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We discuss the delay-independent asymptotic stability of Caputo type fractional-order neutral differential systems with multiple
discrete delays. Based on the algebraic approach and matrix theory, the sufficient conditions are derived to ensure the asymptotic
stability for all time-delay parameters. By applying the stability criteria, one can avoid solving the roots of transcendental equations.
The results obtained are computationally flexible and convenient. Moreover, an example is provided to illustrate the effectiveness
and applicability of the proposed theoretical results.

1. Introduction

Fractional calculus is regarded as a generalization of the
classical integer-order calculus to arbitrary order. Since the
fractional-order derivative has nonlocal property and weakly
singular kernels, it provides an excellent tool for the descrip-
tion of memory and hereditary properties of dynamical
processes. Recently, it has gained increasing interests from
researchers in various areas and has become one of the central
subjects [1–12]. Formore details on fractional calculus theory,
one can see the monographs of Miller and Ross [1], Podlubny
[2], Kilbas et al. [3], andDiethelm [4]. Lakshmikantham et al.
[5] and Baleanu et al. [6] have elaborated the theory of
fractional-order dynamics systems.

Stability is an important performancemetric for dynamic
systems. Meanwhile, time delay has an important effect
on the stability and performance of dynamic systems. In
the past few decades, numerous results on the stability
problem of integer-order delay differential systems have
been obtained (see [13–20] and references therein). Recently,
there are some results on the stability of fractional-order
differential systems [21–33]. For example, Matignon [23, 24]

discussed the asymptotic stability of linear fractional-order
autonomous systems. In terms of comparison principle [25,
26] and Lyapunov direct method [27], Li et al. [25, 27]
obtained the Mittag-Leffler stability theorems of fractional-
order systems. Linear matrix inequality (LMI) method [28]
and variational Lyapunov method [29] were also used to
investigate the stability of fractional-order systems. Wang
et al. [30] investigated Hyers-Ulam-Rassias stability of a
certain fractional differential equation by means of the fixed
point theorem. Moreover, Rivero et al. [31], Li and Zhang
[32], and Choi et al. [33] summarized and reviewed the
developments and advances in stability of fractional-order
dynamical systems, respectively.

It is worth pointing out that the notable contributions
have been made to the stability of fractional-order delay
differential systems [34–44]. Many methods have been
applied to discuss various types of stability problems for
fractional-order delay dynamical systems, such as Gronwall
integral inequality method [34–36], final-value theorem of
Laplace transform [37], Lyapunov functionalmethod [38, 39],
analytical and numerical methods [40], fixed point theorems
[41–43], and semigroup theory [42].
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In this paper, motivated by the aforementioned works, we
are devoted to discussing the delay-independent asymptotic
stability for linear Caputo fractional neutral differential
difference system with multiple discrete delays as follows:

𝐶
𝐷
𝛼
[𝑥 (𝑡) −

𝑚

∑

𝑖=1

𝐶
𝑖
𝑥 (𝑡 − 𝜏

𝑖
)] = 𝐴𝑥 (𝑡) +

𝑚

∑

𝑖=1

𝐵
𝑖
𝑥 (𝑡 − 𝜏

𝑖
) ,

𝑡 ≥ 0,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝐶𝐷𝛼𝑥(𝑡) denotes an 𝛼 order Caputo fractional
derivative of 𝑥(𝑡), 0 < 𝛼 < 1, 𝐴, 𝐵𝑖, 𝐶𝑖 are 𝑛 × 𝑛 constant
matrices, 𝜏𝑖 (𝑖 = 1, 2, . . . , 𝑚) are real constants with 0 <

𝜏
1

≤ 𝜏
2

≤ ⋅ ⋅ ⋅ ≤ 𝜏
𝑚

= 𝜏, the initial function 𝜑 ∈

C1([−𝜏, 0],R𝑛), and C1([−𝜏, 0],R𝑛) denotes space of
continuously differentiable functions mapping the
interval [−𝜏, 0] into R𝑛.

Compared to integer-order differential systems, the
research on the stability of fractional dynamical systems is
still at the stage of exploiting and developing. Different from
the methods in [34–43], we apply the algebraic approach
andmatrix theory to establish the delay-independent asymp-
totic stability criteria for system (1), which do not contain
information on delays. We establish the sufficient conditions
which ensure that all the roots of characteristic equation lie
in open left-half complex plane and are uniformly bounded
away from the imaginary axis. At the same time, by applying
these stability criteria, one can avoid solving the roots
of the transcendental equations. The results obtained are
computationally flexible and efficient.

The rest of this paper is organized as follows. In Section 2,
we present some definitions, notations, and lemmas related
to the main results. In Section 3, the sufficient conditions
of the delay-independent asymptotic stability for system (1)
are derived based on the algebraic approach and matrix
theory. In Section 4, an example is provided to illustrate
the effectiveness and applicability of the proposed criteria.
Finally, some concluding remarks are drawn in Section 5.

2. Preliminaries

In this section, we present some definitions of fractional
calculus (see [1–4]), notations, and lemmas used in the paper.

For the sake of convenience, some notations are intro-
duced firstly. Throughout this paper, det(𝐴) represents
the determinant of matrix 𝐴, 𝜎(𝐴) denotes the spec-
trum of matrix 𝐴, 𝜌[𝐴] represents the spectral radius of
matrix 𝐴, and arg(𝜎(𝐴)) stands for the principal argument
of 𝜎(𝐴) defined on (−𝜋, 𝜋].

(a) Riemann-Liouville’s fractional integral of order 𝑞 >

0 for a function 𝑓 : R+ → R𝑛 is given by

𝐷
−𝑞
𝑓 (𝑡) =

1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 > 0, (2)

where Γ(⋅) is Euler’s gamma function.

(b) Riemann-Liouville’s fractional derivative of order 𝑞

for a function 𝑓 : R+ → R𝑛 is given by

RL
𝐷
𝑞
𝑓 (𝑡) =

1

Γ (𝑚 − 𝑞)

𝑑
𝑚

𝑑𝑡𝑚
∫

𝑡

0

(𝑡 − 𝑠)
𝑚−𝑞−1

𝑓 (𝑠) 𝑑𝑠, (3)

where 0 ≤ 𝑚 − 1 ≤ 𝑞 < 𝑚, 𝑚 ∈ Z+.
(c) Caputo’s fractional derivative of order 𝑞 for a

function 𝑓 : R+ → R𝑛 is defined as

𝐶
𝐷
𝑞
𝑓 (𝑡) =

1

Γ (𝑚 − 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑚−𝑞−1

𝑓
(𝑚)

(𝑠) 𝑑𝑠, (4)

where 0 ≤ 𝑚−1 ≤ 𝑞 < 𝑚,𝑚 ∈ Z+. Here, 𝐶𝐷𝑞 is still
written as 𝐷𝑞.

(d) TheLaplace transformof a function 𝑓(𝑡) is defined as

𝐹 (𝑠) = £ [𝑓 (𝑡)] = ∫

+∞

0

𝑒
−𝑠𝑡
𝑓 (𝑡) 𝑑𝑡, 𝑠 ∈ C, (5)

where C denotes the complex plane and 𝑓(𝑡) is 𝑛-
dimensional vector-valued function. For 𝑚−1 ≤ 𝑞 <

𝑚, it follows from [1–4] that

£ [𝐷𝑞𝑓 (𝑡)] = 𝑠
𝑞£ [𝑓 (𝑡)] −

𝑚−1

∑

𝑘=0

𝑠
𝑞−𝑘−1

𝑓
(𝑘)
(0) . (6)

The following Mittag-Leffler function plays an
important role in the study on fractional-order
differential systems, which is considered as a natural
generalization of the exponential function.

(e) The Mittag-Leffler function in two parameters is
defined as

𝐸
𝑞,𝛽 (𝑧) =

+∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑘𝑞 + 𝛽)
, 𝑞 > 0, 𝛽 > 0, 𝑧 ∈ C. (7)

In particular, for 𝛽 = 1, theMittag-Leffler function in
one parameter is given by

𝐸𝑞 (𝑧) := 𝐸
𝑞,1 (𝑧) =

+∞

∑

𝑘=0

𝑧
𝑘

Γ (1 + 𝑘𝑞)
, 𝑞 > 0, 𝑧 ∈ C. (8)

Applying the method of steps [34], we obtain the follow-
ing lemma which generalizes well-known results of integer-
order delay differential systems [13] to fractional-order neu-
tral differential systems.

Lemma 1. For system (1), there exists a unique continuous
solution on [0, +∞).

Proof. For system (1), on the interval [−𝜏, 0], 𝑥(𝑡) = 𝜑(𝑡).
Thus, when 𝑡 ∈ [0, 𝜏

1
], system (1) is given by

𝐷
𝛼
𝑥 (𝑡) = 𝐴𝑥 (𝑡) +

𝑚

∑

𝑖=1

𝐵
𝑖
𝜑 (𝑡 − 𝜏

𝑖
) + 𝐷
𝛼
[

𝑚

∑

𝑖=1

𝐶
𝑖
𝜑 (𝑡 − 𝜏

𝑖
)] .

(9)
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Since ∑𝑚
𝑖=1

𝐵
𝑖
𝜑(𝑡 − 𝜏

𝑖
) + 𝐷

𝛼
[∑
𝑚

𝑖=1
𝐶
𝑖
𝜑(𝑡 − 𝜏

𝑖
)] is continuous

on [0, 𝜏
1
], from [3], we know that there is a unique contin-

uous solution for system (1) on [−𝜏, 𝜏
1
], which is denoted as

𝑥
1
(𝑡), 𝑡 ∈ [−𝜏, 𝜏

1
]. Furthermore, 𝑥

1
(𝑡) can be expressed by

the following form:

𝑥
1 (𝑡)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

𝐸
𝛼
(𝐴𝑡
𝛼
) 𝜑 (0)

+ ∫
𝑡

0
(𝑡 − 𝜃)

𝛼−1
𝐸
𝛼,𝛼

[𝐴(𝑡 − 𝜃)
𝛼
]

× {

𝑚

∑

𝑖=1

𝐵
𝑖
𝜑 (𝜃 − 𝜏

𝑖
)

+𝐷
𝛼
[

𝑚

∑

𝑖=1

𝐶
𝑖
𝜑 (𝜃 − 𝜏

𝑖
)]}𝑑𝜃, 𝑡 ∈ [0, 𝜏

1
] .

(10)

For 𝑡 ∈ [𝜏
1
, 2𝜏
1
], system (1) is given by

𝐷
𝛼
𝑥 (𝑡) = 𝐴𝑥 (𝑡) +

𝑚

∑

𝑖=1

𝐵
𝑖
𝑥
1
(𝑡 − 𝜏
𝑖
) + 𝐷
𝛼
[

𝑚

∑

𝑖=1

𝐶
𝑖
𝑥
1
(𝑡 − 𝜏
𝑖
)] .

(11)

Similarly, since ∑𝑚
𝑖=1

𝐵𝑖𝑥1(𝑡 − 𝜏𝑖) + 𝐷
𝛼
[∑
𝑚

𝑖=1
𝐶𝑖𝑥1(𝑡 − 𝜏𝑖)] is

continuous on [−𝜏, 2𝜏1], we obtain that 𝑥2(𝑡) is a unique
continuous solution of system (1) on [−𝜏, 2𝜏1] and

𝑥
2 (𝑡)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑥
1 (𝑡) , 𝑡 ∈ [−𝜏, 𝜏

1
] ,

𝐸
𝛼 (𝐴𝑡
𝛼
) 𝜑 (0)

+ ∫
𝑡

0
(𝑡 − 𝜃)

𝛼−1
𝐸𝛼,𝛼 [𝐴(𝑡 − 𝜃)

𝛼
]

× {

𝑚

∑

𝑖=1

𝐵𝑖𝑥1 (𝜃 − 𝜏𝑖)

+𝐷
𝛼
[

𝑚

∑

𝑖=1

𝐶
𝑖
𝑥
1
(𝜃 − 𝜏

𝑖
)]}𝑑𝜃, 𝑡 ∈ [𝜏

1
, 2𝜏
1
] .

(12)

Assume that system (1) has a unique
solution 𝑥

𝑘
(𝑡) on [(𝑘 − 1)𝜏

1
, 𝑘𝜏
1
]. For 𝑡 ∈ [𝑘𝜏

1
, (𝑘 + 1)𝜏

1
],

system (1) is given by

𝐷
𝛼
𝑥 (𝑡) = 𝐴𝑥 (𝑡) +

𝑚

∑

𝑖=1

𝐵𝑖𝑥𝑘 (𝑡 − 𝜏𝑖) + 𝐷
𝛼
[

𝑚

∑

𝑖=1

𝐶𝑖𝑥𝑘 (𝑡 − 𝜏𝑖)] .

(13)

Similarly, since ∑𝑚
𝑖=1

𝐵
𝑖
𝑥
𝑘
(𝑡−𝜏
𝑖
)+𝐷
𝛼
[∑
𝑚

𝑖=1
𝐶
𝑖
𝑥
𝑘
(𝑡−𝜏
𝑖
)] is con-

tinuous on [𝑘𝜏, (𝑘 + 1)𝜏], we obtain that 𝑥
𝑘+1

(𝑡) is a unique
continuous solution of system (1) on [𝑘𝜏

1
, (𝑘 + 1)𝜏

1
] and

𝑥
𝑘+1 (𝑡)

=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

𝑥
𝑘 (𝑡) , 𝑡 ∈ [−𝜏, 𝑘𝜏

1
] ,

𝐸
𝛼
(𝐴𝑡
𝛼
) 𝜑 (0)

+ ∫
𝑡

0
(𝑡 − 𝜃)

𝛼−1
𝐸
𝛼,𝛼

[𝐴(𝑡 − 𝜃)
𝛼
]

× {

𝑚

∑

𝑖=1

𝐵
𝑖
𝑥
𝑘
(𝜃 − 𝜏

𝑖
)

+𝐷
𝛼
[

𝑚

∑

𝑖=1

𝐶𝑖𝑥𝑘 (𝜃 − 𝜏𝑖)]}𝑑𝜃,

𝑡 ∈ [𝑘𝜏
1
, (𝑘 + 1) 𝜏1] .

(14)

According to the mathematical induction, we know that
system (1) has a unique continuous solution on [0, 𝑘𝜏

1
], 𝑘 =

1, 2, . . ..
Now, for any 𝑇 > 0, we assert that system (1) has a

unique continuous solution on [0, 𝑇]. In fact, three cases are
discussed as follows.

Case 1. When (𝑘 + 1)𝜏
1
= 𝑇, we know that the assertion is

true.

Case 2. When 0 < 𝑇 − (𝑘 + 1)𝜏
1 < 𝜏1, we only need to prove

that system (1) has a unique continuous solution on [𝜏1, 𝑇].
For 𝑡 ∈ [𝜏1, 𝑇], we denote 𝑡1 = 𝑡 − 𝜏1 ∈ [0, 𝑇 − 𝜏1] ⊂

[0, (𝑘 + 1)𝜏1], and we can use the similar proof to obtain the
conclusion.

Case 3. When 𝑇 − (𝑘 + 1)𝜏
1
> 𝜏
1
, we can repeat the above

process until the condition of Case 2 is satisfied.
Note that 𝑇 is an arbitrary positive real number; then,

we know that system (1) has a unique continuous solution
on [0, +∞). Therefore, the proof is completed.

Remark 2. Lemma 1 ensures the existence and uniqueness of
solution for system (1) on [0, +∞). Evidently, Caputo’s frac-
tional derivative of a constant is equal to zero; then, 𝑥(𝑡) ≡
0 is the zero solution of system (1).

Definition 3. The zero solution 𝑥(𝑡) ≡ 0 of system (1) is
called delay-independent globally asymptotically stable if,
for any initial function 𝜑(⋅) ∈ C1([−𝜏, 0],R𝑛), its analytic
solution 𝑥(𝑡) satisfies lim

𝑡→+∞
𝑥(𝑡) = 0 for all the time

delays 0 < 𝜏
1
≤ 𝜏
2
≤ ⋅ ⋅ ⋅ ≤ 𝜏

𝑚
.

Next, we discuss the characteristic equation and delay-
independent globally asymptotic stability of system (1).

From [1–4], the Laplace transform of Caputo fractional-
order derivative 𝐷𝛼𝑓(𝑡) is given as follows:

£ [𝐷𝛼𝑓 (𝑡)] = 𝑠
𝛼£ [𝑓 (𝑡)] − 𝑠𝛼−1𝑓 (0) , 0 < 𝛼 < 1.

(15)

Applying the Laplace transform on both sides of system (1)
yields

𝑠
𝛼£[𝑥 (𝑡) −

𝑚

∑

𝑖=1

𝐶𝑖𝑥 (𝑡 − 𝜏𝑖)] − 𝑠
𝛼−1

𝜑 (0) + 𝑠
𝛼−1

𝑚

∑

𝑖=1

𝐶𝑖𝜑 (−𝜏𝑖)

= 𝐴£ [𝑥 (𝑡)] +
𝑚

∑

𝑖=1

𝐵
𝑖
£ [𝑥 (𝑡 − 𝜏

𝑖
)] .

(16)

Note that

£ [𝑥 (𝑡 − 𝜏
𝑖
)] = 𝑒

−𝑠𝜏𝑖£ [𝑥 (𝑡)] + 𝑒−𝑠𝜏𝑖 ∫
0

−𝜏𝑖

𝑒
−𝑠𝑡
𝜑 (𝑡) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑚;

(17)
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thus, we obtain

Δ (𝑠, 𝜏
𝑖
) £ [𝑥 (𝑡)] = 𝑠

𝛼−1
𝜑 (0) − 𝑠

𝛼−1

𝑚

∑

𝑖=1

𝐶
𝑖
𝜑 (−𝜏
𝑖
)

+

𝑚

∑

𝑖=1

𝐵𝑖𝑒
−𝑠𝜏𝑖 ∫

0

−𝜏𝑖

𝑒
−𝑠𝑡
𝜑 (𝑡) 𝑑𝑡

+ 𝑠
𝛼

𝑚

∑

𝑖=1

𝐶𝑖𝑒
−𝑠𝜏𝑖 ∫

0

−𝜏𝑖

𝑒
−𝑠𝑡
𝜑 (𝑡) 𝑑𝑡,

(18)

where

Δ (𝑠, 𝜏
𝑖
) = [𝑠

𝛼
𝐼 − 𝐴 −

𝑚

∑

𝑖=1

𝐵
𝑖
𝑒
−𝑠𝜏𝑖 − 𝑠

𝛼

𝑚

∑

𝑖=1

𝐶
𝑖
𝑒
−𝑠𝜏𝑖] (19)

is the characteristic matrix of system (1). Multiplying 𝑠 on
both sides of (18) yields

Δ (𝑠, 𝜏𝑖) {𝑠£ [𝑥 (𝑡)]} = 𝑠{𝑠
𝛼−1

𝜑 (0) − 𝑠
𝛼−1

𝑚

∑

𝑖=1

𝐶𝑖𝜑 (−𝜏𝑖)

+

𝑚

∑

𝑖=1

𝐵𝑖𝑒
−𝑠𝜏𝑖 ∫

0

−𝜏𝑖

𝑒
−𝑠𝑡
𝜑 (𝑡) 𝑑𝑡

+ 𝑠
𝛼

𝑚

∑

𝑖=1

𝐶
𝑖
𝑒
−𝑠𝜏𝑖 ∫

0

−𝜏𝑖

𝑒
−𝑠𝑡
𝜑 (𝑡) 𝑑𝑡} .

(20)

By means of the final-value theorem of Laplace transform
[45] and Definition 3, if all the roots of characteristic
equation det[Δ(𝑠, 𝜏

𝑖
)] = 0 lie in open left-half complex plane

and are uniformly bounded away from the imaginary axis,
then the zero solution of system (1) is delay-independent
globally asymptotically stable.

Therefore, we immediately have the following conclusion.

Lemma 4. If all the roots of characteristic equation

det[𝑠𝛼𝐼 − 𝐴 −

𝑚

∑

𝑖=1

𝐵
𝑖
𝑒
−𝑠𝜏𝑖 − 𝑠

𝛼

𝑚

∑

𝑖=1

𝐶
𝑖
𝑒
−𝑠𝜏𝑖] = 0 (21)

lie in open left-half complex plane and are uniformly bounded
away from the imaginary axis, then the zero solution of system
(1) is delay-independent globally asymptotically stable.

Remark 5. As we know, when 𝛼 = 1 and 𝜏
1
= 𝜏
2
= ⋅ ⋅ ⋅ =

𝜏
𝑚
= 0, the characteristic equation

det[𝜆𝐼 − 𝐴 −

𝑚

∑

𝑖=1

(𝐵
𝑖
+ 𝜆𝐶
𝑖
)] = 0 (22)

is an algebraic equation of 𝜆, and (22) only has 𝑛 roots
distributed in the complex plane. However, the characteristic
equation det[Δ(𝑠, 𝜏𝑖)] = 0 has countably infinite roots
with 𝛼 = 1 and some 𝜏

𝑖
> 0 (see [13]). For 0 < 𝛼 <

1 and 𝜏
𝑖
> 0 (𝑖 = 1, 2, . . . , 𝑚), it is very difficult to solve the

roots of the transcendental equation (21) in practice. Based
on these considerations, we are devoted to establishing the
algebraic stability criteria of system (1) in the next section.

3. Stability Criteria for System (1)
In this section, we derive the sufficient conditions of delay-
independent globally asymptotic stability for system (1).
Applying the algebraic method, we investigate the distribu-
tion of roots for equation det[Δ(𝑠, 𝜏𝑖)] = 0 in any neighbor-
hood of the infinity and find a positive number 𝛿 > 0 such
that any characteristic root 𝑠 satisfiesR𝑒(𝑠) < −𝛿 < 0, where
R𝑒(𝑠) represents the real part of the complex number 𝑠.

Theorem 6. The zero solution 𝑥(𝑡) ≡ 0 of system (1) is delay-
independent globally asymptotically stable if the following
conditions are satisfied:

(𝐻
1
)

arg (𝜎 (𝐴))
 >

𝛼𝜋

2
,

(𝐻
2
) 𝜌 [

𝑚

∑

𝑖=1

𝐶
𝑖
] < 1,

(𝐻
3
) sup

R𝑒(𝑠)≥0

𝜌[(𝑠
𝛼
𝐼 − 𝐴)

−1
𝑚

∑

𝑖=1

(𝐵
𝑖
+ 𝑠
𝛼
𝐶
𝑖
)] < 1.

(23)

Proof. Note that | arg(𝜎(𝐴))| > 𝛼𝜋/2; then, all the roots
of equation det(𝜆𝐼 − 𝐴) = 0 satisfy | arg(𝜆)| > 𝛼𝜋/2.
Let 𝑠𝛼 = 𝜆; then, all the roots of equation det(𝑠𝛼𝐼 − 𝐴) =

0 satisfy | arg(𝑠)| > 𝜋/2; that is, R𝑒(𝑠) < 0. There-
fore, matrix 𝐴 is invertible and (𝑠

𝛼
𝐼 − 𝐴)

−1 is well defined
when | arg(𝜎(𝐴))| > 𝛼𝜋/2 andR𝑒(𝑠) ≥ 0.

For R𝑒(𝑠) ≥ 0, it follows from the characteristic
polynomial of system (1) that

detΔ (𝑠, 𝜏
𝑖
)

= det[𝑠𝛼𝐼 − 𝐴 −

𝑚

∑

𝑖=1

𝐵
𝑖
𝑒
−𝑠𝜏𝑖 − 𝑠

𝛼

𝑚

∑

𝑖=1

𝐶
𝑖
𝑒
−𝑠𝜏𝑖]

= det [𝑠𝛼𝐼 − 𝐴] det[𝐼 − (𝑠𝛼𝐼 − 𝐴)−1

×

𝑚

∑

𝑖=1

(𝐵
𝑖
+ 𝑠
𝛼
𝐶
𝑖
) 𝑒
−𝑠𝜏𝑖]

= det [𝑠𝛼𝐼 − 𝐴]

×

𝑛

∏

𝑗=1

(1 − 𝜆
𝑗
[(𝑠
𝛼
𝐼 − 𝐴)

−1
𝑚

∑

𝑖=1

(𝐵
𝑖
+ 𝑠
𝛼
𝐶
𝑖
) 𝑒
−𝑠𝜏𝑖]) .

(24)

Then, we have


𝜆
𝑗 [(𝑠
𝛼
𝐼 − 𝐴)

−1
𝑚

∑

𝑖=1

(𝐵𝑖 + 𝑠
𝛼
𝐶𝑖) 𝑒
−𝑠𝜏𝑖]



≤ 𝜌 [(𝑠
𝛼
𝐼 − 𝐴)

−1
𝑚

∑

𝑖=1

(𝐵
𝑖
+ 𝑠
𝛼
𝐶
𝑖
)]

𝑒
−𝑠𝜏 < 1,

𝑗 = 1, 2, . . . , 𝑛.

(25)

Combining (24) and (25), we have detΔ(𝑠, 𝜏
𝑖
) ̸= 0 for

R𝑒(𝑠) ≥ 0 and 𝜏
𝑖

> 0, 𝑖 = 1, 2, . . . , 𝑚; that is, if,
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conditions (𝐻
1
) and (𝐻

3
) are satisfied, then the

characteristic equation (21) implies thatR𝑒(𝑠) < 0.
Suppose that there exists a sequence of roots {𝑠

𝑛
} of

the characteristic equation (21) whose real parts are not
uniformly bounded away from zero; that is, R𝑒(𝑠

𝑛
) <

0 and R𝑒(𝑠
𝑛
) → 0 as 𝑛 → +∞. Note that any

eigenvalue 𝜆
𝑗
[(𝑠
𝛼
𝐼 − 𝐴)

−1
∑
𝑚

𝑖=1
(𝐵
𝑖
+ 𝑠
𝛼
𝐶
𝑖
)] is a continuous

function of 𝑠 forR𝑒(𝑠) ≥ 0; then, it follows from (𝐻
2
) that

𝜌[(𝑠
𝛼
𝐼 − 𝐴)

−1
𝑚

∑

𝑖=1

(𝐵
𝑖
+ 𝑠
𝛼
𝐶
𝑖
)] → 𝜌[

𝑚

∑

𝑖=1

𝐶
𝑖
] < 1,

𝑠 → +∞.

(26)

Hence, |𝜆
𝑗
[(𝑠
𝛼
𝐼 − 𝐴)

−1
∑
𝑚

𝑖=1
(𝐵
𝑖
+𝑠
𝛼
𝐶
𝑖
)]| reach themaximum

value for R𝑒(𝑠) ≥ 0. From condition (𝐻
3
), there exists a

positive constant 𝜀 such that

sup
R𝑒(𝑠)≥0

𝜌[(𝑠
𝛼
𝐼 − 𝐴)

−1
𝑚

∑

𝑖=1

(𝐵
𝑖
+ 𝑠
𝛼
𝐶
𝑖
)]

= sup
R𝑒(𝑠)≥0

max
1≤𝑗≤𝑛



𝜆
𝑗
[(𝑠
𝛼
𝐼 − 𝐴)

−1
𝑚

∑

𝑖=1

(𝐵
𝑖
+ 𝑠
𝛼
𝐶
𝑖
)]



= 1 − 𝜀.

(27)

Then, equality (27) implies that

sup
R𝑒(𝜁)=0

𝜌[(𝜁
𝛼
𝐼 − 𝐴)

−1
𝑚

∑

𝑖=1

(𝐵
𝑖
+ 𝜁
𝛼
𝐶
𝑖
)] ≤ 1 − 𝜀. (28)

When the positive integer 𝑛 is large enough, there exist a
positive constant 𝜀∗ (0 < 𝜀

∗
< 𝜀) and a characteristic

root 𝑠
𝑛
such that |R𝑒(𝑠

𝑛
)| is sufficiently small, R𝑒(𝑠

𝑛
) <

0 and


max
1≤𝑗≤𝑛

𝜆
𝑗
[(𝑠
𝛼

𝑛
𝐼 − 𝐴)

−1
𝑚

∑

𝑖=1

(𝐵
𝑖
+ 𝑠
𝛼

𝑛
𝐶
𝑖
)]

− sup
R𝑒(𝜁)=0

𝜌[(𝜁
𝛼
𝐼 − 𝐴)

−1
𝑚

∑

𝑖=1

(𝐵𝑖 + 𝜁
𝛼
𝐶𝑖)]



< 𝜀
∗
.

(29)

ForR𝑒(𝜁) = 0, from (28) and (29), we have



𝜆
𝑗 [(𝑠
𝛼

𝑛
𝐼 − 𝐴)

−1
𝑚

∑

𝑖=1

(𝐵𝑖 + 𝑠
𝛼

𝑛
𝐶𝑖)]



≤ sup
R𝑒(𝜁)=0

𝜌[(𝜁
𝛼
𝐼 − 𝐴)

−1
𝑚

∑

𝑖=1

(𝐵
𝑖
+ 𝜁
𝛼
𝐶
𝑖
)] + 𝜀

∗

≤ 1 − 𝜀 + 𝜀
∗
< 1, 𝑗 = 1, 2, . . . , 𝑛.

(30)

Choosing 𝑛 large enough yields



𝜆
𝑗
[(𝑠
𝛼

𝑛
𝐼 − 𝐴)

−1
𝑚

∑

𝑖=1

(𝐵
𝑖
+ 𝑠
𝛼

𝑛
𝐶
𝑖
) 𝑒
−𝑠𝜏𝑖]



< 1, 𝑗 = 1, 2, . . . , 𝑛.

(31)

Therefore, for R𝑒(𝑠
𝑛
) < 0 and R𝑒(𝑠

𝑛
) → 0 as 𝑛 → +∞,

one can obtain

detΔ (𝑠
𝑛, 𝜏𝑖) = det[𝑠𝛼

𝑛
𝐼 − 𝐴 −

𝑚

∑

𝑖=1

𝐵𝑖𝑒
−𝑠𝑛𝜏𝑖

− 𝑠
𝛼

𝑛

𝑚

∑

𝑖=1

𝐶
𝑖
𝑒
−𝑠𝑛𝜏𝑖] ̸= 0,

(32)

which contradicts the assumption that {𝑠
𝑛
} is a sequence of

roots of the characteristic equation (21). In view of Lemma 4,
the proof is completed.

Theorem 7. The zero solution 𝑥(𝑡) ≡ 0 of system (1) is delay-
independent globally asymptotically stable if the following
conditions are satisfied:

(𝐻1)
arg (𝜎 (𝐴))

 >
𝛼𝜋

2
, 0 < 𝛼 < 1,

(𝐻
4
) 𝜌 [

𝑚

∑

𝑖=1

𝜉
𝑖
𝐶
𝑖
] < 1, 𝜉

𝑖
∈ C,

𝜉𝑖
 ≤ 1, 𝑖 = 1, 2, . . . , 𝑚,

(𝐻
5) 𝜌 [(𝑠

𝛼
𝐼 − 𝐴)

−1
𝑚

∑

𝑖=1

(𝐵𝑖 + 𝑠
𝛼
𝐶𝑖) 𝜉𝑖] < 1,

R𝑒 (𝑠) = 0, 𝜉
𝑖
∈ C,

𝜉𝑖
 = 1, 𝑖 = 1, 2, . . . , 𝑚.

(33)

Proof. According to condition (𝐻
1
) and the proof

of Theorem 6, we know that matrix 𝐴 is invertible
and (𝑠

𝛼
𝐼 − 𝐴)

−1 is well defined when | arg(𝜎(𝐴))| >

𝛼𝜋/2 andR𝑒(𝑠) = 0.
On the one hand, any eigenvalue 𝜆[(𝑠

𝛼
𝐼 − 𝐴)

−1

(∑
𝑚

𝑖=1
𝜉
𝑖
𝐵
𝑖

+ 𝑠
𝛼
∑
𝑚

𝑖=1
𝜉
𝑖
𝐶
𝑖
)] is an algebraic function

of (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑚
) with |𝜉

𝑖
| < 1 and is continuous with

|𝜉
𝑖
| ≤ 1, 𝑖 = 1, 2, . . . , 𝑚. An application of the maximum

modulus principle yields that

𝜌[(𝑠
𝛼
𝐼 − 𝐴)

−1
(

𝑚

∑

𝑖=1

𝜉
𝑖
𝐵
𝑖
+ 𝑠
𝛼

𝑚

∑

𝑖=1

𝜉
𝑖
𝐶
𝑖
)] < 1,

R𝑒 (𝑠) = 0, 𝜉
𝑖 ∈ C,

𝜉𝑖
 = 1,

(34)

is equivalent to

𝜌[(𝑠
𝛼
𝐼 − 𝐴)

−1
(

𝑚

∑

𝑖=1

𝜉
𝑖
𝐵
𝑖
+ 𝑠
𝛼

𝑚

∑

𝑖=1

𝜉
𝑖
𝐶
𝑖
)] < 1,

R𝑒 (𝑠) = 0, 𝜉
𝑖
∈ C,

𝜉𝑖
 ≤ 1.

(35)

In view of the expression of (𝑠𝛼𝐼 − 𝐴)−1(∑𝑚
𝑖=1

𝜉
𝑖
𝐵
𝑖
+

𝑠
𝛼
∑
𝑚

𝑖=1
𝜉
𝑖
𝐶
𝑖
), asR𝑒(𝑠) = 0 and 𝑠 → ∞, one can obtain

𝜌[(𝑠
𝛼
𝐼 − 𝐴)

−1
(

𝑚

∑

𝑖=1

𝜉𝑖𝐵𝑖 + 𝑠
𝛼

𝑚

∑

𝑖=1

𝜉𝑖𝐶𝑖)] → 𝜌[

𝑚

∑

𝑖=1

𝜉𝑖𝐶𝑖] < 1,

∀ 𝜉
𝑖
∈ C,

𝜉𝑖
 ≤ 1.

(36)
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It follows from (36) that

sup
R𝑒(𝑠)=0

𝜌[(𝑠
𝛼
𝐼 − 𝐴)

−1
(

𝑚

∑

𝑖=1

𝜉
𝑖
𝐵
𝑖
+ 𝑠
𝛼

𝑚

∑

𝑖=1

𝜉
𝑖
𝐶
𝑖
)] ≤ 1,

∀ 𝜉
𝑖
∈ C,

𝜉𝑖
 ≤ 1.

(37)

Applying the maximum modulus principle on the
unbounded region {𝑠|𝑠 ∈ C,R𝑒(𝑠) ≥ 0}, then (35) implies
that

𝜌[(𝑠
𝛼
𝐼 − 𝐴)

−1
(

𝑚

∑

𝑖=1

𝜉𝑖𝐵𝑖 + 𝑠
𝛼

𝑚

∑

𝑖=1

𝜉𝑖𝐶𝑖)] < 1,

R𝑒 (𝑠) ≥ 0, 𝜉
𝑖
∈ C,

𝜉𝑖
 ≤ 1.

(38)

On the other hand, suppose that there exists some 𝑠
0
∈

{𝑠|𝑠 ∈ C,R𝑒(𝑠) ≥ 0} such that

det[𝑠𝛼
0
𝐼 − 𝐴 −

𝑚

∑

𝑖=1

𝐵
𝑖
𝑒
−𝑠0𝜏𝑖 − 𝑠

𝛼

0

𝑚

∑

𝑖=1

𝐶
𝑖
𝑒
−𝑠0𝜏𝑖] = 0,

𝑠
0
∈ {𝑠 |𝑠 ∈ C,R𝑒 (𝑠) ≥ 0} .

(39)

Choose 𝜉0
𝑖
= 𝑒
−𝑠0𝜏𝑖 such that |𝜉0

𝑖
| ≤ 1, 𝑖 = 1, 2, . . . , 𝑚. It

follows from (39) that

1 ∈ 𝜎[(𝑠
𝛼

0
𝐼 − 𝐴)

−1
(

𝑚

∑

𝑖=1

𝐵
𝑖
𝑒
−𝑠0𝜏𝑖 + 𝑠

𝛼

0

𝑚

∑

𝑖=1

𝐶
𝑖
𝑒
−𝑠0𝜏𝑖)] ,

𝑠
0
∈ {𝑠 |𝑠 ∈ C,R𝑒 (𝑠) ≥ 0} ,

(40)

which contradicts inequality (38). Therefore, if
conditions (𝐻1), (𝐻4), and (𝐻5) are satisfied, then the
characteristic equation (21) implies thatR𝑒(𝑠) < 0.

The rest of the proof is similar to that ofTheorem 6; then,
the conclusion holds.

According to the proof of Theorem 7, we have the result
as follows.

Corollary 8. The zero solution 𝑥(𝑡) ≡ 0 of system (1) is delay-
independent globally asymptotically stable if the following
conditions are satisfied:

(𝐻1)
arg (𝜎 (𝐴))

 >
𝛼𝜋

2
, 0 < 𝛼 < 1,

(𝐻
4
) 𝜌 [

𝑚

∑

𝑖=1

𝜉
𝑖
𝐶
𝑖
] < 1, 𝜉

𝑖
∈ C,

𝜉𝑖
 ≤ 1, 𝑖 = 1, 2, . . . , 𝑚,

(𝐻
6) 𝜌 [(𝑠

𝛼
𝐼 − 𝐴)

−1
𝑚

∑

𝑖=1

(𝐵𝑖 + 𝑠
𝛼
𝐶𝑖) 𝜉𝑖] < 1,

R𝑒 (𝑠) ≥ 0, 𝜉
𝑖
∈ C,

𝜉𝑖
 ≤ 1, 𝑖 = 1, 2, . . . , 𝑚.

(41)

Assume that | arg(𝜎(𝐴))| > 𝛼𝜋/2, 0 < 𝛼 < 1. Define the
following matrices:

𝐿 = (𝐼 − 𝐴)
−1

𝑚

∑

𝑖=1

(𝐵
𝑖
+ 𝐶
𝑖
) ,

𝑀 = (𝐼 − 𝐴)
−1

𝑚

∑

𝑖=1

(𝐵
𝑖
− 𝐶
𝑖
) ,

𝑁 = (𝐼 − 𝐴)
−1
(𝐼 + 𝐴) .

(42)

Let

𝑠
𝛼
=
1 − 𝑧

1 + 𝑧
, R𝑒 (𝑠) ≥ 0, 0 < 𝛼 < 1; (43)

then, we have |𝑧| ≤ 1.

Theorem 9. The zero solution 𝑥(𝑡) ≡ 0 of system (1) is delay-
independent globally asymptotically stable if the following
conditions are satisfied:

(𝐻
1
)

arg (𝜎 (𝐴))
 >

𝛼𝜋

2
, 0 < 𝛼 < 1,

(𝐻
2
) 𝜌 [

𝑚

∑

𝑖=1

𝐶
𝑖
] < 1,

(𝐻
7
) sup
|𝑧|≤1

𝜌 [(𝐼 − 𝑧𝑁)
−1
(𝐿 + 𝑧𝑀)] < 1.

(44)

Proof. From Theorem 6, we only need to prove that the
following equality holds:

(𝑠
𝛼
𝐼 − 𝐴)

−1
𝑚

∑

𝑖=1

(𝐵
𝑖
+ 𝑠
𝛼
𝐶
𝑖
) = (𝐼 − 𝑧𝑁)

−1
(𝐿 + 𝑧𝑀) ,

R𝑒 (𝑠) ≥ 0, |𝑧| ≤ 1.

(45)

In fact, it is easy to obtain

𝐼 − 𝑧𝑁 = [𝐼 −
1 − 𝑠
𝛼

1 + 𝑠𝛼
(𝐼 − 𝐴)

−1
(𝐼 + 𝐴)]

= [(1 + 𝑠
𝛼
) 𝐼 − (1 − 𝑠

𝛼
) (𝐼 − 𝐴)

−1
(𝐼 + 𝐴)] (1 + 𝑠

𝛼
)
−1

= (𝐼 − 𝐴)
−1
[(𝐼 − 𝐴) (1 + 𝑠

𝛼
) − (1 − 𝑠

𝛼
) (𝐼 + 𝐴)]

× (1 + 𝑠
𝛼
)
−1

= 2(𝐼 − 𝐴)
−1
(𝑠
𝛼
𝐼 − 𝐴) (1 + 𝑠

𝛼
)
−1
.

(46)
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For R𝑒(𝑠) ≥ 0, it follows from (𝐻
1
) and (43) that |𝑧| ≤ 1;

then, matrix (𝐼 − 𝑧𝑁) is invertible. Hence,

𝐿 + 𝑧𝑀 = [(𝐼 − 𝐴)
−1

𝑚

∑

𝑖=1

(𝐵𝑖 + 𝐶𝑖)

+
1 − 𝑠
𝛼

1 + 𝑠𝛼
(𝐼 − 𝐴)

−1

𝑚

∑

𝑖=1

(𝐵
𝑖
− 𝐶
𝑖
)]

= (𝐼 − 𝐴)
−1
[

𝑚

∑

𝑖=1

(𝐵
𝑖
+ 𝐶
𝑖
) +

1 − 𝑠
𝛼

1 + 𝑠𝛼

𝑚

∑

𝑖=1

(𝐵
𝑖
− 𝐶
𝑖
)]

= (𝐼 − 𝐴)
−1
[

𝑚

∑

𝑖=1

(𝐵𝑖 + 𝐶𝑖) (1 + 𝑠
𝛼
)

+ (1 − 𝑠
𝛼
)

𝑚

∑

𝑖=1

(𝐵
𝑖
− 𝐶
𝑖
)] (1 + 𝑠

𝛼
)
−1

= 2(𝐼 − 𝐴)
−1

𝑚

∑

𝑖=1

(𝐵
𝑖
+ 𝑠
𝛼
𝐶
𝑖
) (1 + 𝑠

𝛼
)
−1
.

(47)

Combining (46) and (47) yields that (45) holds.Therefore, we
complete the proof.

Next, the asymptotic stability criteria for two special cases
of system (1) are presented.

(i) When 𝐶𝑖 = 0, 𝑖 = 1, 2, . . . , 𝑚, system (1) reduces to
Caputo fractional-order linear retarded type differen-
tial difference systems withmultiple delays as follows:

𝐷
𝛼
𝑥 (𝑡) = 𝐴𝑥 (𝑡) +

𝑚

∑

𝑖=1

𝐵
𝑖
𝑥 (𝑡 − 𝜏

𝑖
) , 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(48)

where 𝐷𝛼𝑥(𝑡) denotes an 𝛼 order Caputo fractional
derivative of 𝑥(𝑡), 0 < 𝛼 < 1, 𝐴, 𝐵

𝑖
are 𝑛×𝑛 constant

matrices, 𝜏
𝑖
(𝑖 = 1, 2, . . . , 𝑚) are real constants

with 0 < 𝜏
1
≤ 𝜏
2
≤ ⋅ ⋅ ⋅ ≤ 𝜏

𝑚
= 𝜏, 𝜑 ∈ C([−𝜏, 0],R𝑛),

and C([−𝜏, 0],R𝑛) denotes space of continuous func-
tions mapping the interval [−𝜏, 0] into R𝑛.

Similar to Lemma 1, if the initial function 𝜑 ∈

C([−𝜏, 0],R𝑛), then there exists a unique continuous
solution for system (48) on [0, +∞).

Corollary 10. The zero solution 𝑥(𝑡) ≡ 0 of system (48) is
delay-independent globally asymptotically stable if the follow-
ing conditions are satisfied:

(𝐻
1
)

arg (𝜎 (𝐴))
 >

𝛼𝜋

2
, 0 < 𝛼 < 1,

(𝐻
8
) 𝜌 [(𝑠

𝛼
𝐼 − 𝐴)

−1
𝑚

∑

𝑖=1

𝐵
𝑖
𝜉
𝑖
] < 1,

R𝑒 (𝑠) = 0, 𝜉
𝑖
∈ C,

𝜉𝑖
 = 1.

(49)

(ii) When 𝜏
𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑚, system (1) reduces to

Caputo fractional-order linear autonomous differen-
tial systems:

[𝐼 −

𝑚

∑

𝑖=1

𝐶𝑖]𝐷
𝛼
𝑥 (𝑡) = [𝐴 +

𝑚

∑

𝑖=1

𝐵𝑖]𝑥 (𝑡) , 𝑡 ≥ 0,

𝑥 (0) = 𝑥
0
,

(50)

where 𝐷𝛼𝑥(𝑡) denotes an 𝛼 order Caputo fractional
derivative of 𝑥(𝑡), 0 < 𝛼 < 1, and 𝐴, 𝐵𝑖, 𝐶𝑖 are 𝑛 ×
𝑛 constant matrices.

An application of the results in [23, 24] yields the
following conclusion.

Corollary 11. The zero solution 𝑥(𝑡) ≡ 0 of system (50) is
globally asymptotically stable if the following conditions are
satisfied:

(𝐻
9
) det[𝐼 −

𝑚

∑

𝑖=1

𝐶
𝑖
] ̸= 0,

(𝐻10)
arg (𝜎 (𝐺))

 >
𝛼𝜋

2
,

𝐺 = (𝐼 −

𝑚

∑

𝑖=1

𝐶
𝑖
)

−1

(𝐴 +

𝑚

∑

𝑖=1

𝐵
𝑖
) .

(51)

Remark 12. When det[𝐼 − ∑
𝑚

𝑖=1
𝐶
𝑖
] = 0, system (50) reduces

to linear fractional singular differential system. The stability
analysis of linear fractional singular (delay) differential sys-
tems will become our future investigative works.

4. An Illustrative Example

The following example is presented to illustrate the effective-
ness and applicability of the proposed stability criteria.

Example 1. Consider system (1) with

𝐴 = [
−4 2

4 −10
] , 𝐵

1
= [

0 1

−2 3
] ,

𝐵
2
= [

3 −1

2 0
] , 𝐶

1
=
[
[

[

2

3
−
1

6
1

3
−
1

6

]
]

]

,

𝐶
2
=
[
[

[

−
1

6

1

6

−
1

3

2

3

]
]

]

, 𝛼 =
1

2
,

𝜏
1
= 1, 𝜏

2
= 2, 𝜏 = 2.

(52)

The initial function is given by 𝜑(𝑡) = 𝑡, 𝑡 ∈ [−2, 0]. Let

Θ = (𝑠
𝛼
𝐼 − 𝐴)

−1
(𝜉
1
𝐵
1
+ 𝜉
2
𝐵
2
+ 𝑠
𝛼
𝜉
1
𝐶
1
+ 𝑠
𝛼
𝜉
2
𝐶
2
) ,

R𝑒 (𝑠) = 0,
𝜉1
 =

𝜉2
 = 1.

(53)
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By computation, the eigenvalues of matrix Θ give

𝜆
1 (Θ) = (𝑠

𝛼
+ 6)
−1
(𝜉
1
+ 2𝜉
2
+
1

2
𝑠
𝛼
𝜉
1
+
1

3
𝑠
𝛼
𝜉
2
) ,

𝜆
2 (Θ) = (𝑠

𝛼
+ 8)
−1
(2𝜉
1
+ 𝜉
2
+
1

3
𝑠
𝛼
𝜉
1
+
1

2
𝑠
𝛼
𝜉
2
) .

(54)

Note that 𝜎(𝐴) = {−6, −8}; then, we have

arg (𝜎 (𝐴))
 = 𝜋 >

𝛼𝜋

2
, 𝛼 =

1

2
. (55)

It is not difficult to verify that

𝜌 [𝜉1𝐶1 + 𝜉2𝐶2] < 1,
𝜉1
 ≤ 1,

𝜉2
 ≤ 1,

𝜌 [Θ] < 1, R𝑒 (𝑠) = 0,
𝜉1
 = 1,

𝜉2
 = 1.

(56)

Thus, conditions (𝐻
1), (𝐻3), and (𝐻4) are satisfied. There-

fore, it follows fromTheorem 7 that the zero solution 𝑥(𝑡) ≡

0 of system (1) with the coefficient matrices (52) is delay-
independent globally asymptotically stable.

In fact, the characteristic equation of system (1) with the
coefficient matrices (52) can be expressed as

det[𝑠𝛼𝐼 − 𝐴 −

𝑚

∑

𝑖=1

𝐵
𝑖
𝑒
−𝑠𝜏𝑖 − 𝑠

𝛼

𝑚

∑

𝑖=1

𝐶
𝑖
𝑒
−𝑠𝜏𝑖] = 0. (57)

Obviously, the characteristic equation (57) includes the tran-
scendental terms. It is very difficult that one precisely solves
the roots of (57). An application of Theorem 7 yields that
the zero solution 𝑥(𝑡) ≡ 0 of system (1) with (52) is delay-
independent globally asymptotically stable.

5. Conclusions

In this paper, the delay-independent asymptotic stability
of linear fractional-order linear neutral differential systems
with multiple discrete delays has been discussed. We have
synchronously taken into account the factors of such systems
including Caputo’s fractional-order derivative, state delays.
The asymptotic stability criteria have been derived based on
the algebraic approach and matrix theory, which ensure the
asymptotic stability for all time-delay parameters. By apply-
ing these stability criteria, one can avoid solving the roots
of transcendental equations. The results obtained are com-
putationally flexible and efficient. In fact, the characteristic
equation of system (1) with (52) includes the transcendental
terms. Generally, it is very difficult that one precisely solves
the roots of characteristic equation. In Example 1, we analyse
the distribution of characteristic roots when the coefficient
matrices satisfy the appropriate conditions. We only need
to check the spectrum range under conditions (𝐻1), (𝐻4),
and (𝐻5). An application of Theorem 7 yields that the zero
solution 𝑥(𝑡) ≡ 0 of system (1) is delay-independent globally
asymptotically stable. Example 1 shows that Theorem 7 is
computationally flexible and efficient. The stability analysis
of linear fractional singular (delay) differential systems will
become our future investigative works.
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