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This paper presents an explicit finite-differencemethod for nonlinear partial differential equation appearing as a transformedBlack-
Scholes equation for American put option under logarithmic front fixing transformation. Numerical analysis of the method is
provided. The method preserves positivity and monotonicity of the numerical solution. Consistency and stability properties of the
scheme are studied. Explicit calculations avoid iterative algorithms for solving nonlinear systems.Theoretical results are confirmed
by numerical experiments. Comparison with other approaches shows that the proposed method is accurate and competitive.

1. Introduction

American options are contracts allowing the holder the right
to sell (buy) an asset at a certain price at any time until a
prespecified future date. The pricing of American options
plays an important role both in theory and in real derivative
markets.

The American option pricing problem can be posed
either as a linear complementarity problem (LCP) or a free
boundary value problem. These two different formulations
have led to different methods for solving American options.

The most algebraic approach of LCPs for American
option pricing can be found in [1, 2] and the references
therein.

In this paper we follow the free boundary value approach.
McKean [3] and van Moerbeke [4] show that the valuation
of American options constitutes a free boundary problem
looking for a boundary changing in time to maturity, known
as the optimal exercise boundary. The problem of finding
optimal exercise boundary can be treated analytically or
numerically. With respect to the analytical approach, Geske
and Johnson [5] obtained a valuation formula for American
puts expressed in terms of a series of compound-option
functions. See also Barone-Adesi andWhaley [6], MacMillan
[7], and Ju [8].

Numerical methods were initiated by Brennan and
Schwartz [9] and the convergence of their finite difference

method was proved by Jaillet et al. [10]. Other relevant works
using finite differencemethods areHull andWhite [11], Duffy
[12], Wilmott et al. [1], Forsyth and Vetzal [13], Tavella and
Randall [14], Tangman et al. [15], Zhu andChen [16], andKim
et al. [17].

Free boundary value problems are challenging because
one has to find the solution of a partial differential equation
that satisfies auxiliary initial conditions and boundary con-
ditions on a fixed boundary as well as on an unknown free
boundary. This complexity is reduced by transforming the
problem into a new nonlinear partial differential equation
where the free boundary appears as a new variable of the PDE
problem.

This technique which originated in physics problems is
the so called front fixing method based on Landau transform
[18] to fix the optimal exercise boundary on a vertical axis.
The front fixing method has been applied successfully to
a wide range of problems arising in physics (see [19]) and
references therein. In 1997, Wu and Kwok [20] proposed the
front fixing technique for solving free boundary problem
to the field of option pricing. Other relevant papers related
to the fixed domain transformation are Nielsen et al. [21],
Šev ̌covič [22], and Zhang and Zhu [23]. All these papers
use finite difference schemes after the corresponding fixed
domain transformations. Nielsen et al. [21] use both explicit
and implicit schemes while Šev ̌covič [22] uses difference
schemes of operator splitting type.
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Wu and Kwok [20] transform the original problem into
one more manageable equation because the coefficients of
the transformed equation do not depend on the spatial
variable. In [20], one uses a tree-level scheme and performs
numerical tests versus the binomial method. The drawback
of the initialization and iteration of the three-level method is
overcome by Zhang and Zhu [23] using a predictor-corrector
approach.

The front fixing method combined with the use of an
explicit finite difference scheme avoids the drawbacks of
alternative algebraic approaches since it avoids the use of
iterative methods and underlying difficulties such as how to
initiate the algorithm, when to stop it, and which is the error
after the stopping.

As the best model can be wasted with a disregarded
numerical analysis, in this paper, we focus on the numerical
issues of explicit finite difference scheme for American put
option problem after using the fixed domain transforma-
tion used in [20]. Consistency of the numerical scheme
with the PDE problem is stated. Conditions on the size
of discretization steps in order to guarantee stability and
positivity of the numerical solution are given. Furthermore,
the numerical solution preserves properties of the theoretical
solution presented in [24], such as the positivity and the
monotonicity of the optimal exercise boundary.

This paper is organized as follows. In Section 2, dimen-
sionless fixed domain transformation of the American put
option problem is introduced as well as the discretization of
the continuous problem. Section 3 is addressed to guarantee
the positivity of the numerical solution as well as the non-
increasing time behaviour of the optimal exercise boundary.
In Section 4, stability and consistency are treated. Finally, in
Section 5, numerical experiments and comparisonwith other
methods are illustrated.

Throughout the paper we will denote for a given 𝑥 =

[𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁
]

𝑇
∈ R𝑁 its supremum norm as ‖𝑥‖

∞
=

max{|𝑥
𝑖
| : 1 ≤ 𝑖 ≤ 𝑁}.

2. Fixed Domain Transformation and
Discretization

It is well-known that the American put option price model is
given by [1] the moving free boundary PDE as follows:

𝜕𝑃

𝜕𝜏

=

1

2

𝜎

2
𝑆

2 𝜕
2
𝑃

𝜕𝑆

2
+ 𝑟𝑆

𝜕𝑃

𝜕𝑆

− 𝑟𝑃, 𝑆 > 𝐵 (𝜏) , 0 < 𝜏 ≤ 𝑇,

(1)

together with the initial and boundary conditions:

𝑃 (𝑆, 0) = max (𝐸 − 𝑆, 0) , 𝑆 ≥ 0,

𝜕𝑃

𝜕𝑆

(𝐵 (𝜏) , 𝜏) = −1,

𝑃 (𝐵 (𝜏) , 𝜏) = 𝐸 − 𝐵 (𝜏) ,

lim
𝑆→∞

𝑃 (𝑆, 𝜏) = 0,

𝐵 (0) = 𝐸,

𝑃 (𝑆, 𝜏) = 𝐸 − 𝑆, 0 ≤ 𝑆 < 𝐵 (𝜏) ,

(2)

where 𝜏 = 𝑇−𝑡 denotes the time to maturity 𝑇, 𝑆 is the asset’s
price, 𝑃(𝑆, 𝜏) is the option price, 𝐵(𝜏) is the unknown early
exercise boundary, 𝜎 is a volatility of the asset, 𝑟 is the risk-
free interest rate, and 𝐸 is the strike price.

Note that if asset price 𝑆 ≤ 𝐵(𝜏), the optimal strategy is to
exercise the option, while if 𝑆 > 𝐵(𝜏), the optimal strategy is
to hold the option.

Let us consider the dimensionless change of the following
variables [20]:

𝑝 (𝑥, 𝜏) =

𝑃 (𝑆, 𝜏)

𝐸

, 𝑆

𝑓
(𝜏) =

𝐵 (𝜏)

𝐸

, 𝑥 = ln 𝑆

𝑆

𝑓
(𝜏)

,

(3)

that transforms the problem (1)-(2) into the normalized form
as follows:

𝜕𝑝

𝜕𝜏

=
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2 𝜕
2
𝑝

𝜕𝑥

2
+ (𝑟 −
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2
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𝜕𝑝
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− 𝑟𝑝 +

𝑆



𝑓

𝑆

𝑓
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,

𝑥 > 0, 0 < 𝜏 ≤ 𝑇,

(4)

where 𝑆
𝑓
denotes the derivative of 𝑆

𝑓
with respect to 𝜏. The

new boundary and initial conditions are

𝑝 (𝑥, 0) = 0, 𝑥 ≥ 0, (5)

𝜕𝑝

𝜕𝑥

(0, 𝜏) = −𝑆

𝑓
(𝜏) ,

(6)

𝑝 (0, 𝜏) = 1 − 𝑆

𝑓
(𝜏) , (7)

lim
𝑥→∞

𝑝 (𝑥, 𝜏) = 0, (8)

𝑆

𝑓
(0) = 1. (9)

The Equation (4) is a nonlinear differential equation on
the domain (0,∞) × (0, 𝑇]. In order to solve numerically
problem (4)–(9), one has to consider a bounded numerical
domain. Let us introduce 𝑥max large enough to translate
the boundary condition (8); that is, 𝑝(𝑥max, 𝜏) = 0. Then
the problem (4)–(9) can be studied on the fixed domain
[0, 𝑥max] × (0, 𝑇]. The value 𝑥max is chosen following the
criterion pointed out in [25].

Let us introduce the computational grid of 𝑀 + 1 space
points and 𝑁 time levels with respective stepsizes ℎ and 𝑘 as
follows:

ℎ =

𝑥max
𝑀+ 1

, 𝑘 =

𝑇

𝑁

,

𝑥

𝑗
= ℎ𝑗, 𝑗 = 0, . . . ,𝑀 + 1,

𝜏

𝑛
= 𝑘𝑛, 𝑛 = 0, . . . , 𝑁.

(10)
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The approximate value of 𝑝(𝑥, 𝜏) at the point 𝑥
𝑗
and time

𝜏

𝑛 is denoted by 𝑝𝑛
𝑗
≈ 𝑝(𝑥

𝑗
, 𝜏

𝑛
). Then a forward-time central-

space explicit scheme is constructed for internal spacial nodes
as follows:

𝑝

𝑛+1

𝑗
− 𝑝

𝑛

𝑗

𝑘

=

1

2

𝜎

2
𝑝

𝑛
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𝑛
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+ 𝑝

𝑛
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2

2

)

𝑝

𝑛
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− 𝑝

𝑛
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2ℎ
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𝑛

𝑗
+

𝑆
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𝑓
− 𝑆

𝑛

𝑓

𝑘𝑆

𝑛

𝑓

𝑝

𝑛

𝑗+1
− 𝑝

𝑛

𝑗−1

2ℎ

,

1 ≤ 𝑗 ≤ 𝑀, 0 ≤ 𝑛 ≤ 𝑁 − 1.

(11)

By denoting 𝜇 = 𝑘/ℎ

2, the scheme (11) can be rewritten in
the following form:

𝑝

𝑛+1

𝑗
= 𝑎𝑝

𝑛

𝑗−1
+ 𝑏𝑝

𝑛

𝑗
+ 𝑐𝑝

𝑛

𝑗+1
+

𝑆

𝑛+1

𝑓
− 𝑆

𝑛

𝑓

2ℎ𝑆

𝑛

𝑓

(𝑝

𝑛

𝑗+1
− 𝑝

𝑗−1
) ,

(12)

where

𝑎 =

𝜇

2

(𝜎

2
− (𝑟 −

𝜎

2

2

) ℎ) ; 𝑏 = 1 − 𝜎

2
𝜇 − 𝑟𝑘;

𝑐 =

𝜇

2

(𝜎

2
+ (𝑟 −

𝜎

2

2

) ℎ) .

(13)

From the boundary conditions (6) and (7), we can obtain

𝑝

𝑛

1
− 𝑝

𝑛

−1

2ℎ

= −𝑆

𝑛

𝑓
; 𝑝

𝑛

0
= 1 − 𝑆

𝑛

𝑓
,

(14)

where 𝑥
−1

= −ℎ is an auxiliary point out of the domain. By
considering (4) at the point 𝑥

0
= 0, 𝜏 > 0 (see [26], p. 341),

and replacing of the boundary conditions (6) and (7) into (4)
at (0+, 𝜏), one gets the new boundary condition as follows:

1

2

𝜎

2 𝜕
2
𝑝

𝜕𝑥

2
(0

+
, 𝜏) +

𝜎

2

2

𝑆

𝑓
(𝜏) − 𝑟 = 0,

(15)

(see [20, 23, 26]), and its central difference discretization is

𝜎

2

2

𝑝

𝑛

1
− 2𝑝

𝑛

0
+ 𝑝

𝑛

−1

ℎ

2
+

𝜎

2

2

𝑆

𝑛

𝑓
− 𝑟 = 0.

(16)

From (14) and (16), the value of 𝑝𝑛
−1

can be eliminated
obtaining the relationship

𝑝

𝑛

1
= 𝛼 − 𝛽𝑆

𝑛

𝑓
, 𝑛 ≥ 1, (17)

between the free boundary approximation 𝑆

𝑛

𝑓
and 𝑝

𝑛

1
, where

𝛼 = 1 +

𝑟ℎ

2

𝜎

2
, 𝛽 = 1 + ℎ +

1

2

ℎ

2
.

(18)

By using the scheme (12) for 𝑗 = 1 and evaluating (17) at
the (𝑛+1)st time level, the free boundary 𝑆𝑛+1

𝑓
can be expressed

as

𝑆

𝑛+1

𝑓
= 𝑑

𝑛
𝑆

𝑛

𝑓
, 0 ≤ 𝑛 ≤ 𝑁 − 1, (19)

where

𝑑

𝑛
=

𝛼 − (𝑎𝑝

𝑛

0
+ 𝑏𝑝

𝑛

1
+ 𝑐𝑝

𝑛

2
− (𝑝

𝑛

2
− 𝑝

𝑛

0
) /2ℎ)

(𝑝

𝑛

2
− 𝑝

𝑛

0
) /2ℎ + 𝛽𝑆

𝑛

𝑓

. (20)

After expression (19), the value 𝑆

𝑛+1

𝑓
can be replaced in

(12), (17), and (14) to obtain values 𝑝𝑛+1
𝑗

, 0 ≤ 𝑗 ≤ 𝑀. Then the
numerical scheme for the problem (4)–(9) can be rewritten
for any 𝑛 = 0, . . . , 𝑁 − 1 in the following algorithmic form:

𝑆

𝑛+1

𝑓
= 𝑑

𝑛
𝑆

𝑛

𝑓
, (21)

𝑝

𝑛+1

0
= 1 − 𝑆

𝑛+1

𝑓
, (22)

𝑝

𝑛+1

1
= 𝛼 − 𝛽𝑆

𝑛+1

𝑓
, (23)

𝑝

𝑛+1

𝑗
= 𝑎

𝑛
𝑝

𝑛

𝑗−1
+ 𝑏𝑝

𝑛

𝑗
+ 𝑐

𝑛
𝑝

𝑛

𝑗+1
, 𝑗 = 2, . . . ,𝑀, (24)

where

𝑎

𝑛
= 𝑎 −

𝑆

𝑛+1

𝑓
− 𝑆

𝑛

𝑓

2ℎ𝑆

𝑛

𝑓

, 𝑐

𝑛
= 𝑐 +

𝑆

𝑛+1

𝑓
− 𝑆

𝑛

𝑓

2ℎ𝑆

𝑛

𝑓

,

𝑝

𝑛+1

𝑀+1
= 0,

(25)

with the initial conditions

𝑆

0

𝑓
= 1, 𝑝

0

𝑗
= 0, 0 ≤ 𝑗 ≤ 𝑀 + 1. (26)

3. Positivity and Monotonicity

In this section, we will show the free boundary nonincreasing
monotonicity as well as the positivity and nonincreasing
spacial monotonicity of the numerical option price. Let us
start this section by showing that constant coefficients 𝑎,
𝑏, and 𝑐 of scheme (12) for the transformed problem (4)–
(9) are positive under appropriate conditions on the stepsize
discretization ℎ and 𝑘.

Lemma 1. Assuming that the stepsizes ℎ and 𝑘 satisfy the
following conditions:

C1: ℎ ≤ 𝜎

2
/|𝑟 − (𝜎

2
/2)|, 𝑟 ̸= 𝜎

2
/2,

C2: 𝑘 ≤ ℎ

2
/(𝜎

2
+ 𝑟ℎ

2
),

then the coefficients of the scheme 𝑎, 𝑏, and 𝑐 are nonnegative.
If 𝑟 = 𝜎

2
/2, then under the condition C2, coefficients 𝑎, 𝑏, and

𝑐 are nonnegative.

Proof. From (13) for nonnegativity of 𝑎, it is necessary that

𝜎

2
− (𝑟 −

𝜎

2

2

) ℎ ≥ 0. (27)

If 𝑟 ≤ 𝜎

2
/2 from (13), note that 𝑎 ≥ 0 for any ℎ > 0.

Otherwise, (27) is satisfied under the condition C1.
From (13), 𝑏 is nonnegative under the condition C2.
If 𝑟 ≥ 𝜎

2
/2, nonnegativity of 𝑐 is guaranteed by (13) for

any ℎ > 0. Otherwise, 𝑐 is nonnegative under the condition
C1.
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The following lemma prepares the study of positivity of
the numerical solution 𝑝

𝑛

𝑗
as well as the monotonicity of

the free boundary sequence 𝑆

𝑛

𝑓
, that will be established in a

further result.

Lemma 2. Let {𝑝𝑛
𝑗
, 𝑆

𝑛

𝑓
} be the numerical solution of scheme

(21)–(26) for a transformed American put option problem (4)
and let 𝑑𝑛 be defined by (20). Then under hypothesis of the
Lemma 1, for small enough ℎ, one verifies the following.

(1) For each fixed 𝑛,

0 < 𝑑

𝑛
≤ 1. (28)

(2) Values 𝑝𝑛+1
𝑗

≥ 0 for 𝑗 = 0, . . . ,𝑀; 𝑛 = 0, . . . , 𝑁 − 1.

(3) 𝑝𝑛+1
𝑗

≥ 𝑝

𝑛+1

𝑗+1
for 𝑗 = 0, . . . ,𝑀 − 1; 𝑛 = 0, . . . , 𝑁 − 1.

Proof. We use the induction principle. Note that from (26),
we have 𝑝0

𝑗
≥ 0 and 𝑝

0

𝑗
≥ 𝑝

0

𝑗+1
. Consider the first time level

𝑛 = 0. From (18), (20), (26), and hypothesis C1 of Lemma 1,
one gets

0 < 𝑑

0
=

𝛼

𝛽

≤ 1. (29)

Note that from (21)–(23) and (29) one gets

0 < 𝑆

1

𝑓
= 𝑑

0
≤ 1; 𝑝

1

0
= 1 − 𝑑

0
≥ 0; 𝑝

1

1
= 0, (30)

and from (24) and (26), every 𝑝1
𝑗
= 0 for 𝑗 = 2, . . . ,𝑀.

For the sake of clarity, let us show firstly that 0 < 𝑑

1
≤ 1.

From (20), (18), and (30), it follows that

𝑑

1
= 1 − 𝑎

𝛽 − 𝛼

𝛼𝛽 − (𝛽 − 𝛼) /2ℎ

= 1 − 𝑎

ℎ + ℎ

2
(1/2 − 𝑟/𝜎

2
)

1/2 + ℎ (3/4 + 𝑟/2𝜎

2
) + 𝑂 (ℎ

2
)

.

(31)

As 𝑎 is positive by Lemma 1, for small enough values of ℎ,
one gets

0 < 𝑑

1
≤ 1. (32)

It is easy to show that 𝑝2
2
= 0, and for 𝑑2, analogously as

(31) and (32), 0 < 𝑑

2
≤ 1.

Let us assume the induction hypothesis that conclusions
hold true for index 𝑛 − 1; that is,

0 < 𝑑

𝑛−1
≤ 1, 𝑝

𝑛

𝑗
≥ 0, 𝑝

𝑛

𝑗
≥ 𝑝

𝑛

𝑗+1
. (33)

Now we are going to prove that conclusions hold true for
index 𝑛. Let us consider value of 𝑑𝑛 for 𝑛 ≥ 1. By denoting

𝑓

𝑛
= 1 +

𝑟ℎ

2

𝜎

2
− (𝑎𝑝

𝑛

0
+ 𝑏𝑝

𝑛

1
+ 𝑐𝑝

𝑛

2
−

𝑝

𝑛

2
− 𝑝

𝑛

0

2ℎ

) ,
(34)

𝑔

𝑛
=

𝑝

𝑛

2
− 𝑝

𝑛

0

2ℎ

+ (

1

2

(1 + (1 + ℎ)

2
)) 𝑆

𝑛

𝑓
,

(35)

then from (20),

𝑑

𝑛
=

𝑓

𝑛

𝑔

𝑛
. (36)

For 𝑛 > 2, using Taylor’s expansion, the approximation
of the involved derivatives, and boundary conditions (6), (7),
and (15),

𝑝

𝑛

2
= 1 +

4𝑟ℎ

2

𝜎

2
− (1 + 2ℎ + 2ℎ

2
) 𝑆

𝑛

𝑓
+ 𝑂 (ℎ

3
) .

(37)

From (37) and (34), numerator 𝑓𝑛 takes the form

𝑓

𝑛
= 𝑟ℎ [𝑘 +

𝑟𝑘ℎ + 2 (1 − 𝑟𝑘)

𝜎

2
]

+ (

ℎ

2

2

(1 − 𝑟𝑘) − 𝑘ℎ

𝜎

2

2

) 𝑆

𝑛

𝑓
+ 𝑂 (ℎ

2
) ,

(38)

and verifies 𝑓𝑛 > 0 since 𝑘 < ℎ/(𝑟ℎ + 𝜎

2
) under condition C2

of lemma and for ℎ < 1.
From (37) and (20), denominator 𝑔𝑛 is positive for small

enough values of ℎ, since

𝑔

𝑛
=

𝑝

𝑛

2
− 𝑝

𝑛

0

2ℎ

+ (1 + ℎ +

ℎ

2

2

) 𝑆

𝑛

𝑓

=

2𝑟ℎ

𝜎

2
+

ℎ

2

2

𝑆

𝑛

𝑓
+ 𝑂 (ℎ

2
) > 0.

(39)

From (36) and previous comments, one gets 𝑑𝑛 > 0. In
order to prove that 𝑑𝑛 ≤ 1, let us consider the difference 𝑓𝑛 −
𝑔

𝑛. By using (38) and (39) under hypothesis of Lemma 2, one
can obtain

𝑓

𝑛
− 𝑔

𝑛
= 𝑘ℎ(𝑟

𝜎

2
− 2𝑟 + 𝑟ℎ

𝜎

2
−

𝑟ℎ + 𝜎

2

2

𝑆

𝑛

𝑓
) + 𝑂(ℎ

2
) .

(40)

Note that if 𝜎2 < 2𝑟, then (40) is nonpositive for small
enough values of ℎ. However, even if 𝜎 ≥ 2𝑟, the Samuelson
asymptotic limit [27] 𝑆𝑛

𝑓
≥ 2𝑟/(2𝑟 + 𝜎

2
) (see [20], page 87)

guarantees the nonpositivity of (40). Therefore 𝑑𝑛 ≤ 1.
In order to prove the positivity of {𝑝𝑛+1

𝑗
}, it will be useful

to show the nonnegativity of coefficients 𝑎𝑛 and 𝑐

𝑛 appearing
in (21). Coefficient 𝑎𝑛 is positive since

𝑎

𝑛
= 𝑎 −

𝑆

𝑛+1

𝑓
− 𝑆

𝑛

𝑓

2ℎ𝑆

𝑛

𝑓

= 𝑎 −

𝑑

𝑛
− 1

2ℎ

≥ 𝑎 ≥ 0. (41)

In order to show the positivity of the coefficient 𝑐𝑛, note
that from (13) and (39), the sign of 𝑐𝑛 is the same as the sign
of (2ℎ𝑐𝑔𝑛 +𝑓

𝑛
−𝑔

𝑛
) and from (13), (38), (39), and 𝑆

𝑛

𝑓
≤ 1, one

gets the following for small enough values of ℎ:

2ℎ𝑐𝑔

𝑛
+ 𝑓

𝑛
− 𝑔

𝑛
> 𝑟𝑘 + (𝜎

2
𝜇 + 𝑟𝑘)

𝑟ℎ

2

𝜎

2
−

𝑘ℎ

2
𝜎

2

4

> 0.

(42)
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Under hypotheses of induction (33) together with positiv-
ity of coefficients 𝑎𝑛 and 𝑐

𝑛, the positivity of {𝑝𝑛+1
𝑗

} is proved.
Moreover, {𝑝𝑛+1

𝑗
} is nonincreasing with respect to index 𝑗

from (24), since

𝑝

𝑛+1

𝑗
− 𝑝

𝑛+1

𝑗+1
= 𝑎

𝑛
(𝑝

𝑛

𝑗−1
− 𝑝

𝑛

𝑗
) + 𝑏 (𝑝

𝑛

𝑗
− 𝑝

𝑛

𝑗+1
)

+ 𝑐

𝑛
(𝑝

𝑛

𝑗+1
− 𝑝

𝑛

𝑗+2
) ≥ 0.

(43)

Summarizing, the following result has been established.

Theorem 3. Under assumptions of Lemma 2, the numerical
scheme (12) for solving the American option transformed
problem guarantees the following properties of the numerical
solution:

(i) nonincreasing monotonicity and positivity of values 𝑆𝑛
𝑓
,

𝑛 = 0, . . . , 𝑁;
(ii) positivity of the vectors 𝑝𝑛, 𝑛 = 0, . . . , 𝑁;
(iii) nonincreasing monotonicity of the vectors 𝑝

𝑛
=

(𝑝

𝑛

0
, . . . , 𝑝

𝑛

𝑀
)with respect to space indexes for each fixed

𝑛 = 0, . . . , 𝑁.

4. Stability and Consistency

In this section, we study the stability and consistency prop-
erties of the scheme (21)–(26). For the sake of clarity in the
presentation knowing that several different concepts of the
stability are used in the literature, we begin the section with
the following definition.

Definition 4. The numerical scheme (11) is said to be ‖ ⋅ ‖
∞
-

stable in the domain [0, 𝑥
∞
]×[0, 𝑇], if for every partitionwith

𝑘 = Δ𝜏, ℎ = Δ𝑥,𝑁𝑘 = 𝑇, and (𝑀 + 1)ℎ = 𝑥

∞
,









𝑃

𝑛




∞
≤ 𝐶, 0 ≤ 𝑛 ≤ 𝑁, (44)

where 𝐶 is independent of ℎ, 𝑘, and 𝑛 = 0, . . . , 𝑁 (see [28]).

Theorem 5. Under assumptions of Lemma 2, the numerical
scheme (21)–(26) for solving transformed problem (4)–(9) is
‖ ⋅ ‖

∞
-stable.

Proof of Theorem 5. Since for each fixed 𝑛, {𝑝𝑛
𝑗
} is a nonin-

creasing sequence with respect to 𝑗, then according to the
boundary condition (22) and positivity of 𝑆𝑛

𝑓
since (28), one

gets








𝑃

𝑛




∞
= 𝑝

𝑛

0
= 1 − 𝑆

𝑛

𝑓
< 1, 0 ≤ 𝑛 ≤ 𝑁. (45)

Thus, the scheme is ‖ ⋅ ‖
∞
-stable.

Classical consistency of a numerical scheme with respect
to a partial differential equation means that the exact theo-
retical solution of the PDE approximates well the solution
of the difference scheme as the discretization stepsizes tend
to zero [29]. However, in our case, we have to harmonize
the behaviour not only of the PDE (4) with the scheme

(24), but also the boundary conditions (6), (7), and (15) with
the numerical scheme for the free boundaries (21) and (20).
With respect to the first part of consistency, let us write the
numerical scheme (24) in the following form:

𝐹 (𝑝

𝑛

𝑗
, 𝑆

𝑛

𝑓
)

=

𝑝

𝑛+1

𝑗
− 𝑝

𝑛

𝑗

𝑘

−

1

2

𝜎

2
𝑝

𝑛

𝑗−1
− 2𝑝

𝑛

𝑗
+ 𝑝

𝑛

𝑗+1

ℎ

2

− (𝑟 −

𝜎

2

2

)

𝑝

𝑛

𝑗+1
− 𝑝

𝑛

𝑗−1

2ℎ

+ 𝑟𝑝

𝑛

𝑗
−

𝑆

𝑛+1

𝑓
− 𝑆

𝑛

𝑓

𝑘𝑆

𝑛

𝑓

𝑝

𝑛

𝑗+1
− 𝑝

𝑛

𝑗−1

2ℎ

= 0.

(46)

Let us denote by ̃
𝑝

𝑛

𝑗
= 𝑝(𝑥

𝑗
, 𝜏

𝑛
) the exact theoretical

solution value of the PDE at the mesh point (𝑥
𝑗
, 𝜏

𝑛
), and let

̃

𝑆

𝑛

𝑓
= 𝑆

𝑓
(𝜏

𝑛
) be the exact solution of the free boundary at time

𝜏

𝑛. The scheme (46) is said to be consistent with

𝐿 (𝑝, 𝑆

𝑓
)

=

𝜕𝑝

𝜕𝜏

−

1

2

𝜎

2 𝜕
2
𝑝

𝜕𝑥

2
− (𝑟 −

𝜎

2

2

)

𝜕𝑝

𝜕𝑥

+ 𝑟𝑝 −

𝑆



𝑓

𝑆

𝑓

𝜕𝑝

𝜕𝑥

= 0,

(47)

if the local truncation error

𝑇

𝑛

𝑗
(
̃
𝑝,

̃

𝑆

𝑓
) = 𝐹 (

̃
𝑝

𝑛

𝑗
,

̃

𝑆

𝑛

𝑓
) − 𝐿 (

̃
𝑝

𝑛

𝑗
,

̃

𝑆

𝑛

𝑓
) (48)

satisfies

𝑇

𝑛

𝑗
(
̃
𝑝,

̃

𝑆

𝑓
) → 0, as ℎ → 0, 𝑘 → 0. (49)

Assuming the existence of the continuous partial deriva-
tives up to order two in time and up to order four in space,
using Taylor’s expansion about (𝑥

𝑗
, 𝜏

𝑛
), one gets

𝑇

𝑛

𝑗
(
̃
𝑝,

̃

𝑆

𝑓
)

= 𝑘𝐸

𝑛

𝑗
(3) −

𝜎

2

2

ℎ

2
𝐸

𝑛

𝑗
(2) + (𝑟 −

𝜎

2

2

) ℎ

2
𝐸

𝑛

𝑗
(1)

− 𝑘𝐸

𝑛

𝑗
(4)

𝜕𝑝

𝜕𝑥

(𝑥

𝑗
, 𝜏

𝑛
) − ℎ

2
𝐸

𝑛

𝑗
(1)

1

̃

𝑆

𝑛

𝑓

𝑑𝑆

𝑓

𝑑𝜏

(𝜏

𝑛
)

− 𝑘ℎ

2
𝐸

𝑛

𝑗
(4) 𝐸

𝑛

𝑗
(1) ,

(50)

where

𝐸

𝑛

𝑗
(1) =

1

6

𝜕

3
𝑝

𝜕𝑥

3
(𝑥

𝑗
, 𝜏

𝑛
) , 𝐸

𝑛

𝑗
(2) =

1

12

𝜕

4
𝑝

𝜕𝑥

4
(𝑥

𝑗
, 𝜏

𝑛
) ,

𝐸

𝑛

𝑗
(3) =

1

2

𝜕

2
𝑝

𝜕𝜏

2
(𝑥

𝑗
, 𝜏

𝑛
) , 𝐸

𝑛

𝑗
(4) =

𝑘

2

̃

𝑆

𝑓

𝑑

2
𝑆

𝑓

𝑑𝜏

2
(𝜏

𝑛
) .

(51)
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Equations (50) and (51) show the local truncation error of
the numerical scheme (24) with respect to the PDE (4). Note
that from (50) and (51),

𝑇

𝑛

𝑗
(
̃
𝑝,

̃

𝑆

𝑓
) = 𝑂 (ℎ

2
) + 𝑂 (𝑘) . (52)

In order to complete the consistency of the solution of the free
boundary problem with the scheme (21)–(26), it is necessary
to rewrite the boundary conditions (6), (7), and (15) in the
following form:

𝐿

1
(𝑝, 𝑆

𝑓
) = 𝑝 (0, 𝜏) − 1 + 𝑆

𝑓
(𝜏) = 0,

𝐿

2
(𝑝, 𝑆

𝑓
) =

𝜕𝑝

𝜕𝑥

(0, 𝜏) + 𝑆

𝑓
(𝜏) = 0,

𝐿

3
(𝑝, 𝑆

𝑓
) =

𝜎

2

2

𝜕

2
𝑝

𝜕𝑥

2
(0, 𝜏) +

𝜎

2

2

𝑆

𝑓
(𝜏) − 𝑟 = 0.

(53)

Furthermore, we have finite difference approximation for the
following boundary conditions:

𝐹

1
(𝑝, 𝑆

𝑓
) = 𝑝

𝑛

0
− 1 + 𝑆

𝑛

𝑓
= 0,

𝐹

2
(𝑝, 𝑆

𝑓
) =

𝑝

𝑛

1
− 𝑝

𝑛

−1

2ℎ

+ 𝑆

𝑛

𝑓
= 0,

𝐹

3
(𝑝, 𝑆

𝑓
) =

𝜎

2

2

𝑝

𝑛

−1
− 2𝑝

𝑛

0
+ 𝑝

𝑛

1

ℎ

2
+

𝜎

2

2

𝑆

𝑛

𝑓
− 𝑟 = 0.

(54)

It is not difficult to check using Taylor’s expansion that the
local truncation error satisfies

𝑇

1
(
̃
𝑝,

̃

𝑆

𝑓
) = 𝐹

1
(
̃
𝑝,

̃

𝑆

𝑓
) − 𝐿

1
(
̃
𝑝,

̃

𝑆

𝑓
) = 0,

𝑇

2
(
̃
𝑝,

̃

𝑆

𝑓
) = 𝐹

2
(
̃
𝑝,

̃

𝑆

𝑓
) − 𝐿

2
(
̃
𝑝,

̃

𝑆

𝑓
) = 𝑂 (ℎ

2
) ,

𝑇

3
(
̃
𝑝,

̃

𝑆

𝑓
) = 𝐹

3
(
̃
𝑝,

̃

𝑆

𝑓
) − 𝐿

3
(
̃
𝑝,

̃

𝑆

𝑓
) = 𝑂 (ℎ

2
) .

(55)

The truncation error for the boundary condition behaves
as ℎ2.

Theorem 6. Assuming that the solution of the PDE problem
(4)–(9) admits two times continuous partial derivative with
respect to time and up to order four with respect to space,
the numerical solution computed by the scheme (21)–(26) is
consistent with (4) and boundary conditions of order two in
space and order one in time.

5. Numerical Experiments

In this section we illustrate the previous theoretical results
with numerical experiments showing the potential advan-
tages of the proposed method such as preserving the quali-
tative properties of the theoretical solution [24] such as posi-
tivity andmonotonicity. A comparisonwith other approaches
is also presented in this section.

5.1. Confirmations of Theoretical Results. In this experiment
we check that the stability condition can be broken showing
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Figure 1: Dependence of stability on positivity of coefficient 𝑏. (𝜇 =

24, 𝑏 = 0.0398) for (a) and (𝜇 = 25.2, 𝑏 = −0.0083) for (b).

that in such case the results could become unreliable. Let us
consider an American put option pricing problem as in [21]
with the following parameters:

𝑟 = 0.1, 𝜎 = 0.2, 𝑇 = 1, 𝑥max = 2. (56)

We consider fixed space step ℎ = 0.01 that satisfies condition
C1 of Lemma 1, and change time step (Figure 1). Numerical
tests show that the condition C2 is critical for positivity of
coefficient 𝑏 and, as a result, for the stability of the scheme.
The monotonicity of the free boundary is numerically shown
by numerical tests (Figure 1(a)). In Figure 1(b), one can see
that when condition C2 is not satisfied, spurious oscillations
appear so the monotonicity is broken.

It was theoretically proved in Section 4 that the scheme
has order of approximation 𝑂(ℎ

2
) + 𝑂(𝑘). The results of the
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Table 1: Convergence in space for fixed time step 𝑘 = 2 ⋅10

−3 for the
problem with parameters (56).

Asset price True value 0.04 0.02 0.01
90 11.6974 11.7283 11.7054 11.6991
100 6.9320 6.9308 6.9309 6.9312
110 4.1550 4.1694 4.1564 4.1531
120 2.5102 2.5219 2.5151 2.5114

RMSE 1.8037-2 4.7857-3 1.4623-3
CPU-time (sec) 0.052 0.075 0.105

0

0.001

0.002

0.003

0.004

0.005

0 50 100 150 200

RM
SE

CPU-time (s)

Figure 2: RMSE against the computational time.

numerical experiments for the problem with the following
parameters:

𝑟 = 0.08, 𝜎 = 0.2, 𝑇 = 3, 𝑥max = 2 (57)

are presented in Table 1. For “True” values, we use the
reference values offered in [30]. We consider the different
space steps for fixed time step 𝑘 = 0.002 to guarantee
the stability. The root-mean-square error (RMSE) is used to
measure the accuracy of the scheme. The last row presents
the CPU-time in seconds for each experiment.The plot of the
RMSE against computational time is presented in Figure 2.

To check the order of approximation in space, we intro-
duce the convergence rate

𝛾 (ℎ

1
, ℎ

2
) =

ln RMSE
ℎ
1

− ln RMSE
ℎ
2

ln ℎ

1
− ln ℎ

2

. (58)

From Table 1 and (58), one obtains 𝛾(4 ⋅ 10

−2
, 2 ⋅ 10

−2
) =

1.91, that is close to 2.
To check the order of approximation in time, the space

step ℎ is fixed (ℎ = 10

−2) and time step 𝑘 is variable.
From Table 2 by analogous to (58), formula one gets 𝛾(5 ⋅

10

−4
, 10

−3
) = 0.80, that is close to 1. It proves the second order

of approximation in space and the first order in time.

5.2. Comparison with Other Approaches. The front fixing
method is used in [21] for American put option pricing prob-
lemwith parameters (56), but with another transformation as
follows:

𝑥 =

𝑆

𝑆

𝑓
(𝜏)

, 𝑝 (𝑥, 𝜏) = 𝑃 (𝑆, 𝜏) = 𝑃 (𝑥𝑆

𝑓
(𝑡) , 𝜏) .

(59)

Table 2: Convergence in time for fixed space step ℎ = 0.01 for the
problem with parameters (56).

Asset price True value 0.0005 0.001 0.002
90 11.6974 11.6984 11.6989 11.6991
100 6.9320 6.9319 6.9318 6.9312
110 4.1550 4.1555 4.1544 4.1531
120 2.5102 2.5103 2.5091 2.5114

RMSE 5.6347-4 9.8234-4 1.4623-3
CPU-time (sec) 0.142 0.113 0.105

Table 3: Comparison with front-fixing method under transforma-
tion (59).

Method 𝑆

𝑓
(𝑇)

Implicit (in [21]) 0.8615
Explicit (in [21]) 0.8622
Explicit (proposed) 0.8628

By the numerical tests, it is shown that the considered
scheme is stable for 𝜇 ≤ 24 while the condition for a stability
of the scheme in [21] is 𝜇 ≤ 6. The results are represented
in Table 3. The front fixing method with the logarithmic
transformation has a good advantage: weaker condition for
the stability. It reduces the computational costs.

Let us compare front fixing method with another
approach [31], based on Mellin’s transform. The parameters
of the problem are 𝑟 = 0.0488, 𝜎 = 0.3, and 𝑇 = 0.5833.

To compare results of the explicit front fixing method
with Mellin’s transform [31], we have to multiply our dimen-
sionless value on𝐸 = 45.Then, forMellin’s transformmethod
𝑆

𝑓
(𝑇) = 32.77, while for front fixing method 𝑆

𝑓
(𝑇) =

32.7655.
Close to maturity, exercise boundary for the American

put can be analytically approximated [32] as follows:

𝑆

𝑓
(𝜏) ∼ 𝐸[1 −

√
2𝜎𝜏 log( 𝜎

2

6𝑟
√
𝜋𝜏𝜎

2
/2

)] . (60)

This approximation can be used only near expiry date. In
Figure 3, the value of the free boundary for both approaches
is presented. Near initial point, front fixing method and
analytical approximation (60) give close results.

We compare explicit front fixing method (FF) with ℎ

1
=

0.001 and ℎ

2
= 0.002 and 𝜇 = 5 for American put with other

numerical methods shown in [15] in Table 4 for the following
problem parameters:

𝑟 = 0.05, 𝜎 = 0.2, 𝑇 = 3,

𝐸 = 100, 𝑥max = 2.

(61)

There are several considered methods as follows:

(i) penalty method (PM) is considered in [21, 33];
(ii) Ikonen and Toivanen [34] proposed an operator

splitting technique (OS) for solving the linear com-
plementarity problem;
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Table 4: Comparison with other methods: put option value for different asset prices.

Asset price True value PM OS HW WK FF(ℎ
1
) FF(ℎ

2
)

80 20.2797 20.2793 20.2795 20.2803 20.2825 20.2795 20.2793
90 13.3075 13.3071 13.3074 13.3075 13.3117 13.3075 13.3074
100 8.7106 8.7100 8.7104 8.7103 8.7135 8.7106 8.7104
110 5.6825 5.6820 5.6824 5.6823 5.6867 5.6825 5.6823
120 3.6964 3.6960 3.6963 3.6965 3.7001 3.6963 3.6963
RMSE 4.6690-4 8.9442-6 3.1623-4 3.6116-3 1.0229-4 2.2966-4
CPU-time 25.67 11.91 4.72 4.23 25.99 4.617
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Figure 3: Comparison with the analytical approximation of Kuske
close to 𝜏 = 0 (a) and for [0, 𝑇] (b).

(iii) Han-Wu algorithm (HW) transforms the Black-
Scholes equation into a heat equation on an infinite
domain [35];

(iv) the front fixing method proposed by Wu and Kwok
(WK) [20].

Apart from the previous comparisons showing that the
method is competitive, we remark that the proposed scheme
here guarantees the positivity of the solution as well as the
monotonicity of both solution and the free boundary.

6. Conclusion

The front fixing method for American put option is consid-
ered. We found that the proposed explicit numerical scheme
is stable under appropriate conditions (see Lemma 1) and
consistent with the differential equation with the second
order in space and first order in time. Moreover, the mono-
tonicity and positivity of the solution and the free boundary
under that condition are proved in agreement with Kim’s
results in [24] about the properties of the theoretical solution.
The theoretical study is confirmed by numerical tests. It is
shown that the condition (27) is critical; that is, violation of
the condition leads to destabilization of the scheme.

By the comparison with other approaches, advantages of
the method are discovered. The logarithmic transformation
requires weaker stability condition than Landau’s transfor-
mation, presented in [21]. The explicit calculations with
quite weak stability conditions avoid iterations to solve the
nonlinear partial differential equation. It makes the method
simpler and reduces computational costs.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This paper has been partially supported by the Euro-
pean Union in the FP7-PEOPLE-2012-ITN Program under



Abstract and Applied Analysis 9

Grant Agreement no. 304617 (FP7 Marie Curie Action,
Project Multi-ITN STRIKE-Novel Methods in Computa-
tional Finance).

References

[1] P. Wilmott, S. Howison, and J. Dewynne, The Mathematics of
Financial Derivatives, Cambridge University Press, Cambridge,
UK, 1995.

[2] L. Feng, V. Linetsky, J. L. Morales, and J. Nocedal, “On the
solution of complementarity problems arising in American
options pricing,” Optimization Methods & Software, vol. 26, no.
4-5, pp. 813–825, 2011.

[3] H. P. McKean, “Appendix: a free boundary problem for the heat
equation arising from a problem in mathematical economics,”
Industrial Management Review, vol. 6, pp. 32–39, 1965.

[4] P. van Moerbeke, “On optimal stopping and free boundary
problems,” Archive for Rational Mechanics and Analysis, vol. 60,
no. 2, pp. 101–148, 1976.

[5] R. Geske and H. Johnson, “The American put option valued
analytically,” Journal of Finance, vol. 39, no. 5, pp. 1511–1524,
1984.

[6] G. Barone-Adesi and R. Whaley, “Efficient analytic approxima-
tion of American option values,” Journal of Finance, vol. 42, no.
2, pp. 301–320, 1987.

[7] L. W. MacMillan, “An analytical approximation for the Ameri-
can put prices,” Advances in Futures and Options Research, vol.
1, pp. 119–139, 1986.

[8] N. Ju, “Pricing an American option by approximating its early
exercise boundary as amultipiece exponential function,”Review
of Financial Studies, vol. 11, no. 3, pp. 627–646, 1998.

[9] M. Brennan and E. Schwartz, “Finite difference methods and
jump processes arising in the pricing of contingent claims: a
synthesis,” Journal of Financial and Quantitative Analysis, vol.
13, no. 3461, 474 pages, 1978.

[10] P. Jaillet, D. Lamberton, and B. Lapeyre, “Variational inequal-
ities and the pricing of American options,” Acta Applicandae
Mathematicae, vol. 21, no. 3, pp. 263–289, 1990.

[11] J. Hull and A. White, “Valuing derivative securities using the
explicit finite difference method,” Journal of Financial and
Quantitative Analysis, vol. 25, no. 1, pp. 87–100, 1990.

[12] D. J. Duffy, Finite Difference Methods in Financial Engineering:
A Partial Differential Equation Approach, John Wiley & Sons,
2006.

[13] P. A. Forsyth and K. R. Vetzal, “Quadratic convergence for
valuing American options using a penalty method,” SIAM
Journal on Scientific Computing, vol. 23, no. 6, pp. 2095–2122,
2002.

[14] D. Tavella and C. Randall, Pricing Financial Instruments: The
Finite Difference Method, John Wiley and Sons, New York, NY,
USA, 2000.

[15] D. Y. Tangman, A. Gopaul, and M. Bhuruth, “A fast high-
order finite difference algorithm for pricing American options,”
Journal of Computational andAppliedMathematics, vol. 222, no.
1, pp. 17–29, 2008.

[16] S.-P. Zhu andW.-T. Chen, “A predictor-corrector scheme based
on the ADI method for pricing American puts with stochastic
volatility,” Computers & Mathematics with Applications, vol. 62,
no. 1, pp. 1–26, 2011.

[17] B. J. Kim, Y.-K. Ma, and H. J. Choe, “A simple numerical
method for pricing an American put option,” Journal of Applied
Mathematics, vol. 2013, Article ID 128025, 7 pages, 2013.

[18] H. G. Landau, “Heat conduction in a melting solid,” Quarterly
of Applied Mathematics, vol. 8, pp. 81–95, 1950.

[19] J. Crank, Free and Moving Boundary Problems, Oxford Science
Publications, 1984.

[20] L.Wu and Y.-K. Kwok, “A front-fixing method for the valuation
of American option,” The Journal of Financial Engineering, vol.
6, no. 2, pp. 83–97, 1997.

[21] B. F. Nielsen, O. Skavhaug, and A. Tvelto, “Penalty and front-
fixing methods for the numerical solution of American option
problems,” Journal of Computational Finance, vol. 5, 2002.
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