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We obtain some general inequalities and establish integral inequalities of the majorization type for invex functions. We give
applications to relative invex functions.

1. Introduction

Let 𝑥, 𝑦 : [𝑎, 𝑏] → R be two decreasing real functions. Then
the function 𝑥 is said tomajorize 𝑦 if

∫

𝑠

𝑎

𝑥 (𝑡) 𝑑𝑡 ≥ ∫

𝑠

𝑎

𝑦 (𝑡) 𝑑𝑡 for 𝑠 ∈ [𝑎, 𝑏] ,

∫

𝑏

𝑎

𝑥 (𝑡) 𝑑𝑡 = ∫

𝑏

𝑎

𝑦 (𝑡) 𝑑𝑡

(1)

(see [1, p. 417] and [2, p. 324]).
The following result is known asmajorization theorem for

integrals (see [1, p. 417] and [2, p. 325]).

Theorem 1 (see [1, 2]). Let 𝑥, 𝑦 : [𝑎, 𝑏] → 𝐼 be two decreasing
real functions, where 𝐼 ⊂ R is an interval. The function 𝑥

majorizes 𝑦 if and only if the inequality

∫

𝑏

𝑎

𝜙 (𝑦 (𝑡)) 𝑑𝑡 ≤ ∫

𝑏

𝑎

𝜙 (𝑥 (𝑡)) 𝑑𝑡 (2)

holds for all continuous convex functions 𝜙 : 𝐼 → R such that
the integrals exist.

Some authors have investigated the weighted versions of
(2) (see [1, 3, 4]).

In our main results we will use the following definition of
invex function.

Definition 2. Let 𝜙 : 𝐼 → R be a differentiable function on
the interval 𝐼, and let 𝜂 : 𝐼 × 𝐼 → R be a function of two
variables. The function 𝜙 is said to be 𝜂-invex if, for all 𝑥, 𝑦 ∈

𝐼,

𝜙 (𝑥) ≥ 𝜙 (𝑦) + 𝜙
󸀠

(𝑦) 𝜂 (𝑥, 𝑦) ; (3)

see [5, pp. 1]. 𝜙 is called invex if 𝜙 is 𝜂-invex for some 𝜂.

Clearly, each differentiable convex function 𝜙 : 𝐼 → R

is an 𝜂-invex function with 𝜂(𝑥, 𝑦) = 𝑥 − 𝑦 for 𝑥, 𝑦 ∈

𝐼. It is known that a differentiable function is invex if and
only if each stationary point is a global minimum point [5].
This fact was the motivation to introduce invex functions in
optimization theory [6].

Let Θ : R2 → R be an arbitrary function vanishing at
points of the form (0, 𝑏), 𝑏 ∈ R. It is easy to verify that if a
differentiable function 𝜙 satisfies the condition

Θ(𝜙
󸀠

(𝑦) , 𝜂
0
(𝑥, 𝑦)) ≥ 0

implies 𝜙 (𝑥) − 𝜙 (𝑦) ≥ 0 for 𝑥, 𝑦 ∈ 𝐼

(4)

for some functions 𝜂
0
, then 𝜙 is invex.

In particular each pseudoconvex function is invex [5, pp.
3-4]. In fact, it is sufficient to consider Θ(𝑎, 𝑏) = 𝑎𝑏 for 𝑎, 𝑏 ∈
R and 𝜂

0
(𝑥, 𝑦) = 𝑥 − 𝑦 for 𝑥, 𝑦 ∈ 𝐼.

In the multidimensional case (𝑛 ≥ 1), we have the
following definition.
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Definition 3. Let ⟨⋅, ⋅⟩ be an inner product on R𝑛. Let 𝜂 :

𝐼
𝑛

× 𝐼
𝑛

→ R𝑛 be a function of two variables. One has the
following.

(i) A differentiable function 𝐹 : 𝐼
𝑛

→ R is said to be
𝜂-invex if, for all 𝑥, 𝑦 ∈ 𝐼

𝑛,

𝐹 (𝑥) − 𝐹 (𝑦) ≥ ⟨∇𝐹 (𝑦) , 𝜂 (𝑥, 𝑦)⟩ , (5)

where ∇ denotes the gradient [5, pp. 1].
(ii) A differentiable function 𝐹 : 𝐼

𝑛

→ R is said to be
𝜂-pseudo-invex if, for all 𝑥, 𝑦 ∈ 𝐼

𝑛,

⟨∇𝐹 (𝑦) , 𝜂 (𝑥, 𝑦)⟩ ≥ 0 implies 𝐹 (𝑥) − 𝐹 (𝑦) ≥ 0 (6)

(see [6]).
(iii) A differentiable function 𝐹 : 𝐼

𝑛

→ R is said to be
𝜂-quasi-invex if, for all 𝑥, 𝑦 ∈ 𝐼

𝑛,

𝐹 (𝑥) − 𝐹 (𝑦) ≤ 0 implies ⟨∇𝐹 (𝑦) , 𝜂 (𝑥, 𝑦)⟩ ≤ 0 (7)

(see [6]).

A differentiable real function 𝐹 : 𝐼
𝑛

→ R is said to be
invex (resp., pseudoinvex, quasi-invex), if 𝐹 is 𝜂-invex (resp.,
𝜂-pseudo-invex, 𝜂-quasi-invex) for some functions 𝜂 : 𝐼

𝑛

×

𝐼
𝑛

→ R𝑛.
For applications of invex functions in optimization and

mathematical programming, see [5–12] and for some recent
results of majorization discrete results for invex functions see
[13].

In this paper, we extend integral version of majorization
theorem from convex functions to invex ones. We also give
some applications to relative invex functions.

2. Main Results

In the following theorem we obtain an inequality which we
will use in our other results.

Theorem 4. Let 𝜙 : 𝐼 → R be an 𝜂-invex function on the
interval 𝐼, where 𝜂 : 𝐼 × 𝐼 → R is a continuous function, and
let 𝑓, 𝑔, 𝑝 : [𝑎, 𝑏] → 𝐼 be integrable functions with 𝑝(𝑡) ≥ 0

for 𝑡 ∈ [𝑎, 𝑏]. Then

∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑓 (𝑡)) 𝑑𝑡 − ∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑔 (𝑡)) 𝑑𝑡

≥ ∫

𝑏

𝑎

𝑝 (𝑡) 𝜙
󸀠

(𝑔 (𝑡)) 𝜂 (𝑓 (𝑡) , 𝑔 (𝑡)) 𝑑𝑡.

(8)

Proof. If we take 𝑥 → 𝑓(𝑡), 𝑦 → 𝑔(𝑡) in (3), we obtain

𝜙 (𝑓 (𝑡)) − 𝜙 (𝑔 (𝑡)) ≥ 𝜙
󸀠

(𝑔 (𝑡)) 𝜂 (𝑓 (𝑡) , 𝑔 (𝑡)) . (9)

Multiplying (9) by 𝑝(𝑡) ≥ 0 and integrating with respect to 𝑡,
we deduce (8).

The following weighted integral majorization theorem
holds.

Theorem 5. Let 𝜙 : 𝐼 → R be an 𝜂-invex function on the
interval 𝐼, where 𝜂 : 𝐼 × 𝐼 → R is a continuous function, and
let𝑓, 𝑔, 𝑝 : [𝑎, 𝑏] → 𝐼 be integrable functions with𝑝(𝑡) > 0 for
𝑡 ∈ [𝑎, 𝑏]. Moreover if 𝜙󸀠(𝑔(𝑡)) and 𝜂(𝑓(𝑡), 𝑔(𝑡)) are increasing
(decreasing) on [𝑎, 𝑏] and

∫

𝑏

𝑎

𝑝 (𝑡) 𝜂 (𝑓 (𝑡) , 𝑔 (𝑡)) 𝑑𝑡 = 0, (10)

then

∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑓 (𝑡)) 𝑑𝑡 ≥ ∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑔 (𝑡)) 𝑑𝑡. (11)

Proof. We know that the Chebyshev’s inequality is

1

∫

𝑏

𝑎

𝑝 (𝑡) 𝑑𝑡

∫

𝑏

𝑎

𝑝 (𝑡) 𝐹 (𝑡) 𝐺 (𝑡) 𝑑𝑡

≥

1

∫

𝑏

𝑎

𝑝 (𝑡) 𝑑𝑡

∫

𝑏

𝑎

𝑝 (𝑡) 𝐹 (𝑡) 𝑑𝑡

1

∫

𝑏

𝑎

𝑝 (𝑡) 𝑑𝑡

∫

𝑏

𝑎

𝑝 (𝑡) 𝐺 (𝑡) 𝑑𝑡,

(12)

where 𝐹, 𝐺 : [𝑎, 𝑏] → R are the functions of same
monotonicity and𝑝 : [𝑎, 𝑏] → R+ is any integrable function.

By assumption the functions 𝜙
󸀠

(𝑔(𝑡)), 𝜂(𝑓(𝑡), 𝑔(𝑡)) :

[𝑎, 𝑏] → R have the same monotonicity. Therefore, by
applying Chebyshev’s inequality (12) in the right hand side
of (8), we have

∫

𝑏

𝑎

𝑝 (𝑡) 𝜙
󸀠

(𝑔 (𝑡)) 𝜂 (𝑓 (𝑡) , 𝑔 (𝑡)) 𝑑𝑡

≥

1

∫

𝑏

𝑎

𝑝 (𝑡) 𝑑𝑡

∫

𝑏

𝑎

𝑝 (𝑡) 𝜙
󸀠

(𝑔 (𝑡)) 𝑑𝑡

× ∫

𝑏

𝑎

𝑝 (𝑡) 𝜂 (𝑓 (𝑡) , 𝑔 (𝑡)) 𝑑𝑡.

(13)

Also (10) holds, so from (8) and (13) we have

∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑓 (𝑡)) 𝑑𝑡 − ∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑔 (𝑡)) 𝑑𝑡

≥ ∫

𝑏

𝑎

𝑝 (𝑡) 𝜙
󸀠

(𝑔 (𝑡)) 𝜂 (𝑓 (𝑡) , 𝑔 (𝑡)) 𝑑𝑡

≥

1

∫

𝑏

𝑎

𝑝 (𝑡) 𝑑𝑡

∫

𝑏

𝑎

𝑝 (𝑡) 𝜙
󸀠

(𝑔 (𝑡)) 𝑑𝑡

× ∫

𝑏

𝑎

𝑝 (𝑡) 𝜂 (𝑓 (𝑡) , 𝑔 (𝑡)) 𝑑𝑡 = 0;

(14)

then we deduce the desired result (11).

Remark 6. In Theorem 5 the assumption (10) is a strong
condition for 𝑝, 𝜂. This can be relaxed if a monotonicity
property for the 𝜂-invex function 𝜙 is assumed.
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Theorem 7. Let all the assumptions of Theorem 5 hold, but
instead of (10) one has the assumption that

∫

𝑏

𝑎

𝑝 (𝑡) 𝜂 (𝑓 (𝑡) , 𝑔 (𝑡)) 𝑑𝑡 ≥ 0, (15)

and 𝜙 : 𝐼 → R is an 𝜂-invex increasing function on the
interval 𝐼; then (11) holds.

Proof. The proof is similar to the proof of Theorem 5 but by
(15) and monotonicity of 𝜙 we have

∫

𝑏

𝑎

𝑝 (𝑡) 𝜙
󸀠

(𝑔 (𝑡)) 𝑑𝑡 ≥ 0, ∫

𝑏

𝑎

𝑝 (𝑡) 𝜂 (𝑓 (𝑡) , 𝑔 (𝑡)) 𝑑𝑡 ≥ 0.

(16)

Using these in (13) we have

∫

𝑏

𝑎

𝑝 (𝑡) 𝜙
󸀠

(𝑔 (𝑡)) 𝜂 (𝑓 (𝑡) , 𝑔 (𝑡)) 𝑑𝑡 ≥ 0. (17)

Theorem 8. Let 𝜙 : 𝐼 → R be an 𝜂-invex function on the
interval 𝐼, where 𝜂 : 𝐼 × 𝐼 → R is a continuous function, and
let 𝑓, 𝑔, 𝑝 : [𝑎, 𝑏] → 𝐼 be integrable functions with 𝑝(𝑡) ≥ 0

for 𝑡 ∈ [𝑎, 𝑏]. One has the following.

(i) If 𝜙󸀠 ∘𝑔 is increasing on [𝑎, 𝑏], ∫𝑥
𝑎

𝑝(𝑡)𝜂(𝑓(𝑡), 𝑔(𝑡))𝑑𝑡 ≤

0 for all 𝑥 ∈ [𝑎, 𝑏] and ∫𝑏
𝑎

𝑝(𝑡)𝜂(𝑓(𝑡), 𝑔(𝑡))𝑑𝑡 = 0, then

∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑓 (𝑡)) 𝑑𝑡 ≥ ∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑔 (𝑡)) 𝑑𝑡. (18)

(ii) If 𝜙󸀠 ∘𝑓 is decreasing on [𝑎, 𝑏], ∫𝑥
𝑎

𝑝(𝑡)𝜂(𝑔(𝑡), 𝑓(𝑡))𝑑𝑡 ≥

0 for all 𝑥 ∈ [𝑎, 𝑏] and ∫𝑏
𝑎

𝑝(𝑡)𝜂(𝑔(𝑡), 𝑓(𝑡))𝑑𝑡 = 0, then

∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑓 (𝑡)) 𝑑𝑡 ≤ ∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑔 (𝑡)) 𝑑𝑡. (19)

Proof. Let set 𝐺(𝑥) = ∫

𝑥

𝑎

𝑝(𝑡)𝜂(𝑓(𝑡), 𝑔(𝑡))𝑑𝑡; then 𝐺(𝑥) ≤ 0

for all 𝑥 ∈ [𝑎, 𝑏], and 𝐺(𝑎) = 𝐺(𝑏) = 0. If 𝜙󸀠 ∘ 𝑔 is increasing
on [𝑎, 𝑏], then

∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑓 (𝑡)) 𝑑𝑡 − ∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑔 (𝑡)) 𝑑𝑡

≥ ∫

𝑏

𝑎

𝑝 (𝑡) 𝜙
󸀠

(𝑔 (𝑡)) 𝜂 (𝑓 (𝑡) , 𝑔 (𝑡)) 𝑑𝑡

= ∫

𝑏

𝑎

𝜙
󸀠

(𝑔 (𝑡)) 𝑑𝐺 (𝑡)

= 𝜙
󸀠

(𝑔 (𝑡)) 𝐺 (𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑏

𝑎

− ∫

𝑏

𝑎

𝐺 (𝑡) 𝑑𝜙
󸀠

(𝑓 (𝑡))

= −∫

𝑏

𝑎

𝐺 (𝑡) 𝑑𝜙
󸀠

(𝑔 (𝑡)) ≥ 0.

(20)

This proves (18).

Similarly, setting 𝐹(𝑥) = ∫

𝑥

𝑎

𝑝(𝑡)𝜂(𝑔(𝑡), 𝑓(𝑡))𝑑𝑡, then
𝐹(𝑥) ≥ 0 for all 𝑥 ∈ [𝑎, 𝑏], and 𝐹(𝑎) = 𝐹(𝑏) = 0.

Now if 𝜙󸀠 ∘ 𝑓 is decreasing on [𝑎, 𝑏], then by using
Theorem 4 we have

∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑔 (𝑡)) 𝑑𝑡 − ∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑓 (𝑡)) 𝑑𝑡

≥ ∫

𝑏

𝑎

𝑝 (𝑡) 𝜙
󸀠

(𝑓 (𝑡)) 𝜂 (𝑔 (𝑡) , 𝑓 (𝑡)) 𝑑𝑡

= ∫

𝑏

𝑎

𝜙
󸀠

(𝑓 (𝑡)) 𝑑𝐹 (𝑡)

= 𝜙
󸀠

(𝑓 (𝑡)) 𝐹 (𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑏

𝑎

− ∫

𝑏

𝑎

𝐹 (𝑡) 𝑑𝜙
󸀠

(𝑓 (𝑡))

= −∫

𝑏

𝑎

𝐹 (𝑡) 𝑑𝜙
󸀠

(𝑓 (𝑡)) ≥ 0.

(21)

This proves (19).

The following extension of majorization theorem for
relative invex function can be given.

Theorem 9. Let 𝑓, 𝑔, 𝑝 : [𝑎, 𝑏] → R be integrable functions
with 𝑝 being positive function. Suppose 𝜙, 𝜓 : R → R are
such that 𝜓 is a strictly increasing function and 𝜙 ∘ 𝜓

−1 is 𝜂-
invex function on R, where 𝜂 : R × R → R is a continuous
function. One has the following.

(i) If (𝜙 ∘ 𝜓
−1

)

󸀠

∘ 𝜓 ∘ 𝑔 and 𝜂(𝜓(𝑓(𝑡)), 𝜓(𝑔(𝑡)))

are increasing (decreasing) on [𝑎, 𝑏], and
∫

𝑏

𝑎

𝑝(𝑡)𝜂(𝜓(𝑓(𝑡)), 𝜓(𝑔(𝑡)))𝑑𝑡 = 0, then

∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑓 (𝑡)) 𝑑𝑡 ≥ ∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑔 (𝑡)) 𝑑𝑡. (22)

(ii) If (𝜙 ∘ 𝜓
−1

)

󸀠

∘ 𝜓 ∘ 𝑔 is increasing on [𝑎, 𝑏],
∫

𝑥

𝑎

𝑝(𝑡)𝜂(𝜓(𝑓(𝑡)), 𝜓(𝑔(𝑡)))𝑑𝑡 ≤ 0 for all 𝑥 ∈ [𝑎, 𝑏],
and∫𝑏
𝑎

𝑝(𝑡)𝜂(𝜓(𝑓(𝑡)), 𝜓(𝑔(𝑡)))𝑑𝑡 = 0, then

∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑓 (𝑡)) 𝑑𝑡 ≥ ∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑔 (𝑡)) 𝑑𝑡. (23)

(iii) If (𝜙 ∘ 𝜓
−1

)

󸀠

∘ 𝜓 ∘ 𝑓 is decreasing on [𝑎, 𝑏],
∫

𝑥

𝑎

𝑝(𝑡)𝜂(𝜓(𝑔(𝑡)), 𝜓(𝑓(𝑡)))𝑑𝑡 ≥ 0 for all 𝑥 ∈ [𝑎, 𝑏],
and ∫𝑏
𝑎

𝑝(𝑡)𝜂(𝜓(𝑔(𝑡)), 𝜓(𝑓(𝑡)))𝑑𝑡 = 0, then

∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑔 (𝑡)) 𝑑𝑡 ≤ ∫

𝑏

𝑎

𝑝 (𝑡) 𝜙 (𝑓 (𝑡)) 𝑑𝑡. (24)

Proof. The proof of this theorem is similar to the proof of
Theorems 5 and 8.

Remark 10. By using 𝜂(𝑥, 𝑦) = 𝑥 − 𝑦 in Theorems 4, 5, 7, 8,
and 9 we recover the integral majorization results for convex
functions given in [1, 4, 14].
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