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We investigate the existence of a fixed point of certain contractive multivalued mappings of integral type by using the admissible
mapping. Our results generalize the several results on the topic in the literature involving Branciari, and Feng and Liu. We also
construct some examples to illustrate our results.

1. Preliminaries and Introduction

Fixed point theory is one of themost celebrated research areas
that has an application potential not only in nonlinear but
also in several branches of mathematics. As a consequence
of this fact, several fixed point results have been reported. It
is not easy to know, manage, and use all results of this reich
theory to get an application. To overcome such problems
and clarify the literature, several authors have suggested a
more general construction in a way that a number of existing
results turn into a consequence of the proposed one. One
of the examples of this trend is the investigations of fixed
point of certain operator by using the 𝛼-admissible mapping
introduced Samet et al. [1]. This paper has been appreciated
by several authors and this trend has been supported by
reporting several interesting results; see for example [2–12].

In this paper, we define (𝛼∗, 𝜓)-contractive multivalued
mappings of integral type and discuss the existence of a fixed
point of such mappings. Our construction and hence results
improve, extend, and generalize several results including
Branciari [13] and Feng and Liu [14].

In what follows, we recall some basic definitions,
notions, notations, and fundamental results for the sake of

completeness. Let Ψ be a family of nondecreasing functions,
𝜓 : [0,∞) → [0,∞) such that ∑∞

𝑛=1
𝜓
𝑛

(𝑡) < ∞ for each
𝑡 > 0, where𝜓𝑛 is the 𝑛th iterate of𝜓. It is known that, for each
𝜓 ∈ Ψ, we have 𝜓(𝑡) < 𝑡 for all 𝑡 > 0 and 𝜓(0) = 0 for 𝑡 =
0 [1]. We denote by Φ the set of all Lebesgue integrable
mappings, 𝜙 : [0,∞) → [0,∞) which is summable on each
compact subset of [0,∞) and ∫

𝜖

0

𝜙(𝑡)𝑑𝑡 > 0, for each 𝜖 > 0.
Let (𝑋, 𝑑) be a metric space. We denote by 𝑁(𝑋) the

space of all nonempty subsets of 𝑋, by 𝐵(𝑋) the space of all
nonempty bounded subsets of 𝑋, and by 𝐶𝐿(𝑋) the space of
all nonempty closed subsets of 𝑋. For 𝐴 ∈ 𝑁(𝑋) and 𝑥 ∈ 𝑋,

𝑑 (𝑥, 𝐴) = inf {𝑑 (𝑥, 𝑎) : 𝑎 ∈ 𝐴} . (1)

For every 𝐴, 𝐵 ∈ 𝐵(𝑋),

𝛿 (𝐴, 𝐵) = sup {𝑑 (𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} . (2)

We denote 𝛿(𝐴, 𝐵) by 𝛿(𝑥, 𝐵) when 𝐴 = {𝑥}. If, for 𝑥
0
∈

𝑋, there exists a sequence {𝑥
𝑛
}
𝑛∈N in 𝑋 such that 𝑥

𝑛
∈

𝐺𝑥
𝑛−1

, then 𝑂(𝐺, 𝑥
0
) = {𝑥

0
, 𝑥
1
, 𝑥
2
, . . .} is said to be an

orbit of 𝐺 : 𝑋 → 𝐶𝐿(𝑋) at 𝑥
0
. A mapping 𝑓 :

𝑋 → R is 𝐺 orbitally lower semicontinuous at 𝑥, if {𝑥
𝑛
} is
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a sequence in 𝑂(𝐺, 𝑥
0
) and 𝑥

𝑛
→ 𝑥 implies 𝑓(𝑥) ≤

lim inf
𝑛
𝑓(𝑥
𝑛
). Branciari [13] extended the Banach contrac-

tion principle [15] in the following way.

Theorem 1. Let (𝑋, 𝑑) be a complete metric space and let 𝐺 :

𝑋 → 𝑋 be a mapping such that

∫

𝑑(𝑇𝑥,𝑇𝑦)

0

𝜙 (𝑡) 𝑑𝑡 ≤ 𝑐∫

𝑑(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡 (3)

for each 𝑥, 𝑦 ∈ 𝑋, where 𝑐 ∈ [0, 1) and 𝜙 ∈ Φ. Then 𝐺 has a
unique fixed point.

Since then many authors used integral type contractive
conditions to prove fixed point theorems in different settings;
see for example [12, 16–22]. Feng and Liu [14] extended the
result of Branciari [13] to multivalued mappings as follows.

Theorem 2 (see [14]). Let (𝑋, 𝑑) be a complete metric space
and let 𝐺 : 𝑋 → 𝐶𝐿(𝑋) be a mapping. Assume that for
each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝐺𝑥, there exists 𝑧 ∈ 𝐺𝑦 such that

∫

𝑑(𝑦,𝑧)

0

𝜙 (𝑡) 𝑑𝑡 ≤ 𝜓(∫

𝑑(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) , (4)

where 𝜓 ∈ Ψ and 𝜙 ∈ Φ. Then 𝐺 has a fixed point
in 𝑋 provided 𝑓(𝜉) = 𝑑(𝜉, 𝐺𝜉) is lower semicontinuous,
with 𝜉 ∈ 𝑋.

Definition 3 (see [3]). Let (𝑋, 𝑑) be a metric space and 𝛼 :

𝑋 × 𝑋 → [0,∞) be a mapping. A mapping 𝐺 : 𝑋 →

𝐶𝐿(𝑋) is 𝛼∗-admissible if 𝛼(𝑥, 𝑦) ≥ 1 ⇒ 𝛼
∗

(𝐺𝑥, 𝐺𝑦) ≥ 1,
where 𝛼∗(𝐺𝑥, 𝐺𝑦) = inf{𝛼(𝑎, 𝑏) : 𝑎 ∈ 𝐺𝑥, 𝑏 ∈ 𝐺𝑦}.

Definition 4 (see [3]). Let (𝑋, 𝑑) be a metric space. A
mapping 𝐺 : 𝑋 → 𝐶𝐿(𝑋) is called 𝛼

∗-𝜓-contractive if
there exist two functions 𝛼 : 𝑋 × 𝑋 → [0,∞) and 𝜓 ∈

Ψ such that

𝛼
∗

(𝐺𝑥, 𝐺𝑦)𝐻 (𝐺𝑥, 𝐺𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) (5)

for all 𝑥, 𝑦 ∈ 𝑋.

Theorem 5 (see [3]). Let (𝑋, 𝑑) be a complete metric space,
let 𝛼 : 𝑋 × 𝑋 → [0,∞) be a function, let 𝜓 ∈ Ψ be a strictly
increasing map, and let 𝐺 be a closed-valued 𝛼∗-admissible
and 𝛼∗-𝜓-contractive multifunction on 𝑋. Suppose that there
exist 𝑥

0
∈ 𝑋 and 𝑥

1
∈ 𝐺𝑥
0
such that 𝛼(𝑥

0
, 𝑥
1
) ≥ 1. Assume

that if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1 for
all 𝑛 and 𝑥

𝑛
→ 𝑥, then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1 for all 𝑛. Then 𝐺 has a

fixed point.

Definition 6 (see [2]). Let (𝑋, 𝑑) be a metric space and
let 𝐺 : 𝑋 → 𝐶𝐿(𝑋) be a mapping. We say that 𝐺 is a
generalized (𝛼

∗

, 𝜓)-contractive if there exists 𝜓 ∈ Ψ such
that

𝛼
∗

(𝐺𝑥, 𝐺𝑦) 𝑑 (𝑦, 𝐺𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) (6)

for each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝐺𝑥, where 𝛼∗(𝐺𝑥, 𝐺𝑦) = inf{𝛼(𝑎,
𝑏) : 𝑎 ∈ 𝐺𝑥, 𝑏 ∈ 𝐺𝑦}.

Theorem 7 (see [2]). Let (𝑋, 𝑑) be a complete metric space
and let 𝐺 : 𝑋 → 𝐵(𝑋) be a mapping such that for each 𝑥 ∈

𝑋 and 𝑦 ∈ 𝐺𝑥, we have

𝛼
∗

(𝐺𝑥, 𝐺𝑦) 𝛿 (𝑦, 𝐺𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , (7)

where 𝜓 ∈ Ψ. Assume that there exist 𝑥
0
∈ 𝑋 and 𝑥

1
∈

𝐺𝑥
0
such that 𝛼(𝑥

0
, 𝑥
1
) ≥ 1. Moreover 𝐺 is an 𝛼

∗-admissible
mapping. Then there exists an orbit {𝑥

𝑛
} of 𝐺 at 𝑥

0
and 𝑥 ∈

𝑋 such that lim
𝑛→∞

𝑥
𝑛
= 𝑥. Moreover, {𝑥} = 𝐺𝑥 if and only

if 𝑓(𝜉) = 𝛿(𝜉, 𝐺𝜉) is lower semicontinuous at 𝑥.

2. Main Results

In this section, we state and proof our main results. We first
give the definition of the following notion.

Definition 8. Let (𝑋, 𝑑) be a metric space. We say that 𝐺 :

𝑋 → 𝐶𝐿(𝑋) is an integral type (𝛼∗, 𝜓)-contractivemapping
if there exist two functions 𝜓 ∈ Ψ and 𝜙 ∈ Φ such that for
each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝐺𝑥, there exists 𝑧 ∈ 𝐺𝑦 satisfying

∫

𝛼
∗

(𝐺𝑥,𝐺𝑦)𝑑(𝑦,𝑧)

0

𝜙 (𝑡) 𝑑𝑡 ≤ 𝜓(∫

𝑑(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) , (8)

where 𝛼∗(𝐺𝑥, 𝐺𝑦) = inf{𝛼(𝑎, 𝑏) : 𝑎 ∈ 𝐺𝑥, 𝑏 ∈ 𝐺𝑦}.

Example 9. Let 𝑋 = R be endowed with the usual metric 𝑑.
Define 𝐺 : 𝑋 → 𝐶𝐿(𝑋) by

𝐺𝑥 = {

[𝑥,∞) if 𝑥 ≥ 0
(−∞, 6𝑥] if 𝑥 < 0,

(9)

and 𝛼 : 𝑋 × 𝑋 → [0,∞) by

𝛼 (𝑥, 𝑦) = {

𝑥 + 𝑦 + 1 if 𝑥, 𝑦 ≥ 0
0 otherwise.

(10)

Take 𝜓(𝑡) = 𝑡/4 and 𝜙(𝑡) = 2𝑡 for all 𝑡 ≥ 0. Then, for
each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝐺𝑥, there exists 𝑧 ∈ 𝐺𝑦 such that

∫

𝛼
∗

(𝐺𝑥,𝐺𝑦)𝑑(𝑦,𝑧)

0

𝜙 (𝑡) 𝑑𝑡 ≤ 𝜓(∫

𝑑(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) . (11)

Hence 𝐺 is an integral type (𝛼∗, 𝜓)-contractive mapping.
Note that (4) does not hold at 𝑥 = −2.

Definition 10. We say that 𝜙 ∈ Φ is an integral subadditive if,
for each 𝑎, 𝑏 > 0, we have

∫

𝑎+𝑏

0

𝜙 (𝑡) 𝑑𝑡 ≤ ∫

𝑎

0

𝜙 (𝑡) 𝑑𝑡 + ∫

𝑏

0

𝜙 (𝑡) 𝑑𝑡. (12)

We denote by Φ
𝑠
the class of all integral subadditive

functions 𝜙 ∈ Φ.

Example 11. Let 𝜙
1
(𝑡) = (1/2)(𝑡 + 1)

−1/2 for all 𝑡 ≥ 0, 𝜙
2
(𝑡) =

(2/3)(𝑡 + 1)
−1/3 for all 𝑡 ≥ 0, and 𝜙

3
(𝑡) = 𝑒

−𝑡 for all 𝑡 ≥ 0.
Then 𝜙

𝑖
∈ Φ
𝑠
, where 𝑖 = 1, 2, 3.
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Definition 12. Let (𝑋, 𝑑) be a metric space. We say that 𝐺 :

𝑋 → 𝐶𝐿(𝑋) is a subintegral type (𝛼∗, 𝜓)-contractive if
there exist two functions 𝜓 ∈ Ψ and 𝜙 ∈ Φ

𝑠
such that for

each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝐺𝑥, there exists 𝑧 ∈ 𝐺𝑦 satisfying

∫

𝛼
∗

(𝐺𝑥,𝐺𝑦)𝑑(𝑦,𝑧)

0

𝜙 (𝑡) 𝑑𝑡 ≤ 𝜓(∫

𝑑(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) , (13)

where 𝛼∗(𝐺𝑥, 𝐺𝑦) = inf{𝛼(𝑎, 𝑏) : 𝑎 ∈ 𝐺𝑥, 𝑏 ∈ 𝐺𝑦}.

Example 13. Let 𝑋 = R be endowed with the usual metric 𝑑.
Define 𝐺 : 𝑋 → 𝐶𝐿(𝑋) by

𝐺𝑥 =

{

{

{

[

𝑥

4

,

𝑥

2

] if 𝑥 ≥ 0,

[24𝑥, 12𝑥] if 𝑥 < 0,
(14)

and 𝛼 : 𝑋 × 𝑋 → [0,∞) by

𝛼 (𝑥, 𝑦) = {

2 if 𝑥 = 𝑦 = 0,
0 otherwise.

(15)

Take 𝜓(𝑡) = 𝑡/3 and 𝜙(𝑡) = (2/3)(𝑡 + 1)
−1/3 for all 𝑡 ≥ 0.

Then, for each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝐺𝑥, there exists 𝑧 ∈ 𝐺𝑦 such
that

∫

𝛼
∗

(𝐺𝑥,𝐺𝑦)𝑑(𝑦,𝑧)

0

𝜙 (𝑡) 𝑑𝑡 ≤ 𝜓(∫

𝑑(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) . (16)

Hence 𝐺 is an subintegral type (𝛼∗, 𝜓)-contractivemapping.

Theorem 14. Let (𝑋, 𝑑) be a complete metric space and
let 𝐺 : 𝑋 → 𝐶𝐿(𝑋) be an 𝛼

∗-admissible subinte-
gral type (𝛼∗, 𝜓)-contractive mapping. Assume that there
exist 𝑥

0
∈ 𝑋 and 𝑥

1
∈ 𝐺𝑥

0
such that 𝛼(𝑥

0
, 𝑥
1
) ≥ 1.

Then there exists an orbit {𝑥
𝑛
} of 𝐺 at 𝑥

0
and 𝑥 ∈ 𝑋 such

that lim
𝑛→∞

𝑥
𝑛
= 𝑥. Moreover, 𝑥 is a fixed point of 𝐺 if and

only if 𝑓(𝜉) = 𝑑(𝜉, 𝐺𝜉) is 𝐺 orbitally lower semicontinuous
at 𝑥.

Proof. By the hypothesis, there exist 𝑥
0

∈ 𝑋 and 𝑥
1

∈

𝐺𝑥
0
such that 𝛼(𝑥

0
, 𝑥
1
) ≥ 1. Since 𝐺 is 𝛼∗-admissible,

then 𝛼
∗

(𝐺𝑥
0
, 𝐺𝑥
1
) ≥ 1. For 𝑥

0
∈ 𝑋 and 𝑥

1
∈ 𝐺𝑥

0
, there

exists 𝑥
2
∈ 𝐺𝑥
1
such that

∫

𝑑(𝑥
1
,𝑥
2
)

0

𝜙 (𝑡) 𝑑𝑡 ≤ ∫

𝛼
∗

(𝐺𝑥
0
,𝐺𝑥
1
)𝑑(𝑥
1
,𝑥
2
)

0

𝜙 (𝑡) 𝑑𝑡

≤ 𝜓(∫

𝑑(𝑥
0
,𝑥
1
)

0

𝜙 (𝑡) 𝑑𝑡) .

(17)

Since 𝜓 is nondecreasing, we have

𝜓(∫

𝑑(𝑥
1
,𝑥
2
)

0

𝜙 (𝑡) 𝑑𝑡) ≤ 𝜓
2

(∫

𝑑(𝑥
0
,𝑥
1
)

0

𝜙 (𝑡) 𝑑𝑡) . (18)

As 𝛼(𝑥
1
, 𝑥
2
) ≥ 1 by 𝛼∗-admissibility of 𝐺, we have 𝛼∗(𝐺𝑥

1
,

𝐺𝑥
2
) ≥ 1. For 𝑥

1
∈ 𝑋 and 𝑥

2
∈ 𝐺𝑥

1
, there exists 𝑥

3
∈

𝐺𝑥
2
such that

∫

𝑑(𝑥
2
,𝑥
3
)

0

𝜙 (𝑡) 𝑑𝑡 ≤ ∫

𝛼
∗

(𝐺𝑥
1
,𝐺𝑥
2
)𝑑(𝑥
2
,𝑥
3
)

0

𝜙 (𝑡) 𝑑𝑡

≤ 𝜓(∫

𝑑(𝑥
1
,𝑥
2
)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓
2

(∫

𝑑(𝑥
0
,𝑥
1
)

0

𝜙 (𝑡) 𝑑𝑡) .

(19)

Since 𝜓 is nondecreasing, we have

𝜓(∫

𝑑(𝑥
2
,𝑥
3
)

0

𝜙 (𝑡) 𝑑𝑡) ≤ 𝜓
3

(∫

𝑑(𝑥
0
,𝑥
1
)

0

𝜙 (𝑡) 𝑑𝑡) . (20)

By continuing the same process, we get a sequence {𝑥
𝑛
} in 𝑋

such that 𝑥
𝑛
∈ 𝐺𝑥
𝑛−1

, 𝛼(𝑥
𝑛−1

, 𝑥
𝑛
) ≥ 1, and

∫

𝑑(𝑥
𝑛
,𝑥
𝑛+1
)

0

𝜙 (𝑡) 𝑑𝑡 ≤ 𝜓
𝑛

(∫

𝑑(𝑥
0
,𝑥
1
)

0

𝜙 (𝑡) 𝑑𝑡) ,

for each 𝑛 ∈ N.

(21)

Letting 𝑛 → ∞ in above inequality, we have

lim
𝑛→∞

∫

𝑑(𝑥
𝑛
,𝑥
𝑛+1
)

0

𝜙 (𝑡) 𝑑𝑡 = 0. (22)

Also, we have

lim
𝑛→∞

∫

𝑑(𝑥
𝑛
,𝐺𝑥
𝑛
)

0

𝜙 (𝑡) 𝑑𝑡 = 0, (23)

which implies that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝐺𝑥
𝑛
) = 0. (24)

For any 𝑛, 𝑝 ∈ N, we have

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑝

) ≤

𝑛+𝑝−1

∑

𝑖=𝑛

𝑑 (𝑥
𝑖
, 𝑥
𝑖+1
) . (25)

Since 𝜙 ∈ Φ
𝑠
, it can be shown by induction that

∫

𝑑(𝑥
𝑛
,𝑥
𝑛+𝑝
)

0

𝜙 (𝑡) 𝑑𝑡 ≤

𝑛+𝑝−1

∑

𝑖=𝑛

∫

𝑑(𝑥
𝑖
,𝑥
𝑖+1
)

0

𝜙 (𝑡) 𝑑𝑡. (26)

From (21) and (26), we have

∫

𝑑(𝑥
𝑛
,𝑥
𝑛+𝑝
)

0

𝜙 (𝑡) 𝑑𝑡 ≤

𝑛+𝑝−1

∑

𝑖=𝑛

𝜓
𝑖

(∫

𝑑(𝑥
0
,𝑥
1
)

0

𝜙 (𝑡) 𝑑𝑡) . (27)

Since 𝜓 ∈ Ψ it follows that {𝑥
𝑛
} is Cauchy sequence in 𝑋.

As 𝑋 is complete, there exists 𝑥∗ ∈ 𝑋 such that 𝑥
𝑛

→

𝑥
∗ as 𝑛 → ∞. Suppose 𝑓(𝜉) = 𝑑(𝜉, 𝐺𝜉) is 𝐺 orbitally lower

semicontinuous at 𝑥∗; then
𝑑 (𝑥
∗

, 𝐺𝑥
∗

) ≤ lim inf
𝑛

𝑓 (𝑥
𝑛
) = lim inf

𝑛

𝑑 (𝑥
𝑛
, 𝐺𝑥
𝑛
) = 0. (28)

By closedness of 𝐺 it follows that 𝑥∗ ∈ 𝐺𝑥
∗. Conversely,

suppose that 𝑥∗ is a fixed point of 𝐺 then 𝑓(𝑥
∗

) = 0 ≤

lim inf
𝑛
𝑓(𝑥
𝑛
).
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Example 15. Let 𝑋 = R be endowed with the usual metric 𝑑.
Define 𝐺 : 𝑋 → 𝐶𝐿(𝑋) by

𝐺𝑥 = {

[𝑥, 𝑥 + 1] if 𝑥 ≥ 0,
(−∞, 6𝑥] if 𝑥 < 0,

(29)

and 𝛼 : 𝑋 × 𝑋 → [0,∞) by

𝛼 (𝑥, 𝑦) = {

𝑥 + 𝑦 + 1 if 𝑥, 𝑦 ≥ 0,
0 otherwise.

(30)

Take 𝜓(𝑡) = 𝑡/2 and 𝜙(𝑡) = (1/2)(𝑡 + 1)
−1/2 for all 𝑡 ≥ 0.

Then, for each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝐺𝑥, there exists 𝑧 ∈ 𝐺𝑦 such
that

∫

𝛼
∗

(𝐺𝑥,𝐺𝑦)𝑑(𝑦,𝑧)

0

𝜙 (𝑡) 𝑑𝑡 ≤ 𝜓(∫

𝑑(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) . (31)

Hence 𝐺 is a subintegral type (𝛼∗, 𝜓)-contractive mapping.
Clearly, 𝐺 is 𝛼∗-admissible. Also, we have 𝑥

0
= 1 and 𝑥

1
=

2 ∈ 𝐺𝑥
0
such that 𝛼(𝑥

0
, 𝑥
1
) = 4.Therefore, all the conditions

of Theorem 14 are satisfied and 𝐺 has infinitely many fixed
points. Note that Theorem 2 in Section 1 is not applicable
here. For example, take 𝑥 = −1 and 𝑦 = −6.

Definition 16. Let (𝑋, 𝑑) be a metric space. We say that 𝐺 :

𝑋 → 𝐵(𝑋) is an integral type (𝛼∗, 𝜓, 𝛿)-contractive map-
ping if there exist two functions 𝜓 ∈ Ψ and 𝜙 ∈ Φ such that

∫

𝛼
∗

(𝐺𝑥,𝐺𝑦)𝛿(𝑦,𝐺𝑦)

0

𝜙 (𝑡) 𝑑𝑡 ≤ 𝜓(∫

𝑑(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) (32)

for each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝐺𝑥, where 𝛼∗(𝐺𝑥, 𝐺𝑦) =

inf{𝛼(𝑎, 𝑏) : 𝑎 ∈ 𝐺𝑥, 𝑏 ∈ 𝐺𝑦}.

Definition 17. Let (𝑋, 𝑑) be a metric space. We say that 𝐺 :

𝑋 → 𝐵(𝑋) is a subintegral type (𝛼∗, 𝜓, 𝛿)-contractive
mapping if there exist two functions 𝜓 ∈ Ψ and 𝜙 ∈ Φ

𝑠
such

that

∫

𝛼
∗

(𝐺𝑥,𝐺𝑦)𝛿(𝑦,𝐺𝑦)

0

𝜙 (𝑡) 𝑑𝑡 ≤ 𝜓(∫

𝑑(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) (33)

for each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝐺𝑥, where 𝛼∗(𝐺𝑥, 𝐺𝑦) =

inf{𝛼(𝑎, 𝑏) : 𝑎 ∈ 𝐺𝑥, 𝑏 ∈ 𝐺𝑦}.

Theorem 18. Let (𝑋, 𝑑) be a complete metric space and
let 𝐺 : 𝑋 → 𝐵(𝑋) be an 𝛼

∗-admissible subinte-
gral type (𝛼∗, 𝜓, 𝛿)-contractive mapping. Assume that there
exist 𝑥

0
∈ 𝑋 and 𝑥

1
∈ 𝐺𝑥

0
such that 𝛼(𝑥

0
, 𝑥
1
) ≥ 1.

Then there exists an orbit {𝑥
𝑛
} of 𝐺 at 𝑥

0
and 𝑥 ∈ 𝑋 such

that lim
𝑛→∞

𝑥
𝑛
= 𝑥. Moreover, 𝑥 ∈ 𝑋 such that {𝑥} = 𝐺𝑥 if

and only if 𝑓(𝜉) = 𝛿(𝜉, 𝐺𝜉) is 𝐺 orbitally lower semicontinu-
ous at 𝑥.

Proof. By the hypothesis, there exist 𝑥
0

∈ 𝑋 and 𝑥
1

∈

𝐺𝑥
0
such that 𝛼(𝑥

0
, 𝑥
1
) ≥ 1. Since 𝐺 is 𝛼∗-admissible,

then 𝛼
∗

(𝐺𝑥
0
, 𝐺𝑥
1
) ≥ 1. For 𝑥

0
∈ 𝑋 and 𝑥

1
∈ 𝐺𝑥
0
, we have

∫

𝛼
∗

(𝐺𝑥
0
,𝐺𝑥
1
)𝛿(𝑥
1
,𝐺𝑥
1
)

0

𝜙 (𝑡) 𝑑𝑡 ≤ 𝜓(∫

𝑑(𝑥
0
,𝑥
1
)

0

𝜙 (𝑡) 𝑑𝑡) . (34)

Since 𝐺𝑥
1

̸= 0, then we have 𝑥
2
∈ 𝐺𝑥
1
such that

∫

𝑑(𝑥
1
,𝑥
2
)

0

𝜙 (𝑡) 𝑑𝑡 ≤ ∫

𝛼
∗

(𝐺𝑥
0
,𝐺𝑥
1
)𝛿(𝑥
1
,𝐺𝑥
1
)

0

𝜙 (𝑡) 𝑑𝑡

≤ 𝜓(∫

𝑑(𝑥
0
,𝑥
1
)

0

𝜙 (𝑡) 𝑑𝑡) .

(35)

Since 𝜓 is nondecreasing, we have

𝜓(∫

𝑑(𝑥
1
,𝑥
2
)

0

𝜙 (𝑡) 𝑑𝑡) ≤ 𝜓
2

(∫

𝑑(𝑥
0
,𝑥
1
)

0

𝜙 (𝑡) 𝑑𝑡) . (36)

As 𝛼(𝑥
1
, 𝑥
2
) ≥ 1 by 𝛼∗-admissibility of 𝐺, we have 𝛼∗(𝐺𝑥

1
,

𝐺𝑥
2
) ≥ 1. Thus, we have 𝑥

3
∈ 𝐺𝑥
2
such that

∫

𝑑(𝑥
2
,𝑥
3
)

0

𝜙 (𝑡) 𝑑𝑡 ≤ ∫

𝛼
∗

(𝐺𝑥
1
,𝐺𝑥
2
)𝛿(𝑥
2
,𝐺𝑥
2
)

0

𝜙 (𝑡) 𝑑𝑡

≤ 𝜓(∫

𝑑(𝑥
1
,𝑥
2
)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓
2

(∫

𝑑(𝑥
0
,𝑥
1
)

0

𝜙 (𝑡) 𝑑𝑡) .

(37)

Since 𝜓 is nondecreasing, we have

𝜓(∫

𝑑(𝑥
2
,𝑥
3
)

0

𝜙 (𝑡) 𝑑𝑡) ≤ 𝜓
3

(∫

𝑑(𝑥
0
,𝑥
1
)

0

𝜙 (𝑡) 𝑑𝑡) . (38)

By continuing the same process, we get a sequence {𝑥
𝑛
} in 𝑋

such that 𝑥
𝑛
∈ 𝐺𝑥
𝑛−1

, 𝛼(𝑥
𝑛−1

, 𝑥
𝑛
) ≥ 1, and

∫

𝑑(𝑥
𝑛
,𝑥
𝑛+1
)

0

𝜙 (𝑡) 𝑑𝑡 ≤ ∫

𝛿(𝑥
𝑛
,𝐺𝑥
𝑛
)

0

𝜙 (𝑡) 𝑑𝑡

≤ 𝜓
𝑛

(∫

𝑑(𝑥
0
,𝑥
1
)

0

𝜙 (𝑡) 𝑑𝑡) ,

for each 𝑛 ∈ N.

(39)

Letting 𝑛 → ∞ in above inequality, we have

lim
𝑛→∞

∫

𝛿(𝑥
𝑛
,𝐺𝑥
𝑛
)

0

𝜙 (𝑡) 𝑑𝑡 = 0, (40)

which implies that

lim
𝑛→∞

𝛿 (𝑥
𝑛
, 𝐺𝑥
𝑛
) = 0. (41)

For any 𝑛, 𝑝 ∈ N, we have

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑝

) ≤

𝑛+𝑝−1

∑

𝑖=𝑛

𝑑 (𝑥
𝑖
, 𝑥
𝑖+1
) . (42)

Since 𝜙 ∈ Φ
𝑠
, it can be shown by induction that

∫

𝑑(𝑥
𝑛
,𝑥
𝑛+𝑝
)

0

𝜙 (𝑡) 𝑑𝑡 ≤

𝑛+𝑝−1

∑

𝑖=𝑛

∫

𝑑(𝑥
𝑖
,𝑥
𝑖+1
)

0

𝜙 (𝑡) 𝑑𝑡. (43)
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From (39) and (43), we have

∫

𝑑(𝑥
𝑛
,𝑥
𝑛+𝑝
)

0

𝜙 (𝑡) 𝑑𝑡 ≤

𝑛+𝑝−1

∑

𝑖=𝑛

𝜓
𝑖

(∫

𝑑(𝑥
0
,𝑥
1
)

0

𝜙 (𝑡) 𝑑𝑡) . (44)

Since 𝜓 ∈ Ψ it follows that {𝑥
𝑛
} is Cauchy sequence in 𝑋.

As 𝑋 is complete, there exists 𝑥∗ ∈ 𝑋 such that 𝑥
𝑛

→

𝑥
∗ as 𝑛 → ∞. Suppose 𝑓(𝜉) = 𝛿(𝜉, 𝐺𝜉) is 𝐺 orbitally lower

semicontinuous at 𝑥∗; then

𝛿 (𝑥
∗

, 𝐺𝑥
∗

) ≤ lim inf
𝑛

𝑓 (𝑥
𝑛
) = lim inf

𝑛

𝛿 (𝑥
𝑛
, 𝐺𝑥
𝑛
) = 0. (45)

Hence, {𝑥∗} = 𝐺𝑥
∗ because 𝛿(𝐴, 𝐵) = 0 implies 𝐴 = 𝐵 =

{𝑎}. Conversely, suppose that {𝑥∗} = 𝐺𝑥∗. Then 𝑓(𝑥
∗

) = 0 ≤

lim inf
𝑛
𝑓(𝑥
𝑛
).

Example 19. Let 𝑋 = {1, 3, 5, 7, 9, . . .} be endowed with the
usual metric 𝑑. Define 𝐺 : 𝑋 → 𝐵(𝑋) by

𝐺𝑥 = {

{𝑥 − 2, 𝑥 + 2} if 𝑥 ̸= 1,

{1} if 𝑥 = 1,
(46)

and 𝛼 : 𝑋 × 𝑋 → [0,∞) by

𝛼 (𝑥, 𝑦) =

{
{

{
{

{

1 if 𝑥 = 𝑦 = 1,

1

4

otherwise.
(47)

Take 𝜓(𝑡) = 𝑡/2 and 𝜙(𝑡) = (2/3)(𝑡 + 1)
−1/3 for all 𝑡 ≥

0. Clearly, 𝐺 is an 𝛼
∗-admissible subintegral type (𝛼∗, 𝜓, 𝛿)-

contractive mapping. Also, we have 𝑥
0
= 1 and 𝑥

1
= 1 ∈

𝐺𝑥
0
such that 𝛼(𝑥

0
, 𝑥
1
) = 1. Therefore, all the conditions of

Theorem 18 hold and 𝐺 has fixed points.

Example 20. Let 𝑋 = R be endowed with the usual metric 𝑑.
Define 𝐺 : 𝑋 → 𝐵(𝑋) by

𝐺𝑥 =

{
{

{
{

{

{⌊𝑥⌋ , ⌈𝑥⌉} if 𝑥 ≥ 0,

(

⌊𝑥⌋

4

,

⌈𝑥⌉

2

) if 𝑥 < 0,
(48)

and 𝛼 : 𝑋 × 𝑋 → [0,∞) by

𝛼 (𝑥, 𝑦) = {

1 if 𝑥, 𝑦 ≥ 0,
0 otherwise.

(49)

Take 𝜓(𝑡) = 𝑡/4 and 𝜙(𝑡) = 𝑒
−𝑡 for all 𝑡 ≥ 0. Then it

is easy to check that all the conditions of Theorem 18 hold.
Therefore 𝐺 has infinitely many fixed points.

Remark 21. Let 𝜙(𝑡) = 1 for all 𝑡 ≥ 0; Theorem 18 reduces to
Theorem 7 in Section 1.

Remark 22. Note that subadditivity of the integral was
needed in the proofs ofTheorems 14 and 18 in order to obtain
inequalities (26) and (43). It is natural to ask wether the
conclusions of Theorems 14 and 18 are valid if we replace
subintegral contractive conditions (13) and (33) by integral

contractive conditions (8) and (32), respectively. Looking at
our proofs, we can say that it will be true if the inequalities
(26) and (43) hold. Here we would like to mention that many
authors (see for example [14, 23]) while proving the results
on integral contractions have not assumed that the integral
is subadditive but indeed they used the subadditivity of the
integral in the proofs of their results while obtaining the
inequalities comparable to inequalities (26) and (43).

3. Application

In this section, we obtain some fixed point results for partially
ordered metric spaces, as consequences of aforementioned
results. Moreover, we apply our result to prove the existence
of solution for an integral equation.

Let 𝐴 and 𝐵 be subsets of a partially ordered set. We say
that 𝐴⪯

𝑟
𝐵, if for each 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, we have 𝑎 ⪯ 𝑏.

Theorem 23. Let (𝑋, ⪯, 𝑑) be a complete ordered metric space
and let 𝐺 : 𝑋 → 𝐶𝐿(𝑋) be a mapping such that for each 𝑥 ∈
𝑋 and 𝑦 ∈ 𝐺𝑥 with 𝑥 ⪯ 𝑦, there exists 𝑧 ∈ 𝐺𝑦 satisfying

∫

𝑑(𝑦,𝑧)

0

𝜙 (𝑡) 𝑑𝑡 ≤ 𝜓(∫

𝑑(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) , (50)

where 𝜓 ∈ Ψ and 𝜙 ∈ Φ
𝑠
. Assume that there exist 𝑥

0
∈ 𝑋

and 𝑥
1
∈ 𝐺𝑥

0
such that 𝑥

0
⪯ 𝑥
1
. Also, assume that 𝑥 ⪯

𝑦 implies 𝐺𝑥⪯
𝑟
𝐺𝑦. Then there exists an orbit {𝑥

𝑛
} of 𝐺 at 𝑥

0

and 𝑥 ∈ 𝑋 such that lim
𝑛→∞

𝑥
𝑛
= 𝑥. Moreover, 𝑥 is a fixed

point of 𝐺 if and only if 𝑓(𝜉) = 𝑑(𝜉, 𝐺𝜉) is 𝐺 orbitally lower
semicontinuous at 𝑥.

Proof. Define 𝛼 : 𝑋 × 𝑋 → [0,∞) by

𝛼 (𝑥, 𝑦) = {

1 if 𝑥 ⪯ 𝑦,
0 otherwise.

(51)

By using hypothesis of corollary and definition of 𝛼,
we have 𝛼(𝑥

0
, 𝑥
1
) = 1. As 𝑥 ⪯ 𝑦 implies 𝐺𝑥⪯

𝑟

𝐺𝑦, by using the definitions of 𝛼 and ⪯
𝑟
, we have

that 𝛼(𝑥, 𝑦) = 1 implies 𝛼∗(𝐺𝑥, 𝐺𝑦) = 1. Moreover, it
is easy to check that 𝐺 is an integral type (𝛼∗, 𝜓)-contract-
ive mapping. Therefore, by Theorem 14, there exists an
orbit {𝑥

𝑛
} of 𝐺 at 𝑥

0
and 𝑥 ∈ 𝑋 such that lim

𝑛→∞
𝑥
𝑛
= 𝑥.

Moreover,𝑥 is a fixed point of 𝐺 if and only if𝑓(𝜉) = 𝑑(𝜉, 𝐺𝜉)
is 𝐺 orbitally lower semicontinuous at 𝑥.

Considering 𝐺 : 𝑋 → 𝑋 and 𝜙(𝑡) = 1 for each 𝑡 ≥ 0,
Theorem 23 reduces to following result.

Corollary 24. Let (𝑋, ⪯, 𝑑) be a complete ordered metric
space and let 𝐺 : 𝑋 → 𝑋 be a nondecreasing mapping such
that, for each 𝑥 ∈ 𝑋 with 𝑥 ⪯ 𝐺𝑥, we have

𝑑 (𝐺𝑥, 𝐺
2

𝑥) ≤ 𝜓 (𝑑 (𝑥, 𝐺𝑥)) , (52)

where 𝜓 ∈ Ψ. Assume that there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
⪯

𝐺𝑥
0
. Then there exists an orbit {𝑥

𝑛
} of 𝐺 at 𝑥

0
and 𝑥 ∈

𝑋 such that lim
𝑛→∞

𝑥
𝑛
= 𝑥. Moreover, 𝑥 is a fixed point

of 𝐺 if and only if 𝑓(𝜉) = 𝑑(𝜉, 𝐺𝜉) is 𝐺 orbitally lower
semicontinuous at 𝑥.
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Consider an integral equation of the form

𝑥 (𝑡) = ∫

𝑏

𝑎

𝐾 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ [𝑎, 𝑏] , (53)

where 𝐾 : [𝑎, 𝑏] × [𝑎, 𝑏] × R → R is continuous and
nondecreasing.

Theorem 25. Assume that

(i) for 𝑢, V ∈ 𝐶([𝑎, 𝑏],R), with 𝑢(𝑡) ≤ V(𝑡) for each 𝑡 ∈
[𝑎, 𝑏], we have

|𝐾 (𝑡, 𝑠, 𝑢 (𝑡)) − 𝐾 (𝑡, 𝑠, V (𝑡))| ≤
𝜓 (𝑑 (𝑢, V))
(𝑏 − 𝑎)

(54)

for each 𝑡, 𝑠 ∈ [𝑎, 𝑏], where 𝜓 ∈ Ψ;
(ii) for each 𝑡, 𝑠 ∈ [𝑎, 𝑏], there exists 𝑥

0
∈ 𝐶([𝑎, 𝑏],R) such

that

𝑥
0
(𝑡) ≤ ∫

𝑏

𝑎

𝐾(𝑡, 𝑠, 𝑥
0
(𝑠)) 𝑑𝑠. (55)

Then there exists an iterative sequence {𝑥
𝑛
}, starting from 𝑥

0
,

and 𝑥 ∈ 𝐶([𝑎, 𝑏],R) such that lim
𝑛→∞

𝑥
𝑛
= 𝑥. Moreover, 𝑥 is

a solution of (53) if and only if 𝑓(𝜉) = 𝑑(𝜉, 𝑦) is lower
semicontinuous at 𝑥, where 𝑦(𝑡) = ∫𝑏

𝑎

𝐾(𝑡, 𝑠, 𝜉(𝑠))𝑑𝑠.

Proof. It is easy to see that 𝑋 = 𝐶([𝑎, 𝑏],R) is complete
with respect to the metric 𝑑(𝑥, 𝑦) = max

𝑡∈[𝑎,𝑏]
|𝑥(𝑡) − 𝑦(𝑡)|.

We define partial ordering on 𝑋 as follows: 𝑥 ⪯ 𝑦 if and
only if 𝑥(𝑡) ≤ 𝑦(𝑡) for each 𝑡 ∈ [𝑎, 𝑏]. Define 𝐺 : 𝑋 →

𝑋 by 𝐺𝑥 = 𝑦, where 𝑦(𝑡) = ∫

𝑏

𝑎

𝐾(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠, for each 𝑡, 𝑠 ∈

[𝑎, 𝑏]. From (ii), we have 𝑥
0
⪯ 𝐺𝑥

0
. For 𝑥 ∈ 𝑋, let 𝐺𝑥 =

𝑦 and 𝐺𝑦 = 𝑧; that is, 𝑦(𝑡) = ∫

𝑏

𝑎

𝐾(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠 and 𝑧(𝑡) =

∫

𝑏

𝑎

𝐾(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠, for each 𝑡, 𝑠 ∈ [𝑎, 𝑏]. Then, for each 𝑥 ∈

𝑋 with 𝑥 ⪯ 𝐺𝑥, we have

𝑑 (𝐺𝑥, 𝐺
2

𝑥) = max
𝑡∈[𝑎,𝑏]





𝑦 (𝑡) − 𝑧 (𝑡)






= max
𝑡∈[𝑎,𝑏]











∫

𝑏

𝑎

𝐾 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠

− ∫

𝑏

𝑎

𝐾(𝑡, 𝑠, 𝑦 (𝑠)) 𝑑𝑠











≤ max
𝑡∈[𝑎,𝑏]

∫

𝑏

𝑎





𝐾 (𝑡, 𝑠, 𝑥 (𝑠)) − 𝐾 (𝑡, 𝑠, 𝑦 (𝑠))





𝑑𝑠

≤

𝜓 (𝑑 (𝑥, 𝐺𝑥))

(𝑏 − 𝑎)

(𝑏 − 𝑎) .

(56)

That is 𝑑(𝐺𝑥, 𝐺2𝑥) ≤ 𝜓(𝑑(𝑥, 𝐺𝑥)), for each 𝑥 ∈ 𝑋 with 𝑥 ⪯

𝐺𝑥. Clearly, 𝐺 is nondecreasing. Therefore, all conditions
of Corollary 24 hold and the conclusions follow from
Corollary 24.
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