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Let {𝜉
𝑖
, 1 ≤ 𝑖 ≤ 𝑛} be a sequence of iid U[0, 1]-distributed random variables, and define the uniform empirical process 𝐹

𝑛
(𝑡) =

𝑛
−1/2

∑
𝑛

𝑖=1
(𝐼
{𝜉𝑖≤𝑡}

− 𝑡), 0 ≤ 𝑡 ≤ 1, 󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩 = sup

0≤𝑡≤1
|𝐹
𝑛
(𝑡)|. When the nonnegative function 𝑔(𝑥) satisfies some regular monotone

conditions, it proves that lim
𝜖↘0

(1/ − log𝜖)∑∞

𝑛=1
(𝑔
󸀠
(𝑛)/𝑔(𝑛))E{

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩
2

𝐼
{‖𝐹𝑛‖≥𝜖√𝑔(𝑛)}

} = 𝜋
2
/6.

1. Introduction and Main Result

Let {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of iid random variables and

𝑆
𝑛
= ∑

𝑛

𝑖=1
𝑋
𝑖
. Hsu and Robbins [1] introduced the concept of

complete convergence and obtained that ∑∞
𝑛=1

𝑃(|𝑆
𝑛
| ≥ 𝜖𝑛) <

∞, 𝜖 > 0, whenever E𝑋 = 0 and E𝑋2 < ∞. The result is
extended by Baum and Katz [2], who obtained that, for 0 <

𝑝 < 2, 𝑟 ≥ 𝑝, ∑∞
𝑛=1

𝑛
(𝑟/𝑝)−2

𝑃(|𝑆
𝑛
| ≥ 𝜖𝑛

1/𝑝
) < ∞, 𝜖 > 0, if and

only ifE|𝑋|
𝑟
< ∞, and when 𝑟 ≥ 1,E𝑋 = 0. Since then, some

researchers concern the convergence of the series

∞

∑
𝑛=1

𝜑 (𝑛) 𝑃 (
󵄨󵄨󵄨󵄨𝑆𝑛

󵄨󵄨󵄨󵄨 ≥ 𝜖𝑓 (𝑛)) , 𝜖 > 0, (1)

where 𝜑(𝑛) and 𝑓(𝑛) are all positive functions defined on
[1,∞), and ∑

∞

𝑛=1
𝜑(𝑛) = ∞. Because of the fact that the

series tends to infinity when 𝜖 ↘ 0, one of the interesting
problems is to examine the rate when it occurs; then we need
to find a suitable normalizing rate function 𝜓(𝜖) such that it,
multiplied by the series, has a nontrivial limit. The research
on this topic is usually called “precise asymptotics.” Heyde [3]
first proved that

lim
𝜖↘0

𝜖
2

∞

∑
𝑛=1

𝑃 (
󵄨󵄨󵄨󵄨𝑆𝑛

󵄨󵄨󵄨󵄨 ≥ 𝜖𝑛) = E𝑋
2 (2)

whenever E𝑋 = 0 and E𝑋2 < ∞. Chow [4] studied
the similar result on complete moment convergence of
∑
∞

𝑛=1
𝑛
𝑝𝛼−2−𝛼E{max

1≤𝑗≤𝑛
|𝑆
𝑗
| − 𝜖𝑛

𝛼
}
+
. Later, Liu and Lin [5]

extended the result to the 𝑝 (𝑝 < 2) order complete moment
convergence, which states that when E𝑋 = 0, E𝑋2 = 𝜎

2, and
E𝑋2 log+|𝑋| < ∞, then

lim
𝜖↘0

1

− log 𝜖

∞

∑
𝑛=1

1

𝑛2
E
󵄨󵄨󵄨󵄨𝑆𝑛

󵄨󵄨󵄨󵄨
2
𝐼
{|𝑆𝑛|≥𝜖𝑛}

= 2𝜎
2
. (3)

In addition to the partial sums of iid random variables,
there are some corresponding precise asymptotic results
on other subjects, such as uniform empirical process, self-
normalized sums, order statistics, eigenvalue statistics, and
random fields. For the details on this topic, one can refer to
Gut and Steinebach [6].

The paper will focus on the precise asymptotic of the
uniform empirical process. Let {𝜉

𝑖
, 1 ≤ 𝑖 ≤ 𝑛} be a

sequence of independent 𝑈[0, 1]-distributed random vari-
ables; we can define the uniform empirical process 𝐹

𝑛
(𝑡) =

𝑛
−1/2

∑
𝑛

𝑖=1
(𝐼
{𝜉𝑖≤𝑡}

− 𝑡), 0 ≤ 𝑡 ≤ 1, ‖𝐹
𝑛
‖ = sup

0≤𝑡≤1
|𝐹
𝑛
(𝑡)|.

Consider 𝐵 to be a Brownian bridge on 𝐷[0, 1] and write
‖𝐵‖ = sup

0≤𝑡≤1
|𝐵(𝑡)|. Zhang and Yang [7] established some

precise asymptotics on the complete convergence of the
uniform empirical process; one of their main results can be
stated as follows.
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Lemma 1. For 1 ≤ 𝑝 < 2, 𝑟 > 𝑝, then

lim
𝜖↘0

𝜖
2(𝑟−𝑝)/(2−𝑝)

∞

∑
𝑛=1

𝑛
(𝑟/𝑝)−2

𝑃 (
󵄩󵄩󵄩󵄩𝐹𝑛

󵄩󵄩󵄩󵄩 ≥ 𝜖𝑛
(1/𝑝)−(1/2)

)

=
𝑝

𝑟 − 𝑝
E‖𝐵‖

2(𝑟−𝑝)/(2−𝑝)
.

(4)

Zang and Huang [8] obtained some results on the
first-order complete moment convergence of 𝐹

𝑛
(𝑡). If the

nonnegative function 𝑔(𝑥) satisfies some regular monotone
conditions, they proved the following.

Lemma 2. For any 𝑠 > 0, one has

lim
𝜖↘0

1

− log 𝜖

∞

∑
𝑛=1

𝑔
󸀠
(𝑛)

𝑔 (𝑛)
E {

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩 − 𝜖𝑔

𝑠
(𝑛)} =

1

𝑠
E ‖𝐵‖ . (5)

Chen and Zhang [9] further got some precise asymptotic
result on the second-order complete moment convergence of
it. A typical result in their work can be listed as follows.

Lemma 3. For any 0 < 𝛽 ≤ 2, 𝛿 > (2/𝛽) − 1, one has

lim
𝜖↘0

𝜖
𝛽(𝛿+1)−2

∞

∑
𝑛=1

(log 𝑛)𝛿−(2/𝛽)

𝑛
E {

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩
2
𝐼
{‖𝐹𝑛‖≥𝜖(log 𝑛)1/𝛽}

}

=
𝛽E‖𝐵‖

𝛽(𝛿+1)

𝛽 (𝛿 + 1) − 2
.

(6)

Based on the existing results above, we will add a general
precise asymptotic result on the second-order complete
moment convergence of 𝐹

𝑛
(𝑡).

Theorem 4. Assume that the real-valued function 𝑔(𝑥) satis-
fies the following conditions.

(A1) 𝑔(𝑥) is differentiable on the interval [1, +∞), which is
nonnegative and strictly increasing to ∞.

(A2) The differentiable function 𝑔
󸀠
(𝑥) is nonnegative

and the function 𝑔
󸀠
(𝑥)/𝑔(𝑥) is monotone. If 𝑔

󸀠
(𝑥)/

𝑔(𝑥) is monotone nondecreasing, we assume that
lim

𝑥→∞
(𝑔
󸀠
(𝑥 + 1)𝑔(𝑥)/𝑔(𝑥 + 1)𝑔

󸀠
(𝑥)) = 1.

One has

lim
𝜖↘0

1

− log 𝜖

∞

∑
𝑛=1

𝑔
󸀠
(𝑛)

𝑔 (𝑛)
E {

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩
2
𝐼
{‖𝐹𝑛‖≥𝜖√𝑔(𝑛)}

} =
𝜋
2

6
. (7)

Remark 5. The assumptions on 𝑔(𝑥) are rather mild; in fact,
there are lots of functions satisfying them, such as 𝑔(𝑥) =

𝑥
𝛼, 𝑔(𝑥) = (log𝑥)𝛽, and 𝑔(𝑥) = (log log𝑥)𝛾 with suitable

parameters 𝛼 > 0, 𝛽 > 0, 𝛾 > 0.

The main proofs are presented in the next section.
Throughout the paper, 𝐶 denotes an absolutely positive con-
stant whose value can be different from one place to another.

2. The Proof

We first give some propositions, which will play a key role in
the proof of Theorem 4.

Proposition 6. Under the assumptions of Theorem 4, one has

lim
𝜖↘0

𝜖
2

∞

∑
𝑛=1

𝑔
󸀠
(𝑛) 𝑃 {‖𝐵‖ ≥ 𝜖√𝑔 (𝑛)} = E‖𝐵‖

2
. (8)

Proof. If 𝑔󸀠(𝑥) is monotone nonincreasing, by the assump-
tions of Theorem 4, we can see that 𝑔󸀠(𝑥)𝑃{‖𝐵‖ ≥ 𝜖√𝑔(𝑛)} is
also nonincreasing; thus

∫
∞

1

𝑔
󸀠
(𝑦) 𝑃 {‖𝐵‖ ≥ 𝜖√𝑔 (𝑦)} 𝑑𝑦

≤

∞

∑
𝑛=1

𝑔
󸀠
(𝑛) 𝑃 {‖𝐵‖ ≥ 𝜖√𝑔 (𝑦)}

≤ ∫
∞

0

𝑔
󸀠
(𝑦) 𝑃 {‖𝐵‖ ≥ 𝜖√𝑔 (𝑦)} 𝑑𝑦.

(9)

If 𝑔󸀠(𝑥) is monotone nondecreasing, by the assumption that
lim

𝑛→∞
(𝑔
󸀠
(𝑛 + 1)/𝑔

󸀠
(𝑛)) = 1, we can find that, for any 0 <

𝜃
0
< 1, there exists a sufficient large number𝑁 = 𝑁(𝜃

0
), such

that 𝑔󸀠(𝑛 + 1)/𝑔
󸀠
(𝑛) ≤ 1 + 𝜃

0
and 𝑔

󸀠
(𝑛 + 1)/𝑔

󸀠
(𝑛) ≥ 1 − 𝜃

0
for

all 𝑛 ≥ 𝑁. Thus we have
1

1 + 𝜃
0

∫
∞

𝑁

𝑔
󸀠
(𝑦) 𝑃 {‖𝐵‖ ≥ 𝜖√𝑔 (𝑦)} 𝑑𝑦

≤

∞

∑
𝑛=𝑁

𝑔
󸀠
(𝑛) 𝑃 {‖𝐵‖ ≥ 𝜖√𝑔 (𝑛)}

≤
1

1 − 𝜃
0

∫
∞

𝑁−1

𝑔
󸀠
(𝑦) 𝑃 {‖𝐵‖ ≥ 𝜖√𝑔 (𝑦)} 𝑑𝑦.

(10)

At the same time, by making a change of variables and
integration by parts, for any 𝜃 ≥ 0, we have

lim
𝜀↘0

𝜀
2
∫
∞

𝜃

𝑔
󸀠
(𝑦) 𝑃 {‖𝐵‖ ≥ 𝜖√𝑔 (𝑦)} 𝑑𝑦

= lim
𝜀↘0

2∫
∞

2𝜀√𝑔(𝜃)

𝑦𝑃 (
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ≥ 𝑦) 𝑑𝑦

= 2∫
∞

0

𝑦𝑃 (‖𝐵‖ ≥ 𝑦) 𝑑𝑦

= E‖𝐵‖
2
.

(11)

By relations (9)–(11) and the fact that the result of the
proposition will remain unchanged when we add or subtract
some finite sums on the left hand of it, we can complete the
proof by taking 𝜃

0
→ 0.

Proposition 7. Under the assumptions of Theorem 4, one has

lim
𝜖↘0

𝜖
2

∞

∑
𝑛=1

𝑔
󸀠
(𝑛) {𝑃 (

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩 ≥ 𝜖√𝑔 (𝑛)) − 𝑃(‖𝐵‖ ≥ 𝜖√𝑔 (𝑛))}

= 0.

(12)
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Proof. A well known fact in Billingsley [10] reveals that the
uniform empirical process converges weakly to Brownian
bridge, 𝐹

𝑛
⇒ 𝐵. By continuous mapping theorem, we have

‖𝐹
𝑛
‖ ⇒ ‖𝐵‖. Thus, as 𝑛 → ∞,

Δ
𝑛
= sup
𝑥∈R

󵄨󵄨󵄨󵄨𝑃 {
󵄩󵄩󵄩󵄩𝐹𝑛

󵄩󵄩󵄩󵄩 ≥ 𝑥} − 𝑃 (‖𝐵‖ ≥ 𝑥)
󵄨󵄨󵄨󵄨 󳨀→ 0. (13)

Let 𝐴(𝜖) = 𝑔
−1
(𝑀𝜖

−2
), where 𝑔

−1
(𝑥) is the inverse

function of 𝑔(𝑥) and𝑀 is an arbitrary positive number; then
there exists a positive constant 𝐶 such that

∑
𝑛≤𝐴(𝜖)

𝑔
󸀠
(𝑛) ≤ 𝐶∫

𝐴(𝜖)

1

𝑔
󸀠
(𝑥) 𝑑𝑥 ≤ 𝐶𝑔 (𝐴 (𝜖)) = 𝐶𝑀𝜖

−2
; (14)

thus

𝜖
2

∑
𝑛≤𝐴(𝜖)

𝑔
󸀠
(𝑛) ≤ 𝐶 < ∞. (15)

By Toeplitz Lemma listed in Appendix, we know

lim
𝜖↘0

𝜖
2

∑
𝑛≤𝐴(𝜖)

𝑔
󸀠
(𝑛) {𝑃 (

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩 ≥ 𝜖√𝑔 (𝑛))

−𝑃(‖𝐵‖ ≥ 𝜖√𝑔 (𝑛))}

≤ lim
𝜖↘0

𝜖
2

∑
𝑛≤𝐴(𝜖)

𝑔
󸀠
(𝑛) Δ 𝑛 = 0.

(16)

On the other hand, by the similar argument in (11), we
have

𝜖
2

∑
𝑛>𝐴(𝜖)

𝑔
󸀠
(𝑛) 𝑃 {

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩 ≥ 𝜖√𝑔 (𝑛)}

≤ 𝐶𝜖
2
∫
∞

𝐴(𝜖)

𝑔
󸀠
(𝑥) 𝑃 {

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩 ≥ 𝜖√𝑔 (𝑥)} 𝑑𝑥

≤ 𝐶∫
∞

√𝑀

𝑦𝑃 {
󵄩󵄩󵄩󵄩𝐹𝑛

󵄩󵄩󵄩󵄩 ≥ 𝑦} 𝑑𝑦.

(17)

By the result of Kiefer and Wolfowitz [11], there exists 𝑐
0
> 0,

such that

𝑃 {
󵄩󵄩󵄩󵄩𝐹𝑛

󵄩󵄩󵄩󵄩 ≥ 𝑦} ≤ 𝐶𝑒
−𝑐0𝑦
2

. (18)

Then, by letting 𝜖 ↘ 0 and then𝑀 → ∞, we can get

lim
𝑀→∞

lim sup
𝜖↘0

𝜖
2

∑
𝑛>𝐴(𝜖)

𝑔
󸀠
(𝑛) 𝑃 {

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩 ≥ 𝜖√𝑔 (𝑛)}

≤ lim
𝑀→∞

𝐶∫
∞

√𝑀

𝑦𝑒
−𝑐0𝑦
2

𝑑𝑦 = 0.

(19)

By Lemma 2.1 in Zhang and Yang [7], for any 𝑥 ∈ R,

𝑃 {‖𝐵‖ ≥ 𝑥} ≤ 2𝑒
−2𝑥
2

. (20)

Then, a similar argument in (19) can deduce that

lim
𝑀→∞

lim sup
𝜖↘0

𝜖
2

∑
𝑛>𝐴(𝜖)

𝑔
󸀠
(𝑛) 𝑃 {‖𝐵‖ ≥ 𝜖√𝑔 (𝑛)} = 0. (21)

By combining (16), (19), and (21) and using the triangular
inequality, we can complete the proof.

Proposition 8. Under the assumptions of Theorem 4, one has

lim
𝜖↘0

1

− log 𝜖

∞

∑
𝑛=1

𝑔
󸀠
(𝑛)

𝑔 (𝑛)
∫
∞

𝜖√𝑔(𝑛)

𝑥𝑃 (‖𝐵‖ ≥ 𝑥) 𝑑𝑥 = E‖𝐵‖
2
. (22)

Proof. Similar to the argument in Proposition 6, no matter
whether the function 𝑔

󸀠
(𝑥)/𝑔(𝑥) is monotone nonincreasing

or monotone nondecreasing, we can deduce the follow-
ing relations by applying the change of variables and the
L’Hôpital’s rule:

lim
𝜖↘0

1

− log 𝜖

∞

∑
𝑛=1

𝑔
󸀠
(𝑛)

𝑔 (𝑛)
∫
∞

𝜖√𝑔(𝑛)

𝑥𝑃 (‖𝐵‖ ≥ 𝑥) 𝑑𝑥

= lim
𝜖↘0

1

− log 𝜖
∫
∞

1

𝑔
󸀠
(𝑥)

𝑔 (𝑥)
∫
∞

𝜖√𝑔(𝑥)

𝑡𝑃 (‖𝐵‖ ≥ 𝑡) 𝑑𝑡 𝑑𝑥

= lim
𝜖↘0

2

− log 𝜖
∫
∞

𝜖√𝑔(1)

1

𝑦
∫
∞

𝑦

𝑡𝑃 (‖𝐵‖ ≥ 𝑡) 𝑑𝑡 𝑑𝑦

= ∫
∞

0

2𝑡𝑃 (‖𝐵‖ ≥ 𝑡) 𝑑𝑡

= E‖𝐵‖
2
.

(23)

Thus, the proof is completed.

Proposition 9. Under the assumptions of Theorem 4, one has

lim
𝜖↘0

1

− log 𝜖

∞

∑
𝑛=1

𝑔
󸀠
(𝑛)

𝑔 (𝑛)

× ∫
∞

𝜖√𝑔(𝑛)

𝑥 [𝑃 (‖𝐵‖ ≥ 𝑥) − 𝑃 (
󵄩󵄩󵄩󵄩𝐹𝑛

󵄩󵄩󵄩󵄩 ≥ 𝑥)] 𝑑𝑥 = 0.

(24)

Proof. If we denote 𝐴(𝜖) = 𝑔
−1
(𝜖
−2
), where 𝑔

−1
(𝑥) is the

inverse function of 𝑔(𝑥), then we can write

∞

∑
𝑛=1

𝑔
󸀠
(𝑛)

𝑔 (𝑛)
∫
∞

𝜖√𝑔(𝑛)

𝑥 [𝑃 (‖𝐵‖ ≥ 𝑥) − 𝑃 (
󵄩󵄩󵄩󵄩𝐹𝑛

󵄩󵄩󵄩󵄩 ≥ 𝑥)] 𝑑𝑥

≤ ∑

𝑛≤𝐴(𝜖)

𝑔
󸀠
(𝑛)

𝑔 (𝑛)
∫
∞

𝜖√𝑔(𝑛)

𝑥
󵄨󵄨󵄨󵄨𝑃 (‖𝐵‖ ≥ 𝑥) − 𝑃 (

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩 ≥ 𝑥)

󵄨󵄨󵄨󵄨 𝑑𝑥

+ ∑

𝑛>𝐴(𝜖)

𝑔
󸀠
(𝑛)

𝑔 (𝑛)
∫
∞

𝜖√𝑔(𝑛)

𝑥𝑃 (‖𝐵‖ ≥ 𝑥) 𝑑𝑥

+ ∑

𝑛>𝐴(𝜖)

𝑔
󸀠
(𝑛)

𝑔 (𝑛)
∫
∞

𝜖√𝑔(𝑛)

𝑥𝑃 (
󵄩󵄩󵄩󵄩𝐹𝑛

󵄩󵄩󵄩󵄩 ≥ 𝑥) 𝑑𝑥

:= 𝐽
1
+ 𝐽

2
+ 𝐽

3
.

(25)
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For the term 𝐽
1
, via the change of variable 𝑥 = 𝑦+𝜖√𝑔(𝑛),

we have

∫
∞

𝜖√𝑔(𝑛)

𝑥
󵄨󵄨󵄨󵄨𝑃 (‖𝐵‖ ≥ 𝑥) − 𝑃 (

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩 ≥ 𝑥)

󵄨󵄨󵄨󵄨 𝑑𝑥

= ∫
∞

0

(𝑦 + 𝜖√𝑔 (𝑛))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃 (‖𝐵‖ ≥ 𝑦 + 𝜖√𝑔 (𝑛))

− 𝑃(
󵄩󵄩󵄩󵄩𝐹𝑛

󵄩󵄩󵄩󵄩 ≥ 𝑦 + 𝜖√𝑔 (𝑛))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

≤ (Δ
𝑛1

+ Δ
𝑛2

+ Δ
𝑛3
) ,

(26)

where

Δ
𝑛1

= ∫
Δ
−1/4

𝑛

0

(𝑦 + 𝜖√𝑔 (𝑛))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃 (‖𝐵‖ ≥ 𝑦 + 𝜖√𝑔 (𝑛))

− 𝑃(
󵄩󵄩󵄩󵄩𝐹𝑛

󵄩󵄩󵄩󵄩 ≥ 𝑦 + 𝜖√𝑔 (𝑛))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑦,

Δ
𝑛2

= ∫
∞

Δ
−1/4

𝑛

(𝑦 + 𝜖√𝑔 (𝑛)) 𝑃(
󵄩󵄩󵄩󵄩𝐹𝑛

󵄩󵄩󵄩󵄩 ≥ 𝑦 + 𝜖√𝑔 (𝑛)) 𝑑𝑦,

Δ
𝑛3

= ∫
∞

Δ
−1/4

𝑛

(𝑦 + 𝜖√𝑔 (𝑛)) 𝑃 (‖𝐵‖ ≥ 𝑦 + 𝜖√𝑔 (𝑛)) 𝑑𝑦,

(27)

and Δ
𝑛
is defined by (13).

Since 𝑛 ≤ 𝐴(𝜖) implies 𝜖√𝑔(𝑛) ≤ 1, then we can see that

Δ
𝑛1

≤ Δ
𝑛
(Δ

−1/4

𝑛
+ 𝜖√𝑔 (𝑛))Δ

−1/4

𝑛

= Δ
1/2

𝑛
+ Δ

3/4

𝑛
󳨀→ 0 as 𝑛 󳨀→ ∞.

(28)

By relation (18), when 𝑛 → ∞, we have

Δ
𝑛2

≤ 𝐶∫
∞

Δ
−1/4

𝑛

𝑦𝑒
−𝑐0𝑦
2

𝑑𝑦 󳨀→ 0. (29)

By using relation (20), the similar argument can prove
that

Δ
𝑛3

󳨀→ 0 as 𝑛 󳨀→ ∞. (30)

Note that ∑𝐴(𝜖)
𝑛=1

(𝑔
󸀠
(𝑛)/𝑔(𝑛)) ≤ 𝐶∫

𝐴(𝜖)

0
(𝑔
󸀠
(𝑥)/𝑔(𝑥)𝑑𝑥) ≤

−𝐶 log 𝜖. A combination of (28)–(30) and Toeplitz Lemma
can lead to that

lim
𝜖↘0

1

− log 𝜖
∑

𝑛≤𝐴(𝜖)

𝑔
󸀠
(𝑛)

𝑔 (𝑛)
(Δ

𝑛1
+ Δ

𝑛2
+ Δ

𝑛3
) = 0, (31)

which indicates that

lim
𝜖↘0

1

− log 𝜖
𝐽
1
= 0. (32)

For the term 𝐽
2
, using relation (18) again, the same

argument in Proposition 8 can deduce that

∑

𝑛>𝐴(𝜖)

𝑔
󸀠
(𝑛)

𝑔 (𝑛)
∫
∞

𝜖√𝑔(𝑛)

𝑥𝑃 (
󵄩󵄩󵄩󵄩𝐹𝑛

󵄩󵄩󵄩󵄩 ≥ 𝑥) 𝑑𝑥

≤ 𝐶∫
∞

𝐴(𝜖)

𝑔
󸀠
(𝑦)

𝑔 (𝑦)
∫
∞

𝜖√𝑔(𝑦)
𝑥𝑃 (

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩 ≥ 𝑥) 𝑑𝑥 𝑑𝑦

≤ 𝐶∫
∞

1

1

𝑡
∫
∞

𝑡

𝑥𝑃 (
󵄩󵄩󵄩󵄩𝐹𝑛

󵄩󵄩󵄩󵄩 ≥ 𝑥) 𝑑𝑥 𝑑𝑡

≤ 𝐶∫
∞

1

𝑥 log𝑥𝑒−𝑐0𝑥
2

𝑑𝑥 < ∞,

(33)

which implies that

lim
𝜖↘0

1

− log 𝜖
𝐽
2
= 0. (34)

At last, by using relation (20) again, the similar argument
as in the discussion on 𝐽

2
can yield that

lim
𝜖↘0

1

− log 𝜖
𝐽
3
= 0. (35)

Combining (25) and (32)–(35), we can complete the
proof.

Proof of Theorem 4. According to the fact that, for any ran-
dom variable 𝜁 and 𝑎 ∈ R,

E𝜁𝐼
{𝜁≥𝑎}

= 𝑎𝑃 (𝜁 ≥ 𝑎) + ∫
∞

𝑎

𝑃 (𝜁 ≥ 𝑥) 𝑑𝑥, (36)

we have

E {
󵄩󵄩󵄩󵄩𝐹𝑛

󵄩󵄩󵄩󵄩
2
𝐼
{‖𝐹𝑛‖≥𝜖√𝑔(𝑛)}

}

= 𝜖
2
𝑔 (𝑛) 𝑃 (

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩 ≥ 𝜖√𝑔 (𝑛))

+ ∫
∞

𝜖√𝑔(𝑛)

2𝑥𝑃 (
󵄩󵄩󵄩󵄩𝐹𝑛

󵄩󵄩󵄩󵄩 ≥ 𝑥) 𝑑𝑥.

(37)

By Propositions 6 and 7, we know

lim
𝜖↘0

𝜖
2

∞

∑
𝑛=1

𝑔
󸀠
(𝑛) 𝑃 (

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩 ≥ 𝜖√𝑔 (𝑛)) = E‖𝐵‖

2
, (38)

which shows that

lim
𝜖↘0

1

− log 𝜖
𝜖
2

∞

∑
𝑛=1

𝑔
󸀠
(𝑛)

𝑔 (𝑛)
𝑔 (𝑛) 𝑃 (

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩 ≥ 𝜖√𝑔 (𝑛)) = 0. (39)

By Propositions 8 and 9, we can get that

lim
𝜖↘0

1

− log 𝜖

∞

∑
𝑛=1

𝑔
󸀠
(𝑛)

𝑔 (𝑛)
∫
∞

𝜖√𝑔(𝑛)

𝑥𝑃 (
󵄩󵄩󵄩󵄩𝐹𝑛

󵄩󵄩󵄩󵄩 ≥ 𝑥) 𝑑𝑥 = E‖𝐵‖
2
.

(40)
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A final combination of the above two relations can reveal
that

lim
𝜖↘0

1

− log 𝜖

∞

∑
𝑛=1

𝑔
󸀠
(𝑛)

𝑔 (𝑛)
𝐸 {

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩
2
𝐼
{‖𝐹𝑛‖≥𝜖√𝑔(𝑛)}

} = 2E‖𝐵‖
2
. (41)

From Csörgö and Révèsz [12], we know 𝑃(‖𝐵‖ ≥ 𝑥) =

2∑
∞

𝑘=1
(−1)

𝑘+1
𝑒
−2𝑘
2
𝑥
2

, 𝑥 > 0, which yields that

E‖𝐵‖
2
= 2∫

∞

0

𝑥𝑃 (‖𝐵‖ ≥ 𝑥) 𝑑𝑥 =

∞

∑
𝑘=1

(−1)
𝑘+1

𝑘
−2

=
𝜋
2

12
.

(42)

This concludes the proof of Theorem 4.

Appendix

Lemma A.1 (Toeplitz Lemma in Loève [13]). Let 𝑎
𝑛𝑘
, 𝑘 =

1, 2, . . . , 𝑘
𝑛
, be numbers such that, for every fixed 𝑘, 𝑎

𝑛𝑘
→ 0,

and for all 𝑛, ∑
𝑘
|𝑎
𝑛𝑘
| ≤ 𝑐 < ∞. If 𝑥

𝑛
→ 0, then

𝑥
󸀠

𝑛
= ∑

𝑘

𝑎
𝑛𝑘
𝑥
𝑘
󳨀→ 0. (A.1)

In particular, if 𝑏
𝑛
= ∑

𝑛

𝑘=1
𝑎
𝑘
↑ ∞ and 𝑥

𝑛
→ 0, then

1

𝑏
𝑛

𝑛

∑
𝑘=1

𝑎
𝑘
𝑥
𝑘
󳨀→ 𝑥. (A.2)
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