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We consider a discrete fractional nonlinear boundary value problem inwhich nonlinear term𝑓 is involved with the fractional order
difference. And we transform the fractional boundary value problem into boundary value problem of integer order difference
equation. By using a generalization of Leggett-Williams fixed-point theorem due to Avery and Peterson, we provide sufficient
conditions for the existence of at least three positive solutions.

1. Introduction

Let R and Z be the sets of real numbers and integers,
respectively. For 𝑎, 𝑏 ∈ R, 𝑁 ∈ Z+ with 𝑏 = 𝑎 + 𝑁, define
[𝑎, 𝑏]N

𝑎

= {𝑎, 𝑎 + 1, . . . , 𝑏}. Assume that 𝑇 is a given positive
integer with 𝑇 > 2. We consider the fractional difference
boundary value problem (briefly FBVP) of the forms

Δ (𝜑
𝑝
(Δ]

]−1𝑥 (𝑡))) + 𝑞 (𝑡)

⋅ 𝑓 (𝑡 + ] − 1, 𝑥 (𝑡 + ] − 1) ,
𝑡+]−𝛽Δ

𝛽

]−1
𝑥 (𝑡)) = 0,

𝑡 ∈ [0, 𝑇]N
0

,

(1)

[Δ𝜀]−1𝑥 (𝑡)]
𝑡=𝑇+1+]−𝜀 = 0,

𝑥 (] − 1) = 𝜂 [Δ𝛿]−1𝑥 (𝑡)]
𝑡=𝜉+1+]−𝛿

,
(2)

where 𝜂 ∈ [0, 1], ], 𝛽, 𝜀, 𝛿 ∈ (0, 1) with 𝛽, 𝛿 ≤ ] ≤ 𝜀, and
𝜑
𝑝
(𝑠) = |𝑠|𝑝−2𝑠, 𝑝 > 1, 𝜉 ∈ [0, 𝑇]N

0

, Δ󰜚]−1 (󰜚 = ], 𝛽, 𝜀, 𝛿) is
fractional difference operator. We give the following assump-
tions:
(𝐻1) 𝑓(𝑡+ ]−1, ⋅, ⋅) : []−1, 𝑇+ ]−1]N]−1

× [0, +∞)×R →
[0, +∞) is continuous;

(𝐻2) 𝑞(𝑡) is nonnegative on [0, 𝑇]N
0

, 𝑞(𝑡) ≡ 0 does not hold
on [0, 𝑇]N

0

, and ∑
𝑇

𝑡=0
𝑞(𝑡) < ∞.

Fixed-point theorems and their applications in nonlinear
problems have a long history, some of which are documented
in Zeidler’s book [1]. There seems to be increasing interest
in multiple fixed-point theorems and their applications to
boundary value problems for ordinary differential equations
or finite difference equations. The applications can be found
in the papers [2–6]. An interest in triple solutions has evolved
from the Leggett-Williams multiple fixed-point theorem [7].
And, lately, two triple fixed-point theorems by Avery and
Peterson [4] and Avery [8] have been applied to obtain triple
solutions of certain boundary value problems for ordinary
differential equations as well as for their discrete analogues.
On the other hand, fractional differential and difference
“operators” are found themselves in concrete applications,
and hence attention has to be paid to associated fractional
difference and differential equations under various boundary
or side conditions. For example, Atici and Eloe [9] explored
some of the theories of a discrete conjugate FBVP in [9].
Similarly, in [10], a discrete right-focal FBVP was analyzed.
Other recent advances in the theory of the discrete fractional
calculus may be found in [11–26]. In particular, an interesting
recent paper by Atici and Şengül [14] addressed the use of
fractional difference equations in tumor growth modeling.
Thus, it seems that there exists some promise in using
fractional difference equations as mathematical models for
describing physical problems in more accurate manners.
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In order to handle the existence problem for FBVP,
various methods (among which are some standard fixed-
point theorems) can be used. For example, in [10, 12, 27],
authors investigated the existence to some boundary value
problems by fixed-point theorems on a cone. In [28], we
established the existence conditions for a boundary value
problem by using the coincidence degree theory. In [29],
authors pointed out the existence of multiple solutions for
a FBVP with parameter by establishing the corresponding
variational framework and using themountain pass theorem,
linking theorem, and Clark theorem in critical point theory.
To the best of our knowledge, Leggett-Williams fixed-point
theorem has not been used in discrete fractional boundary
value problems. The aim of this paper is to establish the
existence conditions for boundary value problem (1)-(2).The
proof relies on the Leggett-Williams fixed-point theorem.

Throughout this paper, we make the convention that
∑
𝑚

𝑖=𝑗
𝑥(𝑖) = 0 for𝑚 < 𝑗 and denote 𝜑

𝑞
= 𝜑−1
𝑝
, 1/𝑝 + 1/𝑞 = 1.

2. Preliminaries

In this section, we collect some basic definitions and lemmas
for manipulating discrete fractional operators. These and
other related results can be found in [4, 12, 14, 16].

For any integer 𝛽, letN
𝛽
= {𝛽, 𝛽 + 1, 𝛽 + 2, . . .}.We define

𝑡(]) := Γ(𝑡+1)/Γ (𝑡 + 1 − ]), for any 𝑡 and ] for which the right-
hand side is defined. We also appeal to the convention that if
𝑡 + 1 − ] is a pole of the Gamma function and 𝑡 + 1 is not a
pole, then 𝑡(]) = 0.

Definition 1. The ]th fractional sum of 𝑓 for ] > 0 is defined
by

Δ−]
𝑎
𝑓 (𝑡) =

1

Γ (])

𝑡−]

∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)
(]−1) 𝑓 (𝑠) , (3)

for 𝑡 ∈ N
𝑎+]. We also define the ]th fractional difference for

] > 0 by Δ]
𝑎
𝑓(𝑡) := Δ𝑁Δ]−𝑁

𝑎
𝑓(𝑡), where 𝑡 ∈ N

𝑎+𝑁−], and
𝑁 ∈ N is chosen so that 0 ≤ 𝑁 − 1 < ] ≤ 𝑁.

Definition 2. Let X be a real Banach space. A nonempty
closed convex set 𝑃 ⊂ X is called a cone of X if it satisfies
the following conditions:

(1) 𝑥 ∈ 𝑃, 𝜆 ≥ 0 implies 𝜆𝑥 ∈ 𝑃;
(2) 𝑥 ∈ 𝑃, −𝑥 ∈ 𝑃 implies 𝑥 = 0.

Every cone 𝑃 ⊂ X induces a partial ordering “≤” on X

defined by 𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃.

Definition 3. Given a cone 𝑃 in a real Banach space X, a
functional𝜓 : 𝑃 → R is said to be increasing on 𝑃, provided
that 𝜓(𝑥) ≤ 𝜓(𝑦) for all 𝑥, 𝑦 ∈ 𝑃 with 𝑥 ≤ 𝑦.

Let 𝛾 and 𝜃be nonnegative continuous convex functionals
on 𝑃, 𝛼 a nonnegative continuous concave functional on 𝑃,
and 𝜓 a nonnegative continuous functional on 𝑃. Then, for
positive real numbers 𝑎, 𝑏, 𝑐, and 𝑑, we define the following
convex sets:

𝑃(𝛾, 𝑑) = {𝑥 ∈ 𝑃 | 𝛾(𝑥) < 𝑑},
𝑃(𝛾, 𝛼, 𝑏, 𝑑) = {𝑥 ∈ 𝑃 | 𝑏 ≤ 𝛼(𝑥), 𝛾(𝑥) ≤ 𝑑},
𝑃(𝛾, 𝜃, 𝛼, 𝑏, 𝑐, 𝑑) = {𝑥 ∈ 𝑃 | 𝑏 ≤ 𝛼(𝑥), 𝜃(𝑥) ≤ 𝑐, 𝛾(𝑥) ≤
𝑑} and a closed set 𝑅(𝛾, 𝜓, 𝑎, 𝑑) = {𝑥 ∈ 𝑃 | 𝑎 ≤
𝜓(𝑥), 𝛾(𝑥) ≤ 𝑑}.

The following fixed-point theorem due to Avery and
Peterson is fundamental in the proof of our main results.

Lemma 4 (see [4]). Let X be a Banach space and let 𝑃 ⊂ X

be a cone. Let 𝛾 and 𝜃 be nonnegative continuous convex func-
tionals on𝑃, 𝛼 a nonnegative continuous concave functional on
𝑃, and 𝜓 a nonnegative continuous functional on 𝑃 satisfying
𝜓(𝜆𝑥) ≤ 𝜆𝜓(𝑥) for 0 ≤ 𝜆 ≤ 1, such that, for some positive
numbers 𝑀 and 𝑑, 𝛼(𝑥) ≤ 𝜓(𝑥) and ‖𝑥‖ ≤ 𝑀𝛾(𝑥) for all
𝑥 ∈ 𝑃(𝛾, 𝑑). Suppose 𝑄 : 𝑃(𝛾, 𝑑) → 𝑃(𝛾, 𝑑) is completely
continuous and there exist positive numbers 𝑎, 𝑏, 𝑐 with 𝑎 < 𝑏
such that

(𝑆1) {𝑥 ∈ 𝑃(𝛾, 𝜃, 𝛼, 𝑏, 𝑐, 𝑑) | 𝛼(𝑥) > 𝑏} ̸= 0 and 𝛼(𝑄𝑥) > 𝑏
for 𝑥 ∈ 𝑃(𝛾, 𝜃, 𝛼, 𝑏, 𝑐, 𝑑);

(𝑆2) 𝛼(𝑄𝑥) > 𝑏 for 𝑥 ∈ 𝑃(𝛾, 𝛼, 𝑏, 𝑑) with 𝜃(𝑄𝑥) > 𝑐;
(𝑆3) 0 ∉ 𝑅(𝛾, 𝜓, 𝑎, 𝑑) and 𝜓(𝑄𝑥) < 𝑎 for 𝑥 ∈ 𝑅(𝛾, 𝜓, 𝑎, 𝑑)

with 𝜓(𝑥) = 𝑎.

Then 𝑄 has at least three fixed points 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝑃(𝛾, 𝑑) such

that

𝛾(𝑥
𝑖
) ≤ 𝑑 for 𝑖 = 1, 2, 3;

𝑏 < 𝛼(𝑥
1
), 𝜓(𝑥

3
) < 𝑎, 𝑎 < 𝜓(𝑥

2
) with 𝛼(𝑥

2
) < 𝑏.

Lemma 5 (see [16]). Let 𝑦 : N
𝑎
→ R and ] > 0 with𝑁−1 <

] ≤ 𝑁, and then

Δ]
𝑎
𝑦 (𝑡) =

𝑡−𝑎+]

∑
𝑘=0

(−1)
𝑘 (

]
𝑘
)𝑦 (𝑡 + ] − 𝑘) , (4)

for 𝑡 ∈ N
𝑎+𝑁−], where ( ]

𝑘
) = Γ(] + 1)/Γ(𝑘 + 1)Γ(] − 𝑘 + 1).

Lemma 6 (see [16]). Let 𝑓 : N
𝑎

→ R be given and suppose
𝑘 ∈ N

0
and ] > 0. Then, for 𝑡 ∈ N

𝑎+],

Δ−]
𝑎
Δ𝑘𝑓 (𝑡)

= Δ𝑘−]
𝑎

𝑓 (𝑡) −
𝑘−1

∑
𝑗=0

Δ𝑗𝑓 (𝑎)

Γ (] − 𝑘 + 𝑗 + 1)
(𝑡 − 𝑎)

(]−𝑘+𝑗) .
(5)

Moreover, if 𝜇 > 0 with 𝑀 − 1 ≤ 𝜇 ≤ 𝑀, then, for 𝑡 ∈
N
𝑎+𝑀−𝜇+],

Δ−]
𝑎+𝑀−𝜇

Δ𝜇
𝑎
𝑓 (𝑡)

= Δ𝜇−]
𝑎

𝑓 (𝑡) −
𝑀−1

∑
𝑗=0

Δ𝑗−𝑀+𝜇
𝑎

𝑓 (𝑎 +𝑀 − 𝜇)

Γ (] −𝑀 + 𝑗 + 1)

⋅ (𝑡 − 𝑎 −𝑀 + 𝜇)
(]−𝑀+𝑗)

.

(6)
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Lemma 7 (see [16]). Let 𝑓 : N
𝑎

→ R be given and suppose
𝜇, ] > 0 with𝑁 − 1 < 𝜇 ≤ 𝑁. Then, for 𝑡 ∈ N

𝑎+]+𝑁−𝜇,

Δ𝜇
𝑎+]Δ
−]
𝑎
𝑓 (𝑡) = Δ𝜇−]

𝑎
𝑓 (𝑡) . (7)

Lemma 8 (see [16]). Let 𝑓 : N
𝑎

→ R be given and suppose
] > 0 with𝑁 − 1 < ] < 𝑁. Then, for 𝑡 ∈ N

𝑎−]+𝑁,

Δ]
𝑎
𝑓 (𝑡)

=
{{
{{
{

1

Γ (−])

𝑡+]

∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)(−]−1) 𝑓 (𝑠) , 𝑁 − 1 < ] < 𝑁;

Δ𝑁𝑓 (𝑡) , ] = 𝑁.

(8)

Lemma 9 (see [16]). Let 𝑎 ∈ R and 𝜇 > 0 be given. Then,

Δ (𝑡 − 𝑎)
(𝜇) = 𝜇 (𝑡 − 𝑎)

(𝜇−1) , (9)

for any 𝑡 for which both sides are well-defined. Furthermore, for
] > 0,

Δ−]
𝑎+𝜇

(𝑡 − 𝑎)
(𝜇) = 𝜇(−]) (𝑡 − 𝑎)

(𝜇+]) , 𝑓𝑜𝑟 𝑡 ∈ N
𝑎+𝜇+],

Δ]
𝑎+𝜇

(𝑡 − 𝑎)
(𝜇) = 𝜇(]) (𝑡 − 𝑎)

(𝜇−]) , 𝑓𝑜𝑟 𝑡 ∈ N
𝑎+𝜇+𝑁−].

(10)

3. Triple Positive Solutions

In this section, we impose growth conditions on 𝑓 to obtain
the triple positive solutions for FBVP (1)-(2).

For the sake of convenience, for 0 < 𝛿 ≤ ] ≤ 𝜀, 𝜉 ∈
[0, 𝑇]N

0

, 𝜂 ∈ [0, 1], 𝑝 > 1, we set the following notations:

𝜅 (𝑡, 𝜌)

=
(𝑡 + 1 + ] − 𝜌)

(]−𝜌−1)

Γ (] − 𝜌)
, for (𝑡, 𝜌) ∈ [−2, 𝑇]N

−2

× (0, 1) ,

(11)

𝜏 = −
𝑇

∑
𝑠=0

𝜅 (𝑇 − 𝑠 − 1, 𝜀) −
𝜂𝜅 (𝑇, 𝜀)

1 − 𝜂𝜅 (𝜉, 𝛿)

⋅
𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿) ,

(12)

𝑀
1
=

∑
𝑇

𝑖=0
𝑞 (𝑖)

1 − 𝜏𝑝−1
,

𝑀
2
=

𝜂

1 − 𝜂𝜅 (𝜉, 𝛿)

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿) 𝜑
𝑞
(
𝑇

∑
𝑗=𝑠

𝑞 (𝑗)) ,

𝑀
3
=
𝑇

∑
𝑗=0

𝜑
𝑞
(
𝑇

∑
𝑖=𝑗

𝑞 (𝑖)) ,

𝑁 = max {𝑀
2
,𝑀
3
} ,

𝑚 =
𝜂 (𝜉 + 2) (𝜉 + 1 + ] − 𝛿)

(]−𝛿−1)

(1 − 𝜂𝜅 (𝜉, 𝛿)) Γ (] − 𝛿 + 1)
.

(13)

Then, from (11), we immediately obtain some properties
of 𝜅(𝑡, 󰜚) as follows:

𝜅 (𝑡, 󰜚) ∈

{{{{
{{{{
{

{1} , (𝑡, 󰜚) ∈ {−2} × (0, 1) ,

(0, 1) , (𝑡, 󰜚) ∈ [−1, 𝑇]N
−1

× (0, ]) ,
{0} , (𝑡, 󰜚) ∈ [−1, 𝑇]N

−1

× {]} ,
(−1, 0) , (𝑡, 󰜚) ∈ [−1, 𝑇]N

−1

× (], 1) .

(14)

We will also need the following elementary facts:

𝜏 ∈ {
{0} , 𝛿 ≤ ] = 𝜀,

(0, 1) , 𝛿 ≤ ] < 𝜀.
(15)

Indeed, if 𝛿 ≤ ] = 𝜀, then, by (12) and (14), clearly, 𝜏 = 0.
If 𝛿 = ] < 𝜀, then

𝜏 = (−
𝑇

∑
𝑠=0

𝜅 (𝑇 − 𝑠 − 1, 𝜀) − 𝜂𝜅 (𝑇, 𝜀))

= 1 −
𝑇+1

∑
𝑠=0

𝑘 (𝑇 − 𝑠 − 1, 𝜀) − 𝜂𝜅 (𝑇, 𝜀)

= 1 −
1

Γ (] − 𝜀)

𝑇+1

∑
𝑠=0

(𝑇 + ] − 𝜀 − 𝑠)
(]−𝜀−1) − 𝜂𝜅 (𝑇, 𝜀)

= 1 − (1 + (] − 𝜀) +
(1 + ] − 𝜀) (] − 𝜀)

2!

+ ⋅ ⋅ ⋅ +
(𝑇 + ] − 𝜀) ⋅ ⋅ ⋅ (] − 𝜀)

(𝑇 + 1)!
) − 𝜂𝜅 (𝑇, 𝜀)

= 1 − ( (1 + ] − 𝜀) (1 +
] − 𝜀

2
) +

(2 + ] − 𝜀) ⋅ ⋅ ⋅ (] − 𝜀)

3!

+ ⋅ ⋅ ⋅ +
(𝑇 + ] − 𝜀) ⋅ ⋅ ⋅ (] − 𝜀)

(𝑇 + 1)!
) − 𝜂𝜅 (𝑇, 𝜀)

= 1 − (
(1 + ] − 𝜀) (2 + ] − 𝜀)

2!
(1 +

] − 𝜀

3
)

+ ⋅ ⋅ ⋅ +
(𝑇 + ] − 𝜀) ⋅ ⋅ ⋅ (] − 𝜀)

(𝑇 + 1)!
) − 𝜂𝜅 (𝑇, 𝜀)

= ⋅ ⋅ ⋅

= 1 − (
(𝑇 + 1 + ] − 𝜀) (𝑇 + ] − 𝜀) ⋅ ⋅ ⋅ (1 + ] − 𝜀)

(𝑇 + 1)!
)

− 𝜂
(𝑇 + 1 + ] − 𝜀) (𝑇 + ] − 𝜀) ⋅ ⋅ ⋅ (] − 𝜀)

(𝑇 + 2)!

= 1 − (
(𝑇 + 1 + ] − 𝜀) (𝑇 + ] − 𝜀) ⋅ ⋅ ⋅ (1 + ] − 𝜀)

(𝑇 + 1)!
)

⋅ (1 + 𝜂
] − 𝜀

𝑇 + 2
)

= 1 −
(𝑇 + 2) 𝜅 (𝑇, 𝜀)

] − 𝜀
(1 − 𝜂

𝜀 − ]
𝑇 + 2

) .

(16)

It follows that 0 < 𝜏 < 1.
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If 𝛿 < ] < 𝜀, then, since

(1 +
(𝜀 − ]) (𝜉 + 2)

(] − 𝛿) (𝑇 + 2)
) 𝜅 (𝜉, 𝛿)

≤ (1 +
𝜀 − ]
] − 𝛿

) 𝜅 (𝜉, 𝛿)

=
(𝜀 − 𝛿) (𝜉 + 1 + ] − 𝛿)

(]−𝛿−1)

Γ (] − 𝛿 + 1)

= (𝜀 − 𝛿)
Γ (𝜉 + 2 + ] − 𝛿)

Γ (𝜉 + 3) Γ (] − 𝛿 + 1)

= (𝜀 − 𝛿)
(𝜉 + 1 + ] − 𝛿) ⋅ ⋅ ⋅ (] − 𝛿 + 1)

(𝜉 + 2) ⋅ ⋅ ⋅ 2

< 1,

𝜏 = −
𝑇

∑
𝑠=0

𝜅 (𝑇 − 𝑠 − 1, 𝜀) −
𝜂𝜅 (𝑇, 𝜀)

(1 − 𝜂𝜅 (𝜉, 𝛿))

⋅
𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿)

= 1 −
𝑇+1

∑
𝑠=0

𝜅 (𝑇 − 𝑠 − 1, 𝜀) −
𝜂𝜅 (𝑇, 𝜀)

(1 − 𝜂𝜅 (𝜉, 𝛿))

⋅
𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿)

= 1 −
(𝑇 + 2) 𝜅 (𝑇, 𝜀)

] − 𝜀
−
𝜂𝜅 (𝑇, 𝜀) 𝜅 (𝜉, 𝛿) (𝜉 + 2)

(1 − 𝜂𝜅 (𝜉, 𝛿)) (] − 𝛿)

= 1 −
(𝑇 + 2) 𝜅 (𝑇, 𝜀)

] − 𝜀

⋅ (1 −
(𝜀 − ])
(] − 𝛿)

𝜂 (𝜉 + 2) 𝜅 (𝜉, 𝛿)

(1 − 𝜂𝜅 (𝜉, 𝛿)) (𝑇 + 2)
)

= 1 −
(𝑇 + 2) 𝜅 (𝑇, 𝜀)

] − 𝜀

⋅ ((1 − 𝜂𝜅 (𝜉, 𝛿) −
(𝜀 − ]) (𝜉 + 2)

(] − 𝛿) (𝑇 + 2)
𝜂𝜅 (𝜉, 𝛿))

⋅ (1 − 𝜂𝜅 (𝜉, 𝛿))
−1

)

= 1 −
(𝑇 + 2) 𝜅 (𝑇, 𝜀)

] − 𝜀

⋅
1 − (1 + ((𝜀 − ]) (𝜉 + 2) / (] − 𝛿) (𝑇 + 2))) 𝜂𝜅 (𝜉, 𝛿)

1 − 𝜂𝜅 (𝜉, 𝛿)
.

(17)

We have 0 < 𝜏 < 1.

Now, suppose that𝑥(𝑡) is a solution of the problem (1)-(2),
and let 𝑦(𝑡) = Δ−(1−])]−1 𝑥(𝑡). Then, from Lemmas 6, 7, 8, and 9,
we have 𝑥(𝑡) = Δ1−]

0
𝑦(𝑡) = Δ−]

0
Δ𝑦(𝑡) + (𝑦(0)/Γ(]))𝑡(]−1), and

𝑡+]−𝛽Δ
𝛽

]−1
𝑥 (𝑡)

=
𝑡+]−𝛽Δ

𝛽

]−1
(Δ−]
0
Δ𝑦 (𝑡)) +

𝑦 (0)

Γ (]) 𝑡+]−𝛽
Δ
𝛽

]−1
𝑡(]−1)

=
1

Γ (−𝛽)
(
𝑡+]

∑
𝑠=]

(𝑡 + ] − 𝛽 − 𝑠 − 1)
(−𝛽−1)

Δ−]
0
Δ𝑦 (𝑠)

+ (𝑡 + ] − 𝛽 − 𝑠 − 1)
(−𝛽−1)

Δ−]
0

Δ𝑦 (𝑠)
󵄨󵄨󵄨󵄨𝑠=]−1 )

+
𝑦 (0)

Γ (])
(] − 1)

(𝛽) (𝑡 + ] − 𝛽)
(]−𝛽−1)

=
𝑡+]−𝛽Δ

𝛽

]
Δ−]
0
Δ𝑦 (𝑡) +

𝑦 (0)

Γ (] − 𝛽)
(𝑡 + ] − 𝛽)

(]−𝛽−1)

=
𝑡+]−𝛽Δ

−(]−𝛽)
0

Δ𝑦 (𝑡) +
𝑦 (0)

Γ (] − 𝛽)
(𝑡 + ] − 𝛽)

(]−𝛽−1)

=
𝑡

∑
𝑠=0

𝜅 (𝑡 − 𝑠 − 2, 𝛽) Δ𝑦 (𝑠) + 𝑦 (0) 𝜅 (𝑡 − 1, 𝛽) .

(18)

Similarly, we have

[Δ𝜀]−1𝑥 (𝑡)]
𝑡=𝑇+1+]−𝜀

=
𝑇+1

∑
𝑠=0

𝜅 (𝑇 − 𝑠 − 1, 𝜀) Δ𝑦 (𝑠) + 𝑦 (0) 𝜅 (𝑇, 𝜀) ,

[Δ𝛿]−1𝑥 (𝑡)]
𝑡=𝜉+1+]−𝛿

=
𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿) Δ𝑦 (𝑠) + 𝑦 (0) 𝜅 (𝜉, 𝛿) .

(19)

Thus, by the transformation 𝑦(𝑡) = Δ−(1−])]−1 𝑥(𝑡), the problem
(1)-(2) is equivalent to the following problem (20)–(22):

Δ (𝜑
𝑝
(Δ𝑦 (𝑡))) + 𝑞 (𝑡)

⋅ 𝑓 (𝑡 + ] − 1, 𝑥 (𝑡 + ] − 1) ,
𝑡+]−𝛽Δ

𝛽

]−1
𝑥 (𝑡)) = 0,

𝑡 ∈ [0, 𝑇]N
0

,

(20)

Δ𝑦 (𝑇 + 1)

= −
𝑇

∑
𝑠=0

𝜅 (𝑇 − 𝑠 − 1, 𝜀) Δ𝑦 (𝑠) − 𝑦 (0) 𝜅 (𝑇, 𝜀) ,
(21)

𝑦 (0)

= 𝜂
𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿) Δ𝑦 (𝑠) + 𝜂𝑦 (0) 𝜅 (𝜉, 𝛿) ,
(22)
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where

𝑥 (𝑡 + ] − 1) = Δ1−]
0

𝑦 (𝑡 + ] − 1) ,

𝑡+]−𝛽Δ
𝛽

]−1
𝑥 (𝑡)

=
𝑡

∑
𝑠=0

𝜅 (𝑡 − 𝑠 − 2, 𝛽) Δ𝑦 (𝑠) + 𝑦 (0) 𝑘 (𝑡 − 1, 𝛽) .

(23)

Now, suppose that 𝑦(𝑡) is a solution of (20)–(22). We will
show that

𝑦 (𝑡) ≥ 0,

Δ𝑦 (𝑡) ≥ 0,

Δ2𝑦 (𝑡) ≤ 0.

(24)

Firstly, it is easy to see that Δ2𝑦(𝑡) ≤ 0 from Δ𝜑
𝑝
(Δ𝑦(𝑡)) ≤ 0.

Secondly, if 𝛿 ≤ ] = 𝜀, then Δ𝑦(𝑇 + 1) = 0 by (21) and
(22). If 𝛿 ≤ ] < 𝜀, we have

Δ𝑦 (𝑇 + 1)

= −
𝑇

∑
𝑠=0

𝜅 (𝑇 − 𝑠 − 1, 𝜀) Δ𝑦 (𝑠)

−
𝜂𝜅 (𝑇, 𝜀)

1 − 𝜂𝜅 (𝜉, 𝛿)

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿) Δ𝑦 (𝑠)

≥ (−
𝑇

∑
𝑠=0

𝜅 (𝑇 − 𝑠 − 1, 𝜀)

−
𝜂𝜅 (𝑇, 𝜀)

1 − 𝜂𝜅 (𝜉, 𝛿)

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿))Δ𝑦 (𝑇 + 1)

= 𝜏Δ𝑦 (𝑇 + 1) .

(25)

So we obtain that Δ𝑦(𝑇 + 1) ≥ 0 and hence Δ𝑦(𝑡) ≥ 0

for 𝑡 ∈ [0, 𝑇 + 1]N
0

. Note that 𝑦(0) = (𝜂∑
𝜉+1

𝑠=0
(𝜅(𝜉 − 𝑠 −

1, 𝛿)Δ𝑦(𝑠)))/(1 − 𝜂𝜅(𝜉, 𝛿)) ≥ 0. Thus (24) holds.
Next, clearly 𝑦(𝑡) = Δ−(1−])]−1 𝑥(𝑡) = (1/Γ(1 − ])) ∑𝑡+]−1

𝑠=]−1(𝑡 −

𝑠 − 1)(−])𝑥(𝑠) ≥ 0 if 𝑥(𝑡) ≥ 0.
On the other hand, if 𝑦(𝑡) is a solution of (20)–(22), then,

from 𝑥(𝑡) = Δ1−]
0

𝑦(𝑡) = ∑
𝑡+1−]
𝑘=0

(−1)𝑘 ( 1−]
𝑘
) 𝑦(𝑡 + 1− ]−𝑘), we

have

𝑥 (] − 1) = 𝑦 (0) ≥ 0,

𝑦 (1) ≥ 𝑥 (]) = 𝑦 (1) − (1 − ]) 𝑦 (0) ≥ ]𝑦 (1) ,

𝑦 (2) ≥ 𝑥 (] + 1) = 𝑦 (2) − (1 − ]) 𝑦 (1)

+
(1 − ]) (−])

2!
𝑦 (0)

≥
] (1 + ])

2!
𝑦 (2) ,

...

𝑦 (𝑡) ≥ 𝑥 (𝑡 + ] − 1) = 𝑦 (𝑡) − (1 − ]) 𝑦 (𝑡 − 1)

+ ⋅ ⋅ ⋅ +
(1 − ]) (−]) ⋅ ⋅ ⋅ (−] − 𝑡 + 2)

𝑡!
𝑦 (0)

≥
] (1 + ]) ⋅ ⋅ ⋅ (𝑡 + ] − 1)

𝑡!
𝑦 (𝑡)

=
1

Γ (])
(𝑡 + ] − 1)

(]−1) 𝑦 (𝑡)

≥
1

Γ (])
(𝑇 + ] − 1)

(]−1) 𝑦 (𝑡) , 𝑡 ∈ [0, 𝑇]N
0

;

(26)

that is,

(𝑇 + ] − 1)(]−1)

Γ (])
𝑦 (𝑡) ≤ 𝑥 (𝑡 + ] − 1) ≤ 𝑦 (𝑡) , 𝑡 ∈ [0, 𝑇]N

0

.

(27)

This implies that the problem (1)-(2) has positive solu-
tions if and only if the problem (20)–(22) has positive
solutions. In the sequel, we will concretely consider the
boundary problem (20)–(22).

Summing (20) from 𝑡 to 𝑇, we find that

𝜑
𝑝
(Δ𝑦 (𝑇 + 1)) − 𝜑

𝑝
(Δ𝑦 (𝑡))

= −
𝑇

∑
𝑖=𝑡

𝑞 (𝑖) 𝑓 (𝑖 + ] − 1, 𝑥 (𝑖 + ] − 1) ,
𝑖+]−𝛽Δ

𝛽

]−1
𝑥 (𝑖)) .

(28)

Thus,

Δ𝑦 (𝑡)

= 𝜑
𝑞
(
𝑇

∑
𝑖=𝑡

𝑞 (𝑖) 𝑓 (𝑖 + ] − 1, 𝑥 (𝑖 + ] − 1) ,
𝑖+]−𝛽Δ

𝛽

]−1
𝑥 (𝑖))

+ 𝜑
𝑝
(Δ𝑦 (𝑇 + 1))) .

(29)
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Summing (29) from 0 to 𝑡 − 1, it follows that

𝑦 (𝑡) − 𝑦 (0)

=
𝑡−1

∑
𝑗=0

𝜑
𝑞
(
𝑇

∑
𝑖=𝑗

𝑞 (𝑖) 𝑓 (𝑖 + ] − 1, 𝑥 (𝑖 + ] − 1) ,
𝑖+]−𝛽Δ

𝛽

]−1
𝑥 (𝑖))

+ 𝜑
𝑝
(Δ𝑦 (𝑇 + 1))) ,

(30)

which, together with (22), implies that

𝑦 (𝑡)

=
𝜂

1 − 𝜂𝜅 (𝜉, 𝛿)

⋅
𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿) 𝜑
𝑞

⋅ (
𝑇

∑
𝑗=𝑠

𝑞 (𝑗) 𝑓 (𝑗 + ] − 1, 𝑥 (𝑗 + ] − 1) ,

𝑗+]−𝛽Δ
𝛽

]−1
𝑥 (𝑗))

+ 𝜑
𝑝
(Δ𝑦 (𝑇 + 1)))

+
𝑡−1

∑
𝑗=0

𝜑
𝑞
(
𝑇

∑
𝑖=𝑗

𝑞 (𝑖) 𝑓 (𝑖 + ] − 1, 𝑥 (𝑖 + ] − 1) ,

𝑖+]−𝛽Δ
𝛽

]−1
𝑥 (𝑖))

+ 𝜑
𝑝
(Δ𝑦 (𝑇 + 1))) .

(31)

Next, let 𝐵 = {𝑦 : [0, 𝑇 + 2]N
0

→ R} be endowed
with the norm ‖𝑦‖ = max{‖𝑦‖

∞
, ‖Δ𝑦‖

∞
}, where ‖𝑦‖

∞
=

max
𝑡∈[0,𝑇+2]N

0

|𝑦(𝑡)|. Choose the cone 𝑃 ⊂ 𝐵 defined by

𝑃 = {𝑦 ∈ 𝐵 : 𝑦 (𝑡) ≥ 0 for 𝑡 ∈ [0, 𝑇 + 2]N
0

,

Δ𝑦 (𝑡) ≥ 0 for 𝑡 ∈ [0, 𝑇 + 1]N
0

,

Δ2𝑦 (𝑡) ≤ 0, for 𝑡 ∈ [0, 𝑇]N
0

and (21) (22) hold} .
(32)

Let the nonnegative continuous concave functional 𝛼,
the nonnegative continuous convex functional 𝜃, 𝛾, and the

nonnegative continuous functional 𝜓 be defined on the cone
𝑃 by

𝛾 (𝑦) = max
𝑡∈[0,𝑇+1]N

0

󵄨󵄨󵄨󵄨Δ𝑦 (𝑡)
󵄨󵄨󵄨󵄨 ,

𝛼 (𝑦) = min
𝑡∈[ℎ,𝑇+2]N

0

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 ,

𝜓 (𝑦) = 𝜃 (𝑦) = max
𝑡∈[0,𝑇+2]N

0

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 ,

(33)

where ℎ = [(𝑇 + 2) /2] and [𝑥] is the greatest integer not
greater than𝑥. Clearly, 𝛾(𝑦) = Δ𝑦 (0),𝜓(𝑦) = 𝜃(𝑦) = 𝑦(𝑇+2),
and 𝛼(𝑦) = 𝑦(ℎ).

For 𝑡 ∈ [0, 𝑇 + 2]N
0

, define an operator 𝑄 : 𝑃 → 𝐵 by

(𝑄𝑦) (𝑡)

=
𝜂

1 − 𝜂𝜅 (𝜉, 𝛿)

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿) 𝜑
𝑞

⋅ (
𝑇

∑
𝑗=𝑠

𝑞 (𝑗) 𝑓 (𝑗 + ] − 1, 𝑥 (𝑗 + ] − 1) ,
𝑗+]−𝛽Δ

𝛽

]−1
𝑥 (𝑗))

+ 𝜑
𝑝
(Δ𝑦 (𝑇 + 1)))

+
𝑡−1

∑
𝑖=0

𝜑
𝑞
(
𝑇

∑
𝑗=𝑖

𝑞 (𝑗)

⋅ 𝑓 (𝑗 + ] − 1, 𝑥 (𝑗 + ] − 1) ,
𝑗+]−𝛽Δ

𝛽

]−1𝑥 (𝑗))

+ 𝜑
𝑝
(Δ𝑦 (𝑇 + 1))) .

(34)

We next require a preliminary lemma.

Lemma 10. Let 𝑄 be defined by the above equation. If 𝑦 ∈ 𝑃,
then

(i) Δ(𝑄𝑦)(𝑡) ≥ 0 for 𝑡 ∈ [0, 𝑇 + 1]N
0

, (𝑄𝑦)(𝑡) ≥ 0 for
𝑡 ∈ [0, 𝑇 + 2]N

0

;

(ii) Δ(𝑄𝑦)(𝑇 + 1) = −∑
𝑇

𝑠=0
𝜅(𝑇 − 𝑠 − 1, 𝜀)Δ(𝑄𝑦)(𝑠) −

(𝑄𝑦)(0)𝜅(𝑇, 𝜀), (𝑄𝑦)(0) = (𝜂/(1−𝜂𝜅(𝜉, 𝛿))) ∑
𝜉+1

𝑠=0
𝜅(𝜉−

𝑠 − 1, 𝛿)Δ(𝑄𝑦)(𝑠);

(iii) 𝑄 : 𝑃 → 𝑃 is completely continuous;

(iv) finding positive solutions of FBVP (20)–(22) is equiva-
lent to finding fixed points of the operator 𝑄 on 𝑃;

(v) If𝑦 ∈ 𝑃,𝑦(𝑡) ≥ (𝑡/(𝑇+2))‖𝑦‖
∞

= (𝑡/ (𝑇 + 2)) 𝑦(𝑇+2),
for 𝑡 ∈ [0, 𝑇 + 2]N

0

.

The proof is simple and omitted.
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By Lemma 10 and (33), for all 𝑦 ∈ 𝑃(𝛾, 𝑑) ⊂ 𝑃, the
functionals defined above satisfy

ℎ

𝑇 + 2
𝜃 (𝑦) ≤ 𝛼 (𝑦) ≤ 𝜃 (𝑦) = 𝜓 (𝑦) . (35)

Furthermore, since

𝑦 (𝑇 + 2) − 𝑦 (0)

𝑇 + 2
≤ Δ𝑦 (0) ,

𝑦 (𝑇 + 2)

≤ 𝑦 (0) + (𝑇 + 2) Δ𝑦 (0)

≤ (
𝜂

1 − 𝜂𝜅 (𝜉, 𝛿)

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿) + 𝑇 + 2)Δ𝑦 (0)

= (
𝜂 (𝜉 + 2) (𝜉 + 1 + ] − 𝛿)

(]−𝛿−1)

(1 − 𝜂𝜅 (𝜉, 𝛿)) Γ (] − 𝛿 + 1)
+ 𝑇 + 2)Δ𝑦 (0) ,

(36)

we have

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = max {𝑦 (𝑇 + 2) , Δ𝑦 (0)} ≤ (𝑇 + 2 + 𝑚)Δ𝑦 (0) . (37)

Therefore, 𝛼(𝑦) ≤ 𝜓(𝑦) and ‖𝑦‖ ≤ 𝑀𝛾(𝑦) are satisfied,
where𝑀 = 𝑇 + 2 + 𝑚.

We now put growth condition on 𝑓 such that the
boundary value problem (20)–(22) has at least three positive
solutions belonging to the cone 𝑃. Then (1)-(2) has at least
three positive solutions.

Theorem 11. Let 0 < 𝛽, 𝛿 ≤ ] < 𝜀 < 1, and suppose that
(𝐻1)-(𝐻2) hold. In addition, assume that there exist positive
numbers 𝑘, 𝑎, 𝑏, 𝑑 with 𝑎 < 𝑏 ≤ (ℎ/ (𝑇 + 2)) 𝑑 such that the
following conditions are satisfied:

(𝐻3) 𝑓(𝑡+]−1, 𝑢, V) ≤ (1/𝑀
1
)𝜑
𝑝
(𝑑) for (𝑡, 𝑢, V) ∈ [0, 𝑇]N

0

×
[0, (𝑇 + 2 + 𝑚)𝑑] × [0, (𝑇 + 2 + 𝑚)𝑑],

(𝐻4) 𝑓(𝑡 + ] − 1, 𝑢, V) > 𝜑
𝑝
((𝑇 + 2)𝑏/ℎ𝑀

3
) for (𝑡, 𝑢, V) ∈

[ℎ, 𝑇]N
ℎ

× [((𝑇 + ] − 1)(]−1)/Γ(]))𝑏, ((𝑇 + 2) /ℎ) 𝑏] ×
[0, (𝑇 + 2 + 𝑚)𝑑],

(𝐻5) 𝑓(𝑡 + ] − 1, 𝑢, V) ≤ min{(𝑝 − 1)(((𝜀 − ])𝑎/
(∑
𝑇

𝑖=0
𝑞(𝑖))1/(𝑝−1) + 𝑎/(𝑁𝑘))𝑝−2𝑎/𝑁𝑘, 𝜑

𝑝
(𝑎/𝑁𝑘)} for

(𝑡, 𝑢, V) ∈ [0, 𝑇]N
0

× [0, 𝑎] × [0, (𝑇 + 2 + 𝑚)𝑑],

(𝐻6) 𝐿 = ((𝑀
2
+𝑀
3
)/𝑁𝑘) + 𝜂(𝜀 − ]) ∑𝜉+1

𝑠=0
𝜅(𝜉 − 𝑠 − 1, 𝛿) +

(𝜀 − ])(𝑇 + 2) ≤ 1.

Then FBVP (1)-(2) has at least three positive solutions 𝑥
1
, 𝑥
2
,

and 𝑥
3
satisfying

𝑥
1
(𝑡) = Δ1−]

0
𝑦
1
(𝑡) ,

𝑥
2
(𝑡) = Δ1−]

0
𝑦
2
(𝑡) ,

𝑥
3
(𝑡) = Δ1−]

0
𝑦
3
(𝑡) ,

max
𝑡∈[0,𝑇+1]N

0

󵄨󵄨󵄨󵄨Δ𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑑, 𝑓𝑜𝑟 𝑖 = 1, 2, 3,

𝑏 < min
𝑡∈[ℎ,𝑇+2]N

ℎ

󵄨󵄨󵄨󵄨𝑦1 (𝑡)
󵄨󵄨󵄨󵄨 ,

max
𝑡∈[0,𝑇+2]N

0

󵄨󵄨󵄨󵄨𝑦3 (𝑡)
󵄨󵄨󵄨󵄨 < 𝑎,

𝑎 < max
𝑡∈[0,𝑇+2]N

0

󵄨󵄨󵄨󵄨𝑦2 (𝑡)
󵄨󵄨󵄨󵄨 ,

𝑤𝑖𝑡ℎ min
𝑡∈[ℎ,𝑇+2]N

ℎ

󵄨󵄨󵄨󵄨𝑦2 (𝑡)
󵄨󵄨󵄨󵄨 < 𝑏.

(38)

Proof. By the definition of operator 𝑄 and its properties (i)–
(v), it suffices to show that the conditions of Lemma 4 hold
with respect to 𝑄.

Firstly, if 𝑦 ∈ 𝑃(𝛾, 𝑑), we know 𝛾(𝑦) =
max
𝑡∈[0,𝑇+1]N

0

|Δ𝑦(𝑡)| ≤ 𝑑. From (37), we have

max
𝑡∈[0,𝑇+2]N

0

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 ≤ (𝑇 + 2 + 𝑚) 𝑑. (39)

Since 𝜅(𝑡, 𝛽) is monotonic decreasing in variable 𝑡, then

0 ≤
𝑡+]−𝛽Δ

𝛽

]−1
𝑥 (𝑡)

=
𝑡

∑
𝑠=0

𝜅 (𝑡 − 𝑠 − 2, 𝛽) Δ𝑦 (𝑠) + 𝑦 (0) 𝜅 (𝑡 − 1, 𝛽)

=
𝑡

∑
𝑠=1

𝜅 (𝑡 − 𝑠 − 2, 𝛽) Δ𝑦 (𝑠) + 𝑦 (1) 𝜅 (𝑡 − 2, 𝛽)

− 𝑦 (0) (𝜅 (𝑡 − 2, 𝛽) − 𝜅 (𝑡 − 1, 𝛽))

≤
𝑡

∑
𝑠=2

𝜅 (𝑡 − 𝑠 − 2, 𝛽) Δ𝑦 (𝑠) + 𝑦 (2) 𝜅 (𝑡 − 3, 𝛽)

− 𝑦 (1) (𝜅 (𝑡 − 3, 𝛽) − 𝜅 (𝑡 − 2, 𝛽))

≤ ⋅ ⋅ ⋅

≤ 𝑦 (𝑡 + 1) ≤ (𝑇 + 2 + 𝑚) 𝑑,
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Δ𝑦 (𝑇 + 1)

= −
𝑇

∑
𝑠=0

𝜅 (𝑇 − 𝑠 − 1, 𝜀) Δ𝑦 (𝑠)

−
𝜂𝜅 (𝑇, 𝜀)

1 − 𝜂𝜅 (𝜉, 𝛿)

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿) Δ𝑦 (𝑠)

≤ (−
𝑇

∑
𝑠=0

𝜅 (𝑇 − 𝑠 − 1, 𝜀)

−
𝜂𝜅 (𝑇, 𝜀)

1 − 𝜂𝜅 (𝜉, 𝛿)

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿)) 𝑑 = 𝜏𝑑.

(40)

Thus, assumption (𝐻3) and Lemma 10 imply that

𝛾 (𝑄𝑦)

= max
𝑡∈[0,𝑇+1]N

0

󵄨󵄨󵄨󵄨Δ (𝑄𝑦) (𝑡)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨Δ (𝑄𝑦) (0)
󵄨󵄨󵄨󵄨

= 𝜑
𝑞
(
𝑇

∑
𝑖=0

𝑞 (𝑖) 𝑓 (𝑖 + ] − 1, 𝑥 (𝑖 + ] − 1) ,
𝑖+]−𝛽Δ

𝛽

]−1
𝑥 (𝑖))

+𝜑
𝑝
(Δ𝑦 (𝑇 + 1)))

≤ 𝜑
𝑞
(

1

𝑀
1

𝜑
𝑝
(𝑑)
𝑇

∑
𝑖=0

𝑞 (𝑖) + 𝜏𝑝−1𝜑
𝑝
(𝑑))

= 𝜑
𝑞
((

1

𝑀
1

𝑇

∑
𝑖=0

𝑞 (𝑖) + 𝜏𝑝−1)𝜑
𝑝
(𝑑)) = 𝑑.

(41)

Hence, 𝑄 : 𝑃(𝛾, 𝑑) → 𝑃(𝛾, 𝑑).
To check condition (𝑆1) of Lemma 4, we choose 𝑦

0
(𝑡) as

follows for 𝑡 ∈ [0, 𝑇 + 2]N
0

:

𝑦
0
(𝑡)

=

{{{{
{{{{
{

−
2𝑏

(𝑇 + 2)2
(𝑡 − (𝑇 + 2))2 +

𝑇 + 2

ℎ
𝑏, 𝑡 is even;

−
2𝑏

(𝑇 + 3)2
(𝑡 − (𝑇 + 2))2 +

𝑇 + 2

ℎ
𝑏, 𝑡 is odd.

(42)

It is easy to verify that 𝑦
0
∈ 𝑃(𝛾, 𝜃, 𝛼, 𝑏, ((𝑇 + 2) /ℎ) 𝑏, 𝑑)

and 𝛼(𝑦
0
) = min

𝑡∈[ℎ,𝑇+2]N
ℎ

|𝑦
0
(𝑡)| = 𝑦

0
(ℎ) > 𝑏. So {𝑦 ∈

𝑃(𝛾, 𝜃, 𝛼, 𝑏, ((𝑇 + 2) /ℎ) 𝑏, 𝑑)|𝛼(𝑦) > 𝑏} ̸= 0.
Therefore, if 𝑦 ∈ 𝑃(𝛾, 𝜃, 𝛼, 𝑏, ((𝑇 + 2) /ℎ) 𝑏, 𝑑), then 𝑏 ≤

𝑦(𝑡) ≤ ((𝑇 + 2) /ℎ) 𝑏, |Δ𝑦(𝑡)| ≤ 𝑑 for 𝑡 ∈ [ℎ, 𝑇 + 2]N
ℎ

.

By (27), we have (𝑇 + ] − 1)(]−1)𝑏/Γ(]) ≤ 𝑥(𝑡 + ] − 1) ≤
((𝑇 + 2) /ℎ) 𝑏. According to assumption (𝐻4) and Lemma 10,
we get

𝛼 (𝑄𝑦)

= min
𝑡∈[ℎ,𝑇+2]N

ℎ

󵄨󵄨󵄨󵄨(𝑄𝑦) (𝑡)
󵄨󵄨󵄨󵄨 ≥

ℎ

𝑇 + 2
max
𝑡∈[0,𝑇+1]N

0

󵄨󵄨󵄨󵄨(𝑄𝑦) (𝑡)
󵄨󵄨󵄨󵄨

=
ℎ

𝑇 + 2
(

𝜂

1 − 𝜂𝜅 (𝜉, 𝛿)

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿) 𝜑
𝑞

⋅ [

[

𝑇

∑
𝑗=𝑠

𝑞 (𝑗) 𝑓 (𝑗 + ] − 1,

𝑥 (𝑗 + ] − 1) ,
𝑗+]−𝛽Δ

𝛽

]−1
𝑥 (𝑗))

+ 𝜑
𝑝
(Δ𝑦 (𝑇 + 1)) ]

]

+
𝑇+1

∑
𝑖=0

[

[

𝜑
𝑞
(
𝑇

∑
𝑗=𝑖

𝑞 (𝑗) 𝑓 (𝑗 + ] − 1, 𝑥 (𝑗 + ] − 1) ,

𝑗+]−𝛽Δ
𝛽

]−1
𝑥 (𝑗))

+ 𝜑
𝑝
(Δ𝑦 (𝑇 + 1)))]

]

)

≥
ℎ

𝑇 + 2

𝑇

∑
𝑖=0

𝜑
𝑞

[

[

𝑇

∑
𝑗=𝑖

𝑞 (𝑗)

⋅ 𝑓 (𝑗 + ] − 1, 𝑥 (𝑗 + ] − 1) ,

𝑗+]−𝛽Δ
𝛽

]−1
𝑥 (𝑗))]

]

≥
ℎ

𝑇 + 2

𝑇

∑
𝑖=0

𝜑
𝑞

[

[

𝑇

∑
𝑗=𝑖

𝑞 (𝑗) 𝜑
𝑝
(
(𝑇 + 2) 𝑏

ℎ𝑀
3

)]

]

= 𝑏.

(43)

This shows that condition (𝑆1) of Lemma 4 is satisfied.
Secondly, from (35), we have

𝛼 (𝑄𝑦) ≥
ℎ

𝑇 + 2
𝜃 (𝑄𝑦) > 𝑏, (44)

for all 𝑦 ∈ 𝑃(𝛾, 𝛼, 𝑏, 𝑑) with 𝜃(𝑄𝑦) > ((𝑇 + 2) /ℎ) 𝑏. Thus,
condition (𝑆2) of Lemma 4 is satisfied.

We finally exhibit that (𝑆3) of Lemma 4 is also satisfied.
Clearly, as 𝜓(0) = 0 < 𝑎, we have 0 ∉ 𝑅(𝛾, 𝜓, 𝑎, 𝑑). Suppose
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that𝑦 ∈ 𝑅(𝛾, 𝜓, 𝑎, 𝑑)with𝜓(𝑦) = 𝑎. Since𝜅(𝑡, 𝜀) ismonotonic
increasing in variable 𝑡, we have

Δ𝑦 (𝑇 + 1)

= −
𝑇

∑
𝑠=0

𝜅 (𝑇 − 𝑠 − 1, 𝜀) Δ𝑦 (𝑠) − 𝑦 (0) 𝜅 (𝑇, 𝜀)

= −
𝑇

∑
𝑠=1

𝜅 (𝑇 − 𝑠 − 1, 𝜀) Δ𝑦 (𝑠) − 𝑦 (1) 𝜅 (𝑇 − 1, 𝜀)

+ (𝜅 (𝑇 − 1, 𝜀) − 𝜅 (𝑇, 𝜀)) 𝑦 (0)

≤ −
𝑇

∑
𝑠=1

𝜅 (𝑇 − 𝑠 − 1, 𝜀) Δ𝑦 (𝑠) − 𝑦 (1) 𝜅 (𝑇 − 1, 𝜀)

≤ −
𝑇

∑
𝑠=2

𝜅 (𝑇 − 𝑠 − 1, 𝜀) Δ𝑦 (𝑠) − 𝑦 (2) 𝜅 (𝑇 − 2, 𝜀)

≤ ⋅ ⋅ ⋅

≤ −𝜅 (−1, 𝜀) 𝑦 (𝑇 + 1) ≤ (𝜀 − ]) 𝑎.

(45)

Next, we consider two cases.

Case i. Consider 𝑝 ≥ 2. By (𝐻5) and the inequality 𝑥𝑝−1 +

𝑦𝑝−1 ≤ (𝑥 + 𝑦)𝑝−1 for 𝑥, 𝑦 ∈ R+, we can obtain that

𝜓 (𝑄𝑦)

= max
𝑡∈[0,𝑇+2]N

0

󵄨󵄨󵄨󵄨(𝑄𝑦) (𝑡)
󵄨󵄨󵄨󵄨

≤
𝜂

1 − 𝜂𝜅 (𝜉, 𝛿)

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿) 𝜑
𝑞

⋅ (
𝑇

∑
𝑗=𝑠

𝑞 (𝑗) 𝑓 (𝑗 + ] − 1, 𝑥 (𝑗 + ] − 1) ,
𝑗+]−𝛽Δ

𝛽

]−1
𝑥 (𝑗))

+ 𝜑
𝑝
((𝜀 − ]) 𝑎))

+
𝑇+1

∑
𝑖=0

𝜑
𝑞
(
𝑇

∑
𝑗=𝑖

𝑞 (𝑗) 𝑓 (𝑗 + ] − 1, 𝑥 (𝑗 + ] − 1) ,

𝑗+]−𝛽Δ
𝛽

]−1
𝑥 (𝑗))

+𝜑
𝑝
((𝜀 − ]) 𝑎))

≤
𝜂

1 − 𝜂𝜅 (𝜉, 𝛿)

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿) 𝜑
𝑞

⋅ (
𝑇

∑
𝑗=𝑠

𝑞 (𝑗) 𝜑
𝑝
(

𝑎

𝑁𝑘
) + 𝜑
𝑝
((𝜀 − ]) 𝑎))

+
𝑇+1

∑
𝑖=0

𝜑
𝑞
(
𝑇

∑
𝑗=𝑖

𝑞 (𝑗) 𝜑
𝑝
(

𝑎

𝑁𝑘
) + 𝜑
𝑝
((𝜀 − ]) 𝑎))

=
𝜂

1 − 𝜂𝜅 (𝜉, 𝛿)

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿)

⋅ ((
𝑇

∑
𝑗=𝑠

𝑞 (𝑗))

1/(𝑝−1)

𝑎

𝑁𝑘
+ (𝜀 − ]) 𝑎)

+
𝑇+1

∑
𝑖=0

((
𝑇

∑
𝑗=𝑠

𝑞 (𝑗))

1/(𝑝−1)

𝑎

𝑁𝑘
+ (𝜀 − ]) 𝑎)

≤
𝑎𝑀
2

𝑁𝑘
+

𝜂 (𝜀 − ])
1 − 𝜂𝜅 (𝜉, 𝛿)

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿) 𝑎 +
𝑎𝑀
3

𝑁𝑘

+ (𝑇 + 2) (𝜀 − ]) 𝑎

≤ (
𝑀
2
+𝑀
3

𝑁𝑘
+

𝜂 (𝜀 − ])
1 − 𝜂𝜅 (𝜉, 𝛿)

⋅
𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿) + (𝑇 + 2) (𝜀 − ])) 𝑎

≤ 𝑎.

(46)

Case ii. Consider 1 < 𝑝 < 2. By (𝐻5) (𝐻6) and the inequality
(𝑥 + 𝑦)𝑝−1 − 𝑦𝑝−1 ≥ (𝑝 − 1)(𝑥 + 𝑦)𝑝−2𝑥, for 𝑥, 𝑦 ∈ R+, we can
have

𝜓 (𝑄𝑦)

= max
𝑡∈[0,𝑇+2]N

0

󵄨󵄨󵄨󵄨(𝑄𝑦) (𝑡)
󵄨󵄨󵄨󵄨

≤
𝜂

1 − 𝜂𝜅 (𝜉, 𝛿)

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿)

⋅ (
𝑇

∑
𝑗=𝑠

𝑞 (𝑗))

1/(𝑝−1)

𝜑
𝑞
(𝑓(𝑗 + ] − 1, 𝑥 (𝑗 + ] − 1) ,

𝑗+]−𝛽Δ
𝛽

]−1
𝑥 (𝑗))

+𝜑
𝑝
((𝜀 − ]) 𝑎)

1

∑
𝑇

𝑗=𝑠
𝑞 (𝑗)

)

+ 𝑎
𝑇+1

∑
𝑖=0

(
𝑇

∑
𝑗=𝑖

𝑞 (𝑗))

1/(𝑝−1)

𝜑
𝑞
(𝑓(𝑗 + ] − 1, 𝑥 (𝑗 + ] − 1) ,

𝑗+]−𝛽Δ
𝛽

]−1
𝑥 (𝑗))
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+𝜑
𝑝
((𝜀 − ]) 𝑎)

1

∑
𝑇

𝑗=𝑖
𝑞 (𝑗)

)

≤
𝑎𝜂

1 − 𝜂𝜅 (𝜉, 𝛿)

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿)(
𝑇

∑
𝑗=𝑠

𝑞 (𝑗))

1/(𝑝−1)

⋅ 𝜑
𝑞
((𝑝 − 1)(

(𝜀 − ])

(∑
𝑇

𝑗=𝑠
𝑞 (𝑗))

1/(𝑝−1)
+

1

𝑁𝑘
)

𝑝−2

⋅
1

𝑁𝑘
+ 𝜑
𝑝
(

(𝜀 − ])

(∑
𝑇

𝑗=𝑠
𝑞 (𝑗))

1/(𝑝−1)
))

+ 𝑎
𝑇+1

∑
𝑖=0

(
𝑇

∑
𝑗=𝑖

𝑞 (𝑗))

1/(𝑝−1)

⋅ 𝜑
𝑞
((𝑝 − 1)(

(𝜀 − ])

(∑
𝑇

𝑗=𝑖
𝑞 (𝑗))

1/(𝑝−1)
+

1

𝑁𝑘
)

𝑝−2

⋅
1

𝑁𝑘
+ 𝜑
𝑝
(

(𝜀 − ])

(∑
𝑇

𝑗=𝑖
𝑞 (𝑗))

1/(𝑝−1)
))

≤
𝑎𝜂

1 − 𝜂𝜅 (𝜉, 𝛿)

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿)

⋅ (
𝑇

∑
𝑗=𝑠

𝑞 (𝑗))

1/(𝑝−1)

(
(𝜀 − ])

(∑
𝑇

𝑗=𝑠
𝑞 (𝑗))

1/(𝑝−1)
+

1

𝑁𝑘
)

+ 𝑎
𝑇+1

∑
𝑖=0

(
𝑇

∑
𝑗=𝑖

𝑞 (𝑗))

1/(𝑝−1)

(
(𝜀 − ])

(∑
𝑇

𝑗=𝑖
𝑞 (𝑗))

1/(𝑝−1)
+

1

𝑁𝑘
)

≤
𝑎𝜂

(1 − 𝜂𝜅 (𝜉, 𝛿))𝑁𝑘

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿)(
𝑇

∑
𝑗=𝑠

𝑞 (𝑗))

1/(𝑝−1)

+
𝑎𝜂 (𝜀 − ])

1 − 𝜂𝜅 (𝜉, 𝛿)

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿) + (𝜀 − ]) (𝑇 + 2) 𝑎

+
𝑎

𝑁𝑘

𝑇+1

∑
𝑖=0

(
𝑇

∑
𝑗=𝑖

𝑞 (𝑗))

1/(𝑝−1)

≤
𝑎

𝑁𝑘
𝑀
2
+ 𝑎𝜂 (𝜀 − ])

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿)

+ (𝜀 − ]) (𝑇 + 2) 𝑎 +
𝑎

𝑁𝑘
𝑀
3

= 𝐿𝑎 ≤ 𝑎.

(47)

So, condition (𝑆3) of Lemma 4 is satisfied. Therefore,
Lemma 4 implies that the FBVP (20)–(22) has at least three

positive solutions 𝑦
1
, 𝑦
2
, and 𝑦

3
satisfying (38); that is, the

FBVP (1)-(2) has at least three positive solutions 𝑥
1
, 𝑥
2
, and

𝑥
3
satisfying (38). The proof is complete.

Theorem 12. Let 𝛿 ≤ ] = 𝜀 and (𝐻1)–(𝐻4) hold. In addition,
assume that the following condition is satisfied:
(𝐻7) 𝑓 ≤ 𝜑

𝑝
(𝑎/(𝑀

2
+𝑀
3
)).

Then the FBVP (1)-(2) has at least three positive solutions
𝑥
1
, 𝑥
2
, and 𝑥

3
satisfying (38).

Proof. If 𝜀 = ], (21) is equivalent to Δ𝑦(𝑇 + 1) = 0 by (14).
Similar to discussion inTheorem 11, we know that (24) holds.

For 𝑡 ∈ [0, 𝑇 + 2]N
0

, define an operator 𝑄 : 𝑃 → 𝐵 by

𝑄𝑦 (𝑡)

=
𝜂

1 − 𝜂𝜅 (𝜉, 𝛿)

𝜉+1

∑
𝑠=0

𝜅 (𝜉 − 𝑠 − 1, 𝛿) 𝜑
𝑞

⋅ (
𝑇

∑
𝑗=𝑠

𝑞 (𝑗)

⋅ 𝑓 (𝑗 + ] − 1, 𝑥 (𝑗 + ] − 1) ,
𝑗+]−𝛽Δ

𝛽

]−1
𝑥 (𝑗)))

+
𝑡−1

∑
𝑖=0

(𝜑
𝑞
(
𝑇

∑
𝑗=𝑖

𝑞 (𝑗)

⋅ 𝑓 (𝑗 + ] − 1, 𝑥 (𝑗 + ] − 1) ,
𝑗+]−𝛽Δ

𝛽

]−1
𝑥 (𝑗)))) .

(48)

The rest of the proof is similar toTheorem 11, so it is omitted.
The proof is complete.

Example 13. Consider the boundary value problem:

Δ (𝜑
𝑝
(Δ0.95
−0.05

𝑥 (𝑡)))

+ 𝑓 (𝑡 + ] − 1, 𝑥 (𝑡 + ] − 1) ,
𝑡+0.05

Δ
0.9

−0.05
𝑥 (𝑡))

= 0, 𝑡 ∈ [0, 10]N
0

,

[Δ0.96
−0.05

𝑥 (𝑡)]
𝑡=10.99

= 0,

𝑥 (−0.05) =
1

2
[Δ0.94
−0.05

𝑥 (𝑡)]
𝑡=2.01

.

(49)

Compared with (1), we have 𝑞(𝑡) = 1, 𝑝 = 3, 𝑞 = 3/2, 𝜉 = 1,
𝑇 = 10, ] = 0.95, 𝛽 = 0.9, 𝜀 = 0.96, 𝛿 = 0.94, 𝜂 = 1/2, ℎ = 6,
and
𝑓 (𝑡 + ] − 1, 𝑢, V)

=

{{{{{{{{{
{{{{{{{{{
{

|sin (𝑡 + ] − 1)| + 49 +
V

1500
, 0 ≤ 𝑢 ≤ 500;

|sin (𝑡 + ] − 1)| + 49

+
1

11.5
(𝑢 − 500)2 +

V
1500

, 500 ≤ 𝑢 ≤ 1000;

|sin (𝑡 + ] − 1)| + 49

+
1

11.5
(500)2 +

V
1500

, 𝑢 ≥ 1000.

(50)

Then, FBVP (49) has at least three positive solutions.



Abstract and Applied Analysis 11

Proof. Choose 𝑎 = 500, 𝑏 = 1800, 𝑑 = 5000, 𝑝 = 3, 𝑞 = 3/2,
and 𝑘 = 2.

By computation, we know 𝜏 ≈ 0.0021, 𝑀
1
≈ 11, 𝑀

2
≈

1.56,𝑀
3
= ∑
10

𝑗=0
(11 − 𝑗)1/2 ≈ 25.78,𝑁 = 𝑀

3
, and𝑚 ≈ 0.52.

It is easy to see that 0 < 𝑎 < 𝑏 < 2𝑑. And 𝑓 satisfies that

𝑓 (𝑡 + ] − 1, 𝑢, V)

≤ 50 +
250000

11.5
+
62590.21

1500
≈ 21830.21

< 2270663.03 ≈
1

𝑀
1

𝜑
𝑝
(𝑑) ,

(51)

for (𝑡, 𝑢, V) ∈ [0, 10]N
0

× [0, 62590.21] × [0, 62590.21];

𝑓 (𝑡 + ] − 1, 𝑢, V)

≥ 49 +
5002

11.5
≈ 21788 > 19488

≈ (
3600

25.78
)
2

= 𝜑
𝑝
(
(𝑇 + 2) 𝑏

ℎ𝑀
3

) ,

(52)

for (𝑡, 𝑢, V) ∈ [6, 10]N
0

× [1800Γ(10 + ])/Γ(11)Γ(]), 3600] ×
[0, 62590.21];

𝑓 (𝑡 + ] − 1, 𝑢, V) < 50 +
62590.21

1500
≈ 91.73

≤ (
500

2 × 25.78
)
2

< 94.04 ≈ 𝜑
𝑝
(

𝑎

2𝑁
) ,

(53)

for (𝑡, 𝑢, V) ∈ [0, 10]N
0

× [0, 500] × [0, 65000]. Consider

𝐿 =
1.56 + 25.78

2 × 25.78
+
1

2
×
2.01 × 1.01 × 0.01

2
+ 12 × 0.01

≈ 0.65 < 1.

(54)

Thus, the conditions of Theorem 11 are satisfied. Therefore,
the FBVP (49) has at least three positive solutions satisfying

𝑥
1
(𝑡) = Δ0.05

0
𝑦
1
(𝑡) ,

𝑥
2
(𝑡) = Δ0.05

0
𝑦
2
(𝑡) ,

𝑥
3
(𝑡) = Δ0.05

0
𝑦
3
(𝑡) ,

max
𝑡∈[0,11]N

0

󵄨󵄨󵄨󵄨Δ𝑦𝑖 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 5000, for 𝑖 = 1, 2, 3,

1800 < min
𝑡∈[6,12]N

6

󵄨󵄨󵄨󵄨𝑦1 (𝑡)
󵄨󵄨󵄨󵄨 ,

max
𝑡∈[0,12]N

0

󵄨󵄨󵄨󵄨𝑦3 (𝑡)
󵄨󵄨󵄨󵄨 < 500,

500 < max
𝑡∈[0,12]N

0

󵄨󵄨󵄨󵄨𝑦2 (𝑡)
󵄨󵄨󵄨󵄨 ,

with min
𝑡∈[6,12]N

6

󵄨󵄨󵄨󵄨𝑦2 (𝑡)
󵄨󵄨󵄨󵄨 < 1800.

(55)
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