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This paper deals with the two singular boundary values problems of second order. Two singular points are both boundary values
points of the differential equation. The numerical solutions are developed by modified differential transform method (DTM) for
expanded point. Linear and nonlinear models are solved by this method to get more reliable and efficient numerical results. It can
also solve ordinary differential equations where the traditional one fails. Besides, we give the convergence of this new method.

1. Introduction

In the present paper, we consider the following two singular
boundary value problems (BVPs) of second order:

𝑢
󸀠󸀠

(𝑡) +

𝑓 (𝑡)

𝑡 (𝑡 − 1)

𝑢
󸀠

(𝑡) +

𝑔 (𝑡)

𝑡 (𝑡 − 1)

𝑁 (𝑢 (𝑡))

=

ℎ (𝑡)

𝑡 (𝑡 − 1)

, 0 < 𝑡 < 1, 𝑢 (0) = 𝑝, 𝑢 (1) = 𝑞,

(1)

where 𝑓(𝑡), 𝑔(𝑡), and ℎ(𝑡) are known and continuous func-
tions, 𝑡 ∈ (0, 1), and 𝑁(𝑢) is a nonlinear function of 𝑢. The
equation is singular at these two boundary values 𝑡 = 0, 1.

Scientists and engineers have been interested in the
singular equation because of its importance in many appli-
cations such as physical and mathematical models. There are
many research directions on these equations. Some studied
their qualitative properties [1, 2]. For example, Bartolucci
and Montefusco [1] studied the concentration-compactness
problem and the mass quantization properties. Some others
used theorems to establish the existence and uniqueness of
solution [3, 4]. For example, Guo et al. [3] got the existence
and uniqueness of solution using a fixed point theorem.

Recently great attention had been paid to numerical
solutions [5–13]. For example, Duan and Rach [5] solved
boundary value problems using a new modified Adomian

decomposition method. Chowdhury and Hashim [7] used
homotopy asymptotic method for finding the approximate
solutions. Wazwaz [6, 8, 9] used Adomian decomposition
method to get the numerical solutions.

Puhov in 1976 [14] proposed the concept of DTM. DTM
is the extension of Taylor series method and had been
applied to solve analytic solutions of ordinary [15, 16], partial
[17–19], differential-algebraic equations [20, 21], differential-
difference equations [22, 23], and integrodifferential equa-
tions [24, 25]. Numerical solutions are also obtained [26].
Furthermore, Alquran and Al-Khaled [27] applied DTM to
solve some eigenvalue problems.

In the present paper, there are two singular points and
these two singular points are just boundary values of the
equation. Traditional DTM only can solve one-point singular
BVP or two-point BVP (but not both the two points are
just boundary values). We add some operation properties
of DTM; then DTM can be used to calculate this type of
problem. Furthermore, we have a convergent analysis of this
method.

2. Modified Technique

Now, we have a brief description of standard DTM.
Let 𝑢(𝑡) be an analytic function in a domain 𝐷 and let

𝑡 = 𝑎 represent any point in 𝐷. The function 𝑢(𝑡) is then
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represented by a power series whose center is located at 𝑎.
Then Taylor series expansion of 𝑢(𝑡) is expressed as

𝑢 (𝑡) =

∞

∑

𝑘=0

(𝑡 − 𝑎)
𝑘

𝑘!

[

𝑑
𝑘
𝑢 (𝑡)

𝑑
𝑘

]

𝑡=𝑎

, 𝑡 ∈ 𝐷. (2)

The particular case of (2) when 𝑎 = 0 is referred to as the
Maclaurin series expressed as

𝑢 (𝑡) =

∞

∑

𝑘=0

𝑡
𝑘

𝑘!

[

𝑑
𝑘
𝑢 (𝑡)

𝑑
𝑘

]

𝑡=0

, 𝑡 ∈ 𝐷. (3)

The differential transformed function 𝑢(𝑡) is defined as

𝑈 (𝑘) ≡

𝐻
𝑘

𝑘!

[

𝑑
𝑘
(𝑡)

𝑑𝑡
𝑘
]

𝑡=0

, 𝑘 = 0, 1, 2, . . . , (4)

where 𝑈(𝑘) represents the transformed function and 𝑢(𝑡) is
the original function. The differential spectrum of 𝑈(𝑘) is
confined in the interval 𝑡 ∈ [0,𝐻]; 𝐻 is the given constant
number.

The differential inverse transform of 𝑈(𝑘) is defined as

𝑢 (𝑡) =

∞

∑

𝑘=0

(

𝑡

𝐻

)

𝑘

𝑈 (𝑘) . (5)

From the definition, the differential transformation tech-
nique is based upon the Taylor series expansion. In real
applications, it is found that the number of arguments
required to restore the unknown function precisely can be
reduced by specifying an appropriate value of the constant𝐻.
In other words, the function 𝑢(𝑡) can be expressed in terms of
a finite series as follows:

𝑢 (𝑡) =

𝑛

∑

𝑘=0

(

𝑡

𝐻

)

𝑘

𝑈 (𝑘) . (6)

Next, we state some important properties of the Taylor
differential transformation derived using the expressions in
(4) and (5) which are needed in the sequel.

3. The Operation Properties of
Differential Transformation

If 𝑈(𝑘) and 𝑉(𝑘) are the transformed functions correspond-
ing to 𝑢(𝑡) and V(𝑡), then the fundamental mathematical
operations of differential transformation are listed as follows.
(For 9–12 is new, the proof of the others can see references.)

(1) If 𝑧(𝑡) = 𝑢(𝑡) ± V(𝑡) then 𝑍(𝑘) = 𝑈(𝑘) ± 𝑉(𝑘).
(2) If 𝑧(𝑡) = 𝑎𝑢(𝑡) then 𝑍(𝑘) = 𝑎𝑈(𝑘).
(3) If 𝑧(𝑡) = 𝑑

𝑚
𝑢(𝑡)/𝑑𝑡

𝑚 then𝑍(𝑘) = (𝑘+1)(𝑘+2) ⋅ ⋅ ⋅ (𝑘+

𝑚)𝑈(𝑘 + 𝑚).
(4) If 𝑧(𝑡) = 𝑢(𝑡)V(𝑡) then 𝑍(𝑘) = ∑

𝑘

𝑖=0
𝑢(𝑖)V(𝑘 − 𝑖).

(5) If 𝑧(𝑡) = 𝑡
𝑚 then

𝑍 (𝑘) = 𝛿 (𝑘 − 𝑚) = {

1, 𝑘 = 𝑚,

0, 𝑘 ̸=𝑚.

(7)

(6) If 𝑧(𝑡) = exp(𝑏𝑡) then 𝑍(𝑘) = 𝑏
𝑘
/𝑘!.

(7) If 𝑧(𝑡) = sin(𝑐𝑡+𝑎) then𝑍(𝑘) = (𝑐
𝑘
/𝑘!) sin((𝜋𝑘/2)+𝑎).

(8) If 𝑧(𝑡) = cos(𝑐𝑡 + 𝑎) then 𝑍(𝑘) = (𝑐
𝑘
/𝑘!) cos((𝜋𝑘/2) +

𝑎).
Next, the following lemmas are new, so we have to
prove them.

(9) If 𝑧(𝑡) = 𝑡
𝑛
𝑑(𝑡), then 𝑍(𝑘) = 𝐷(𝑘 − 𝑛).

Proof. For simplicity, letting𝐻 = 1

𝑑 (𝑡) =

∞

∑

𝑘=0

𝑡
𝑘
𝐷 (𝑘)

󳨐⇒ 𝑡
𝑛
𝑑 (𝑡) =

∞

∑

𝑘=0

𝑡
𝑛+𝑘

𝐷(𝑘) =

∞

∑

𝑖=𝑛

𝑡
𝑖
𝐷 (𝑖 − 𝑛)

=

∞

∑

𝑘=𝑛

𝑡
𝑘
𝐷(𝑘 − 𝑛) .

(8)

(10) Consider

𝑧 (𝑡) = 𝑡
2 𝑑
2
𝑢 (𝑡)

𝑑𝑡
2

󳨐⇒ 𝑍 (𝑘) = 𝑘 (𝑘 − 1)𝑈 (𝑘) . (9)

Proof. For 𝑦(𝑡) = 𝑑
2
𝑢(𝑡)/𝑑𝑡

2
⇒ 𝑌(𝑘) = (𝑘+2)(𝑘+1)𝑈(𝑘+2);

for 𝑧(𝑡) = 𝑡
2
𝑦(𝑡) ⇒ 𝑍(𝑘) = 𝑌(𝑘 − 2) = 𝑘(𝑘 − 1)𝑈(𝑘).

(11) One has

𝑧 (𝑡) = 𝑡

𝑑
2
𝑢 (𝑡)

𝑑𝑡
2

󳨐⇒ 𝑍 (𝑘) = (𝑘 + 1) 𝑘𝑈 (𝑘 + 1) . (10)

Proof. Similar method as (9).

(12) One has

𝑧 (𝑡) = 𝑡

𝑑𝑢 (𝑡)

𝑑𝑡

󳨐⇒ 𝑍 (𝑘) = 𝑘𝑈 (𝑘) . (11)

Proof. Similar method as (9).

4. Convergence Analysis

Theorem 1. Consider the following two singularly linear BVPs:

𝑡 (1 − 𝑡) 𝑢
󸀠󸀠

(𝑡)+(1 − 𝑡) 𝑢
󸀠

(𝑡) + 𝑔 (𝑡) 𝑢 (𝑡)=𝑓 (𝑡) , 0 < 𝑡 < 1,

(12)

where𝑓(𝑡) = 𝑓
0
+𝑓
1
𝑡+𝑓
2
𝑡
2
+⋅ ⋅ ⋅ and 𝑔(𝑡) = 𝑔

0
+𝑔
1
𝑡+𝑔
2
𝑡
2
+⋅ ⋅ ⋅ .

If there exists a fixed 𝑛 such that 𝑛 ≥ 𝑚, |𝑓
𝑘
| ≤ 𝑀𝑟

𝑘 for
some fixed 𝑀, 0 < 𝑟 < 1, all 𝑘 ≥ 𝑛, and 𝑈(𝑛) ≤ 𝑀𝑟

𝑛,
then the numerical solution using the presentmethod absolutely
converges.
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Proof. For simplicity, let 𝑔(𝑡) = 𝑔
0
.The general case is similar

to the special case.
By using (9) and (10), we have

𝑡
2
𝑢
󸀠󸀠

(𝑡) 󳨐⇒ 𝑘 (𝑘 − 1)𝑈 (𝑘)

𝑡𝑢
󸀠󸀠

(𝑡) 󳨐⇒ (𝑘 + 1) 𝑘𝑈 (𝑘 + 1) .

(13)

So the differential transformation of (12) is

(𝑘 + 1) 𝑘𝑈 (𝑘 + 1) − 𝑘 (𝑘 − 1)𝑈 (𝑘) + (𝑘 + 1)𝑈 (𝑘 + 1)

− 𝑘𝑈 (𝑘) + 𝑔
0
𝑈 (𝑘) = 𝐹 (𝑘) , 𝑘 ≥ 𝑚,

(14)

for fixed𝑚. So we have

𝑈 (𝑘 + 1) =

1

(𝑘 + 1)
2
[𝐹 (𝑘) + (𝑘

2
+ 𝑔
0
)𝑈 (𝑘)] . (15)

Suppose |𝑈(𝑘)| ≤ 𝑀𝑟
𝑘 is true for all 𝑘 ≥ 𝑛 ≥ 𝑚. From (15),

we have

|𝑈 (𝑘 + 1)| ≤

1

(𝑘 + 1)
2
[𝑀𝑟
𝑘
+ (𝑘
2
+ 𝑔
0
)𝑀𝑟
𝑘
]

= 𝑀𝑟
𝑘
[

1 + 𝑘
2
+
󵄨
󵄨
󵄨
󵄨
𝑔
0

󵄨
󵄨
󵄨
󵄨

(𝑘 + 1)
2

] .

(16)

Let 𝑟 = ((1 + 𝑘
2
+ |𝑔
0
|)/(𝑘 + 1)

2
) < 1 for 𝑘 is large enough. By

induction, the hypothesis is true. So we have

|𝑢 (𝑡)| ≤

∞

∑

𝑘=0

𝑡
𝑘

|𝑈 (𝑘)| ≤

∞

∑

𝑘=0

|𝑈 (𝑘)| ≤ 𝑀

∞

∑

𝑘=0

𝑟
𝑘
=

𝑀

1 − 𝑟

. (17)

Next we have the theorem for nonlinear BVP.

Theorem 2. Consider the following two singularly nonlinear
BVPs

𝑡 (1 − 𝑡) 𝑢
󸀠󸀠

(𝑡) + (1 − 𝑡) 𝑢
󸀠

(𝑡) + 𝑔 (𝑡) 𝑢 (𝑡)

+ 𝑢(𝑡)
2
= 𝑓 (𝑡) , 0 < 𝑡 < 1,

(18)

where 𝑓(𝑡) = 𝑓
0
+𝑓
1
𝑡+𝑓
2
𝑡
2
+ ⋅ ⋅ ⋅ , 𝑔(𝑡) = 𝑔

0
+𝑔
1
𝑡+𝑔
2
𝑡
2
+ ⋅ ⋅ ⋅ .

If there exists a fixed 𝑛 such that 𝑛 ≥ 𝑚, |𝑓
𝑘
| ≤ 𝑟
𝑘, 0 < 𝑟 <

1, all 𝑘 ≥ 𝑛, and 𝑈(𝑛) ≤ 𝑟
𝑛, then the numerical solution using

the present method absolutely converges.

Proof. For simplicity, let𝑔(𝑡) = 𝑔
0
.The general case is similar

to the special case.
So the differential transformation of (18) is

(𝑘 + 1) 𝑘𝑈 (𝑘 + 1) − 𝑘 (𝑘 − 1)𝑈 (𝑘) + (𝑘 + 1)𝑈 (𝑘 + 1)

− 𝑘𝑈 (𝑘) + 𝑔
0
𝑈 (𝑘) + 𝐵 (𝑘) = 𝐹 (𝑘) , 𝑘 ≥ 𝑚,

(19)

for fixed𝑚, 𝐵(𝑘) = 𝑈(0)𝑈(𝑘)+𝑈(1)𝑈(𝑘−1)+⋅ ⋅ ⋅+𝑈(𝑘)𝑈(0).
So we have

𝑈 (𝑘 + 1) =

1

(𝑘 + 1)
2
[𝐹 (𝑘) + (𝑘

2
+ 𝑔
0
)𝑈 (𝑘) − 𝐵 (𝑘)] .

(20)

Suppose |𝑈(𝑘)| ≤ 𝑟
𝑘 is true for all 𝑘 ≥ 𝑛 ≥ 𝑚. So we have

|𝑈 (𝑖) 𝑈 (𝑘 − 𝑖)| ≤ 𝑟
𝑖
𝑟
𝑘−𝑖

= 𝑟
𝑘
󳨐⇒ |𝐵 (𝑘)| ≤ (𝑘 + 1) 𝑟

𝑘
. (21)

From(20), we have

|𝑈 (𝑘 + 1)| ≤

1

(𝑘 + 1)
2
[𝑟
𝑘
+ (𝑘
2
+ 𝑔
0
) 𝑟
𝑘
+ (𝑘 + 1) 𝑟

𝑘
]

= 𝑟
𝑘
[

1 + 𝑘
2
+
󵄨
󵄨
󵄨
󵄨
𝑔
0

󵄨
󵄨
󵄨
󵄨
+ 𝑘 + 1

(𝑘 + 1)
2

] .

(22)

Let 𝑟 = ((1 + 𝑘
2
+ |𝑔
0
| + 𝑘 + 1)/(𝑘 + 1)

2
) < 1 for 𝑘 is large

enough. By induction, the hypothesis is true. So we have

|𝑢 (𝑡)| ≤

∞

∑

𝑘=0

𝑡
𝑘

|𝑈 (𝑘)| ≤

∞

∑

𝑘=0

|𝑈 (𝑘)| ≤

∞

∑

𝑘=0

𝑟
𝑘
=

1

1 − 𝑟

. (23)

5. Numerical Examples

Differential transformation method (DTM) is used to solve
the following examples. Some numerical results are also
compared with RKHSM in [28]. The algorithm is performed
by software with 16-digit precision.

Example 1. Consider the following two singularly linear
BVPs:

𝑡 (1 − 𝑡) 𝑢
󸀠󸀠

(𝑡) + (1 − 𝑡) 𝑢
󸀠

(𝑡) + 𝑢 (𝑡) = 𝑓 (𝑡) , 0 < 𝑡 < 1,

(24)

with boundary values𝑢(0) = 0, 𝑢(1) = 1, and 𝑓(𝑡) = 𝑡(4−3𝑡).
The exact solution is 𝑢(𝑡) = 𝑡

2.
By using (9) and (10), we have

𝑡
2
𝑢
󸀠󸀠

(𝑡) 󳨐⇒ 𝑘 (𝑘 − 1)𝑈 (𝑘) ,

𝑡𝑢
󸀠󸀠

(𝑡) 󳨐⇒ (𝑘 + 1) 𝑘𝑈 (𝑘 + 1) .

(25)

So the differential transformation of (24) is

(𝑘 + 1) 𝑘𝑈 (𝑘 + 1) − 𝑘 (𝑘 − 1)𝑈 (𝑘) + (𝑘 + 1)𝑈 (𝑘 + 1)

− 𝑘𝑈 (𝑘) + 𝑈 (𝑘) = −3𝛿 (𝑘 − 2) + 4𝛿 (𝑘 − 1) ,

(26)

where

𝛿 (𝑘 − 𝑚) = {

1, 𝑘 = 𝑚,

0, 𝑘 ̸=𝑚,

(27)

for 𝑘 ≥ 2. One has

󳨐⇒ 𝑈 (𝑘 + 1)

=

1

(𝑘 + 1)
2
[(𝑘
2
− 1)𝑈 (𝑘) − 3𝛿 (𝑘 − 2) + 4𝛿 (𝑘 − 1)] .

(28)
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Table 1: Comparison of relative errors of the present method for
Example 2.

𝑥 True solution 𝑢(𝑥) Geng [28] 𝑈
5,20

Present DTM2 method
0.08 0.0064 1.91𝐸 − 06 0
0.16 0.0256 1.54𝐸 − 06 0
0.24 0.0576 1.58𝐸 − 06 0
0.32 0.1024 1.59𝐸 − 06 0
0.48 0.2304 1.20𝐸 − 06 0
0.64 0.4096 3.96𝐸 − 07 0
0.80 0.6400 6.07𝐸 − 08 0
0.96 0.9216 8.13𝐸 − 09 0

For the coefficient of constant and 𝑡, because 𝑢(0) = 0, let
𝑢(𝑡) = 𝑈(1)𝑡 + 𝑈(2)𝑡

2; substituting in (24), we have

(𝑡 − 𝑡
2
) 2𝑈 (2) + (1 − 𝑡) [𝑈 (1) + 2𝑈 (2) 𝑡] + 𝑈 (1) 𝑡. (29)

The coefficient of constant is

𝑈 (1) = 0. (30)

The coefficient of 𝑡 that is 𝑘 = 1 is

2𝑈 (2) − 𝑈 (1) + 2𝑈 (2) + 𝑈 (1) = 4

󳨐⇒ 𝑈 (2) = 1.

(31)

As 𝑘 = 2 in (28),

𝑈 (3) =

3𝑈 (2) − 3

9

= 0. (32)

For 𝑘 = 3, 4, 5, . . .,

𝑈 (𝑘 + 1) = 0. (33)

Then we have the numerical solution of the present method
in Example 1:

𝑢 (𝑡) = 𝑡
2
. (34)

It is also the exact solution and Table 1 presents the results.

Example 2. Consider the following two singularly linear
BVPs in [28] Example 1:

𝑡 (1 − 𝑡) 𝑢
󸀠󸀠

(𝑡) + (1 − 𝑡) 𝑢
󸀠

(𝑡) + 𝑡𝑢 (𝑡)

+ 𝑡 (1 − 𝑡) 𝑢
2

(𝑡) = 𝑓 (𝑡) , 0 < 𝑡 < 1,

(35)

with boundary values 𝑢(0) = 0, 𝑢(1) = 1, and 𝑓(𝑡) = 𝑡(4 −

4𝑡 + 𝑡
2
+ 𝑡
4
− 𝑡
5
). The exact solution is 𝑢(𝑡) = 𝑡

2.

The differential transformation of (35) is

𝑘 (𝑘 + 1)𝑈 (𝑘) − 𝑘 (𝑘 − 1)𝑈 (𝑘) + (𝑘 + 1)𝑈 (𝑘 + 1)

− 𝑘𝑈 (𝑘) + 𝑈 (𝑘 − 1) + 𝐵 (𝑘 − 1) − 𝐵 (𝑘 − 2)

= 4𝛿 (𝑘 − 1) − 4𝛿 (𝑘 − 2) + 𝛿 (𝑘 − 3)

+ 𝛿 (𝑘 − 5) − 𝛿 (𝑘 − 6) ,

(36)

where 𝐵(𝑘) = 𝑈(0)𝑈(𝑘) + 𝑈(1)𝑈(𝑘 − 1) + ⋅ ⋅ ⋅ + 𝑈(𝑘)𝑈(0) for
𝑘 ≥ 2. Consider

󳨐⇒ 𝑈 (𝑘 + 1)

=

1

(𝑘 + 1)
2
[𝑘
2
𝑈 (𝑘) − 𝑈 (𝑘 − 1) + 𝐵 (𝑘 − 2)

− 𝐵 (𝑘 − 1) + 4𝛿 (𝑘 − 1) − 4𝛿 (𝑘 − 2)

+𝛿 (𝑘 − 3) + 𝛿 (𝑘 − 5) − 𝛿 (𝑘 − 6) ] .

(37)

For the coefficient of constant and 𝑡, because 𝑢(0) = 0, let
𝑢(𝑡) = 𝑈(1)𝑡 + 𝑈(2)𝑡

2; substituting in (35), we have

(𝑡 − 𝑡
2
) 2𝑈 (2) + (1 − 𝑡) [𝑈 (1) + 2𝑈 (2) 𝑡] + 𝑡𝑈 (1) 𝑡. (38)

The coefficient of constant is

𝑈 (1) = 0. (39)

The coefficient of 𝑡 that is 𝑘 = 1 is

2𝑈 (2) − 𝑈 (1) + 2𝑈 (2) = 4

󳨐⇒ 𝑈 (2) = 1.

(40)

As 𝑘 = 2 in (37),

𝑈 (3) =

4𝑈 (2) − 𝑈 (1) + 𝐵 (0) − 𝐵 (1) − 4

9

= 0. (41)

As 𝑘 = 3,

𝑈 (4) =

9𝑈 (3) − 𝑈 (2) + 𝐵 (1) − 𝐵 (2) + 1

16

= 0. (42)

For 𝑘 = 4, 5, . . .,

𝑈 (𝑘 + 1) = 0. (43)

Then we have the numerical solution of the present method
in Example 2 as

𝑢 (𝑡) = 𝑡
2
. (44)

It is also the exact solution.

Example 3. Consider the following two singularly linear
BVPs:

𝑡 (1 − 𝑡) 𝑢
󸀠󸀠

(𝑡) + (1 − 𝑡) 𝑢
󸀠

(𝑡) + (1 + 𝑡
2
− 𝑡
3
) 𝑢 (𝑡) = 𝑓 (𝑡) ,

0 < 𝑡 < 1,

(45)

with boundary values 𝑢(0) = 1, 𝑢(1) = 𝑒, and 𝑓(𝑡) = (2 −

𝑡
3
)𝑒
𝑡. The exact solution is 𝑢(𝑡) = 𝑒

𝑡.

The differential transformation of (45) is

𝑘 (𝑘 + 1)𝑈 (𝑘) − 𝑘 (𝑘 − 1)𝑈 (𝑘) + (𝑘 + 1)𝑈 (𝑘 + 1) − 𝑘𝑈 (𝑘)

+ 𝑈 (𝑘) + 𝑈 (𝑘 − 2) − 𝑈 (𝑘 − 3) =

2

𝑘!

−

1

(𝑘 − 3)!

,

(46)
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Table 2: Comparison of relative errors of the present method for
Example 3.

𝑥 True solution 𝑢(𝑥) Present DTM8 method
0.01 1.0101 0
0.08 1.0833 1.90𝐸 − 13

0.16 1.1735 7.50𝐸 − 12

0.32 1.3771 1.00𝐸 − 10

0.48 1.6161 3.90𝐸 − 09

0.64 1.8965 5.30𝐸 − 08

0.8 2.2255 4.00𝐸 − 07

0.96 2.6117 2.10𝐸 − 06

Table 3: Comparison of relative errors of the present method for
Example 4.

𝑥 True solution 𝑢(𝑥) Geng [28] 𝑈
5,50

Present DTM8 method
0.08 0.0064 over 1𝐸 − 7 0
0.16 0.0256 over 2𝐸 − 7 1.9𝐸 − 13

0.24 0.0576 over 2𝐸 − 6 7.3𝐸 − 12

0.32 0.1024 over 3𝐸 − 6 9.7𝐸 − 11

0.48 0.2304 over 1𝐸 − 5 3.7𝐸 − 09

0.64 0.4096 over 1𝐸 − 6 4.9𝐸 − 08

0.80 0.6400 over 3𝐸 − 6 3.7𝐸 − 07

0.96 0.9216 over 1𝐸 − 7 7.0𝐸 − 07

for 𝑘 ≥ 2. Consider

󳨐⇒ 𝑈 (𝑘 + 1)

=

1

(𝑘 + 1)
2
[ (𝑘
2
+ 1)𝑈 (𝑘) − 𝑈 (𝑘 − 2)

+𝑈 (𝑘 − 3) +

2

𝑘!

−

1

(𝑘 − 3)!

] .

(47)

Because 𝑢(0) = 1, 𝑈(1) = 1. For 𝑈(1) = 1, 𝑈(2) = 1/2, we
have Table 2.

Example 4. Consider the following two singularly linear
BVPs in [28] Example 3:

𝑡
3

(1 − 𝑡)
2
𝑢
󸀠󸀠

(𝑡)+5𝑢
󸀠

(𝑡) + (2 + 𝑡) 𝑢 (𝑡)+(1 − 𝑡)
3
𝑢
2

(𝑡) = 𝑓 (𝑡) ,

0 < 𝑡 < 1,

(48)

with boundary values 𝑢(0) = 0, 𝑢(1) = 1 + sin(1), and 𝑓(𝑡) =
5(1+ cos(𝑡)) − (𝑡 − 1)2𝑡3 sin(𝑡) + (𝑡 + 2)(𝑡 + sin(𝑡)) − (𝑡 − 1)3(𝑡 +
sin(𝑡))2. The exact solution is 𝑢(𝑡) = sin(𝑡) + 𝑡.

Using the same method as the above examples, we have
Table 3.

6. Conclusion

The modification proposed in this paper has demonstrated
that the linear and nonlinear singular BVPs can be handled

without difficulty. The computation can obtain more precise
approximation.The results show a greater improvement over
the He’s HPM and RKHSM [28].

How to establish error analysis of this method? Maybe
Adomian decomposition method with integrating factor has
some beautiful results [29]. In the paper, we only have
the convergence of the solution. The underlined theory for
two singular points BVPs, however, still remains open and
deserves further investigation.
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