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We study a generalized two-dimensional nonlinear Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZK-BBM) equation, which is
in fact Benjamin-Bona-Mahony equation formulated in the ZK sense. Conservation laws for this equation are constructed by using
the new conservation theorem due to Ibragimov and the multiplier method. Furthermore, traveling wave solutions are obtained by

employing the (G'/G)-expansion method.

1. Introduction

Many phenomena in the real world are often described by
nonlinear evolution equations (NLEEs) and therefore such
equations play an important role in applied mathematics,
physics, and engineering. Unfortunately, there are no gen-
eral methods for obtaining exact solutions for the NLEEs.
However, various powerful methods have been developed
by many authors to construct exact solutions of NLEEs.
These methods include the inverse scattering transform
method [1], Darboux transformation [2], Hirotas bilinear
method [3], Badcklund transformation [4], multiple exp-
function method [5], the (G'/G)-expansion method [6], the
sine-cosine method [7], the F-expansion method [8], the exp-
function expansion method [9], and Lie symmetry method
[10].

In addition to exact solutions there is a need to find
conservation laws for the NLEEs. Conservation laws assist in
the numerical integration of partial differential equations [11],
theory of nonclassical transformations [12, 13], normal forms,
and asymptotic integrability [14]. Recently, conservation laws
have been used to derive exact solutions of partial differential
equations [15-17].

In this paper, we analyze one such NLEE, namely, the gen-
eralized (2 + 1)-dimensional nonlinear Zakharov-Kuznetsov-
Benjamin-Bona-Mahony (ZK-BBM) equation [18] that is
given by

u, +u, +a(u”), +b(uy, + ”yy)x = 0. (1)

Here, in (1) a, b, and n > 1 are real-valued constants. Several
authors (see, e.g., the papers [18-23]) have studied this
equation. The sine-cosine method, the tanh method, and the
extended tanh method were used in [I8, 19] and solitary
solutions were obtained. Some exact solutions were obtained
by Abdou [20, 21] by using the extended F-expansion method
and the extended mapping method with symbolic compu-
tation. Mahmoudi et al. [22] used the exp-function method
to obtain some solitary solutions and periodic solutions.
Bifurcation method was used by Song and Yang [23] to obtain
exact solitary wave solutions and kink wave solutions.

In this paper, conservation laws will be derived for
(1) using the new conservation theorem due to Ibragimov
[24] and the multiplier method [25]. Moreover, the (G'1G)-
expansion method [6] is used to obtain the traveling wave
solutions for (1).
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2. Conservation Laws

In this section, we construct conservation laws for (1). The
new conservation theorem due to Ibragimov [24] will be used
and later we also employ the multiplier method [25]. For the
notations used in this section, the reader is referred to [26].

To use the conservation theorem due to Ibragimov [24]
we need to know the Lie point symmetries of (1). Thus, we
first compute the symmetries of (1).

2.1. Lie Point Symmetries. The symmetry group of ZK-BBM
equation (1) will be generated by

9] 0
X=1 > Yo by = 2 > Yo by 5
’q’(xytu)ax+f (xytu)ay

5 5 2
3

> Vs t) 35, s Vs t, .
+8 (oytu) = 0 (xytu)
Applying the third prolongation prX to (1), we obtain the

following overdetermined system of linear partial differential
equations:

3 1
£=0, &-=0

5)16 =0, 51‘2 =0,
£ =0, £ =0,
£ =0, £ =o,
£=0 E=0
3)
M = 0, Mew = 05
Nuu = 0, 53 - 25)2/ =0,
2 _
&y = 2y =0,

anu i, + un, + urf, + bur], + bur,,, =0,
an’u'n — amd"n + W°E + amd™'E + buznyyu =0.

Solving the above partial differential equations, one obtains
the following three Lie point symmetries:

0 0 0
X, = a» X, = @’ X5 ==. (4)

2.2. Application of the Conservation Theorem. The general-
ized two-dimensional nonlinear ZK-BBM equation together
with its adjoint equation are given by

_ n—1 _
E,=u,+u,+anu’ u,+ b(uxt + “yy)x =0, (5a)

El=v, +v,+amd v, + b(vxt + Vyy)x =0. (5b)

The third-order Lagrangian for the system of (5a) and (5b) is
given by

L=v (ut +u, +and" u, + b(uxt + u}’Y)x) . (6)
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which can be reduced to the second-order Lagrangian:

n—-1
L=v (ut +u, +anu ux) by, —bviu,,. (7

We have the following three cases.

(i) We first consider Lie point symmetry X; = 0, of (1).
Corresponding to this symmetry the Lie characteris-
tic functions are W' = —u, and W?» = —v,_. Thus,
by using Ibragimov theorem [24], the components of
the conserved vector associated with the symmetry
X, = 0, are given by

T{ =bv,u,, —vu

Rl

Tic = vy — buxvtx’ (8)

T = by, —bu,v,,.
(ii) Likewise, Lie point symmetry X, = 0, has Lie
characteristic functions W' = -u, and w? =

—v,. Invoking Ibragimov theorem, we obtain the
conserved vector whose components are

t
T, = bvyu,, —vu,,

-1
Ty = —amd" u, — v, + by, —buyv, +bv,u,, (9)

y yoyy?

Y _ n—1
Ty = anvu™ “uy + vu, + vip — bvgu,, —buyv,,.

(iii) Finally, Lie point symmetry X, = 9, gives W' = —u,

2 X
and W~ = —v, and so the associated conserved vector
has components

t _ n-1
T, = anvuu”—~ +vu, —bvu,,,

X n—1
T, = —anvu" u, —vu, + bvu,, —buv, + by, (10)

Uyy>
y _
Ty = bvou,, — buv,,.

2.3. Application of the Multiplier Method. The zeroth-order
multiplier [25] for (1), namely, A(t, x, y,u), is given by

A=Cu+F(y), (11)
where C is a constant, and F(y) is arbitrary function of y.

Corresponding to the above multiplier, we have the following
two conserved vectors of (1):

1 2 2
T, = A {Zbuuxx +3u” - bux},
1
T, = 6D {anuuyy + dbnuuy, + 2buu,, + dbu,,

+ 6anu™ + 3nu® + 3u” - 2bnuu,

2 2
—bnu, — 2bu,u, - buy} ,
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T = % {Zbuuxy - buxuy} ,
T4 = < (uF () + BF () )
T, = % {3au"F (y) +buF" (y) + 3uF (y)
—bF' (y) u, + 2bF (y) ty +bE () uyy} ,
1) = 5 {26 (3) ey ~bF (D)}

(12)

Remark 1. Since F(y) is an arbitrary function in the multi-
plier, we obtain an infinitely many conservation laws for (1).

3. Exact Solutions Using
(G'/G)-Expansion Method

In this section, we use the (G'/G)-expansion method [6] to
obtain exact solutions of the ZK-BBM equation (1) for n = 2
andn = 3.

Making use of the wave variable

z=kx+k,y+kst +ky, 13)

where k;,i = 1,...,4 are constants, the ZK-BBM equation (1)
for n = 2 and n = 3 transforms to the third-order nonlinear
ordinary differential equations (ODEs),

kyy' (2) + kyy' (2) + 2ak,y (2) ¥/ (2)

n n (14)
+ bk k" (2) + bk, y" (2) = 0,
k' (2) + k' (2) + 3ak, v (2) v (2) -
15
+bkiksy'" (2) + bk (2) = 0,
respectively.
We look for solutions of (14) and (15) in the form:
M ’ i
G (2)
v(z) = ﬂ,-( ) , (16)
; G(2)
where G(z) satisfies the second-order ODE:
G" +AG' + uG =0, 17)

with A and y as constants. Here, the constant M will be
determined by the homogeneous balance procedure between
the highest order derivative and highest order nonlinear term
appearing in (14) and (15). &, ..., &/, are parameters to be
determined:

n=2. (18)

-93.0

u -92.9

-92.8

FIGURE 1: Profile of solution (21).

Application of the balancing procedure yields M = 2 and so
the solution of (14) is of the form

! ! 2
w(z):ﬂo+d1<(éT(ZZ)))+dz<(é((ZZ))) . (19

Substituting (17) into (14) and using (19) lead to an overdeter-
mined system of algebraic equations. Solving this system of
algebraic equations, with the aid of Mathematica, we obtain

8abuAik? + abA2k} — 6bAK? + 6bAK: + aA’

o 12abA k> ’
A (6bk, k; + 6bk?
o= - ( 143 z),
a
= 6bk, k; + 6bk§.

a
(20)

Now, using the general solution of (17) in (19), we have the
following three types of traveling wave solutions of the ZK-
BBM equation (1).

When A* — 4u > 0, we obtain the hyperbolic function
solutions:

u(x y.t)
=+, _A 1C1 sinh (6,2) + G, Cf>Sh (8,2)
2 C, cosh (8,2) + C, sinh (9, 2)
v, A v o, C, sinh (8,z) + C, C(.)sh (6,2) 2,
2 "'Cycosh(8,z) + C, sinh (8,2)

(21)

where z = kyx + kyy + kst + ky, 8, = (1/21/12 ~ 44, C,, and
C, are arbitrary constants.
The profile of solution (21) is given in Figure 1.
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FIGURE 2: Profile of solution (22).

When A* — 4y < 0, we obtain the trigonometric function
solutions

u(x, y,t)

=g+, (—% + 5, -C15in(8,2) + G, cos (522))

* C, cos (8,z) + C, sin (8,2)

s ~C, sin (6,2) + C, cos (8,2) \
2 2 Ccos(8,2) + Cysin(8,2) )
(22)

where z = k;x + ky y + kst + ky, 8, = (1/2)\/4p — A%, Cy, and
C, are arbitrary constants.

The profile of solution (22) is given in Figure 2.

When A* — 44 = 0, we obtain the rational function
solutions:

A C
)=+, | —= —2)
uxpt) = oo+ 1( 27 C +Cpz
N c X (23)
+szf2<——+—2>,
2 C,+Cyz

where z = kx + kyy + kst + k, C,, and C, are arbitrary
constants.
The profile of solution (23) is given in Figure 3:

n=73. (24)

Applying the balancing procedure, in this case, we obtain
M =1, so the solution of (15) is of the form:

1//(z)=s2¢0+&71(GGT(ZZ))>. (25)

FIGURE 3: Profile of solution (23).

Substituting (17) into (15) and making use of (25) lead to an
overdetermined system of algebraic equations, whose solu-
tion is

_ —2aA7 — 4bk5 + bk{Aa AT + 4bk]

“ 4abk? A% '
A= (2bk, ks + 2bK3
do _ ( 15+ 2) ) (26)
2va
— (2bk,ky + 2bk3)
o = . :

Consequently, as before, when A*> — 4y > 0, we obtain the
hyperbolic function solutions:

u(x, y,t)=dy+d,
x(—&+6
2

where z = k;x + ky y + kst + ky, 8, = (1/2)yA? — 4y, C, and
C, are arbitrary constants.

When A* - 4y < 0, we obtain the trigonometric function
solutions:

u(x, y,t) =9y + 9,
x<—&+8
2

where z = k;x + k,y + kst + ky, 8, = (1/2)\/4y - A?,C,,and
C, are arbitrary constants.

When A* — 4y = 0, we obtain the rational function
solutions:

C, sinh (8,z) + C, cosh (8,2)
'C, cosh (8,z) + C, sinh (8,2) )’
(27)

-C, sin (8,2) + C, cos (8,2)
> C,cos(8,z) + C,sin (8,2) /)’
(28)

A C
u(x,y,t):do+.971 <_5+C+—2CZ)’ (29)
1 2

where z = kx + kyy + kst + ky, C,, and C, are arbitrary
constants.



Abstract and Applied Analysis

4. Concluding Remarks

In this paper, conservation laws of the generalized (2 +
1)-dimensional nonlinear Zakharov-Kuznetsov-Benjamin-
Bona-Mahony equation were derived by using two different
methods: the new conservation theorem and the multi-
plier method. Moreover, the (G'/G)-expansion method was
employed to obtain traveling wave solutions of the gener-
alized (2 + 1)-dimensional Zakharov-Kuznetsov-Benjamin-
Bona-Mahony.
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