎) = 𝑀, then V(𝑎 +
1) < V(𝑎); if V(𝑏) = 𝑀, then V(𝑏 − 1) > V(𝑏).

To show the value of Theorem 55, we need the following
definition.

Definition 58. One says that 𝑥0 is a change sign point of 𝑢, if
there exist 𝛿 > 0 and 𝜂 > 0, such that 𝑢(𝑥) has different sign
on (𝑥0 − 𝛿, 𝑥0)T and [𝑥0, 𝑥0 + 𝜂)T , that is, either 𝑢(𝑥) > 0 on
(𝑥0 − 𝛿, 𝑥0)T and 𝑢(𝑥) ≤ 0 on [𝑥0, 𝑥0 + 𝜂)T or 𝑢(𝑥) < 0 on
(𝑥0 − 𝛿, 𝑥0)T and 𝑢(𝑥) ≥ 0 on [𝑥0, 𝑥0 + 𝜂)T .

Remark 59. Theorem 55 shows that a function 𝑢 which
satisfies (151) cannot oscillate too rapidly. In fact, assuming
that 𝑢 > 0 between two of its change sign points 𝑥 = 𝑎,
𝑥 = 𝑏, then 𝑢/𝑤 must have a positive maximum between
them. Hence, Theorem 55 will be violated. Thus, we have the
following corollary.

Corollary 60. Assuming 𝑢(𝑥) ∈ D(Λ) satisfies (𝐿+ℎ)[𝑢] ≥ 0,
then 𝑢 can have at most two change sign points (between which
𝑢 is negative) in any interval (𝑎, 𝑏)T in whichTheorem 55 holds.

By applying the same reasoning to both 𝑢 and −𝑢, we can
obtain the following corollary.

Corollary 61. If 𝑢(𝑥) is a solution of equation 𝑢Δ∇ + 𝑔1𝑢
Δ
+

𝑔2𝑢
∇
+ ℎ𝑢 = 0, then 𝑢 can have at most one change sign point

in any interval (𝑎, 𝑏)T in which Theorem 55 holds.

Theorem 55 depends on the existence of the function 𝑤,
and now, we discuss the existence of the function 𝑤.

Lemma 62. Assume that 𝑔1(𝑥), 𝑔2(𝑥), and ℎ(𝑥) satisfy the
suppositions of Theorem 55, and there are positive numbers
𝑀,𝐿, such that the following properties hold.
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(𝑎) 2𝑀 <
1

(𝑏 − 𝑎)
2
.

(𝑏) min𝑥∈[𝑎,𝑏]T {1 + 𝑔1(𝑥) ∫
𝑥

𝜎(𝑎)
∇𝑞 + 𝑔2(𝑥) ∫

𝜌(𝑥)

𝜎(𝑎)
∇𝑞 +

ℎ(𝑥) ∫
𝑥

𝑎
(∫
𝑦

𝜎(𝑎)
∇𝑞)Δ𝑦} > 𝐿/2.

(𝑐) |ℎ(𝑥)| ≤ 𝑀.

Then there exists a function 𝑤(𝑥) satisfying (162) and 𝑤Δ∇
is bounded in (𝑎, 𝑏)T .

Proof. We can choose

𝑤 (𝑥) = 𝐿 − 𝛽∫

𝑥

𝑎

(∫

𝑦

𝜎(𝑎)

∇𝑞)Δ𝑦, (180)

and then

𝑤
∇
(𝑥) = −𝛽∫

𝜌(𝑥)

𝜎(𝑎)

∇𝑞, 𝑤
Δ
(𝑥) = −𝛽∫

𝑥

𝜎(𝑎)

∇𝑞,

𝑤
Δ∇
(𝑥) = −𝛽.

(181)

Moreover,

(𝐿 + ℎ) [𝑤] = −𝛽{1 + 𝑔1 ∫

𝑥

𝜎(𝑎)

∇𝑞 + 𝑔2 ∫

𝜌(𝑥)

𝜎(𝑎)

∇𝑞

+ℎ∫

𝑥

𝑎

(∫

𝑦

𝜎(𝑎)

∇𝑞)Δ𝑦} + ℎ𝐿.

(182)

Since |ℎ(𝑥)| ≤ 𝑀,

min
𝑥∈[𝑎,𝑏]T

{1 + 𝑔1 ∫

𝑥

𝜎(𝑎)

∇𝑞 + 𝑔2 ∫

𝜌(𝑥)

𝜎(𝑎)

∇𝑞

+ℎ∫

𝑥

𝑎

(∫

𝑦

𝜎(𝑎)

∇𝑞)Δ𝑦} >
𝐿

2
.

(183)

Then ∀𝛽 : 2𝑀 < 𝛽 < (𝐿/(𝑏 − 𝑎)
2
); we have

(𝐿 + ℎ) [𝑤] ≤ 0,

𝛽∫

𝑥

𝑎

(∫

𝑦

𝜎(𝑎)

Δ𝑞)∇𝑦 < 𝐿,

(184)

and hence

𝑤 (𝑥) ≥ 𝐿 − 𝛽(𝑏 − 𝑎)
2
> 0. (185)

Lemma 63. Let 𝑟(𝑥) be a solution of equation

𝑟
Δ∇

+ 𝑔1𝑟
Δ
+ 𝑔2𝑟
∇
+ ℎ𝑟 = 0, (186)

where 𝑔1, 𝑔2, ℎ, and 𝑤 satisfy the conditions of Theorem 55. If
𝑟 is not identically zero and

𝑟 (𝑎) = 0, (187)

then 𝑟 cannot vanish in some right neighbourhood of 𝑎.

Proof. If 𝑎 is right-scattered, then 𝑟(𝜎(𝑎)) ̸= 0. Otherwise, we
have that 𝑟Δ(𝑎) = 0; this shows that

V (𝑎) = 0,

VΔ (𝑎) =
𝑟
Δ
(𝑎) 𝑤 (𝑎) − 𝑟 (𝑎) 𝑤

Δ
(𝑎)

𝑤 (𝑎)𝑤 (𝜎 (𝑎))
= 0.

(188)

Then we can obtain V(𝑥) ≡ 0. In fact, according to
Theorem 55, V = 𝑟/𝑤 cannot attain its maximum nor
minimum at 𝑎. If V attains its maximum in (𝑎, 𝑏)T , then V ≡ 0

since V(𝑎) = 0. If V attains its maximum at 𝑏, hence −V attains
its maximum in (𝑎, 𝑏)T . Next we applyTheorem 47 to −V and
obtain that −V(𝑥) is constant; then V(𝑥) ≡ 0 since −V(𝑎) = 0.
Thus, in all cases we get that V(𝑥) ≡ 0; this implies that
𝑟(𝑥) ≡ 0 which is contradiction with the assumption.

If 𝑎 is right-dense, we obtain that 𝑟 cannot vanish in some
right neighbourhood of 𝑎. In fact, if it is not so, then there
exists a sequence 𝑡𝑛 → 𝑎

+, and 𝑟(𝑡𝑛) = 0; then 𝑟
Δ
(𝑎) =

lim𝑛→∞(𝑟(𝑎) − 𝑟(𝑡𝑛))/(𝑎 − 𝑡𝑛) = 0. Again we obtain that
𝑟(𝑥) ≡ 0 by a similar proof of above, which is contradiction
with the assumption. Thus, 𝑟 cannot vanish in some right
neighbourhood of 𝑎.

Remark 64. Under the conditions of Lemma 63, if 𝑟 has any
change sign point at the right of 𝑎, we denote the first one by
𝑎
∗ and call it the conjugate change sign point of 𝑎. Thus, 𝑟

does not change its sign in the interval (𝑎, 𝑎∗)T . Without loss
of the generality, we assume that

𝑟 (𝑥) > 0 for 𝑥 ∈ (𝑎, 𝑎∗)
T
. (189)

Then function 𝑟/𝑤 is positive in (𝑎, 𝑎
∗
)T and 𝑎

∗ is also a
change sign point of 𝑟/𝑤. By the definition of change sign
point, we have that 𝑟(𝑎∗)/𝑤(𝑎∗) ≤ 0. Hence, 𝑟/𝑤 has a
maximum in (𝑎, 𝑎

∗
)T . Therefore by Theorem 55, 𝑤 cannot

satisfy (𝐿 + ℎ)[𝑤] ≤ 0. That is, under these cases, there is no
function 𝑤 satisfying the condition of Theorem 51.

On the other hand, if 𝑏 is any point in (𝑎, 𝑎∗)T , a function
𝑤 can be found so that 𝑟/𝑤 satisfies themaximumprinciple of
Theorem 55. To see this, we observe first that 𝑟(𝑥) is bounded
from below by a positive number on any subinterval [𝑐, 𝑏]T
contained in (𝑎, 𝑎∗)T . Consequently, for sufficiently small 𝜀 >
0, the function 𝑤(𝑥) = 𝑟(𝑥) + 𝜀(2 − 𝑒𝛼(𝑥, 𝑎)) is positive on
[𝑎, 𝑏]T . If𝛼 is selected so that (𝐿+ℎ)[2−𝑒𝛼(𝑥, 𝑎)] ≤ 0 in (𝑎, 𝑏)T ,
then𝑤 is a function for whichTheorem 55 holds.Thus, we get
the following result.

Theorem 65. If 𝑎∗ is the conjugate change sign point of 𝑎,
letting 𝑔1, 𝑔2, and ℎ(𝑥) be bounded on (𝑎, 𝑏)T , such that
(92) and (166) hold, then there exists a 𝑤(𝑥) > 0 such that
Theorem 55 holds on the interval [𝑎, 𝑏]T if and only if 𝑏 < 𝑎

∗.
If 𝑟(𝑥) (the solution of (186) which satisfies 𝑟(𝑎) = 0) has
no change sign point at the right of 𝑎, one sets 𝑎∗ = ∞, and
Theorem 55 holds on every interval [𝑎, 𝑏]T .

In Theorem 65, if we take T = R, we have the following
corollary which is the result that appeared in [3].

Corollary 66. Assume that 𝑎∗ is the conjugate change sign
point of 𝑎, and the functions g, ℎ : [𝑎, 𝑏] → R are bounded
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in (𝑎, 𝑏); then there exists a function 𝑤(𝑥) > 0 such that
Corollary 52 holds on the interval [𝑎, 𝑏] if and only if 𝑏 < 𝑎

∗. If
𝑟(𝑥) (the solution of 𝑟󸀠󸀠 +𝑔𝑟󸀠 +ℎ𝑟 = 0, which satisfies 𝑟(𝑎) = 0)
has no change sign point at the right of 𝑎, one sets 𝑎∗ = ∞, and
Corollary 52 holds on every interval [𝑎, 𝑏].

In Theorem 65, if we take T = Z, where Z is the
set of all integral numbers, we can obtain the following
new maximum principle for second-order mixed Δ and ∇

difference inequality.

Corollary 67. Assuming that the functions ℎ, 𝑤, 𝑔1, and 𝑔2 :
[𝑎, 𝑏]Z → R satisfy

1 + 𝑔1 (𝑘) > 0, 1 − 𝑔2 (𝑘) ≥ 0, ∀𝑘 ∈ (𝑎, 𝑏)Z, (190)

then there exists a function 𝑤(𝑘) > 0, ∀𝑘 ∈ [𝑎, 𝑏]Z, such that
Corollary 53 holds on the interval [𝑎, 𝑏]Z if and only if 𝑏 < 𝑎

∗.
If 𝑟(𝑥) (the solution of the equation

∇Δ𝑟 (𝑘) + 𝑔1 (𝑘) Δ𝑟 (𝑘) + 𝑔2 (𝑘) ∇𝑟 (𝑘)

+ ℎ (𝑘) 𝑟 (𝑘) = 0,

(191)

which satisfies 𝑟(𝑎) = 0) has no change sign point at the right
of 𝑎, one sets 𝑎∗ = ∞, and Corollary 53 holds on every interval
[𝑎, 𝑏]Z.

4. Applications to Initial Value Problems

In this section, as an application of the maximum principles
established in section three, firstly, we will prove some
uniqueness theorem of the solution for initial value problem:

𝑢
Δ∇

+ 𝑔1𝑢
Δ
+ 𝑔2𝑢

∇
+ ℎ𝑢 = 𝑓 (𝑥) on (𝑎, 𝑏)T ,

𝑢 (𝑎) = 𝛾1, 𝑢
Δ
(𝑎) = 𝛾2,

(192)

inD(Λ). Secondly, we will discuss the existence of the lower
and upper solutions of (192). Thirdly, we will give a general
scheme for obtaining upper and lower solutions.

Theorem 68. Assume that 𝑔1, 𝑔2, and ℎ satisfy (91) and (92),
and ℎ ≤ 0, (93), (130) hold on (𝑎, 𝑏)T . If 𝑢1 and 𝑢2 are solutions
of the initial value problem (192), then 𝑢1 ≡ 𝑢2.

Proof. We define a function V(𝑥) ∈ D(Λ) by

V (𝑥) = 𝑢1 (𝑥) − 𝑢2 (𝑥) . (193)

Since both 𝑢1 and 𝑢2 satisfy (192), the function V satisfies

VΔ∇ + 𝑔1V
Δ
+ 𝑔2V
∇
+ ℎV = 0,

V (𝑎) = 0, VΔ (𝑎) = 0.

(194)

According to Theorem 51, V cannot attain its maximum nor
minimum at 𝑎. If V attains its maximum at an interior point
of Λ, V ≡ 0 since V(𝑎) = 0. If V attains its maximum at 𝑏,
hence −V attains its maximum at an interior point of Λ. Next
we applyTheorem 47 to −V and obtain that −V(𝑥) is constant;
then V(𝑥) ≡ 0 since −V(𝑎) = 0. The proof is completed.

It follows fromTheorem 65; we get Theorem 69.

Theorem 69. Let 𝑔1, 𝑔2, and ℎ(𝑥) be bounded on (𝑎, 𝑏)T , such
that (92) and (166) hold. Assuming that 𝑢1 and 𝑢2 are solutions
of the initial value problem (192), if 𝑏 < 𝑎

∗, where 𝑎∗ is the
conjugate change sign point of 𝑎, then 𝑢1 ≡ 𝑢2.

More generally, we can prove the following theorem
which shows that the conclusion ofTheorem 69 holds on any
interval [𝑎, 𝑏]T .

Theorem 70. Let 𝑔1, 𝑔2, and ℎ(𝑥) be bounded on (𝑎, 𝑏)T , such
that (92) and (166) hold. Assuming that 𝑢1 and 𝑢2 are solutions
of the initial value problem (192), then 𝑢1 ≡ 𝑢2.

Proof. We define a function 𝑢(𝑥) ∈ D(Λ) by

𝑢 (𝑥) = 𝑢1 (𝑥) − 𝑢2 (𝑥) . (195)

Since both 𝑢1 and 𝑢2 satisfy (192), the function 𝑢 satisfies
(194). We give our proof by two steps.

(1) If 𝑎 is right-scattered, it follows from (194) that
𝑢(𝜎(𝑎)) = 0, 𝑢∇(𝜎(𝑎)) = 𝑢

Δ
(𝑎) = 0, and then we have that

𝑢
Δ∇
(𝜎(𝑎)) + 𝑔1(𝜎(𝑎))𝑢

Δ
(𝜎(𝑎)) = 0. On the other hand,

𝑢
Δ∇
(𝜎 (𝑎)) =

𝑢
Δ
(𝑎) − 𝑢

Δ
(𝜎 (𝑎))

𝑎 − 𝜎 (𝑎)
, (196)

this implies that

𝑢
Δ
(𝑎) − 𝑢

Δ
(𝜎 (𝑎))

𝑎 − 𝜎 (𝑎)
+ 𝑔1 (𝜎 (𝑎)) 𝑢

Δ
(𝜎 (𝑎))

=
𝑢
Δ
(𝜎 (𝑎)) [1 + ] (𝜎 (𝑎)) 𝑔1 (𝜎 (𝑎))]

] (𝜎 (𝑎))
= 0.

(197)

Note that (166); we know that 1 + ](𝜎(𝑎))𝑔1(𝜎(𝑎)) > 0.
This shows that 𝑢Δ(𝜎(𝑎)) = 0. If 𝑎 is right-dense, by using
Lemma 62, there is a 𝜀 > 0 enough small and a function
𝑤(𝑥) > 0 on [𝑎, 𝑎 + 𝜀]T . Let V = 𝑢/𝑤; then

V (𝑎) = 0,

VΔ (𝑎) =
𝑢
Δ
(𝑎) 𝑤 (𝑎) − 𝑢 (𝑎)𝑤

Δ
(𝑎)

𝑤 (𝑎)𝑤 (𝜎 (𝑎))
= 0,

VΔ∇ +
𝐹
Δ∇

+ 𝑔1𝑤
𝜎

𝑤
𝜎𝜌

VΔ +
𝑤
Δ𝜌
+ 𝑔2𝑤

𝜌

𝑤
𝜎𝜌

V∇

+
1

𝑤
𝜎𝜌
(𝐿 + ℎ) [𝑤] V = 0.

(198)

According to Theorem 55, V = 𝑟/𝑤 cannot attain its
maximum nor minimum at 𝑎. If V attains its maximum in
(𝑎, 𝑎+ 𝜀)T , then V ≡ 0 since V(𝑎) = 0. If V attains its maximum
at 𝑎 + 𝜀, hence −V attains its maximum in (𝑎, 𝑎 + 𝜀)T . Next
we applyTheorem 55 to −V and obtain that −V(𝑥) is constant;
then V(𝑥) ≡ 0 since −V(𝑎) = 0. Thus, in all cases we get that
V(𝑥) ≡ 0; this implies that 𝑢(𝑥) ≡ 0 on [𝑎, 𝑎 + 𝜀]T . Thus, we
can get that 𝑢Δ(𝑥) ≡ 0 on [𝑎, 𝑎 + 𝜀)T . If 𝑎 + 𝜀 is left-dense, by
using the continuous 𝑢Δ(𝑥), we have that 𝑢Δ(𝑎+𝜀) = 0. If 𝑎+𝜀
is left-scattered, then 𝑢Δ(𝜌(𝑎 + 𝜀)) = 0, and 𝜌(𝑎 + 𝜀) is right-
scattered; then similar to the above proof of 𝑢Δ(𝜎(𝑎)) = 0, we
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have that 𝑢Δ(𝑎 + 𝜀) = 𝑢
Δ
(𝜎(𝜌(𝑎 + 𝜀))) = 0. Synthesizing the

above proof, we have proven that there exists 𝜀 > 0 (if 𝑎 is
right-scattered, 𝜀 = 𝜇(𝑎)), such that 𝑢(𝑥) ≡ 0 and 𝑢Δ(𝑥) ≡ 0

on [𝑎, 𝑎 + 𝜀]T .
(2) Let

𝜆 = sup {𝑡 ∈ (𝑎, 𝑏]T : 𝑢 (𝑥) ≡ 0, 𝑢
Δ
(𝑥) ≡ 0 on [𝑎, 𝑡)T} .

(199)

If 𝜆 = 𝑏, then the conclusion of Theorem 70 will be proved.
If 𝜆 < 𝑏, then 𝑢(𝑥) ≡ 0 and 𝑢Δ(𝑥) ≡ 0 on [𝑎, 𝜆)T . If 𝜆 is left-
dense, by using the continuous 𝑢Δ(𝑥), we have that 𝑢(𝜆) =
0 and 𝑢

Δ
(𝜆) = 0. If 𝜆 is left-scattered, then 𝑢

Δ
(𝜌(𝜆)) = 0,

and 𝜌(𝜆) is right-scattered; then similar to the above proof of
𝑢
Δ
(𝜎(𝑎)) = 0, we can prove that 𝑢Δ(𝜆) = 𝑢

Δ
(𝜎(𝜌(𝜆))) = 0.

By using the conclusion of step (1), we have that there exists
𝜀 > 0 such that 𝑢(𝑥) ≡ 0 and 𝑢Δ(𝑥) ≡ 0 on [𝜆, 𝜆 + 𝜀]T . Then
we get that 𝑢(𝑥) ≡ 0 and 𝑢Δ(𝑥) ≡ 0 on [𝑎, 𝜆 + 𝜀]T . This is a
contradiction with the definition of 𝜆.Thus, 𝜆 = 𝑏; this shows
that 𝑢1 ≡ 𝑢2 on [𝑎, 𝑏]T . The proof is completed.

Remark 71. Theorems 68 and 69 show that (𝐿+ℎ)[𝑢] = 𝑢
Δ∇
+

𝑔1𝑢
Δ
+𝑔2𝑢
∇
+ℎ𝑢 = 𝑓(𝑥), at most, has one solution satisfying

𝑢(𝑎) = 𝛾1, 𝑢
Δ
(𝑎) = 𝛾2. On the other hand, in many cases, it is

difficult to find a solution of the initial value problem directly,
and therefore, it becomes important to find a lower and upper
solution.

Assume that𝑔1,𝑔2, andℎ are boundedon (𝑎, 𝑏)T ,ℎ(𝑥) ≤ 0

on (𝑎, 𝑏)T and satisfy (91), (92), (93), and (130) for each 𝑥 ∈

(𝑎, 𝑏)T . If we can find a function 𝑧1(𝑥) ∈ D(Λ) satisfying

(𝐿 + ℎ) [𝑧1] ≥ 𝑓 (𝑥) , (200)

𝑧1 (𝑎) ≥ 𝛾1, 𝑧
Δ

1
(𝑎) ≥ 𝛾2, (201)

we define a function V1(𝑥) ∈ D(Λ) by

V1 (𝑥) ≡ 𝑧1 (𝑥) − 𝑢 (𝑥) , (202)

where 𝑢(𝑥) is the solution of (192). Thus,

(𝐿 + ℎ) [V1] ≥ 0,

V1 (𝑎) ≥ 0, VΔ
1
(𝑎) ≥ 0.

(203)

Since V1(𝑎) ≥ 0, V1(𝑥) has a nonnegative maximum at any
interval [𝑎, 𝑥0]T , and using Theorem 47, we know that the
maximum point must be 𝑎 or 𝑥0. However, V

Δ

1
(𝑎) ≥ 0, and

fromTheorem 51 maximum point cannot be 𝑎 unless V1(𝑥) ≡
constant. Thus, we obtain

max
𝑥∈[𝑎,𝑥

0
]T

V1 (𝑥) = V1 (𝑥0) ≥ V1 (𝑎) , 𝑥0 ∈ (𝑎, 𝑏)T . (204)

Since 𝑥0 ∈ (𝑎, 𝑏)T is arbitrary, we can deduce that

VΔ
1
(𝑥) ≥ 0, 𝑥 ∈ (𝑎, 𝑏)T . (205)

Using 𝑥 to take the place of 𝑥0, inequality (204) implies

𝑢 (𝑥) ≤ 𝛾1 + 𝑧1 (𝑥) − 𝑧1 (𝑎) , 𝑥 ≥ 𝑎, (206)

and inequality (205) implies

𝑢
Δ
(𝑥) ≤ 𝑧

Δ

1
(𝑥) , 𝑥 ∈ [𝑎, 𝑏)T . (207)

Since

𝑧1 (𝑎) − 𝛾1 ≥ 0, (208)

inequality (206) implies

𝑢 (𝑥) ≤ 𝑧1 (𝑥) . (209)

Similarly, assume that we can find a function 𝑧2(𝑥) ∈ D(Λ)

satisfying

(𝐿 + ℎ) [𝑧2] ≤ 𝑓 (𝑥) , (210)

𝑧2 (𝑎) ≤ 𝛾1, 𝑧
Δ

2
(𝑎) ≤ 𝛾2. (211)

The same as the above statement, define

V2 (𝑥) ≡ 𝑢 (𝑥) − 𝑧2 (𝑥) , (212)

and we obtain

𝑢 (𝑥) ≥ 𝑧2 (𝑥) , 𝑢
Δ
(𝑥) ≥ 𝑧

Δ

2
(𝑥) . (213)

Therefore, we have established the following theorem, which
gives a sufficient condition for the lower and upper solutions.

Theorem 72. Assume that 𝑔1, 𝑔2, and ℎ are bounded on
(𝑎, 𝑏)T , ℎ(𝑥) ≤ 0 on (𝑎, 𝑏)T and satisfy (91), (92), (93), and
(130) for each 𝑥 ∈ (𝑎, 𝑏)T . Let 𝑢(𝑥) ∈ D(Λ) be a solution of
(192). Let 𝑧1(𝑥) and 𝑧2(𝑥) satisfy (200), (201) and (210), (211).
Then 𝑧2(𝑥) ≤ 𝑢(𝑥) ≤ 𝑧1(𝑥), 𝑧Δ2 (𝑥) ≤ 𝑢

Δ
(𝑥) ≤ 𝑧

Δ

1
(𝑥).

In the following, we will discuss the existence of the lower
and upper solutions.

Theorem 73. Assume that 𝑔1, 𝑔2, and ℎ are bounded on
(𝑎, 𝑏)T , are bounded on (𝑎, 𝑏)T , and satisfy (166), (92), (93),
and (130).

(1) If 𝑓(𝑥) is continuous on Λ, then there exist functions
𝑧1(𝑥) and 𝑧2(𝑥) which satisfy (200), (201) and (210),
(211), respectively.

(2) Moreover, if ℎ(𝑥) ≤ 0 on (𝑎, 𝑏)T , then 𝑧2(𝑥) ≤ 𝑢(𝑥) ≤

𝑧1(𝑥), 𝑧Δ2 (𝑥) ≤ 𝑢
Δ
(𝑥) ≤ 𝑧

Δ

1
(𝑥).

Proof. It follows from (166) that

1 + ]𝑔1 ≥ 𝑡1 > 0, on (𝑎, 𝑏)T , (214)

so we can select 𝛼 > 0 large enough, such that 𝑘 > 0, where 𝑘
is defined by

𝑘 = min
𝑥∈[𝑎,𝑏]T

[(1 + ]𝑔1) 𝛼
2
+ 𝛼 (𝑔1 + 𝑔2) + ℎ (1 + 𝛼] (𝑥))]

×
𝑒𝛼 (𝑥, 𝑎)

1 + 𝛼]
.

(215)
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Let

𝐴 = max{𝛾1,
𝛾2

𝛼
,
1

𝑘
⋅ max
𝑥∈[𝑎,𝑏]T

{𝑓 (𝑥)} , 0} ; (216)

we show that, under the stated assumptions, the function

𝑧1 (𝑥) := 𝐴𝑒𝛼 (𝑥, 𝑎) (217)

satisfies (200) and (201). To see that (200) is satisfied, we note
that

(𝐿 + ℎ) [𝑧1]

= 𝐴 [(1 + ]𝑔1) 𝛼
2
+ 𝛼 (𝑔1 + 𝑔2) + ℎ (1 + 𝛼])]

×
𝑒𝛼 (𝑥, 𝑎)

1 + 𝛼]

≥ 𝐴𝑘

≥
1

𝑘
⋅ max
𝑥∈[𝑎,𝑏]T

{𝑓 (𝑥)} ⋅ 𝑘

≥ 𝑓 (𝑥) .

(218)

To see that (201) is satisfied, we note that

𝑧1 (𝑎) = 𝐴 ≥ 𝛾1, 𝑧
Δ

1
(𝑎) = 𝐴𝛼 ≥ 𝛾2. (219)

Similarly, we can choose

𝑧2 (𝑥) := 𝐵𝑒𝛼 (𝑥, 𝑎) , (220)

where

𝐵 = min{𝛾1,
𝛾2

𝛼
,
1

𝑘
⋅ { min
𝑥∈[𝑎,𝑏]T

𝑓 (𝑥)} , 0} . (221)

To see that (210) is satisfied, we note that

(𝐿 + ℎ) [𝑧2]

= 𝐵 [(1 + ]𝑔1) 𝛼
2
+ 𝛼 (𝑔1 + 𝑔2) + ℎ (1 + 𝛼] (𝑥))]

×
𝑒𝛼 (𝑥, 𝑎)

1 + 𝛼]

≤ 𝐵𝑘

≤
1

𝑘
⋅ min
𝑥∈[𝑎,𝑏]T

{𝑓 (𝑥)} ⋅ 𝑘

≤ 𝑓 (𝑥) .

(222)

To see that (211) is satisfied note that

𝑧2 (𝑎) = 𝐵 ≤ 𝛾1, 𝑧
Δ

2
(𝑎) = 𝐵𝛼 ≤ 𝛾2. (223)

Thus, conclusion (1) holds. Conclusion (2) can be deduced
fromTheorem 72.

The proof is completed.

As we all know, the accuracy of the approximation will
depend on how well we can choose the functions 𝑧1(𝑥) and
𝑧2(𝑥). So we next search for the following general scheme for
obtaining upper and lower bounds. Suppose we divide the
interval [𝑎, 𝑏]T into𝑁 subintervals

𝑎 = 𝑥0 < 𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑁−1 < 𝑥𝑁 = 𝑏. (224)

On each subinterval, we will select 𝑧1(𝑥) as the following
form:

𝑐 ∫

𝑥

𝑡

(∫

𝑦

𝑡

∇𝑞)Δ𝑦 + 𝑑∫

𝑥

𝑡

∇𝑞 + 𝑒 (225)

and choose the coefficients 𝑐, 𝑑, 𝑒 so that 𝑧1(𝑎) = 𝛾1, 𝑧
Δ

1
(𝑎) =

𝛾2, and 𝑧1 ∈ D(Λ). Also, 𝑧1 will be selected so that inequality
(200) holds in each subinterval (𝑥𝑖−1, 𝑥𝑖)T . We set

𝑧1 (𝑥) = 𝑐𝑖 ∫

𝑥

𝑥i

(∫

𝑦

𝑥
𝑖

∇𝑞)Δ𝑦 + 𝑑𝑖 ∫

𝑥

𝑥
𝑖

∇𝑞 + 𝑒𝑖

for 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1)T , 𝑖 = 0, 1, . . . , 𝑁 − 1.

(226)

The constants 𝑐𝑖, 𝑑𝑖, 𝑒𝑖, 𝑖 = 0, 1, 2, . . . , 𝑁 − 1, and the number
𝑁 of subintervals will be chosen so that all the required
conditions are satisfied. We proceed in a step by step manner
starting with the interval (𝑥0, 𝑥1)T . The initial conditions

𝑧1 (𝑎) = 𝛾1, 𝑧
Δ

1
(𝑎) = 𝛾2, (227)

require that 𝑒0 = 𝛾1 and 𝑑0 = 𝛾2. Next, we divide our proof
into three parts.

(i) If 𝑥0 is right-scattered and 𝜎(𝑥0) is also right-scattered,
we let 𝑥1 = 𝜎(𝜎(𝑥0)), and then we only have one point 𝜎(𝑥0)
in (𝑥0, 𝑥1)T , and hence, in this point, the inequality

(𝐿 + ℎ) [𝑧1] ≥ 𝑓 (𝑥) (228)

becomes
𝑐0 [1 + 𝑔

𝜎

1
(𝑥0) ] (𝜎 (𝑥0))] + 𝛾2 (𝑔

𝜎

1
(𝑥0) + 𝑔

𝜎

2
(𝑥0))

+ ℎ (𝜎 (𝑥0)) (𝛾2 ∫

𝜎(𝑥
0
)

𝑥
0

∇𝑞 + 𝛾1)

≥ 𝑓 (𝜎 (𝑥0)) .

(229)

If 1 + 𝑔1] ≥ 𝑡1 > 0 and 𝑔1, 𝑔2, ℎ, and 𝑓 are bounded, then 𝑐0
can be properly selected so that (229) is an equality. Thus, in
this case, 𝑧1(𝑥) is a solution of (192) in (𝑥0, 𝑥1)T .

(ii) If 𝑥0 is right-scattered and 𝜎(𝑥0) is right-dense, we let
𝑥1 > 𝜎(𝑥0), and then the inequality

(𝐿 + ℎ) [𝑧1] ≥ 𝑓 (𝑥) , 𝑥 ∈ (𝑥0, 𝑥1)T
, (230)

becomes

𝑐0 [1 + 𝑔1 (𝑥) (∫

𝑥

𝑥
0

∇𝑞) + 𝑔2 (𝑥) (∫

𝜌(𝑥)

𝑥
0

∇𝑞)

+ℎ (𝑥) ∫

𝑥

𝑥
0

(∫

𝑦

𝑥
0

∇𝑞)Δ𝑦] + 𝛾2 (𝑔1 (𝑥) + 𝑔2 (𝑥))

+ ℎ (𝑥) (𝛾2 ∫

𝑥

𝑥
0

∇𝑞 + 𝛾1)

≥ 𝑓 (𝑥) , 𝑥 ∈ (𝑥0, 𝑥1)T
.

(231)
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If 𝑥 = 𝜎(𝑥0), we have that

𝑐0 [1 + 𝑔1 (𝜎 (𝑥0)) (∫

𝜎(𝑥
0
)

𝑥
0

∇𝑞)

+ 𝑔2 (𝜎 (𝑥0)) (∫

𝜌(𝜎(𝑥
0
))

𝑥
0

∇𝑞)

+ℎ (𝜎 (𝑥0)) ∫

𝜎(𝑥
0
)

𝑥
0

(∫

𝑦

𝑥
0

∇𝑞)Δ𝑦]

+ 𝛾2 (𝑔1 (𝜎 (𝑥0)) + 𝑔2 (𝜎 (𝑥0)))

+ ℎ (𝜎 (𝑥0)) (𝛾2 ∫

𝜎(𝑥
0
)

𝑥
0

∇𝑞 + 𝛾1)

= 𝑐0 [1 + 𝑔1 (𝜎 (𝑥0)) ] (𝜎 (𝑥0))]

+ 𝛾2 (𝑔1 (𝜎 (𝑥0)) + 𝑔2 (𝜎 (𝑥0)))

+ ℎ (𝜎 (𝑥0)) (𝛾2] (𝜎 (𝑥0)) + 𝛾1)

≥ 𝑓 (𝜎 (𝑥0)) .

(232)

Thus, if 𝑔1, 𝑔2, 𝑓, and ℎ are bounded, then 𝑥1 can be selected
so close to 𝜎(𝑥0), and 𝑐0 can be taken so large that (231) holds
for 𝑥 ∈ (𝑥0, 𝑥1)T . Moreover, when 𝑥1 is sufficiently close to
𝜎(𝑥0), we can properly select 𝑐0, such that (231) is close to an
equality; then 𝑧1(𝑥) is also close to the solution of (192) in
(𝑥0, 𝑥1)T .

(iii) If 𝑥0 is right-dense, the inequality

(𝐿 + ℎ) [𝑧1] ≥ 𝑓 (𝑥) , 𝑥 ∈ (𝑥0, 𝑥1)T
, (233)

becomes

𝑐0 [1 + 𝑔1 (𝑥) (∫

𝑥

𝑥
0

∇𝑞) + 𝑔2 (𝑥) (∫

𝜌(𝑥)

𝑥
0

∇𝑞)

+ℎ (𝑥) ∫

𝑥

𝑥
0

(∫

𝑦

𝑥
0

∇𝑞)Δ𝑦]

+ 𝛾2 (𝑔1 + 𝑔2) + ℎ(𝛾2 ∫

𝑥

𝑥
0

∇𝑞 + 𝛾1)

≥ 𝑓 (𝑥) , 𝑥 ∈ (𝑥0, 𝑥1)T
.

(234)

If 𝑔1, 𝑔2, and ℎ are bounded, then 𝑥1 can be selected so close
to 𝑥0 that

[1 + 𝑔1 (𝑥) (∫

𝑥

𝑥
0

∇𝑞) + 𝑔2 (𝑥) (∫

𝜌(𝑥)

𝑥
0

∇𝑞)

+ℎ (𝑥) ∫

𝑥

𝑥
0

(∫

𝑦

𝑥
0

∇𝑞)Δ𝑦]

≥ 𝑙 > 0, for 𝑥 ∈ (𝑥0, 𝑥1)T ,

(235)

where 𝑙 > 0 is a positive constant. If, in addition, 𝑓 is
bounded, then 𝑐0 can be taken so large that (234) holds for
all 𝑥 in (𝑥0, 𝑥1)T . Moreover, when 𝑥1 is sufficiently close to

𝑥0, we can properly select 𝑐0, such that (234) is close to an
equality; then 𝑧1(𝑥) is also close to the solution of (192) in
(𝑥0, 𝑥1)T .

Following all of the above proof, we have proved that there
exists an 𝑥1 > 𝑥0 and a large enough 𝑐0, such that (200) holds
for all 𝑥 in (𝑥0, 𝑥1)T for

𝑧1 (𝑥) = 𝑐0 ∫

𝑥

𝑥
0

(∫

𝑦

𝑥
0

∇𝑞)Δ𝑦

+ 𝛾2 ∫

𝑥

𝑥
0

∇𝑞 + 𝛾1 for 𝑥 ∈ (𝑥0, 𝑥1)T .
(236)

We now turn to the interval (𝑥1, 𝑥2)T , with 𝑧1(𝑥) being
defined by

𝑧1 (𝑥) = 𝑐1 ∫

𝑥

𝑥
1

(∫

𝑦

𝑥
1

∇𝑞)Δ𝑦

+ 𝑑1 ∫

𝑥

𝑥
1

∇𝑞 + 𝑒1 for 𝑥 ∈ (𝑥1, 𝑥2)T .
(237)

To insure the continuity of 𝑧1, 𝑧
Δ

1
, and 𝑧∇

1
at 𝑥1, we choose

𝑒1 = 𝑐0 ∫

𝑥
1

𝑥
0

(∫

𝑦

𝑥
0

∇𝑞)Δ𝑦 + 𝛾2 ∫

𝑥
1

𝑥
0

∇𝑞 + 𝛾1,

𝑑1 = 𝑐0 ∫

𝑥
1

𝑥
0

∇𝑞 + 𝛾2.

(238)

In fact, by computing we get that

lim
𝑥→𝑥

1

𝑧1 (𝑥) = 𝑒1 = 𝑧1 (𝑥1) ,

lim
𝑥→𝑥

1

𝑧
Δ

1
(𝑥) = 𝑑1 = 𝑐0 ∫

𝑥
1

𝑥
0

∇𝑞 + 𝛾2 = 𝑧
Δ

1
(𝑥1) ,

lim
𝑥→𝑥

+

1

𝑧
∇

1
(𝑥) = 𝑑1 = 𝑐0 ∫

𝑥
1

𝑥
0

∇𝑞 + 𝛾2,

lim
𝑥→𝑥

−

1

𝑧
∇

1
(𝑥) = 𝑐0 ∫

𝜌(𝑥
1
)

𝑥
0

∇𝑞 + 𝛾2 = 𝑧
∇

1
(𝑥1) .

(239)

Thus, 𝑧1, 𝑧
Δ

1
are continuous at 𝑥1, and 𝑧

∇

1
is left-dense

continuous at 𝑥1. In the interval (𝑥1, 𝑥2)T , we apply the same
reasoning of (𝑥0, 𝑥1)T to (𝑥1, 𝑥2)T and get that there exists an
𝑥2 > 𝑥1 and a large enough 𝑐1, such that (200) holds for all 𝑥
in (𝑥1, 𝑥2)T .

Proceeding in this fashion, we determine each 𝑑𝑖, 𝑒𝑖

so that 𝑧1 and 𝑧
Δ

1
are continuous everywhere; 𝑧∇

1
is left-

dense continuous everywhere, and if 𝑥𝑖 is a left-dense point,
we always take interval (𝑥𝑖, 𝑥𝑖+1)T so small, such that the
coefficient of 𝑐𝑖 satisfies:

[1 + 𝑔1 (𝑥) (∫

𝑥

𝑥
𝑖

∇𝑞) + 𝑔2 (𝑥) (∫

𝜌(𝑥)

𝑥
𝑖

∇𝑞)

+ℎ (𝑥) ∫

𝑥

𝑥
𝑖

(∫

𝑦

𝑥
𝑖

∇𝑞)Δ𝑦]

≥ 𝑙𝑖 > 0, for 𝑥 ∈ (𝑥0, 𝑥1)T ,

(240)
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where 𝑙𝑖 > 0 is a positive constant. Also, we take the constant
𝑐𝑖 to be large enough, so that (𝐿 + ℎ)[𝑧1] ≥ 𝑓(𝑥) holds on
(𝑥𝑖, 𝑥𝑖+1)T . In fact, the quantities 𝑑𝑖, 𝑒𝑖 are determined by the
recursion formulas

𝑒𝑖 = 𝑐𝑖−1 ∫

𝑥
𝑖

𝑥
𝑖−1

(∫

𝑦

𝑥
𝑖
−1

∇𝑞)Δ𝑦 + 𝑑𝑖−1 ∫

𝑥
𝑖

𝑥
𝑖−1

∇𝑞 + 𝑒𝑖−1,

𝑑𝑖 = 𝑐𝑖−1 ∫

𝑥

𝑥
𝑖−1

∇𝑞 + 𝑑𝑖−1.

(241)

In an actual computation to determine the 𝑐𝑖, it is convenient
to replace 𝑓 by its maximum in the 𝑖th subinterval and to
replace 𝑔1, 𝑔2, and ℎ by either their maximum or minimum,
whichever may be appropriate for making (𝐿 + ℎ)[𝑧1] ≥ 𝑓(𝑥)

throughout.
In a similar manner we may construct lower bounds.The

constants 𝑑𝑖, 𝑒𝑖 are selected in exactly the same way, and the
quantities −𝑐𝑖 are taken so large that (𝐿 + ℎ)[𝑧2] ≤ 𝑓(𝑥) holds
everywhere.

If 𝑓, 𝑔1, 𝑔2, and ℎ are continuous, by the above process,
it can be shown that, as the maximum length of the subinter-
vals, the upper and lower bounds both tend to the solution 𝑢.
The above discussion leads to the following theorem.

Theorem 74. Assume that 𝑔1, 𝑔2, and ℎ are bounded and
continuous on (𝑎, 𝑏)T and satisfy (166), (92), (93), and (130).
If 𝑓(𝑥) is continuous on Λ and ℎ(𝑥) ≤ 0 on (𝑎, 𝑏)T , then there
exist the upper solution sequence {𝑧(𝑛)

1
(𝑥)} and lower solution

{𝑧
(𝑛)

2
(𝑥)}; they both tend to the solution 𝑢 of (192).

Thus far in this section, we have assumed that ℎ(𝑥) ≤ 0.
We now take up the problem of approximating the solution
of the equation

(𝐿 + ℎ) [𝑢] = 𝑢
Δ∇

+ 𝑔1𝑢
Δ
+ 𝑔2𝑢

∇
+ ℎ𝑢 = 𝑓 (𝑥) (242)

with initial conditions

𝑢 (𝑎) = 𝛾1, 𝑢
Δ
(𝑎) = 𝛾2 (243)

when the function ℎ(𝑥) may be positive. Under these cir-
cumstances we employ the generalized maximum principle
(Theorem 51). To do so, we suppose that there is a function𝑤
which is positive on [𝑎, 𝑏]T and which has property that

(𝐿 + ℎ) [𝑤] ≤ 0 for each 𝑥 ∈ [𝑎, 𝑏]T . (244)

For example, we can take the function

𝑤 (𝑥) = 𝐿 − 𝛽∫

𝑥

𝑎

(∫

𝑦

𝜎(𝑎)

∇𝑞)Δ𝑦, (245)

defined in Lemma 62.
We saw in Section 3 that V = 𝑢/𝑤 satisfies an equation of

the form

(𝐿 + 𝐻) [V] = VΔ∇ + 𝐺1V
Δ
+ 𝐺2V

∇
+ 𝐻V =

𝑓

𝑤
𝜎𝜌

(246)

with 𝐺1 = (𝐹
Δ∇

+ 𝑔1𝑤
𝜎
)/𝑤
𝜎𝜌, 𝐺2 = (𝑤

Δ𝜌
+ 𝑔2𝑤

𝜌
)/𝑤
𝜎𝜌,

𝐻 = (1/𝑤
𝜎𝜌
)(𝐿 + ℎ)[𝑤] ≤ 0. Now, we define the comparison

functions 𝑧1(𝑥) and 𝑧2(𝑥), so that 𝑧1/𝑤 and 𝑧2/𝑤 provide the
bounds for 𝑢/𝑤. First, we take 𝑧1(𝑥) and 𝑧2(𝑥), such that the
inequalities

(𝐿 + ℎ) [𝑧1] ≥ 𝑓 (𝑥) , 𝑧1 (𝑎) ≥ 𝛾1,

𝑧
Δ

1
(𝑎) 𝑤 (𝑎) − 𝑧1 (𝑎) 𝑤

Δ
(𝑎)

≥ 𝛾2𝑤 (𝑎) − 𝛾1𝑤
Δ
(𝑎) ,

(𝐿 + ℎ) [𝑧2] ≤ 𝑓 (𝑥) , 𝑧2 (𝑎) ≤ 𝛾1,

𝑧
Δ

2
(𝑎) 𝑤 (𝑎) − 𝑧2 (𝑎) 𝑤

Δ
(𝑎)

≤ 𝛾2𝑤 (𝑎) − 𝛾1𝑤
Δ
(𝑎)

(247)

hold. Then, at 𝑥 = 𝑎,

𝑧2

𝑤
≤
𝑢

𝑤
≤
𝑧1

𝑤
, (

𝑧2

𝑤
)

Δ

≤ (
𝑢

𝑤
)

Δ

≤ (
𝑧1

𝑤
)

Δ

. (248)

Moreover, it is easily seen by computing that

(𝐿 + 𝐻) [
𝑧2

𝑤
] ≤ (𝐿 + 𝐻) [

𝑢

𝑤
] ≤ (𝐿 + 𝐻) [

𝑧1

𝑤
] . (249)

Hence, if the conditions of Lemma 54 hold, by using
Lemma 54 andTheorem 72, we know that, for 𝑥 ∈ [𝑎, 𝑏]T ,

𝑧2

𝑤
≤
𝑢

𝑤
≤
𝑧1

𝑤
,

(
𝑧2

𝑤
)

Δ

≤ (
𝑢

𝑤
)

Δ

≤ (
𝑧1

𝑤
)

Δ

.

(250)

The first of these sets of inequalities gives the bounds

𝑧2 (𝑥) ≤ 𝑢 (𝑥) ≤ 𝑧1 (𝑥) . (251)

The second set yields

𝑧
Δ

2
(𝑥)𝑤 (𝑥) − 𝑧2 (𝑥) 𝑤

Δ
(𝑥)

≤ 𝑢
Δ
(𝑥) 𝑤 (𝑥) − 𝑢 (𝑥)𝑤

Δ
(𝑥)

≤ 𝑧
Δ

1
(𝑥)𝑤 (𝑥) − 𝑧1 (𝑥) 𝑤

Δ
(𝑥) .

(252)

Since 𝑤 is positive on [𝑎, 𝑏]T , we find

𝑧
Δ

2
(𝑥) +

𝑤
Δ
(𝑥)

𝑤 (𝑥)
[𝑢 (𝑥) − 𝑧2 (𝑥)]

≤ 𝑢
Δ
(𝑥) ≤ 𝑧

Δ

1
(𝑥) −

𝑤
Δ
(𝑥)

𝑤 (𝑥)

× [𝑧1 (𝑥) − 𝑢 (𝑥)] .

(253)

If 𝑤Δ(𝑥) ≤ 0, we may substitute the upper bound of 𝑢(𝑥)
as given in (251) into the left side of (253) and we may
substitute the lower bound of 𝑢(𝑥) into the right side of (253).
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If 𝑤Δ(𝑥) ≥ 0, we use the lower bound of 𝑢(𝑥) on the left and
the upper bound of 𝑢(𝑥) on the right. We thus find that

𝑧
Δ

2
(𝑥) −

−𝑤
Δ
(𝑥)

𝑤 (𝑥)
[𝑧1 (𝑥) − 𝑧2 (𝑥)]

≤ 𝑢
Δ
(𝑥)

≤ 𝑧
Δ

1
(𝑥) +

−𝑤
Δ
(𝑥)

𝑤 (𝑥)
[𝑧1 (𝑥) − 𝑧2 (𝑥)] ,

if 𝑤Δ (𝑥) ≤ 0,

𝑧
Δ

2
(𝑥) ≤ 𝑢

Δ
(𝑥) ≤ 𝑧

Δ

1
(𝑥) ,

if 𝑤Δ (𝑥) ≥ 0.

(254)

Inequalities (251) and (254) give the bounds for 𝑢(𝑥) and
𝑢
Δ
(𝑥)which are more precise when 𝑧1(𝑥)−𝑧2(𝑥) and 𝑧

Δ

1
(𝑥)−

𝑧
Δ

2
(𝑥) are smaller.
It is always possible to find a positive function 𝑤 which

satisfies (𝐿 + ℎ)[𝑤] ≤ 0 on a sufficiently small interval, but in
general, there is no such function if the interval is too large.
Once more we resort to breaking up the interval and piecing
together functions defined on subintervals. Let 𝑤 > 0 and
(𝐿 + ℎ)[𝑤] ≤ 0 on an interval [𝑎, 𝑥∗]T , and let 𝑤∗ be another
positive functionwhich satisfies (𝐿+ℎ)[𝑤∗] ≤ 0 on an interval
[𝑥
∗
, 𝑏]T . We wish to find bounds for the solution 𝑢 of the

initial value problem (192), on the whole interval [𝑎, 𝑏]T .
Let 𝑧1(𝑥) and 𝑧2(𝑥) satisfy the conditions

(𝐿 + ℎ) [𝑧2] ≤ 𝑓 (𝑥) ≤ (𝐿 + ℎ) [𝑧1] (255)

on the interval [𝑎, 𝑥∗]T , and

𝑧2 (𝑎) ≤ 𝛾1 ≤ 𝑧1 (𝑎) ,

𝑧
Δ

2
(𝑎) 𝑤 (𝑎) − 𝑧2 (𝑎) 𝑤

Δ
(𝑎)

≤ 𝛾2𝑤 (𝑎) − 𝛾1𝑤
Δ
(𝑎)

≤ 𝑧
Δ

1
(𝑎) 𝑤 (𝑎) − 𝑧1 (𝑎) 𝑤

Δ
(𝑎) .

(256)

Then

𝑧2 ≤ 𝑢 ≤ 𝑧1,

(
𝑧2

𝑤
)

Δ

≤ (
𝑢

𝑤
)

Δ

≤ (
𝑧1

𝑤
)

Δ

for 𝑥 ∈ [𝑎, 𝑥∗]
T
.

(257)

From these, we get the bounds for 𝑢(𝑥∗) and 𝑢
Δ
(𝑥
∗
). In

addition, if a function 𝑤
∗ which satisfies (𝐿 + ℎ)[𝑤

∗
] ≤ 0

on an interval [𝑥∗, 𝑏]T is given, we can then find bounds for
𝑢/𝑤
∗ and (𝑢/𝑤∗)Δ, as before. Let the functions 𝑧∗

1
and 𝑧∗
2
be

defined on [𝑥∗, 𝑏]T and they satisfy

(𝐿 + ℎ) [𝑧
∗

2
] ≤ 𝑓 (𝑥) ≤ (𝐿 + ℎ) [𝑧

∗

1
] in [𝑥

∗
, 𝑏]

T
,

𝑧
∗

2
(𝑥
∗
) ≤ 𝑢 (𝑥

∗
) ≤ 𝑧
∗

1
(𝑥
∗
) ,

(
𝑧
∗

2

𝑤
∗
)

Δ

≤ (
𝑢

𝑤
∗
)

Δ

≤ (
𝑧
∗

1

𝑤
∗
)

Δ

at 𝑥 = 𝑥
∗
.

(258)

Then we find, as we did previously, that

𝑧
∗

2
(𝑥) ≤ 𝑢 (𝑥) ≤ 𝑧

∗

1
(𝑥) ,

(
𝑧
∗

2

𝑤
∗
)

Δ

≤ (
𝑢

𝑤
∗
)

Δ

≤ (
𝑧
∗

1

𝑤
∗
)

Δ

for 𝑥 ∈ [𝑥∗, 𝑏]
T
.

(259)

While we do not know 𝑢(𝑥
∗
) and (𝑢/𝑤∗)Δ at 𝑥∗, but we know

their bounds, therefore, we can give explicit conditions on the
values of 𝑧∗

1
, (𝑧∗
1
)
Δ, 𝑧∗
2
, and (𝑧∗

2
)
Δ at 𝑥∗ which assure that the

above inequalities are satisfied.
In fact, since at 𝑥∗ we should have that

(
𝑢

𝑤
∗
)

Δ

= (
𝑢

𝑤
⋅
𝑤

𝑤
∗
)

Δ

= (
𝑢

𝑤
)

Δ

⋅
𝑤

𝑤
∗
+
𝑢
𝜎

𝑤
𝜎
⋅ (

𝑤

𝑤
∗
)

Δ

≤ (
𝑧1

𝑤
)

Δ

⋅
𝑤

𝑤
∗
+
𝑢
𝜎

𝑤
𝜎
⋅ (

𝑤

𝑤
∗
)

Δ

= (
𝑧1

𝑤
)

Δ

⋅
𝑤

𝑤
∗
−

𝑢
𝜎

𝑤
∗𝜎

𝑤

𝑤
𝜎
(
(𝑤
∗
)
Δ

𝑤
∗

−
𝑤
Δ

𝑤
) ,

(
𝑢

𝑤
∗
)

Δ

= (
𝑢

𝑤
⋅
𝑤

𝑤
∗
)

Δ

≥ (
𝑧2

𝑤
)

Δ

⋅
𝑤

𝑤
∗
−

𝑢
𝜎

𝑤
∗𝜎

𝑤

𝑤
𝜎
(
(𝑤
∗
)
Δ

𝑤
∗

−
𝑤
Δ

𝑤
) ,

(260)

if (𝑤∗)Δ/𝑤∗ ≥ 𝑤
Δ
/𝑤, then we can give the conditions on

the values of 𝑧∗
1
, (𝑧∗
1
)
Δ, 𝑧∗
2
, and (𝑧∗

2
)
Δ at 𝑥∗ which assure that

inequality (258) holds as follows:

𝑧
∗

1
≥ 𝑧1,

𝑤
∗
(
𝑧
∗

1

𝑤
∗
)

Δ

≥ 𝑤(
𝑧1

𝑤
)

Δ

−
𝑤
∗

𝑤
∗𝜎

𝑤

𝑤
𝜎

× (
(𝑤
∗
)
Δ

𝑤
∗

−
𝑤
Δ

𝑤
)𝑧
∗𝜎

2
at 𝑥 = 𝑥

∗
,

𝑧
∗

2
≤ 𝑧2,

𝑤
∗
(
𝑧
∗

2

𝑤
∗
)

Δ

≤ 𝑤(
𝑧2

𝑤
)

Δ

−
𝑤
∗

𝑤
∗𝜎

𝑤

𝑤
𝜎

× (
(𝑤
∗
)
Δ

𝑤
∗

−
𝑤
Δ

𝑤
)𝑧
∗𝜎

1
at 𝑥 = 𝑥

∗
.

(261)

If (𝑤∗)Δ/𝑤∗ ≤ 𝑤
Δ
/𝑤, we replace 𝑧2 by 𝑧1 in the coefficient of

((𝑤
∗
)
Δ
/𝑤
∗
− 𝑤
Δ
/𝑤) in the first row of the inequalities and

replace 𝑧1 by 𝑧2 in the second row. If these conditions are
satisfied, we have the bounds

𝑧
∗

2
(𝑥) ≤ 𝑢 (𝑥) ≤ 𝑧

∗

1
(𝑥) ,

(
𝑧
∗

2

𝑤
∗
)

Δ

≤ (
𝑢

𝑤
∗
)

Δ

≤ (
𝑧
∗

1

𝑤
∗
)

Δ

.

(262)
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We now consider 𝑤∗ as an extension of 𝑤 to the interval
[𝑥
∗
, 𝑏]T , 𝑧

∗

1
as an extension 𝑧1 to the interval [𝑥∗, 𝑏]T , and

𝑧
∗

2
as an extension of 𝑧2 to the interval [𝑥∗, 𝑏]T . Then these

extended functions are, in general, discontinuous at 𝑥∗.
However, the above inequalities relating 𝑤, 𝑤∗, 𝑧∗

1
, 𝑧1, 𝑧

∗

2
,

and 𝑧2 at 𝑥 = 𝑥
∗ establish the relation between the right

and left limits at discontinuous points. It may, of course, be
necessary or desirable to divide the interval [𝑎, 𝑏]T into more
than two subintervals.

The above discussion leads to the following theorem.

Theorem 75. Let 𝑧1(𝑥), 𝑧2(𝑥), and 𝑤(𝑥) be piecewise contin-
uous functions on the interval [𝑎, 𝑏]T . Moreover, we assume
that 𝑧Δ

𝑖
(𝑥), 𝑧Δ∇
𝑖
(𝑥)(𝑖 = 1, 2) and 𝑤Δ(𝑥), 𝑤Δ∇(𝑥) are piecewise

continuous on the interval [𝑎, 𝑏]T , 𝑧∇𝑖 (𝑥) and 𝑤
∇
(𝑥) are

piecewise left-dense continuous on the interval [𝑎, 𝑏]T , and 𝑔1,
𝑔2, and ℎ satisfy the conditions of Lemma 54. If the following
properties hold:

(a) 𝑤 > 0 on [𝑎, 𝑏]T ;
(b) 𝑧2(𝑎) ≤ 𝛾1 ≤ 𝑧1(𝑎);
(c) 𝑧Δ
2
(𝑎)𝑤(𝑎) − 𝑧2(𝑎)𝑤

Δ
(𝑎) ≤ 𝛾2𝑤(𝑎) − 𝛾1𝑤

Δ
(𝑎) ≤

𝑧
Δ

1
(𝑎)𝑤(𝑎) − 𝑧1(𝑎)𝑤

Δ
(𝑎);

(d) (𝐿 + ℎ)[𝑤] ≤ 0, (𝐿 + ℎ)[𝑧2] ≤ 𝑓(𝑥) ≤ (𝐿 + ℎ)[𝑧1] hold
at all points where the derivatives occurring in these
formulas are continuous;

(e) at each point of discontinuity 𝑥
∗ the functions 𝑧1,

−𝑧2, and 𝑤Δ/𝑤 have nonnegative jumps, the jump of
𝑤(𝑧1/𝑤)

Δ is at least −((𝑤∗/𝑤∗𝜎)(𝑤/𝑤𝜎))𝑧∗𝜎
2

times as
many as jump of𝑤Δ/𝑤, and the jump of𝑤(𝑧2/𝑤)

Δ is at
most −((𝑤∗/𝑤∗𝜎)(𝑤/𝑤𝜎))𝑧∗𝜎

1
times as many as jump

of 𝑤Δ/𝑤,

then
𝑧2

𝑤
≤
𝑢

𝑤
≤
𝑧1

𝑤
,

(
𝑧2

𝑤
)

Δ

≤ (
𝑢

𝑤
)

Δ

≤ (
𝑧1

𝑤
)

Δ

𝑜𝑛 [𝑎, 𝑏]T .

(263)

5. Applications to Boundary Value Problems

In this section, by using the maximum principles proved
in Section 3 to some general boundary value problems, the
uniqueness of the solutions, the existence of the upper and
lower solutions, and some necessary and sufficient condi-
tions for the existence of the approximation solutions are
discussed. First, we consider the following boundary value
problems:

𝑢
Δ∇

+ 𝑔1𝑢
Δ
+ 𝑔2𝑢

∇
+ ℎ𝑢 = 𝑓 (𝑥) , on (𝑎, 𝑏)T , (264)

𝑢 (𝑎) = 𝛾1, 𝑢 (𝑏) = 𝛾2. (265)

Theorem76. Assume that𝑔1,𝑔2, and ℎ are bounded on (𝑎, 𝑏)T
such that (91), (92), (93), and (130) hold and ℎ(𝑥) ≤ 0 at each
𝑥 ∈ (𝑎, 𝑏)T . If 𝑢1, 𝑢2 ∈ D(Λ) are solutions of (264) and satisfy
the boundary value problem (265), then 𝑢1 ≡ 𝑢2.

Proof. We define a function V(𝑥) ∈ D(Λ) by

V (𝑥) = 𝑢1 (𝑥) − 𝑢2 (𝑥) . (266)

Since both 𝑢1 and 𝑢2 satisfy (264) and (265), the function V(𝑥)
satisfies

VΔ∇ + 𝑔1V
Δ
+ 𝑔2𝑢

∇
+ ℎV = 0,

V (𝑎) = 0, V (𝑏) = 0.

(267)

It follows fromTheorem 47 that V(𝑥) ≤ 0, for each 𝑥 ∈ (𝑎, 𝑏)T .
Since −V(𝑥) satisfies the same boundary value problem, we
have −V(𝑥) ≤ 0, for each 𝑥 ∈ (𝑎, 𝑏)T , and thus V(𝑥) ≡ 0, for
each 𝑥 ∈ [𝑎, 𝑏]T .

Next we study general boundary value problems of the
form

𝑢
Δ∇

+ 𝑔1𝑢
Δ
+ 𝑔2𝑢

∇
+ ℎ𝑢 = 𝑓 (𝑥) , (268)

− 𝑢
Δ
(𝑎) cos 𝜃 + 𝑢 (𝑎) sin 𝜃 = 𝛾1,

𝑢
∇
(𝑏) cos𝜙 + 𝑢 (𝑏) sin𝜙 = 𝛾2,

(269)

where 𝜃, 𝜙, 𝛾1, 𝛾2 are all constant, and 0 ≤ 𝜃 ≤ 𝜋/2, 0 ≤ 𝜙 ≤

𝜋/2. If 𝜃 = 𝜙 = 𝜋/2, (269) becomes (265).

Theorem77. Assume that𝑔1,𝑔2, and ℎ are bounded on (𝑎, 𝑏)T
such that (91), (92), (93), and (130) hold. If 𝑢1 and 𝑢2 are
solutions of (268) and (269), then 𝑢1 ≡ 𝑢2, except that 𝑢1(𝑥) −
𝑢2(𝑥) is a constant when ℎ(𝑥) ≡ 0, 𝜃 = 𝜙 = 0.

Proof. We define a function V(𝑥) ∈ D(Λ) by

V (𝑥) = 𝑢1 (𝑥) − 𝑢2 (𝑥) . (270)

Since both 𝑢1 and 𝑢2 satisfy (268) and (269), the function V(𝑥)
satisfies

VΔ∇ + 𝑔1V
Δ
+ 𝑔2𝑢

∇
+ ℎV = 0, (271)

−VΔ (𝑎) cos 𝜃 + V (𝑎) sin 𝜃 = 0, (272)

V∇ (𝑏) cos𝜙 + V (𝑏) sin𝜙 = 0. (273)

It is clear that V(𝑥) ≡ 𝐶 satisfies all the above conditions, if and
only if ℎ(𝑥) ≡ 0, 𝜃 = 𝜙 = 0.Thenwe assume first that V(𝑥) > 0

at some point and V(𝑥) is not constant. UsingTheorem 47 we
know that V(𝑥) attains its maximum𝑀 at 𝑎 or 𝑏. Suppose that
V(𝑎) = 𝑀, and by using Theorem 51 we get VΔ(𝑎) < 0, which
do not satisfy (272). Suppose that V(𝑏) = 𝑀, and by using
Theorem 51we get V∇(𝑏) > 0, which donot satisfy (273).Thus,
we obtain V(𝑥) ≤ 0. We can also prove that −V(𝑥) ≤ 0, and
then V(𝑥) ≡ 0, for each 𝑥 ∈ [𝑎, 𝑏]T .

Similar to the initial value problems, in most cases it
is impossible to find such a solution explicitly. But, it is
frequently desirable to approximate a solution in such a
way that an explicit bound for the error is known. Such an
approximation is equivalent to the determination of both
upper and lower bounds for the values of the solution. Thus,
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in the following, we will discuss the existence of the upper
and lower solutions for boundary value problems.

We will assume that the functions 𝑓, 𝑔1, 𝑔2, ℎ, are
bounded and ℎ(𝑥) ≤ 0 in [𝑎, 𝑏]T . Under these circumstances
it is possible to use the maximum principle inTheorem 55 to
obtain a bound for a solution 𝑢without any actual knowledge
of 𝑢 itself.

Suppose we can find a function 𝑧1(𝑥) ∈ D(Λ) satisfying

(𝐿 + ℎ) [𝑧1] ≤ 𝑓 (𝑥) , (274)

𝑧1 (𝑎) ≥ 𝛾1, 𝑧1 (𝑏) ≥ 𝛾2. (275)

Then the function

V1 (𝑥) ≡ 𝑢 (𝑥) − 𝑧1 (𝑥) (276)

satisfies
(𝐿 + ℎ) [V1] ≥ 0,

V1 (𝑎) ≤ 0, V1 (𝑏) ≤ 0.

(277)

Themaximum principles as given inTheorem 47 in Section 3
may be applied to V1, and we conclude that V1(𝑥) ≤ 0 on
[𝑎, 𝑏]T . That is,

𝑢 (𝑥) ≤ 𝑧1 (𝑥) for 𝑥 ∈ [𝑎, 𝑏]T . (278)

The function 𝑧1(𝑥) is an upper bound for 𝑢(𝑥).
Similarly, a lower bound for 𝑢(𝑥) may be obtained by

finding a function 𝑧2(𝑥) with the properties

(𝐿 + ℎ) [𝑧2] ≥ 𝑓 (𝑥) , (279)

𝑧2 (𝑎) ≤ 𝛾1, 𝑧2 (𝑏) ≤ 𝛾2. (280)

By using themaximumprinciple (Theorem 51) to 𝑧2(𝑥)−𝑢(𝑥),
we can get that

𝑢 (𝑥) ≥ 𝑧2 (𝑥) for 𝑥 ∈ [𝑎, 𝑏]T . (281)

Functions 𝑧1(𝑥), 𝑧2(𝑥) with the desired properties are
easily constructed. For example, we may set

𝑧1 (𝑥) = 𝐴 (2 − 𝑒𝛼 (𝑎, 𝑥)) (282)

with 𝛼 < 0 and try to select 𝐴 and 𝛼 so that (274) and (275)
are satisfied. In fact, if (166) holds, we can choose −𝛼 to be so
large that

(𝐿 + ℎ) [𝑒𝛼 (𝑎, 𝑥)]

= [𝛼
2
(1 + ]𝑔1) − 𝛼 (𝑔1 + 𝑔2) + ℎ (1 − 𝛼] (𝑥))]

×
𝑒𝛼 (𝑎, 𝑥)

1 − 𝛼] (𝑥)
> 0

(283)

for 𝑥 ∈ [𝑎, 𝑏]T . Let

𝑘 = min
𝑥∈[𝑎,𝑏]T

[ [𝛼
2
(1 + ]𝑔1) − 𝛼 (𝑔1 + 𝑔2) + ℎ (1 − 𝛼] (𝑥))]

×
𝑒𝛼 (𝑎, 𝑥)

1 − 𝛼] (𝑥)
]

(284)

for 𝑥 ∈ [𝑎, 𝑏]T , and

𝐴 = max{𝛾1, 𝛾2,
1

𝑘
max
𝑥∈[𝑎,𝑏]T

{−𝑓 (𝑥)} , 0} . (285)

For the selections of 𝐴 and 𝛼 as just described, the function
𝑧1(𝑥) = 𝐴(𝑙 − 𝑒𝛼(𝑎, 𝑥)) satisfies (274) and (275), where 𝑙 =
1 + 𝑒𝛼(𝑎, 𝑏).

To determine a lower bound, we choose

𝑧2 (𝑥) = 𝐵 (𝑙 − 𝑒𝛼 (𝑎, 𝑥)) , (286)

with 𝛼 < 0, and try to select 𝐵 and 𝛼 such that (279) and
(280) are satisfied. In fact, we choose −𝛼 to be so large that
(283) holds. Let

𝐵 = min{𝛾1, 𝛾2, −
1

𝑘
max
𝑥∈[𝑎,𝑏]T

{𝑓 (𝑥)} , 0} . (287)

With the selections of 𝐵 and 𝛼 as just described, the function
𝑧2(𝑥) = 𝐵(𝑙 − 𝑒𝛼(𝑎, 𝑥)) satisfies (279) and (280). Then

𝐵 (𝑙 − 𝑒𝛼 (𝑎, 𝑥)) ≤ 𝑢 (𝑥) ≤ 𝐴 (𝑙 − 𝑒𝛼 (𝑎, 𝑥)) . (288)

In particular, we have

|𝑢 (𝑥)| ≤ 𝑙max [󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨
𝛾2
󵄨󵄨󵄨󵄨
,
1

𝑘
max
𝑥∈[𝑎,𝑏]T

󵄨󵄨󵄨󵄨
𝑓 (𝑥)

󵄨󵄨󵄨󵄨
, 0] . (289)

If 𝑢 is a solution of (264) and (265) and 𝑢 is a solution of
the related problem

𝑢
Δ∇

+ 𝑔1𝑢
Δ
+ 𝑔2𝑢

∇
+ ℎ𝑢 = 𝑓 (𝑥) ,

𝑢 (𝑎) = 𝛾1, 𝑢 (𝑏) = 𝛾2,

(290)

then the difference 𝑢 − 𝑢 satisfies

(𝑢 − 𝑢)
Δ∇

+ 𝑔1(𝑢 − 𝑢)
Δ
+ 𝑔2(𝑢 − 𝑢)

∇

+ ℎ (𝑢 − 𝑢) = 𝑓 − 𝑓,

𝑢 (𝑎) − 𝑢 (𝑎) = 𝛾1 − 𝛾1, 𝑢 (𝑏) − 𝑢 (𝑏) = 𝛾2 − 𝛾2.

(291)

Inequality (289) shows that

|𝑢 (𝑥) − 𝑢 (𝑥)|

≤ 𝑙max [ 󵄨󵄨󵄨󵄨𝛾1 − 𝛾1
󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨
𝛾2 − 𝛾2

󵄨󵄨󵄨󵄨
,

1

𝑘
max
𝑥∈[𝑎,𝑏]T

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑥) − 𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨
] .

(292)

Therefore, if the quantities

[
󵄨󵄨󵄨󵄨
𝛾1 − 𝛾1

󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨
𝛾2 − 𝛾2

󵄨󵄨󵄨󵄨
, max
𝑥∈[𝑎,𝑏]T

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑥) − 𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨
] (293)

are all small, then |𝑢(𝑥)−𝑢(𝑥)| is small for all 𝑥 in the interval
[𝑎, 𝑏]T . Under these circumstances, we say that the solution
𝑢 of the problem (264), (265) depends continuously on 𝑓(𝑥)
and the boundary values 𝛾1,𝛾2.

Combining the above discussions, we get the following
result.
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Theorem 78. If 𝑔1, 𝑔2, and ℎ are bounded on (𝑎, 𝑏)T such that
(92), (93), (130), and (166) hold and ℎ(𝑥) ≤ 0 in [𝑎, 𝑏]T , then
the following conclusions hold:

(1) there exist functions 𝑧1(𝑥), 𝑧2(𝑥) ∈ D(Λ) satisfying
(274), (275) and (279), (280), respectively;

(2) the solution 𝑢 of the problem (264), (265) satisfies
𝑧1(𝑥) ≤ 𝑢(𝑥) ≤ 𝑧2(𝑥), 𝑥 ∈ [𝑎, 𝑏]T ;

(3) the solution 𝑢 of the problem (264), (265) depends
continuously on 𝑓(𝑥) and the boundary values 𝛾1, 𝛾2.

Next, we consider the question of approximations of
solutions of (268) and (269).

If we can find a function 𝑧1(𝑥) ∈ D(Λ) satisfying

(𝐿 + ℎ) [𝑧1] ≤ 𝑓 (𝑥) , (294)

− 𝑧
Δ

1
(𝑎) cos 𝜃 + 𝑧1 (𝑎) sin 𝜃 ≥ 𝛾1,

𝑧
∇

1
(𝑏) cos𝜙 + 𝑧1 (𝑏) sin𝜙 ≥ 𝛾2,

(295)

we define a function V1(𝑥) ∈ D(Λ) by

V1 (𝑥) ≡ 𝑢 (𝑥) − 𝑧1 (𝑥) . (296)

Thus,

(𝐿 + ℎ) [V1] ≥ 0,

− VΔ
1
(𝑎) cos 𝜃 + V1 (𝑎) sin 𝜃 ≤ 0,

V∇
1
(𝑏) cos𝜙 + V1 (𝑏) sin𝜙 ≤ 0.

(297)

It follows fromTheorem 51, (297) we know that V1(𝑥) cannot
attain its maximum at 𝑎 or 𝑏. If V1(𝑥) > 0 at some point
𝑥 ∈ (𝑎, 𝑏)T , then by using Theorem 47, we have that V1(𝑥) is
positive constant which implies that 𝜃 = 𝜙 = 0 and ℎ(𝑥) ≡ 0.
Otherwise, if ℎ(𝑥) ≡ 0, 𝜃 = 0, 𝜙 = 0 are not all hold, then we
have that V1(𝑥) ≤ 0, that is 𝑢(𝑥) ≤ 𝑧1(𝑥). Similarly, we assume
that we can find a function 𝑧2(𝑥) ∈ D(Λ) satisfying:

(𝐿 + ℎ) [𝑧2] ≥ 𝑓 (𝑥) , (298)

− 𝑧
Δ

2
(𝑎) cos 𝜃 + 𝑧2 (𝑎) sin 𝜃 ≤ 𝛾1,

𝑧
∇

2
(𝑏) cos𝜙 + 𝑧2 (𝑏) sin𝜙 ≤ 𝛾2.

(299)

The same as the above statement, we define

V2 (𝑥) ≡ 𝑧2 (𝑥) − 𝑢 (𝑥) , (300)

and we obtain

𝑢 (𝑥) ≥ 𝑧2 (𝑥) . (301)

Therefore, we establish an approximation theorem as in the
following.

Theorem79. Assume that𝑔1,𝑔2, andℎ are bounded on (𝑎, 𝑏)T
and satisfy (91), (92), (93), and (130) at each𝑥 ∈ (𝑎, 𝑏)T . If 𝑢(𝑥)
is a solution of (268) and (269), where ℎ(𝑥) ≤ 0, 0 ≤ 𝜃 ≤ 𝜋/2,
0 ≤ 𝜙 ≤ 𝜋/2. Let 𝑧1(𝑥) and 𝑧2(𝑥) ∈ D(Λ) satisfy (294), (295),
(298), and (299). If ℎ(𝑥) ≡ 0, 𝜃 = 0, 𝜙 = 0 are not all hold,
then 𝑧2(𝑥) ≤ 𝑢(𝑥) ≤ 𝑧1(𝑥).

Now, we consider deleting the conditions ℎ(𝑥) ≤ 0,0 ≤

𝜃 ≤ 𝜋/2, 0 ≤ 𝜙 ≤ 𝜋/2 in Theorem 79. Without loss of
generality, we can assume that −𝜋/2 ≤ 𝜃 ≤ 𝜋/2, −𝜋/2 ≤ 𝜙 ≤

𝜋/2.
In order to use the generalized maximum principle

established in Section 3, we suppose that there is a positive
function 𝑤(𝑥) which satisfies the inequalities

(𝐿 + ℎ) [𝑤] ≤ 0 in [𝑎, 𝑏]T , (302)

− 𝑤
Δ
(𝑎) cos 𝜃 + 𝑤 (𝑎) sin 𝜃 ≥ 0,

𝑤
∇
(𝑏) cos𝜙 + 𝑤 (𝑏) sin𝜙 ≥ 0.

(303)

We set

V =
𝑢

𝑤
, (304)

where 𝑢(𝑥) is a solution of (268) and (269). Then V must
satisfy

(𝐿 + 𝐻) [V] = VΔ∇ + 𝐺1V
Δ
+ 𝐺2V

∇
+ 𝐻V =

𝑓

𝑤
𝜎𝜌

(305)

with 𝐺1 = (𝐹
Δ∇

+ 𝑔1𝑤
𝜎
)/𝑤
𝜎𝜌, 𝐺2 = (𝑤

Δ𝜌
+ 𝑔2𝑤

𝜌
)/𝑤
𝜎𝜌,𝐻 =

(1/𝑤
𝜎𝜌
)(𝐿 + ℎ)[𝑤] ≤ 0, and

− [𝑤
Δ
(𝑎) V (𝑎) + 𝑤 (𝜎 (𝑎)) VΔ (𝑎)] cos 𝜃

+ V (𝑎) 𝑤 (𝑎) sin 𝜃 = 𝛾1,

[𝑤
∇
(𝑏) V (𝑏) + 𝑤 (𝜌 (𝑏)) V∇ (𝑏)] cos𝜙

+ V (𝑏) 𝑤 (𝑏) sin𝜙 = 𝛾2.

(306)

We can rewrite (306) to be

− VΔ (𝑎) cos 𝜃 + V (𝑎) sin 𝜃 = 𝛾1,

V∇ (𝑏) cos𝜙 + V (𝑏) sin𝜙 = 𝛾2,

(307)

where

tan 𝜃 = −𝑤
Δ
(𝑎) cos 𝜃 + 𝑤 (𝑎) sin 𝜃
𝑤 (𝜎 (𝑎)) cos 𝜃

≥ 0,

tan𝜙 =
𝑤
∇
(𝑏) cos𝜙 + 𝑤 (𝑏) sin𝜙
𝑤 (𝜌 (𝑏)) cos𝜙

≥ 0,

𝛾1 =
𝛾1

√[𝑤 (𝑎) sin 𝜃 − 𝑤Δ (𝑎) cos 𝜃]2 + [𝑤 (𝜎 (𝑎)) cos 𝜃]2
,

𝛾2 =
𝛾2

√[𝑤
∇
(𝑏) cos𝜙 + 𝑤 (𝑏) sin𝜙]2 + [𝑤 (𝜌 (𝑏)) cos𝜙]2

.

(308)

By (303) we may choose 𝜃 and 𝜙 in the range 0 ≤ 𝜃 ≤ 𝜋/2,
0 ≤ 𝜙 ≤ 𝜋/2.

Suppose that there is a function𝑤(𝑥), which is positive on
[𝑎, 𝑏]T and satisfies conditions (302) and (303). If 𝑧1(𝑥) and
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𝑧2(𝑥) satisfy (294), (295) and (298), (299), respectively, then
the functions

𝑧1

𝑤
,

𝑧2

𝑤
(309)

satisfy the analogous conditions with respect to (305) with
boundary (307); that is, the following inequalities hold:

(𝐿 + 𝐻) [
𝑧1

𝑤
] ≤

𝑓

𝑤
𝜎𝜌
,

− [
𝑧1

𝑤
]

Δ

(𝑎) cos 𝜃 +
𝑧1

𝑤
(𝑎) sin 𝜃 ≥ 𝛾1,

[
𝑧1

𝑤
]

∇

(𝑏) cos𝜙 +
𝑧1

𝑤
(𝑏) sin𝜙 ≥ 𝛾2,

(𝐿 + 𝐻) [
𝑧2

𝑤
] ≥

𝑓

𝑤
𝜎𝜌
,

− [
𝑧2

𝑤
]

Δ

(𝑎) cos 𝜃 +
𝑧2

𝑤
(𝑎) sin 𝜃 ≤ 𝛾1,

[
𝑧2

𝑤
]

∇

(𝑏) cos𝜙 +
𝑧2

𝑤
(𝑏) sin𝜙 ≤ 𝛾2.

(310)

Hence, by Theorem 79, we have the inequalities
𝑧2

𝑤
≤
𝑢

𝑤
≤
𝑧1

𝑤
(311)

unless 𝜃 = 𝜙 = 0 and𝐻(𝑥) ≡ 0.
If 𝑤(𝑥) satisfies (302) and (303) with equality rather than

inequality, wemay add amultiple of𝑤 to a solution 𝑢 of (268)
and (269) to obtain another solution. That is, the solution is
not unique. Of course, there may be no solution at all, but if
there is at least one, then there are many. Therefore, if there
is a positive function 𝑤(𝑥) that satisfies (302) and (303) but
such that not all the inequalities are equations, we obtain the
bounds

𝑧2 (𝑥) ≤ 𝑢 (𝑥) ≤ 𝑧1 (𝑥) (312)

as before.
If inequality (312) holds for the solution of (268) and

(269), then, particularly, the solution 𝑤 of

(𝐿 + ℎ) [𝑤] = 0 in (𝑎, 𝑏)T , (313)

which satisfies the boundary conditions

− 𝑤
Δ
(𝑎) cos 𝜃 + 𝑤 (𝑎) sin 𝜃 = 1,

𝑤
∇
(𝑏) cos𝜙 + 𝑤 (𝑏) sin𝜙 = 1,

(314)

must be nonnegative.
In fact, if we select 𝑧2(𝑥) ≡ 0, then with respect to (313)

and (314), 𝑧2(𝑥) satisfies (298) and (299) for 𝑓(𝑥) ≡ 0, 𝛾1 =
𝛾2 = 1. Then we have that 𝑧2(𝑥) ≤ 𝑤(𝑥), that is, 𝑤(𝑥) ≥ 0.
Moreover, if 𝑤(𝑥0) = 0, 𝑥0 in (𝑎, 𝑏)T , then −𝑤(𝑥0) = 0 is
a maximum of −𝑤 in (𝑎, 𝑏)T ; by using Lemma 34 to −𝑤 we
obtain

𝑤
Δ
(𝑥0) ≥ 0, 𝑤

∇
(𝑥0) ≤ 0. (315)

If 𝑥0 is left-scattered, since

(𝐿 + ℎ) [𝑤] = 0 (316)

we have

(𝐿 + ℎ) [𝑤 (𝑥0)]

= 𝑤
Δ∇
(𝑥0) + 𝑔1𝑤

Δ
(𝑥0) + 𝑔2𝑤

∇
(𝑥0) + ℎ𝑤 (𝑥0)

=
𝑤
Δ
(𝑥0) − 𝑤

∇
(𝑥0)

] (𝑥0)
+ 𝑔1𝑤

Δ
(𝑥0) + 𝑔2𝑤

∇
(𝑥0)

= 0,

(317)

and hence

(1 + ] (𝑥0) 𝑔1) 𝑤
Δ
(𝑥0) = − (−1 + ] (𝑥0) 𝑔2) 𝑤

∇
(𝑥0) ; (318)

by (166), (92), and (315), we obtain 𝑤
Δ
(𝑥0) = 0 (if −1 +

](𝑥0)𝑔2 < 0, we can also have that 𝑤∇(𝑥0) = 0). If 𝑥0 is left-
dense, by Lemma 34, we get that

𝑤
Δ
(𝑥0) = 0,

𝑤
∇
(𝑥0) = 𝑤

Δ
(𝜌 (𝑥0)) = 𝑤

Δ
(𝑥0) = 0.

(319)

So we have proved that 𝑤Δ(𝑥0) = 0 if 𝑤(𝑥0) = 0. The
uniqueness theorem for the initial value problem implies that
𝑤 ≡ 0, which violates the boundary conditions (314). So 𝑤
cannot vanish in (𝑎, 𝑏)T . If 𝑤 vanishes at endpoint, say at 𝑎,
then the first condition in (314) becomes −𝑤Δ(𝑎) cos 𝜃 = 1,
which is a contradiction. Therefore 𝑤(𝑎) > 0 and, similarly,
𝑤(𝑏) > 0. Hence 𝑤 > 0 on [𝑎, 𝑏]T .

Thus far, under the hypothesis that the problem (313),
(314) has a solution, we have established the following result.

Theorem 80. Let 𝑢 be a solution of (268), (269) with −𝜋/2 ≤
𝜃 ≤ 𝜋/2, −𝜋/2 ≤ 𝜙 ≤ 𝜋/2. Let 𝑧1(𝑥) and 𝑧2(𝑥) ∈ D(Λ)

satisfy (294), (295) and (298), (299), respectively; 𝑔1, 𝑔2, and ℎ
are bounded on (𝑎, 𝑏)T and satisfy (91), (92). If problem (313),
(314) has a solution, then the bounds

𝑧2 (𝑥) ≤ 𝑢 (𝑥) ≤ 𝑧1 (𝑥) (320)

hold in (𝑎, 𝑏)T if and only if there exists a positive function
𝑤 on [𝑎, 𝑏]T which satisfies inequalities (302) and (303) in
such a way that not all the inequalities in (302) and (303) are
equalities.

Remark 81. Moreover, if ℎ(𝑥) ≤ 0, 0 ≤ 𝜃 ≤ 𝜋/2, and 0 ≤ 𝜙 ≤

𝜋/2, then the function 𝑤 ≡ 1 satisfies conditions (302) and
(303); thus Theorem 79 can be deduced fromTheorem 80.

The function 𝑤 does not appear in the inequality (320).
Therefore, it is of interest to obtain a theorem which elimi-
nates 𝑤 entirely and which provides conditions on 𝑧1 and 𝑧2
guaranteeing that they form the upper and lower bounds of
the solution of (268), (269). The next result gives a necessary
and sufficient condition for this case.
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Theorem 82. Let 𝑢 be a solution of (268), (269) with −𝜋/2 <
𝜃 < 𝜋/2, −𝜋/2 < 𝜙 < 𝜋/2. Suppose 𝑧1(𝑥) and 𝑧2(𝑥) ∈

D(Λ) satisfy (294), (295) and (298), (299), respectively, and
in all these inequalities, at least there is one which is a strict
inequality. Let 𝑔1, 𝑔2 be bounded and satisfy 1 + ]𝑔1 > 0,
−1 + ]𝑔2 < 0. Then the bounds

𝑧2 (𝑥) ≤ 𝑢 (𝑥) ≤ 𝑧1 (𝑥) (321)

hold if and only if 𝑧2(𝑥) ≤ 𝑧1(𝑥) for 𝑥 ∈ [𝑎, 𝑏]T .

Proof. If (321) holds, then it is clear that 𝑧2(𝑥) ≤ 𝑧1(𝑥). We
now assume that 𝑧1(𝑥) − 𝑧2(𝑥) is nonnegative, and we must
show that (321) holds. If

𝑞 (𝑥) ≡ 𝑧1 (𝑥) − 𝑧2 (𝑥) (322)

is strictly positive on [𝑎, 𝑏]T , then we may select 𝑞 as the
function 𝑤 of Theorem 80. All the requirements are fulfilled
andTheorem 80 implies that (321) holds. Therefore, we need
only to investigate the possibility that 𝑞 has a zero point on
[𝑎, 𝑏]T .

According to (294), (295), (298), and (299), 𝑞 satisfies the
inequalities

(𝐿 + ℎ) [𝑞] ≤ 0 in [𝑎, 𝑏]T , (323)

− 𝑞
Δ
(𝑎) cos 𝜃 + 𝑞 (𝑎) sin 𝜃 ≥ 0,

𝑞
∇
(𝑏) cos𝜙 + 𝑞 (𝑏) sin𝜙 ≥ 0,

(324)

and, in view of the hypotheses, at least there is one which is a
strict inequality in (323), (324).

First suppose 𝑞(𝑐) = 0, 𝑐 ∈ (𝑎, 𝑏)T . Then 𝑞 has a
minimum at 𝑐, which shows that −𝑞 has a maximum at 𝑐. So
by Lemma 34 we obtain

𝑞
Δ
(𝑐) ≥ 0, 𝑞

∇
(𝑐) ≤ 0. (325)

If 𝑐 is left-scattered, since

(𝐿 + ℎ) [𝑞] ≤ 0 (326)

we have

(𝐿 + ℎ) [𝑞 (𝑐)]

= 𝑞
Δ∇
(𝑐) + 𝑔1𝑞

Δ
(𝑐) + 𝑔2𝑞

∇
(𝑐) + ℎ𝑞 (𝑐)

=
𝑞
Δ
(𝑐) − 𝑞

∇
(𝑐)

] (𝑐)
+ 𝑔1𝑞
Δ
(𝑐) + 𝑔2𝑞

∇
(𝑐)

≤ 0,

(327)

and hence

0 ≤ (1 + ]𝑔1) 𝑞
Δ
(𝑐) ≤ − (−1 + ] (𝑥) 𝑔2) 𝑞

∇
(𝑐) ≤ 0. (328)

Therefore

𝑞
Δ
(𝑐) = 𝑞

∇
(𝑐) = 0. (329)

If 𝑐 is left-dense by Lemma 34, we have that

𝑞
∇
(𝑐) = 𝑞

Δ
(𝑐) = 0. (330)

And we conclude from Theorem 68 that 𝑞 ≡ 0. Then
equality holds in all the conditions (323), (324) contrary to
our hypotheses.

The only remaining possibility is that 𝑞 > 0 in (𝑎, 𝑏)T but
that 𝑞 = 0 at an endpoint, say at 𝑥 = 𝑎. Then according to
Theorem 55, 𝑞Δ(𝑎) > 0. But then the first inequality in (324)
is violated unless 𝜃 = ±𝜋/2, which is a contradiction with
𝜃 ̸= ± 𝜋/2. Similarly, if 𝑞 vanishes at 𝑏, then 𝜙 = ±𝜋/2, which
is a contradiction with 𝜙 ̸= ± 𝜋/2. Therefore, we have proved
that 𝑞 is positive on [𝑎, 𝑏]T , and it can be used as an auxiliary
function inTheorem 80. The proof is completed.

6. Applications to Nonlinear Operator

In this section, we discuss nonlinear equations. We can
extend the results of linear operator in Sections 4 and 5 to
nonlinear operator.

Suppose that 𝑢(𝑥) ∈ D(Λ) is a solution of

𝑢
Δ∇

+ 𝐻(𝑥, 𝑢, 𝑢
Δ
, 𝑢
∇
) = 0. (331)

Assume that

𝐻(𝑥, 𝑦, 𝑧, 𝑝) ,
𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝)

𝜕𝑦
,

𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝)

𝜕𝑧
,

𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝)

𝜕𝑝

(332)

are all continuous functions in their domain and satisfy

1 + ]
𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝)

𝜕𝑧
> 0, −1 + ]

𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝)

𝜕𝑝
< 0,

(333)

where𝐻(𝑥, 𝑦, 𝑧, 𝑝) is defined on T ×R ×R ×R. Besides, we
suppose that

𝐻(𝑥, 𝑦1, 𝑧, 𝑝) ≤ 𝐻 (𝑥, 𝑦2, 𝑧, 𝑝) when 𝑦1 ≥ 𝑦2 (334)

for each 𝑥, 𝑧, 𝑝, or equivalently

𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝)

𝜕𝑦
≤ 0. (335)

Remark 83. Note that if

𝐻(𝑥, 𝑢, 𝑢
Δ
, 𝑢
∇
) = 𝑔1𝑢

Δ
+ 𝑔2𝑢

∇
+ ℎ𝑢 − 𝑓 (𝑥) , (336)

then (331) is the linear equation considered in the previous
sections.

Assume that 𝑤(𝑥) ∈ D(Λ) satisfies

𝑤
Δ∇

+ 𝐻(𝑥, 𝑤, 𝑤
Δ
, 𝑤
∇
) ≥ 0. (337)
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We define a function V(𝑥) ∈ D(Λ) by

V (𝑥) = 𝑤 (𝑥) − 𝑢 (𝑥) . (338)

Subtracting (331) from (337), we derive that

VΔ∇ + 𝐻(𝑥, 𝑤, 𝑤
Δ
, 𝑤
∇
) − 𝐻(𝑥, 𝑢, 𝑢

Δ
, 𝑢
∇
) ≥ 0. (339)

Applying mean value theorem to𝐻, we obtain

VΔ∇ +
𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝)

𝜕𝑧
VΔ +

𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝)

𝜕𝑝
V∇

+
𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝)

𝜕𝑦
V ≥ 0,

(340)

where 𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑝)/𝜕𝑦, 𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑝)/𝜕𝑧, and
𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑝)/𝜕𝑝 are calculated at the point of (𝑥, 𝑢+𝛼(𝑤−𝑢),
𝑢
Δ
+𝛼(𝑤

Δ
−𝑢
Δ
), 𝑢∇ +𝛼(𝑤∇ −𝑢∇)), and 0 < 𝛼 < 1. Obviously,

the function V(𝑥) satisfies a linear equation. We can use
Theorems 47 and 72 to get the following results.

Theorem 84. Assume that 𝑤(𝑥), 𝑢(𝑥) ∈ D(Λ) satisfy

𝑤
Δ∇

+ 𝐻(𝑥, 𝑤, 𝑤
Δ
, 𝑤
∇
) ≥ 𝑢
Δ∇

+ 𝐻(𝑥, 𝑢, 𝑢
Δ
, 𝑢
∇
) , (341)

where𝐻, 𝜕𝐻/𝜕𝑦, 𝜕𝐻/𝜕𝑧, 𝜕𝐻/𝜕𝑝, are all continuous functions
such that (333) and (335) hold and

𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝) /𝜕𝑦

1 + ] (𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝) /𝜕𝑧)
,

𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝) /𝜕𝑦 + 𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝) /𝜕𝑝

1 + ] (𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝) /𝜕𝑧)

(342)

are bounded on Λ × 𝑤(Λ) × 𝑤
Δ
(Λ) × 𝑤

∇
(Λ). If 𝑤(𝑥) − 𝑢(𝑥)

attains its maximum𝑀 in (𝑎, 𝑏)T , then 𝑤(𝑥) − 𝑢(𝑥) ≡ 𝑀.

Theorem 85. Assume that 𝑢(𝑥) ∈ D(Λ) is a solution of

𝑢
Δ∇

+ 𝐻(𝑥, 𝑢, 𝑢
Δ
, 𝑢
∇
) = 0 𝑥 ∈ (𝑎, 𝑏)T , (343)

𝑢 (𝑎) = 𝛾1, 𝑢
Δ
(𝑎) = 𝛾2, (344)

where 𝐻, 𝜕𝐻/𝜕𝑦, 𝜕𝐻/𝜕𝑧, and 𝜕𝐻/𝜕𝑝 are all continuous
functions such that (333) and (335) hold and

𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝) /𝜕𝑦

1 + ] (𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝) /𝜕𝑧)
,

𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝) /𝜕𝑦 + 𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝) /𝜕𝑝

1 + ] (𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝) /𝜕𝑧)

(345)

are bounded onΛ×𝑤(Λ)×𝑤Δ(Λ)×𝑤∇(Λ). If a function 𝑧1(𝑥)
satisfies

𝑧
Δ∇

1
+ 𝐻(𝑥, 𝑧1, 𝑧

Δ

1
, 𝑧
∇

1
) ≥ 0,

𝑧1 (𝑎) ≥ 𝛾1, 𝑧
Δ

1
(𝑎) ≥ 𝛾2,

(346)

and a function 𝑧2(𝑥) ∈ D(Λ) satisfies

𝑧
Δ∇

2
+ 𝐻(𝑥, 𝑧2, 𝑧

Δ

2
, 𝑧
∇

2
) ≤ 0,

𝑧2 (𝑎) ≤ 𝛾1, 𝑧
Δ

2
(𝑎) ≤ 𝛾2,

(347)

then we have

𝑧2 (𝑥) ≤ 𝑢 (𝑥) ≤ 𝑧1 (𝑥) , 𝑧
Δ

2
(𝑥) ≤ 𝑢

Δ
(𝑥) ≤ 𝑧

Δ

1
(𝑥) .

(348)

Remark 86. Theorem 85 implies that the solution of (343),
(344) is unique. In fact, if 𝑢1 and 𝑢2 are solutions of (343),
(344), we just need to let 𝑧2(𝑥) = 𝑧1(𝑥) = 𝑢2, and then we can
obtain 𝑢1 ≡ 𝑢2.

By usingTheorem 79, we have the following result.

Theorem 87. Assume that 𝑢(𝑥) ∈ D(Λ) is a solution of

𝑢
Δ∇

+ 𝐻(𝑥, 𝑢, 𝑢
Δ
, 𝑢
∇
) = 0 𝑥 ∈ (𝑎, 𝑏)T , (349)

− 𝑢
Δ
(𝑎) cos 𝜃 + 𝑢 (𝑎) sin 𝜃 = 𝛾1,

𝑢
∇
(𝑏) cos𝜙 + 𝑢 (𝑏) sin𝜙 = 𝛾2,

(350)

where 0 ≤ 𝜃 ≤ 𝜋/2, 0 ≤ 𝜙 ≤ 𝜋/2, and 𝜃, 𝜙 are not all equal to
0,𝐻, 𝜕𝐻/𝜕𝑦, 𝜕𝐻/𝜕𝑧, and 𝜕𝐻/𝜕𝑝 are all continuous functions
such that (333) and (335) hold, and

𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝) /𝜕𝑦

1 + ] (𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝) /𝜕𝑧)
,

𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝) /𝜕𝑦 + 𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝) /𝜕𝑝

1 + ] (𝜕𝐻 (𝑥, 𝑦, 𝑧, 𝑝) /𝜕𝑧)

(351)

are bounded onΛ×𝑤(Λ)×𝑤Δ(Λ)×𝑤∇(Λ). If a function 𝑧1(𝑥) ∈
D(Λ) satisfies

𝑧
Δ∇

1
+ 𝐻(𝑥, 𝑧1, 𝑧

Δ

1
, 𝑧
∇

1
) ≤ 0,

− 𝑧
Δ

1
(𝑎) cos 𝜃 + 𝑧1 (𝑎) sin 𝜃 ≥ 𝛾1,

𝑧
∇

1
(𝑏) cos𝜙 + 𝑧1 (𝑏) sin𝜙 ≥ 𝛾2,

(352)

and a function 𝑧2(𝑥) ∈ D(Λ) satisfies

𝑧
Δ∇

2
+ 𝐻(𝑥, 𝑧2, 𝑧

Δ

2
, 𝑧
∇

2
) ≥ 0,

− 𝑧
Δ

2
(𝑎) cos 𝜃 + 𝑧2 (𝑎) sin 𝜃 ≤ 𝛾1,

𝑧
∇

2
(𝑏) cos𝜙 + 𝑧2 (𝑏) sin𝜙 ≤ 𝛾2,

(353)

then we have

𝑧2 (𝑥) ≤ 𝑢 (𝑥) ≤ 𝑧1 (𝑥) . (354)

Remark 88. Theorem 87 implies that the solution of (349),
(350) is unique. In fact, if 𝑢1 and 𝑢2 are solutions of (349),
(350), we just need to let 𝑧2(𝑥) = 𝑧1(𝑥) = 𝑢2, and then we
obtain 𝑢1 ≡ 𝑢2.
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[11] J. Karátson and S. Korotov, “Discrete maximum principles for
finite element solutions of nonlinear elliptic problems with
mixed boundary conditions,” Numerische Mathematik, vol. 99,
no. 4, pp. 669–698, 2005.
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