
Research Article
Global Stability of Multigroup SIRS Epidemic
Model with Varying Population Sizes and Stochastic
Perturbation around Equilibrium

Xiaoming Fan

School of Mathematical Sciences, Harbin Normal University, Harbin 150500, China

Correspondence should be addressed to Xiaoming Fan; fanxm093@163.com

Received 8 October 2013; Accepted 17 December 2013; Published 20 January 2014

Academic Editor: Francisco Soĺıs Lozano

Copyright © 2014 Xiaoming Fan.This is an open access article distributed under theCreative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We discuss multigroup SIRS (susceptible, infectious, and recovered) epidemic models with random perturbations. We carry out a
detailed analysis on the asymptotic behavior of the stochastic model; when reproduction numberR

0
> 1, we deduce the globally

asymptotic stability of the endemic equilibrium by measuring the difference between the solution and the endemic equilibrium of
the deterministic model in time average. Numerical methods are employed to illustrate the dynamic behavior of the model and
simulate the system of equations developed. The effect of the rate of immunity loss on susceptible and recovered individuals is also
analyzed in the deterministic model.

1. Introduction

To curb the spread and impact of viruses, it is important
to study their feature, propagating methods, means, and
limitation. Many studies about the outbreak and spread of
disease have been done by means of establishing epidemic
models. These researches provided some useful and valid
reference for the characteristic of disease transmission. Based
on these results of theoretical analysis, one can predict the
future course of an outbreak and evaluate strategies to control
an epidemic. In 1927, Kermack and McKendrick created an
SIR model in which they considered a fixed population with
only three compartments of three classes: susceptible 𝑆(𝑡),
infected 𝐼(𝑡), and removed 𝑅(𝑡). 𝑆(𝑡) represents the number
of individuals not yet infected with the disease at time 𝑡, or
those susceptible to the disease. 𝐼(𝑡) denotes the number of
individuals who have been infected with the disease and are
capable of spreading the disease to those in the susceptible
class. 𝑅(𝑡) is the compartment used for those individuals who
have been infected and then removed from the disease, either
due to immunization or due to death. Those in this class
are not able to be infected again or to transmit the infection

to others. A single group SIRS model is an extension of the
SIR model. The SIRS model for infections that do not confer
permanent immunity, that is, an infection that does not leave
a long lasting immunity: thus individuals that have recovered
return to being susceptible again, moving back into the 𝑆(𝑡)
compartment. The only difference between SIR and SIRS is
that SIRS model allows members of the recovered class to be
free of infection and rejoin the susceptible class.

Considering different contact patterns, a distinct number
of sexual partners, or different geography, and so forth, it
is more appropriate to divide individual hosts into groups
in modeling epidemic disease [1]. Therefore, it is reasonable
to propose multigroup models to describe the transmission
dynamics of viruses in heterogeneous host populations on
epidemic models. In fact, there are already many schol-
ars focusing their study on various forms of multigroup
epidemic models (see [2–7]). They have also proved the
global stability of the unique endemic equilibrium through
Lyapunov function, which is one of the main mathematical
challenges in analyzing multigroup models. Recently, Guo et
al. have paid more attention to multigroup models [8–10].
They first proposed a graph-theoretic approach to themethod
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of global Lyapunov functions and used it to establish the
global stability of the interior equilibrium for more general
models [8].Muroya et al. considered a class of 𝑛-group (𝑛 ⩾ 2)
SIRS epidemic models described by the following system of
equations [11]:

�̇�
𝑘
= Λ
𝑘
− 𝑑
𝑆

𝑘
𝑆
𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘 (𝑡) 𝐼𝑗 (𝑡) + 𝛿𝑘𝑅𝑘,

�̇�
𝑘
=

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
(𝑡) 𝐼
𝑗
(𝑡) − (𝑑

𝐼

𝑘
+ 𝛾
𝑘
) 𝐼
𝑘
,

�̇�
𝑘
= 𝛾
𝑘
𝐼
𝑘
− (𝑑
𝑅

𝑘
+ 𝛿
𝑘
) 𝑅
𝑘
, 𝑘 = 1, . . . , 𝑛.

(1)

Nakata et al. [12] and Enatsu et al. [13] proposed an idea to
extend Lyapunov functional techniques inMcCluskey [14] for
SIR epidemic models to SIRS epidemic models. By extending
well-known Lyapunov function techniques, Muroya et al.
[11] succeeded to prove the global stability of system (1)
without use of the grouping technique by graph theory
4 in Guo et al. [10]. Note that because of environmental
noises, the deterministic approach has some limitations in the
mathematicalmodeling transmission of an infectious disease,
several authors began to consider the effect of white noise in
epidemic models [15–18]. Beretta et al. proved the stability
of epidemic model with stochastic time delays influenced
by probability under certain conditions [19]. Such type of
stochastic perturbations firstly was proposed in [19, 20]
and later was successfully used in many other papers for
many other different systems (see, e.g., [21–27]). Yuan et
al. in [28] and Yu et al. in [29] all investigated epidemic
models with fluctuations around the positive equilibrium and
they proved locally stochastically asymptotic stability of the
positive equilibrium. Ji et al. also discuss a multigroup SIR
model with stochastic perturbation and deduce the globally
asymptotic stability of the disease-free equilibrium when
𝑅
0
≤ 1, which means the disease will die out. When

𝑅
0
> 1, they derive the disease will prevail, which is

measured through the difference between the solution and
the endemic equilibrium of the deterministic model in time
average [1]. Imhof and Walcher [30] considered a stochastic
chemostat model and they proved that the stochastic model
led to extinction even though the deterministic counterpart
predicts persistence. In our previous work, we considered
an SEIR epidemic model with constant immigration and
random fluctuation around the endemic equilibrium, we
carried out a detailed analysis on the asymptotic behavior
of the stochastic model [31], and we also investigated a two-
group epidemic model with distributed delays and random
perturbation [32]. In addition, we investigated multigroup
SEIQR models with and without random perturbation in
computer network [33]. In the present paper, based on system
(1), to examine the influence of white noise on system (1)
we also consider a stochastic version of the SIRS model
by perturbing the deterministic system (1) by a white noise
and assume that the perturbations are around the positive
endemic equilibrium of epidemic models.

This paper is organized as follows. We begin in Section 2
with necessary background with respect to the deterministic

multigroup SIRS model. We establish the global dynamics
determined by the basic reproduction number R

0
and

introduce some results of graph theory used by Guo et
al. We also review the important results in Theorem 2 on
deterministic model (1) by Muroya et al. In Section 3 we
derive the stochastic version from the deterministic model
(1). In Section 4 we analyse the asymptotic behavior of the
stochastic model by means of the method of Lyapunov
functions and the theories of stochastic differential equation
in Theorem 5. Numerical methods are employed to simulate
the dynamic behavior of the model, and the effect of the
rate of immunity loss on the recovered is also analyzed in
the deterministic models and the corresponding stochastic
models in Section 5. Finally, we give the conclusion of our
paper in Section 6.

2. Global Stability of Deterministic
Multigroup SIRS Models

First, let us review some theories and results on deterministic
multigroup SIRS models; we summarize the parameters in
the model (1) by the following list:

Λ
𝑘
: the recruitment rate of the population,

𝛽
𝑘𝑗
: transmission coefficient between compartments

𝑆
𝑘
and 𝐼
𝑗
,

𝑑
𝑆

𝑘
, 𝑑
𝐼

𝑘
, 𝑑
𝑅

𝑘
: the natural death rates of susceptible,

infected, and recovered individuals in city 𝑘, respec-
tively,

𝛿
𝑘
: the rate of immunity loss in the 𝑘th group,

𝛾
𝑘
: the natural recovery rate of the infected individuals

in city 𝑘.

We assume 𝑑𝑆
𝑘
, 𝑑
𝐼

𝑘
, 𝑑
𝑅

𝑘
, Λ
𝑘
> 0 and the rest of the parameters

are nonnegative for all 𝑘. In particular, 𝛽
𝑘𝑗
= 0 if there is no

transmission of the disease between compartments 𝑆
𝑘
and 𝐼
𝑗
.

By the biological meanings, we may assume that

𝑑
𝑆

𝑘
⩽ min {𝑑𝐼

𝑘
, 𝑑
𝑅

𝑘
} , 𝑘 = 1, 2, . . . , 𝑛. (2)

For each 𝑘, adding the three equations in (1) gives
(𝑆
𝑘
+ 𝐼
𝑘
+ 𝑅
𝑘
)


⩽ Λ
𝑘
− 𝑑
𝑆

𝑘
(𝑆
𝑘
+ 𝐼
𝑘
+ 𝑅
𝑘
). Hence,

lim sup
𝑡→∞

(𝑆
𝑘
+𝐼
𝑘
+𝑅
𝑘
) ⩽ Λ

𝑘
/𝑑
𝑆

𝑘
.Therefore, omega limit sets

of system (1) are contained in the following bounded region
in the non-negative cone of 𝑅3𝑛:

Γ = { (𝑆
1
, 𝐼
1
, 𝑅
1
, . . . , 𝑆

𝑛
, 𝐼
𝑛
, 𝑅
𝑛
) ∈ 𝑅
3𝑛

+
| 𝑆
𝑘
⩽ 𝑆
0

𝑘
,

𝑆
𝑘
+ 𝐼
𝑘
+ 𝑅
𝑘
⩽

Λ
𝑘

𝑑
𝑆

𝑘

, 1 ⩽ 𝑘 ⩽ 𝑛} .

(3)
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It can be verified that region Γ is positively invariant and
system (1) always has the disease-free equilibrium 𝑃

0
=

(𝑆
0

1
, 0, 0, 0, 0, . . . , 𝑆

0

𝑛
, 0, 0, 0, 0), where 𝑆0

𝑘
= Λ

𝑘
/𝑑
𝑆

𝑘
is the

equilibrium of the 𝑆
𝑘
population in the absence of disease

(𝐼
1
= 𝐼
2
= ⋅ ⋅ ⋅ = 𝐼

𝑛
= 0). Let

∘

Γ denote the interior of Γ. An
endemic equilibrium𝑃∗ = (𝑆∗

1
, 𝐼
∗

1
, 𝑅
∗

1
, . . . , 𝑆

∗

𝑛
, 𝐼
∗

𝑛
, 𝑅
∗

𝑛
) belongs

to
∘

Γ satisfying the equilibrium equations

Λ
𝑘
=

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
𝐼
∗

𝑗
− 𝑑
𝑆

𝑘
𝑆
∗

𝑘
+ 𝛿
𝑘
𝑅
∗

𝑘
, (4)

(𝑑
𝐼

𝑘
+ 𝛾
𝑘
) 𝐼
∗

𝑘
=

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
𝐼
∗

𝑗
, (5)

(𝑑
𝐼

𝑘
+ 𝛿
𝑘
) 𝑅
∗

𝑘
= 𝛾
𝑘
𝐼
∗

𝑘
. (6)

Let
R
0
= 𝜌 (𝑀

0
) (7)

denote the spectral radius of the matrix

𝑀
0
= (

𝛽
𝑘𝑗
𝑆
0

𝑘

𝑑
𝐼

𝑘
+ 𝛾
𝑘

)

1⩽𝑘,𝑗⩽𝑛

. (8)

The parameter R
0
is referred to as the basic reproduction

number. Its biological significance is that if R
0
< 1, the

disease dies outwhile ifR
0
> 1, the disease becomes endemic

[9]. In the following theorem, we show that the multi-group
model (1) has at least one endemic equilibrium𝑃∗whenR

0
>

1, and 𝑃∗ is globally stable [9].
The matrix 𝐵 = (𝛽

𝑘𝑗
) denotes the contact matrix.

Associated with 𝐵, one can construct a directed graph L =

𝐺(𝐵) whose vertex 𝑘 represents the 𝑘th group, 𝑘 = 1, . . . , 𝑛.
A directed edge exists from vertex 𝑘 to vertex 𝑗 if and
only if 𝛽

𝑘𝑗
> 0. Throughout the paper, we assume that

𝐵 is irreducible. This is equivalent to 𝐺(𝐵) being strongly
connected. Biologically, this is the same as assuming that
any two groups 𝑘 and 𝑗 have a direct or indirect route of
transmission. More specifically, individuals in 𝐼

𝑗
can infect

ones in 𝑆
𝑘
directly or indirectly. Now consider the linear

system

Bℓ = 0, (9)
where

B =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

∑

𝑖 ̸= 1

𝛽
1𝑖
−𝛽
21

⋅ ⋅ ⋅ −𝛽
𝑛1

−𝛽
12

∑

𝑖 ̸= 2

𝛽
2𝑖
⋅ ⋅ ⋅ −𝛽

𝑛2

...
... d

...

−𝛽
1𝑛

𝛽
2𝑛

⋅ ⋅ ⋅ ∑

𝑖 ̸= 𝑛

𝛽
𝑛𝑖

]
]
]
]
]
]
]
]
]
]
]
]
]

]

(10)

and 𝛽
𝑘𝑗
= 𝛽
𝑘𝑗
𝑆
∗

𝑘
𝐼
∗

𝑗
, 𝛽
𝑘𝑗
> 0, 1 ⩽ 𝑘, 𝑗 ⩽ 𝑛. LetL = 𝐺(𝐵) denote

the directed graph associated with matrix 𝐵 (and (𝛽
𝑘𝑗
)), and

let 𝐶
𝑗𝑘
denote the cofactor of the (𝑗, 𝑘) entry ofB.

We have the following fundamental lemma[8].

Lemma 1 (Kirchhoff ’s Matrix-Tree Theorem). Assume that
(𝛽
𝑘𝑗
)
𝑛×𝑛

is irreducible and 𝑛 ⩾ 2. Then the following results
hold.

(1) The solution space of system (9) has dimension 1, with
a basis (ℓ

1
, ℓ
2
, . . . , ℓ

𝑛
) = (𝐶

11
, 𝐶
22
, . . . , 𝐶

𝑛𝑛
).

(2) For 1 ⩽ 𝑘 ⩽ 𝑛,

𝐶
𝑘𝑘
= ∑

𝑇∈T
𝑘

𝑊(𝑇) = ∑

𝑇∈T
𝑘

∏

(𝑟,𝑚)∈𝐸(𝑇)

𝛽
𝑟𝑚
> 0, (11)

where T
𝑘
is the set of all directed spanning subtrees ofL that are

rooted at vertex 𝑘,𝑊(𝑇) is the weight of a directed tree T, and
𝐸(𝑇) denotes the set of directed arcs in a directed tree T.

Y. Muroya et al. proved the following theorem.

Theorem 2. Assume that 𝐵 = (𝛽
𝑘𝑗
) is irreducible and

inequality (2) holds. If R
0
> 1 and 𝑑𝑆

𝑘
𝑆
∗
− 𝛿
𝑘
𝑅
∗

𝑘
⩾ 0, then

system (1) has at least one endemic equilibrium 𝑃
∗ in

∘

Γ, and
𝑃
∗ is globally asymptotically stable.

3. Multigroup Stochastic SIRS Model

Under assumptions that R
0
> 1, 𝑑

𝑆

𝑘
𝑆
∗
− 𝛿
𝑘
𝑅
∗

𝑘
⩾ 0, 𝑑𝑆

𝑘
⩽

min{𝑑𝐼
𝑘
, 𝑑
𝑅

𝑘
}, and B = (𝛽

𝑘𝑗
) is irreducible in Theorem 2,

we know from Section 2 that there exists a positive endemic
equilibrium 𝑃

∗ in
∘

Γ. Furthermore, we assume stochastic
perturbations are of white noise type, which are directly
proportional to distances 𝑆

𝑘
(𝑡), 𝐼
𝑘
(𝑡), and𝑅

𝑘
(𝑡) from values of

𝑆
∗

𝑘
, 𝐼
∗

𝑘
, 𝑅
∗

𝑘
, influence on the 𝑆

𝑘
(𝑡), 𝐼
𝑘
(𝑡), and𝑅

𝑘
(𝑡), respectively.

So system (1) results in

�̇�
𝑘
= Λ
𝑘
− 𝑑
𝑆

𝑘
𝑆
𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
(𝑡) 𝐼
𝑗
(𝑡) + 𝛿

𝑘
𝑅
𝑘

+ 𝜎
1𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
) �̇�
1𝑘
,

�̇�
𝑘
=

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
(𝑡) 𝐼
𝑗
(𝑡) − (𝑑

𝐼

𝑘
+ 𝛾
𝑘
) 𝐼
𝑘
+ 𝜎
2𝑘
(𝐼
𝑘
− 𝐼
∗

𝑘
) �̇�
2𝑘
,

�̇�
𝑘
= 𝛾
𝑘
𝐼
𝑘
− (𝑑
𝑅

𝑘
+ 𝛿
𝑘
) 𝑅
𝑘
+ 𝜎
3𝑘
(𝑅
𝑘
− 𝑅
∗

𝑘
) �̇�
3𝑘
,

𝑘 = 1, . . . , 𝑛,

(12)

where 𝐵
1𝑘
(𝑡), 𝐵
2𝑘
(𝑡), and 𝐵

3𝑘
(𝑡) are independent standard

Brownian motions and 𝜎2
𝑖𝑘
> 0 represent the intensities

of 𝐵
𝑖𝑘
(𝑡) (𝑖 = 1, 2, 3), respectively. Obviously, stochastic

system (12) has the same equilibrium points as system (1).
Hence, when the stochasticmodel (12) satisfies the conditions
of Theorem 2, we can ensure the existence of the positive
equilibrium point of the stochastic model (12). Note that
because of the influence of the white noise, the components
of solutions to (12) can also be negative at some time. But
because it is impossible for populations to be less than zero
physically, once the negative sections appear on components
of solutions of (12), we only need to consider the nonnegative
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section of the components of solutions. In the next section,
we will investigate asymptotic stability of the equilibrium
𝑃
∗ of system (12). To this end, we will construct a class

of different Lyapunov functions to achieve our proof under
certain conditions.

4. Stochastic Stability of
the Endemic Equilibrium

Let us now proceed to discuss asymptotic stability of the
system (12). In this paper, unless otherwise specified, let
(Ω,F, {F

𝑡
}
𝑡⩾𝑡
0

, 𝑃) be a complete probability space with a
filtration {F

𝑡
}
𝑡⩾𝑡
0

satisfying the usual conditions (i.e., it is
increasing and right continuous while F

0
contains all 𝑃-

null sets). Let 𝐵
𝑖𝑘
(𝑡) be the Brownian motions defined on

this probability space. If R
0
> 1, then the stochastic

system (12) can be centered at its endemic equilibrium 𝑃
∗
=

(𝑆
∗

1
, 𝐼
∗

1
, 𝑅
∗

1
, . . . , 𝑆

∗

𝑛
, 𝐼
∗

𝑛
, 𝑅
∗

𝑛
); by the change of variables

u
𝑘
= 𝑆
𝑘
− 𝑆
∗

𝑘
, k

𝑘
= 𝐼
𝑘
− 𝐼
∗

𝑘
, w

𝑘
= 𝑅
𝑘
− 𝑅
∗

𝑘
,

(13)

we obtain the following system:

u̇
𝑘
= − 𝑑

𝑆

𝑘
u
𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
k
𝑗
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑗

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
𝐼
∗

𝑗
+ 𝛿
𝑘
w
𝑘
+ 𝜎
1𝑘
u
𝑘
�̇�
1𝑘
,

k̇
𝑘
=

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
k
𝑗
+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑗

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
𝐼
∗

𝑗
− (𝑑
𝐼

𝑘
+ 𝛾
𝑘
) k
𝑘
+ 𝜎
2𝑘
k
𝑘
�̇�
2𝑘
,

ẇ
𝑘
= 𝛾
𝑘
k
𝑘
− (𝑑
𝑅

𝑘
+ 𝛿
𝑘
)w
𝑘
+ 𝜎
3𝑘
w
𝑘
�̇�
3𝑘
,

𝑘 = 1, . . . , 𝑛.

(14)

It is clear that the stability of equilibrium of system
(12) is equivalent to the stability of zero solution of system
(14). Considering the 𝑑-dimensional stochastic differential
equation

𝑑x (𝑡) = 𝑓 (x (𝑡) , 𝑡) 𝑑𝑡 + 𝑔 (x (𝑡) , 𝑡) 𝑑𝐵 (𝑡) , 𝑡 ⩾ 𝑡
0
.

(15)

If the assumptions of the existence and uniqueness theorem
are satisfied, then for any given initial value x(𝑡

0
) = 𝑥
0
∈ R𝑑,

(15) has a unique global solution denoted by x(𝑡; 𝑡
0
, 𝑥
0
). For

the purpose of stability, we assume in this section 𝑓(0, 𝑡) = 0
and 𝑔(0, 𝑡) = 0 for all 𝑡 ⩾ 𝑡

0
. So (15) admits a solution

x(𝑡) ≡ 0 which is called the trivial solution or equilibrium
position. We let 𝐶2,1(R𝑑 × [𝑡

0
,∞);R

+
) denote the family of

all nonnegative functions 𝑉(x, 𝑡) on R𝑑 × [𝑡
0
,∞) which are

continuously twice differentiable in x and once in 𝑡. Define
the differential operator 𝐿 associated with (15) by

𝐿 =

𝜕

𝜕𝑡

+

𝑑

∑

𝑖=1

𝑓
𝑖
(x, 𝑡) 𝜕

𝜕𝑥
𝑖

+

1

2

𝑑

∑

𝑖,𝑗=1

[𝑔
𝑇
(x, 𝑡) 𝑔 (x, 𝑡)]

𝑖𝑗

𝜕
2

𝜕𝑥
𝑖
𝑥
𝑗

.

(16)

If 𝐿 acts on a function 𝑉 ∈ 𝐶2,1(R𝑑 × [𝑡
0
,∞);R

+
), then

𝐿𝑉 (x, 𝑡) = 𝑉𝑡 (x, 𝑡) + 𝑉𝑡 (x, 𝑡) 𝑓 (x, 𝑡)

+

1

2

trace [𝑔𝑇 (x, 𝑡) 𝑉𝑥𝑥 (x, 𝑡) 𝑔 (x, 𝑡)] .
(17)

Definition 3. (1) The trivial solution of (15) is said to be
stochastically stable or stable in probability if for every pair
of 𝜀 ∈ (0, 1) and 𝑟 > 0, there exists a 𝛿 = 𝛿(𝜀, 𝑟, 𝑡

0
) > 0 such

that

𝑃 {




x (𝑡; 𝑡
0
, 𝑥
0
)




< 𝑟 ∀𝑡 ⩾ 𝑡

0
} ⩾ 1 − 𝜀 (18)

whenever |𝑥
0
| < 𝛿. Otherwise, it is said to be stochastically

unstable.
(2) The trivial solution is said to be stochastically asymp-

totically stable if it is stochastically stable and for every 𝜀 ∈
(0, 1), there exists a 𝛿

0
= 𝛿
0
(𝜀, 𝑡
0
) > 0 such that

𝑃{ lim
𝑡→∞

x (𝑡; 𝑡
0
, 𝑥
0
) = 0} ⩾ 1 − 𝜀 (19)

whenever |𝑥
0
| < 𝛿
0
.

(3) The trivial solution is said to be stochastically asymp-
totically stable in the large if it is stochastically stable and for
all 𝑥
0
∈ R𝑑

𝑃{ lim
𝑡→∞

x (𝑡; 𝑡
0
, 𝑥
0
) = 0} = 1. (20)

Before proving themain theoremweput forward a lemma
in [34].

Lemma 4 (see [34]). If there exists a positive-definite decres-
cent radially unbounded function 𝑉(x, 𝑡) ∈ 𝐶

2,1
(R𝑑 ×

[𝑡
0
,∞);R

+
) such that 𝐿𝑉(x, 𝑡) is negative-definite, then the

trivial solution of (15) is stochastically asymptotically stable in
the large.

From the above lemma, we can obtain the stochastically
asymptotical stability of equilibrium as following.

Theorem 5. Assume that B = (𝛽
𝑘𝑗
) is irreducible and

inequality (2) holds and R
0
> 1, 𝑑𝑆

𝑘
𝑆
∗

𝑘
− 𝛿
𝑘
𝑅
∗

𝑘
⩾ 0; then if

the following condition is satisfied:
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Figure 1: Deterministic trajectories of SIRSmodel (1) for initial condition 𝑆
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Figure 2: Stochastic trajectories of SIRS model (12) for 𝜎
11
= 0.4, 𝜎
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31
= 0.45, 𝜎
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= 0.5, 𝜎
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= 0.67, 𝜎
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= 0.5, and Δ𝑡 = 10−3.
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Figure 3: Stochastic trajectories of SIRS model (12) for 𝜎
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Figure 5: The relation between 𝑆
𝑘
and 𝑅

𝑘
for the deterministic SIRS model.
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Figure 6: The relation between 𝑆
𝑘
and 𝑅

𝑘
for the stochastic SIRS model.

𝜎
2

1𝑘
< 2𝑑
𝑆

𝑘
, 𝜎

2

2𝑘
<

2 (𝑑
𝐼

𝑘
+ 𝛾
𝑘
)∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗
+ 𝑑
𝑆

𝑘
+ 𝑑
𝐼

𝑘
+ 𝛾
𝑘

,

𝜎
2

3𝑘
< 2 (𝑑

𝑅

𝑘
+ 𝛿
𝑘
) ,

𝛿
2

𝑘

(𝑑
𝑆

𝑘
− (1/2) 𝜎

2

1𝑘
) (𝑑
𝑅

𝑘
+ 𝛿
𝑘
− (1/2) 𝜎

2

3𝑘
)

+

2𝛿
2

𝑘
∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑀
𝑘
(𝑑
𝑅

𝑘
+ 𝛿
𝑘
− (1/2) 𝜎

2

3𝑘
)

<

(𝑑
𝑅

𝑘
+ 𝛿
𝑘
− (1/2) 𝜎

2

3𝑘
)𝑀
𝑘

2𝛾
2

𝑘
∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

,

(21)
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Figure 7: Comparison of relationships of 𝑆
𝑘
and 𝑅

𝑘
for the different values 𝛿

𝑘
in the deterministic SIRS model.

the endemic equilibrium 𝑃
∗ of system (12) is stochastically

asymptotically stable in the large, where

𝑀
𝑘
= 2 (𝑑

𝐼

𝑘
+ 𝛾
𝑘
)

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑗
− (

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑗
+ 𝑑
𝑆

𝑘
+ 𝑑
𝐼

𝑘
+ 𝛾
𝑘
)𝜎
2

2𝑘
.

(22)

Proof. Set

B =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

∑

𝑖 ̸= 1

𝛽
1𝑖
−𝛽
21

⋅ ⋅ ⋅ −𝛽
𝑛1

−𝛽
12

∑

𝑖 ̸= 2

𝛽
2𝑖
⋅ ⋅ ⋅ −𝛽

𝑛2

...
... d

...

−𝛽
1𝑛

𝛽
2𝑛

⋅ ⋅ ⋅ ∑

𝑖 ̸= 𝑛

𝛽
𝑛𝑖

]
]
]
]
]
]
]
]
]
]
]
]
]

]

(23)

and 𝛽
𝑘𝑗
= 𝛽
𝑘𝑗
𝑆
∗

𝑘
𝐼
∗

𝑗
, 𝛽
𝑘𝑗
> 0, 1 ⩽ 𝑘, 𝑗 ⩽ 𝑛.

Note thatB is the Laplacian matrix of the matrix (𝛽
𝑘𝑗
)
𝑛×𝑛

(see Lemma 1). Since 𝛽
𝑘𝑗
is irreducible, the matrices (𝛽

𝑘𝑗
)
𝑛×𝑛

andB are also irreducible. Let 𝐶
𝑘𝑗
denote the cofactor of the

(𝑘, 𝑗) entry of B. We know that the system Bℓ = 0 has a
positive solution ℓ = (ℓ

1
, ℓ
2
, . . . , ℓ

𝑛
), where ℓ

𝑘
= 𝐶
𝑘𝑘
> 0

for 𝑘 = 1, 2, . . . , 𝑛, by Lemma 1.
It is easy to see thatwe only need to prove the zero solution

of (14) is stochastically asymptotically stable in the large. Let
x
𝑘
(𝑡) = (u

𝑘
(𝑡), k
𝑘
(𝑡),w
𝑘
(𝑡))
𝑇
∈ 𝑅
3

+
, 𝑘 = 1, . . . , 𝑛 and x(𝑡) =

(x
1
(𝑡), . . . , x

𝑛
(𝑡))
𝑇
∈ 𝑅
3𝑛

+
. We define the Lyapunov function

𝑉(x(𝑡)) as follows:

𝑉 (x) = 1
2

𝑛

∑

𝑘=1

(𝑎
𝑘
k2
𝑘
+ 𝑏
𝑘
(u
𝑘
+ k
𝑘
)
2
+ 𝑐
𝑘
w2
𝑘
) , (24)

where 𝑎
𝑘
> 0, 𝑏

𝑘
> 0, 𝑐
𝑘
> 0 are real positive constants to be

chosen later. Then it can be described as the quadratic form

𝑉 (x) = 1
2

𝑛

∑

𝑘=1

x𝑇
𝑘
𝑄x
𝑘
, (25)

where

𝑄 = (

𝑏
𝑘

𝑏
𝑘

0

𝑏
𝑘
𝑎
𝑘
+ 𝑏
𝑘
0

0 0 𝑐
𝑘

) (26)

is a symmetric positive-definite matrix. So it is obvious
that 𝑉(x) is positive-definite decrescent radially unbounded.
For the sake of simplicity, (24) may be divided into three
functions: 𝑉(x) = 𝑉

1
(x) + 𝑉

2
(x) + 𝑉

3
(x), where

𝑉
1 (x) =

1

2

𝑎
𝑘
k2
𝑘
, 𝑉

2 (x) =
1

2

𝑏
𝑘
(u
𝑘
+ k
𝑘
)
2
,

𝑉
3
(x) = 1

2

𝑐
𝑘
w2
𝑘
.

(27)
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Using Itô’s formula and (5), we compute

𝐿𝑉
1
=

𝑛

∑

𝑘=1

𝑎
𝑘
k
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
k
𝑗
+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑗

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
𝐼
∗

𝑗
−(𝑑
𝐼

𝑘
+ 𝛾
𝑘
) k
𝑘
)+

1

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

2𝑘
k2
𝑘

=

𝑛

∑

𝑘=1

𝑎
𝑘
k
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
k
𝑗
+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑗

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
𝐼
∗

𝑗
−

∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝑆
∗

𝑘
𝐼
∗

𝑗

𝐼
∗

𝑘

k
𝑘
)

+

1

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

2𝑘
k2
𝑘

=

𝑛

∑

𝑘=1

𝑎
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
𝐼
∗

𝑘
𝐼
∗

𝑗

k
𝑘

𝐼
∗

𝑘

k
𝑗

𝐼
∗

𝑗

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
𝐼
∗

𝑘
𝐼
∗

𝑗
(

k
𝑘

𝐼
∗

𝑘

)

2

)

+

𝑛

∑

𝑘=1

𝑎
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
k
𝑗
+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
𝐼
∗

𝑗
)

+

1

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

2𝑘
k2
𝑘

=

𝑛

∑

𝑘=1

𝑎
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑘

k
𝑘

𝐼
∗

𝑘

k
𝑗

𝐼
∗

𝑗

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑘
(

k
𝑘

𝐼
∗

𝑘

)

2

)

+

𝑛

∑

𝑘=1

𝑎
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
k
𝑗
+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
𝐼
∗

𝑗
)

+

1

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

2𝑘
k2
𝑘

⩽

𝑛

∑

𝑘=1

𝑎
𝑘
(

1

2

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑘
((

k
𝑘

𝐼
∗

𝑘

)

2

+ (

k
𝑗

𝐼
∗

𝑗

)

2

)

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑘
(

k
𝑘

𝐼
∗

𝑘

)

2

)

+

𝑛

∑

𝑘=1

𝑎
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
k
𝑗
+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
𝐼
∗

𝑗
)+

1

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

2𝑘
k2
𝑘

=

1

2

(

𝑛

∑

𝑘=1

𝑎
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑘
(

k
𝑗

𝐼
∗

𝑗

)

2

−

𝑛

∑

𝑘=1

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑘
(

k
𝑘

𝐼
∗

𝑘

)

2

)

+

𝑛

∑

𝑘=1

𝑎
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
k
𝑗
+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
𝐼
∗

𝑗
)+

1

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

2𝑘
k2
𝑘
.

(28)

Let 𝑎
𝑘
= 𝐶
𝑘𝑘
/𝐼
∗

𝑘
, so ℓ
𝑘
= 𝑎
𝑘
𝐼
∗

𝑘
. It follows from Bℓ = 0 and

𝛽
𝑗𝑘
= 𝛽
𝑗𝑘
𝑆
∗

𝑗
𝐼
∗

𝑘
that

𝑛

∑

𝑗=1

𝛽
𝑗𝑘
ℓ
𝑗
=

𝑛

∑

𝑘=1

𝛽
𝑘𝑗
ℓ
𝑘
, (29)

which implies

𝑛

∑

𝑘=1

𝑎
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑘
(

w
𝑗

𝐼
∗

𝑗

)

2

=

𝑛

∑

𝑘=1

𝑎
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑘
(

w
𝑘

𝐼
∗

𝑘

)

2

. (30)

Hence, inequality (28) becomes

𝐿𝑉
1
⩽

𝑛

∑

𝑘=1

𝑎
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
k
𝑗
+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
𝐼
∗

𝑗
)

+

1

2

𝑛

∑

𝑘=1

𝑎
𝑘
𝜎
2

2𝑘
k2
𝑘
.

(31)

Similarly, from Itô’s formula, we obtain

𝐿𝑉
2
=

𝑛

∑

𝑘=1

𝑏
𝑘
(u
𝑘
+ k
𝑘
) (−𝑑
𝑆

𝑘
u
𝑘
− (𝑑
𝐼

𝑘
+ 𝛾
𝑘
) k
𝑘
+ 𝛿
𝑘
w
𝑘
)

+

1

2

𝑛

∑

𝑘=1

𝑏
𝑘
(𝜎
2

1𝑘
u2
𝑘
+ 𝜎
2

2𝑘
k2
𝑘
)

= −

𝑛

∑

𝑘=1

𝑏
𝑘
(𝑑
𝑆

𝑘
−

1

2

𝜎
2

1𝑘
) u2
𝑘

−

𝑛

∑

𝑘=1

𝑏
𝑘
(𝑑
𝐼

𝑘
+ 𝛾
𝑘
−

1

2

𝜎
2

2𝑘
) k2
𝑘

−

𝑛

∑

𝑘=1

𝑏
𝑘
(𝑑
𝑆

𝑘
+ 𝑑
𝐼

𝑘
+ 𝛾
𝑘
) u
𝑘
k
𝑘

+

𝑛

∑

𝑘=1

𝑏
𝑘
𝛿
𝑘
(u
𝑘
+ k
𝑘
)w
𝑘
,

𝐿𝑉
3
=

𝑛

∑

𝑘=1

𝑐
𝑘
w
𝑘
(𝛾
𝑘
k
𝑘
− (𝑑
𝑅

𝑘
+ 𝛿
𝑘
)w
𝑘
)

+

1

2

𝑛

∑

𝑘=1

𝑐
𝑘
𝜎
2

3𝑘
w2
𝑘

= −

𝑛

∑

𝑘=1

𝑐
𝑘
(𝑑
𝑅

𝑘
+ 𝛿
𝑘
−

1

2

𝜎
2

3𝑘
)w2
𝑘
+

𝑛

∑

𝑘=1

𝑐
𝑘
𝛾
𝑘
k
𝑘
w
𝑘
.

(32)
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Moreover, using Cauchy inequality, we can obtain

𝑐
𝑘
𝛾
𝑘
k
𝑘
w
𝑘
⩽

1

2

𝑐
𝑘
(𝑑
𝑅

𝑘
+ 𝛿
𝑘
−

1

2

𝜎
2

3𝑘
)w2
𝑘

+

𝑐
𝑘
𝛾
2

𝑘

2 (𝑑
𝑅

𝑘
+ 𝛿
𝑘
− (1/2) 𝜎

2

3𝑘
)

k2
𝑘
,

𝑏
𝑘
𝛿
𝑘
u
𝑘
w
𝑘
⩽

1

2

𝑏
𝑘
(𝑑
𝑆

𝑘
−

1

2

𝜎
2

1𝑘
) u2
𝑘

+

𝑏
𝑘
𝛿
2

𝑘

2 (𝑑
𝑆

𝑘
− (1/2) 𝜎

2

1𝑘
)

w2
𝑘
,

𝑏
𝑘
𝛿
𝑘
k
𝑘
w
𝑘
⩽ +

𝑏
𝑘

4∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑀
𝑘
k2
𝑘
+

𝑏
𝑘
𝛿
2

𝑘
∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑀
𝑘

w2
𝑘
,

(33)

where

𝑀
𝑘
= 2 (𝑑

𝐼

𝑘
+ 𝛾
𝑘
)

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑗

− (

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑗
+ 𝑑
𝑆

𝑘
+ 𝑑
𝐼

𝑘
+ 𝛾
𝑘
)𝜎
2

2𝑘
.

(34)

Hence, we can calculate

𝐿𝑉 = 𝐿𝑉
1
+ 𝐿𝑉
2
+ 𝐿𝑉
3

=

𝑛

∑

𝑘=1

{

{

{

𝑎
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
k
𝑗
+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
𝐼
∗

𝑗
)

+

1

2

𝑎
𝑘
𝜎
2

2𝑘
k2
𝑘
− 𝑏
𝑘
(𝑑
𝑆

𝑘
−

1

2

𝜎
2

1𝑘
) u2
𝑘

− 𝑏
𝑘
(𝑑
𝐼

𝑘
+ 𝛾
𝑘
−

1

2

𝜎
2

2𝑘
) k2
𝑘
−𝑏
𝑘
(𝑑
𝑆

𝑘
+ 𝑑
𝐼

𝑘
+ 𝛾
𝑘
) u
𝑘
k
𝑘

+ 𝑏
𝑘
𝛿
𝑘
(u
𝑘
+ k
𝑘
)w
𝑘
− 𝑐
𝑘
(𝑑
𝑅

𝑘
+ 𝛿
𝑘
−

1

2

𝜎
2

3𝑘
)w2
𝑘

+𝑐
𝑘
𝛾
𝑘
k
𝑘
w
𝑘

}

}

}

⩽

𝑛

∑

𝑘=1

{

{

{

𝑎
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
𝐼
∗

𝑗
+

1

2

𝑎
𝑘
𝜎
2

2𝑘
k2
𝑘

− 𝑏
𝑘
(𝑑
𝑆

𝑘
−

1

2

𝜎
2

1𝑘
) u2
𝑘
− 𝑏
𝑘
(𝑑
𝐼

𝑘
+ 𝛾
𝑘
−

1

2

𝜎
2

2𝑘
) k2
𝑘

− 𝑏
𝑘
(𝑑
𝑆

𝑘
+ 𝑑
𝐼

𝑘
+ 𝛾
𝑘
) u
𝑘
k
𝑘
−𝑐
𝑘
(𝑑
𝑅

𝑘
+ 𝛿
𝑘
−

1

2

𝜎
2

3𝑘
)w2
𝑘

+

1

2

𝑐
𝑘
(𝑑
𝑅

𝑘
+ 𝛿
𝑘
−

1

2

𝜎
2

3𝑘
)w2
𝑘

+

𝑐
𝑘
𝛾
2

𝑘

2 (𝑑
𝑅

𝑘
+ 𝛿
𝑘
− (1/2) 𝜎

2

3𝑘
)

k2
𝑘

+

1

2

𝑏
𝑘
(𝑑
𝑆

𝑘
−

1

2

𝜎
2

1𝑘
) u2
𝑘
+

𝑏
𝑘
𝛿
2

𝑘

2 (𝑑
𝑆

𝑘
− (1/2) 𝜎

2

1𝑘
)

w2
𝑘

+

𝑏
𝑘

4∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑀
𝑘
k2
𝑘
+

𝑏
𝑘
𝛿
2

𝑘
∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑀
𝑘

w2
𝑘

}

}

}

+

𝑛

∑

𝑘=1

𝑎
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
k
𝑗

=

𝑛

∑

𝑘=1

{

{

{

−

1

2

𝑏
𝑘
(𝑑
𝑆

𝑘
−

1

2

𝜎
2

1𝑘
) u2
𝑘

+ (𝑎
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑗
− 𝑏
𝑘
(𝑑
𝑆

𝑘
+ 𝑑
𝐼

𝑘
+ 𝛾
𝑘
)) u
𝑘
k
𝑘

+

1

2

𝑎
𝑘
𝜎
2

2𝑘
k2
𝑘

− 𝑏
𝑘
(𝑑
𝐼

𝑘
+ 𝛾
𝑘
−

1

2

𝜎
2

2𝑘
) k2
𝑘
+

𝑏
𝑘

4∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑀
𝑘
k2
𝑘

+

𝑐
𝑘
𝛾
2

𝑘

2 (𝑑
𝑅

𝑘
+ 𝛿
𝑘
− (1/2) 𝜎

2

3𝑘
)

k2
𝑘

−

1

2

𝑐
𝑘
(𝑑
𝑅

𝑘
+ 𝛿
𝑘
−

1

2

𝜎
2

3𝑘
)w2
𝑘

+

𝑏
𝑘
𝛿
2

𝑘

2 (𝑑
𝑆

𝑘
− (1/2) 𝜎

2

1𝑘
)

w2
𝑘
+

𝑏
𝑘
𝛿
2

𝑘
∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑀
𝑘

w2
𝑘

}

}

}

+

𝑛

∑

𝑘=1

𝑎
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
k
𝑗
.

(35)

Set

𝑎
𝑘
=

(𝑑
𝑆

𝑘
+ 𝑑
𝐼

𝑘
+ 𝛾
𝑘
)

∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑏
𝑘
; (36)

then we have

𝐿𝑉 ⩽

𝑛

∑

𝑘=1

{

{

{

−

1

2

𝑏
𝑘
(𝑑
𝑆

𝑘
−

1

2

𝜎
2

1𝑘
) u2
𝑘

−

𝑏
𝑘

2∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗
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× (2 (𝑑
𝐼

𝑘
+ 𝛾
𝑘
)

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑗

−(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝐼
∗

𝑗
+ 𝑑
𝑆

𝑘
+ 𝑑
𝐼

𝑘
+ 𝛾
𝑘
)𝜎
2

2𝑘
) k2
𝑘

+

𝑏
𝑘

4∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑀
𝑘
k2
𝑘
+

𝑐
𝑘
𝛾
2

𝑘

2 (𝑑
𝑅

𝑘
+ 𝛿
𝑘
− (1/2) 𝜎

2

3𝑘
)

k2
𝑘

−

1

2

𝑐
𝑘
(𝑑
𝑅

𝑘
+ 𝛿
𝑘
−

1

2

𝜎
2

3𝑘
)w2
𝑘

+

𝑏
𝑘
𝛿
2

𝑘

2 (𝑑
𝑆

𝑘
− (1/2) 𝜎

2

1𝑘
)

w2
𝑘

+

𝑏
𝑘
𝛿
2

𝑘
∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑀
𝑘

w2
𝑘

}

}

}

+

𝑛

∑

𝑘=1

𝑎
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
k
𝑗

=

𝑛

∑

𝑘=1

{ −

1

2

𝑏
𝑘
(𝑑
𝑆

𝑘
−

1

2

𝜎
2

1𝑘
) u2
𝑘
−

𝑏
𝑘

4∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑀
𝑘
k2
𝑘

+

𝑐
𝑘
𝛾
2

𝑘

2 (𝑑
𝑅

𝑘
+ 𝛿
𝑘
− (1/2) 𝜎

2

3𝑘
)

k2
𝑘

−

1

2

𝑐
𝑘
(𝑑
𝑅

𝑘
+ 𝛿
𝑘
−

1

2

𝜎
2

3𝑘
)w2
𝑘

+

𝑏
𝑘
𝛿
2

𝑘

2 (𝑑
𝑆

𝑘
− (1/2) 𝜎

2

1𝑘
)

w2
𝑘
+

𝑏
𝑘
𝛿
2

𝑘
∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑀
𝑘

w2
𝑘
}

+

𝑛

∑

𝑘=1

𝑎
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
k
𝑗

=

𝑛

∑

𝑘=1

{ −

1

2

𝑏
𝑘
(𝑑
𝑆

𝑘
−

1

2

𝜎
2

1𝑘
) u2
𝑘

− (

𝑏
𝑘

4∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑀
𝑘

−

𝑐
𝑘
𝛾
2

𝑘

2 (𝑑
𝑅

𝑘
+ 𝛿
𝑘
− (1/2) 𝜎

2

3𝑘
)

) k2
𝑘

− (

1

2

𝑐
𝑘
(𝑑
𝑅

𝑘
+ 𝛿
𝑘
−

1

2

𝜎
2

3𝑘
) −

𝑏
𝑘
𝛿
2

𝑘

2 (𝑑
𝑆

𝑘
− (1/2) 𝜎

2

1𝑘
)

−

𝑏
𝑘
𝛿
2

𝑘
∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑀
𝑘

)w2
𝑘
} +

𝑛

∑

𝑘=1

𝑎
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
k
𝑗

= 𝐿𝑉
0
+

𝑛

∑

𝑘=1

𝑎
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
k
𝑗
,

(37)

where

𝐿𝑉
0
=

𝑛

∑

𝑘=1

{ −

1

2

𝑏
𝑘
(𝑑
𝑆

𝑘
−

1

2

𝜎
2

1𝑘
) u2
𝑘

− (

𝑏
𝑘

4∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑀
𝑘

−

𝑐
𝑘
𝛾
2

𝑘

2 (𝑑
𝑅

𝑘
+ 𝛿
𝑘
− (1/2) 𝜎

2

3𝑘
)

) k2
𝑘

− (

1

2

𝑐
𝑘
(𝑑
𝑅

𝑘
+ 𝛿
𝑘
−

1

2

𝜎
2

3𝑘
) −

𝑏
𝑘
𝛿
2

𝑘

2 (𝑑
𝑆

𝑘
− (1/2) 𝜎

2

1𝑘
)

−

𝑏
𝑘
𝛿
2

𝑘
∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑀
𝑘

)w2
𝑘
} .

(38)

We let

A
𝑘
=

1

2

𝑏
𝑘
(𝑑
𝑆

𝑘
−

1

2

𝜎
2

1𝑘
) ,

B
𝑘
=

𝑏
𝑘

4∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑀
𝑘
−

𝑐
𝑘
𝛾
2

𝑘

2 (𝑑
𝑅

𝑘
+ 𝛿
𝑘
− (1/2) 𝜎

2

3𝑘
)

,

C
𝑘
=

1

2

𝑐
𝑘
(𝑑
𝑅

𝑘
+ 𝛿
𝑘
−

1

2

𝜎
2

3𝑘
) −

𝑏
𝑘
𝛿
2

𝑘

2 (𝑑
𝑆

𝑘
− (1/2) 𝜎

2

1𝑘
)

−

𝑏
𝑘
𝛿
2

𝑘
∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗

𝑀
𝑘

.

(39)

The proofs above show that if the condition (21) is sat-
isfied, A

𝑘
, B
𝑘
, and C

𝑘
are positive constants. Let 𝜆 =

min
𝑘∈{1,...,𝑛}

{A
𝑘
,B
𝑘
,C
𝑘
}; then 𝜆 > 0. From (37) and (38), one

sees that

𝐿𝑉 ⩽ 𝐿𝑉
0
+

𝑛

∑

𝑘=1

𝑎
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
k
𝑗

= −

𝑛

∑

𝑘=1

(A
𝑘
u2
𝑘
+B
𝑘
k2
𝑘
+C
𝑘
w2
𝑘
)

+

𝑛

∑

𝑘=1

𝑎
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
u
𝑘
k
𝑘
k
𝑗

= − 𝜆

𝑛

∑

𝑘=1

(




x
𝑘 (𝑡)






2
+ 𝑜 (





x
𝑘 (𝑡)






2
))

= − 𝜆|x (𝑡)|2 + 𝑜 (|x (𝑡)|2) ,

(40)

where |x
𝑘
(𝑡)| = √u2

𝑘
(𝑡) + k2

𝑘
(𝑡) + w2

𝑘
(𝑡), |x(𝑡)| =

(∑
𝑛

𝑘=1
|x
𝑘
(𝑡)|)
1/2 and 𝑜(|x(𝑡)|2) is an infinitesimal of higher

order of |x(𝑡)|2 for 𝑡 → ∞. Hence, 𝐿𝑉(x, 𝑡) is negative-
definite for 𝑡 ⩾ 0. According to Lemma 4, we therefore
conclude that the zero solution of (12) is stochastically
asymptotically stable in the large.The proof is complete.
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5. Numerical Simulation

Numerical methods are employed to solve the system (1) and
(12) and to depict the behavior of the susceptible, infectious,
and recovered nodes with respect to time. We numerically
simulate the solution of system (1) and (12) with 𝑛 = 2. In
this case, we have

𝑀
0
=

[
[
[
[
[
[

[

𝛽
11
(Λ
1
/𝑑
𝑆

1
)

𝑑
𝐼

1
+ 𝛾
1

𝛽
12
(Λ
1
/𝑑
𝑆

1
)

𝑑
𝐼

1
+ 𝛾
1

𝛽
21
(Λ
2
/𝑑
𝑆

2
)

𝑑
𝐼

2
+ 𝛾
2

𝛽
22
(Λ
2
/𝑑
𝑆

2
)

𝑑
𝐼

2
+ 𝛾
2

]
]
]
]
]
]

]

:= [
𝛽
11
𝐾
1
𝛽
12
𝐾
1

𝛽
21
𝐾
2
𝛽
22
𝐾
2

] ,

R
0

= 𝜌 (𝑀
0
)

=

𝛽
11
𝐾
1
+ 𝛽
22
𝐾
2
+ √(𝛽

11
𝐾
1
− 𝛽
22
𝐾
2
)
2
+ 4𝛽
12
𝛽
21
𝐾
1
𝐾
2

2

.

(41)

Let

Λ
1
= 2.5, 𝛽

11
= 0.55, 𝛽

12
= 0.35, 𝑑

𝑆

1
= 0.15,

𝑑
𝐼

1
= 0.2, 𝑑

𝑅

1
= 0.25, 𝛿

1
= 0.01, 𝛾

1
= 0.4,

Λ
2
= 1.0, 𝛽

21
= 0.5, 𝛽

22
= 0.2, 𝑑

𝑆

2
= 0.1, 𝑑

𝐼

2
= 0.15,

𝑑
𝑅

2
= 0.2, 𝛿

2
= 0.012, 𝛾

2
= 0.15.

(42)

Hence we obtain 𝑆∗
1
= 0.7205, 𝐼∗

1
= 4.0914, 𝑅∗

1
= 6.2945,

𝑆
∗

2
= 0.3663, 𝐼∗

2
= 3.3048, 𝑅∗

2
= 2.3383. We can calculate

R
0
=

250

9

> 1, 𝑑
𝑆

1
𝑆
∗

1
− 𝛿
1
𝑅
∗

1
= 0.04513 > 0,

𝑑
𝑆

2
𝑆
∗

2
− 𝛿
2
𝑅
∗

2
= 0.0085704 > 0.

(43)

In the absence of noise, we simulate the global stability of the
endemic equilibrium of deterministic system (1) in Figure 1,
and we always choose initial value 𝑆

1
(0) = 2.0, 𝐼

1
(0) = 4.0,

𝑅
1
(0) = 6.0, 𝑆

2
(0) = 9.0, 𝐼

2
(0) = 4.0, and 𝑅

2
(0) = 0.5.

Next, we consider the effect of stochastic fluctuations of
environment to the endemic equilibrium of the correspond-
ing deterministic system. Given the discretization of system
(12) for 𝑡 = 0, Δ𝑡, 2Δ𝑡, . . . , 𝑛Δ𝑡, and 𝑘 = 1, 2,

𝑆
𝑘,𝑖+1

= 𝑆
𝑘,𝑖
+ (Λ
𝑘
− 𝑑
𝑆

𝑘
𝑆
𝑘,𝑖
− 𝛽
𝑘1
𝑆
𝑘,𝑖
𝐼
1,𝑖

−𝛽
𝑘2
𝑆
𝑘,𝑖
𝐼
2,𝑖
+ 𝛿
𝑘
𝑅
𝑘,𝑖
) Δ𝑡

+ 𝜎
1𝑘
(𝑆
𝑘,𝑖
− 𝑆
∗

𝑘
)√Δ𝑡𝜀

1𝑘,𝑖
,

𝐼
𝑘,𝑖+1

= 𝐼
𝑘,𝑖
+ (𝛽
𝑘1
𝑆
𝑘,𝑖
𝐼
1,𝑖
+ 𝛽
𝑘2
𝑆
𝑘,𝑖
𝐼
2,𝑖
− (𝑑
𝐼

𝑘
+ 𝛾
𝑘
) 𝐼
𝑘,𝑖
) Δ𝑡

+ 𝜎
2𝑘
(𝐼
𝑘,𝑖
− 𝐼
∗

𝑘
)√Δ𝑡𝜀

2𝑘,𝑖
,

𝑅
𝑘,𝑖+1

= 𝑅
𝑘,𝑖
+ (𝛾
𝑘
𝐼
𝑘,𝑖
− (𝑑
𝐼

𝑘
+ 𝛿
𝑘
) 𝑅
𝑘,𝑖
) Δ𝑡

+ 𝜎
3𝑘
(𝑅
𝑘,𝑖
− 𝑅
∗

𝑘
)√Δ𝑡𝜀

3𝑘,𝑖
,

(44)

where time increment Δ𝑡 > 0, and 𝜀
1𝑘,𝑖

, 𝜀
2𝑘,𝑖

, 𝜀
3𝑘,𝑖

are
𝑁(0, 1)-distributed independent random variables which
can be generated numerically by pseudorandom number
generators.

As mentioned above, there is an endemic equilibrium
𝑃
∗
= (𝑆
∗

1
, 𝐼
∗

1
, 𝑅
∗

1
, 𝑆
∗

2
, 𝐼
∗

2
, 𝑅
∗

2
)of system (1)whenR

0
> 1, where

𝑆
∗

1
= 0.7205, 𝐼

∗

1
= 4.0914, 𝑅

∗

1
= 6.2945,

𝑆
∗

2
= 0.3663, 𝐼

∗

2
= 3.3048, 𝑅

∗

2
= 2.3383.

(45)

Figure 2 corresponds to 𝜎
11
= 0.4, 𝜎

21
= 0.73, 𝜎

31
= 0.45,

𝜎
12
= 0.5, 𝜎

22
= 0.67, and 𝜎

32
= 0.5; the numerical simulation

shows that the endemic equilibrium of stochastic system (12)
is global asymptotically stable under the condition (21), while
Figure 3 corresponds to 𝜎

11
= 0.7, 𝜎

21
= 1.2, 𝜎

31
= 1.3,

𝜎
12
= 0.8, 𝜎

22
= 0.8, and 𝜎

32
= 1.4. Moreover, comparison

of Figures 2 and 3 suggests that fluctuations enhance as the
noise level increases. Note that the condition (21) is just a
sufficient condition. When this condition is not satisfied,
the stochastic system (12) may be or may not be stable. For
instance, the intensities of Brownian motions 𝜎

11
= 0.7,

𝜎
21
= 1.2, 𝜎

31
= 1.3, 𝜎

12
= 0.8, 𝜎

22
= 0.8, and 𝜎

32
=

1.4 do not meet the condition (21), but we can see from
Figure 3 that the stochastic system (12) is still asymptotically
stable. If we choose 𝜎

11
= 40.5, 𝜎

21
= 32.73, 𝜎

31
= 36.92,

𝜎
12
= 33.4, 𝜎

22
= 39.67, and 𝜎

32
= 30.5, then the solution

of the stochastic system (12) is not asymptotically stable but
explodes to infinity at the finite time (see Figure 4).

The relationships between 𝑆
𝑘
and 𝑅

𝑘
are also observed

and are depicted in Figures 5 and 6.Note that these two curves
of Figure 5 show that the number of susceptible individuals
sharply declines to near 𝑆∗

𝑘
as the number of the recovery

individuals increases slightly and then increases with the
number of the increasing recovered individuals gently and
goes on increasing with the number of the decreasing recov-
ered individuals, andfinally both reach the steady state values.
For the stochastic version, Figure 6 corresponds to 𝜎

11
= 0.4,

𝜎
21
= 0.73, 𝜎

31
= 0.45, 𝜎

12
= 0.5, 𝜎

22
= 0.67, and 𝜎

32
= 0.5;

oscillation appears under environmental driving forceswhich
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Table 1: Values of (𝑆∗
1
, 𝑅
∗

1
), when fixing 𝛿

2
= 0.012 and changing 𝛿

1
.

𝛿
1
= 0.1 𝛿

1
= 0.025 𝛿

1
= 0.02 𝛿

1
= 0.01

𝑆
∗

1
= 0.7627 𝑆

∗

1
= 0.7290 𝑆

∗

1
= 0.7263 𝑆

∗

1
= 0.7205

𝑅
∗

1
= 5.6130 𝑅

∗

1
= 6.1694 𝑅

∗

1
= 6.2105 𝑅

∗

1
= 6.2945

Table 2: Values of (𝑆∗
2
, 𝑅
∗

2
), when fixing 𝛿

1
= 0.01 and changing 𝛿

2
.

𝛿
2
= 0.35 𝛿

2
= 0.25 𝛿

2
= 0.15 𝛿

2
= 0.012

𝑆
∗

2
= 0.4678 𝑆

∗

2
= 0.4502 𝑆

∗

2
= 0.4254 𝑆

∗

2
= 0.3663

𝑅
∗

2
= 1.2710 𝑅

∗

2
= 1.4692 𝑅

∗

2
= 1.7408 𝑅

∗

2
= 2.3383

actually affect the deterministic curves shown in Figure 5. But
Figure 6 still maintains the same total trend as Figure 5 and
reaches the same equilibrium point as deterministic version.
Simulation result agrees with the real life situation.

Figure 7 and Tables 1 and 2 show that when the rate of
immunity loss 𝛿

𝑘
gradually reduces, 𝑆∗

𝑘
decreases, but 𝑅∗

𝑘

increases; the lower the rate of immunity loss 𝛿
𝑘
is, the lower

the steady state value of the susceptible is, the higher the
steady state value of the recovered is. Thus, it will be of great
importance for health management to control the rate of
immunity loss to keep it in a lower level; for example, when
antibody concentrations of recovered individuals are at a low
level or are zero, they can be required to undergo vaccination
to achieve the protective antibody levels.

6. Conclusion

This paper presented a mathematical study describing the
dynamical behavior of an SIRS epidemicmodel with stochas-
tic perturbations. Our purpose was based on analyzing this
behavior using a stochastic model. When the reproduction
number R

0
is greater than one, we obtained sufficient con-

ditions for stochastic stability of the endemic equilibrium 𝑃∗
by using a suitable Lyapunov function andother techniques of
stochastic analysis. The investigation of this stochastic model
revealed that the stochastic stability of 𝑃∗ depends on the
magnitude of the intensity of noise as well as the param-
eters involved within the model system. Finally, numerical
simulations are given to validate the theoretical results. The
proposed model, a more accurate epidemic model, can help
us to understand the dynamic behavior of virus. Moreover,
the theoretical results may provide some useful guidance for
making effective countermeasures on virus propagation.
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