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This paper investigates the cooperative tracking control problem for networked uncertain Lagrange systems with a leader-follower
structure on digraphs. Since the leader’s information is only available to a portion of the followers, finite-time observers are designed
to estimate the leader’s velocity. Based on the estimated velocity information and the universal approximation ability of fuzzy
logic systems, a distributed adaptive fuzzy tracking control protocol is first proposed for the fault-free Lagrange systems. Then, the
actuator faults are considered and a distributed fault-tolerant controller is presented. Based on graph theory and Lyapunov theory,
the convergence analyses for the proposed algorithms are provided.Thedevelopment in this paper is suitable for the general directed
communication topology. Numerical simulation results are presented to show the closed-loop performance of the proposed control
law and illustrate its robustness to actuator faults and external disturbances.

1. Introduction

Recently, consensus problem for multiagent systems has
attracted a great deal of attention in many fields such as
biology, physics, robotics, and control engineering due to
its broad applications in many areas such as mobile robots,
unmanned air vehicles, autonomous underwater vehicles,
satellites, aircrafts, automated highway systems, and air traf-
fic control. In 1995, Vicsek et al. [1] proposed a simple
but interesting discrete-time model of a system of several
autonomous agents. It is shown that all agents eventually
move in the same direction based on local information
without any central controller or leaders. Jadbabaie et al. [2]
provided a theoretical explanation for the consensus behavior
of the Vicsek model by using the graph theory and the matrix
theory. Chen et al. [3] investigated the finite-time distributed
consensus problem for multiagent systems using a binary
consensus protocol and the pinning control scheme. The
readers are referred to [4–7] for more details.

Since a large class of networked mechanical systems
can be modeled as a networked Euler-Lagrange system, it
is fascinating to study the control problem of networked
Euler-Lagrange system. The work in [8] studied the position
synchronization problem for a group of Lagrange systems.

However, all the robots required the desired common tra-
jectory information. In [9], Ren presented some distributed
consensus algorithms for the networked Lagrange systems,
where only the undirected communication topologies were
considered.Thework in [10] proposed a consensus algorithm
for networked leaderless Lagrange systems on undirected
communication topology. The work in [11] investigated
the finite-time cooperative tracking problem for a class of
networked Euler-Lagrange systems with a leader-follower
structure, where the communication topologies among the
followers are undirected. The work in [12] studied the
cooperative tracking control problem for a group of Lagrange
vehicle systems with directed communication topology. The
dynamics of the networked systems, as well as the target
system, are all assumed unknown. A neural network (NN)
is used at each node to approximate the distributed dynamics
[12].

In reality, the actuators of the networked systems may
undergo a partial loss of effectiveness or experience bias
faults. Actuator faults often cause the control performance
to deteriorate and even lead to catastrophic accidents. Thus,
fault-tolerant control (FTC) schemes are proposed and used
to guarantee system stability and acceptable performance.
FTC design may be classified into two types: the passive
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approaches [13–15] and the active approaches [16–18]. The
passive FTC approach designs a fixed controller that is able
to tolerate only a limited range of predetermined faults, and,
once implemented, it compensates for the anticipated faults
without any online fault identification. However, the passive
FTC has a very limited fault tolerance capability and is often
designed to be conservative. The active FTC compensates
for the effects of component faults by synthesizing a new
controller online or by selecting a predesigned controller
[19]. The active FTC requires a fault detection and diagnosis
(FDD) mechanism to detect and identify the faults in real
time, and then the controller is reconfigured based on the
identified faults. Errors in fault detection may cause the
controller to make wrong decisions. In this paper, we present
a fault-tolerant control strategy which does not use any fault
detection and isolation mechanism to detect, separate, and
identify the actuator faults online. Although the fault-tolerant
control methods have been used in a class of mechanical
systems such as spacecraft [20] and near-space-vehicle [21],
few works have focused on the fault-tolerant control of
networked Euler-Lagrange systems.

Compared with the aforementioned works [2–12], this
paper addresses the distributed fault-tolerant tracking prob-
lem for networked unknown Lagrange systems on digraphs.
The distributed tracking control problem on digraph is more
challenging than that on undirected or balanced graphs.
We assume that the inertia matrix, the Coriolis/centrifugal
matrix, the friction term, and the gravity term are all
unknown for all Lagrange systems. A Lyapunov technique
is utilized to design the distributed tracking controllers.
By applying the universal approximation ability of fuzzy
logic systems [22–24], an adaptive coordinated fuzzy con-
troller is developed firstly when the actuators are fault-
free. Then, an active fault-tolerant controller is developed,
which can compensate for both the actuator bias faults and
the loss of actuator effectiveness. The proposed control law
does not require any FDD mechanism to detect the faults,
which reduces the computation burden and decreases the
response time of the controller. The analysis shows that
if the designed nominal controller can ensure the stability
of the fault-free distributed system, the proposed fault-
tolerant controller guarantees the stability of the distributed
system in the presence of faults. Numerical simulation
results are given to show the effectiveness of the proposed
method.

To our best knowledge, the fault-tolerant coopera-
tive control of networked uncertain Lagrange systems on
digraphs had not been fully investigated and it is still a
challenging task.We present a solution to this problem in this
paper. The main contributions of this research are described
as follows.

(1) A novel finite-time observer based cooperative con-
trol method is proposed for the networked nonlinear
Lagrange systems.The dynamic leader and all the fol-
lowers have unknown nonidentical dynamics. Com-
pared with the results in [2–12], the proposedmethod
is suitable for the general directed communication
topology.

(2) A robust fault-tolerant cooperative control scheme
is presented to achieve distributed tracking control
even if the actuator bias fault and the loss of actuator
effectiveness coexist. In addition to the nominal
controller, an auxiliary control input is designed to
compensate for the actuator faults. It is proved that the
proposed approach guarantees the convergence based
on Lyapunov stability theory.

The remainder of this paper is organized as follows.
Section 2 introduces the problem formulation and some
preliminary results. Section 3 provides the proposed nominal
controller and the robust fault-tolerant controller. The simu-
lations are shown in Section 4. Section 5 concludes this paper.

2. Problem Formulation and Preliminaries

2.1. Graph Theory. Let G = (V, 𝜀,A) be a directed graph of
order 𝑛, whereV = [V

1
, . . . , V

𝑛
] is the set of nodes, 𝜀 ⊆ V×V

is the set of edges, andA = [𝑎
𝑖𝑗
] is called the adjacencymatrix

with weights 𝑎
𝑖𝑗

> 0 if (V
𝑗
, V
𝑖
) ∈ 𝜀 and 𝑎

𝑖𝑗
= 0 otherwise. We

assume that the graph is simple; that is, (V
𝑖
, V
𝑖
) ∉ 𝜀 ∀𝑖, with

no self-loops. Thus, 𝑎
𝑖𝑖

= 0. Define the in-degree of node V
𝑖

as the 𝑖th row sum of 𝐴; that is, 𝑑
𝑖𝑛
(V
𝑖
) = ∑

𝑛

𝑗=1
𝑎
𝑖𝑗
. Define the

diagonal in-degree matrix 𝐷 = diag{𝑑
𝑖𝑛
(V
𝑖
)} and the graph

Laplacian matrix 𝐿 = 𝐷 − 𝐴. The set of neighbors of a node
V
𝑖
is 𝑁
𝑖
= {V
𝑗

: (V
𝑗
, V
𝑖
) ∈ 𝜀}, which is the set of nodes with

edges incoming to V
𝑖
. A directed path is a sequence of nodes

V
1
, V
2
, . . . , V

𝑟
such that (V

𝑖+1
, V
𝑖
) ∈ 𝜀, 𝑖 ∈ {1, 2, . . . , 𝑟 − 1}. A

directed tree is a directed graph, where every node, except
the root, has exactly one parent. A spanning tree of a digraph
is a directed tree that connects all the nodes of the graph.

2.2. Fuzzy Logic Systems. A fuzzy logic system (FLS) consists
of four parts: the knowledge base, the fuzzifier, the fuzzy
inference engine, and the defuzzifier. The knowledge base
for FLS comprises a collection of fuzzy if-then rules of the
following form:

𝑅

𝑙
: If 𝑥
1
is 𝐴

𝑙

1
, 𝑥
2
is 𝐴

𝑙

2
. . . , 𝑥

𝑛
is 𝐴

𝑙

𝑛
,

Then 𝑦 is 𝐵

𝑙
, 𝑙 = 1, 2, . . . ,𝑀,

(1)

where 𝑥 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]

𝑇
∈ 𝑈 ⊂ 𝑅

𝑛 and 𝑦 denote
the FLS input and output, respectively. 𝐴

𝑙

𝑖
, 𝑖 = 1, 2, . . . , 𝑛

and 𝑙 = 1, 2, . . . ,𝑀, are fuzzy sets and 𝐵

𝑙 is the fuzzy
singleton for the output in the 𝑙th rule. Fuzzy sets 𝐴

𝑙

𝑖
and 𝐵

𝑙

are, respectively, associated with the membership functions
𝜇
𝐴
𝑙

𝑖

(𝑥
𝑖
) = exp(−((𝑥

𝑖
− 𝑎

𝑙

𝑖
)/𝑏

𝑙

𝑖
)

2
) and 𝜇

𝐵
𝑙(𝑦
𝑙
) = 1, where

𝑎

𝑙

𝑖
is the center of the receptive field and 𝑏

𝑙

𝑖
denotes the

width of the Gaussian function. 𝑀 is the rules number. By
applying singleton function, center average defuzzification,
and product inference, the FLS can be expressed as

𝑦 (𝑥) =

{∑

𝑀

𝑙=1
𝑦

𝑙
(∏

𝑛

𝑖=1
𝜇
𝐴
𝑙

𝑖

(𝑥
𝑖
))}

{∑

𝑀

𝑙=1
(∏

𝑛

𝑖=1
𝜇
𝐴
𝑙

𝑖

(𝑥
𝑖
))}

, (2)
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where 𝑦

𝑙
= max

𝑦∈𝑅
𝜇
𝐵
𝑙 . Define the fuzzy basis functions as

𝜉
𝑙
(𝑥) =

[∏

𝑛

𝑙=1
𝜇
𝐴
𝑙

𝑖

(𝑥
𝑖
)]

[∑

𝑀

𝑙=1
(∏

𝑛

𝑖=1
𝜇
𝐴
𝑙

𝑖

(𝑥
𝑖
))]

, (3)

and let 𝜃

𝑇
= [𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑙
] = [𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑀
] and 𝜉(𝑥) =

[𝜉
1
(𝑥), 𝜉
2
(𝑥), . . . , 𝜉

𝑀
(𝑥)]

𝑇. Then, the FLS (2) can be rewritten
as

𝑦 (𝑥, 𝜃) = 𝜃

𝑇
𝜉 (𝑥) . (4)

Lemma 1 (see [23]). Let𝑓(𝑥) be a continuous function defined
on a compact set Ω. Then, for any constant 𝜀 > 0, there exists
an FLS (4) such that

sup
𝑥∈Ω







𝑓 (𝑥) − 𝜃

𝑇
𝜉 (𝑥)







≤ 𝜀. (5)

By Lemma 1, FLSs are universal approximators; that is,
they can approximate any smooth function on a compact
space. Due to this approximation ability, we can assume that
the nonlinear term 𝑓(𝑥) is approximated as

𝑓 (𝑥, 𝜃) = 𝜃

𝑇
𝜉 (𝑥) . (6)

Define the optimal parameter vector 𝜃

∗
= arg min

𝜃∈Ω

sup
𝑥∈𝑈

|𝑓(𝑥) − 𝜃

𝑇
𝜉(𝑥)| ≤ 𝜀, where Ω and 𝑈 are compact

regions for 𝜃 and 𝑥, respectively. The FLS minimum approx-
imation error is defined as

𝜀 = 𝑓 (𝑥) − 𝜃

∗𝑇
𝜉 (𝑥) . (7)

2.3. Problem Formulation. In this paper, the networked sys-
tem consists of 𝑛 + 1 Lagrange systems, where the subsystem
indexed by zero is assigned as the leader or target system and
the other systems indexed by 1, 2, . . . , 𝑛 are referred to as the
followers. The Euler-Lagrange equations of motion for the
leader vehicle and the followers are described as

𝑀
0
(𝑞
0
) ̈𝑞
0
+ 𝐶
0
(𝑞
0
, ̇𝑞
0
) ̇𝑞
0
+ 𝐻
0
( ̇𝑞
0
) + 𝐺
0
(𝑞
0
) = 𝜏
0
, (8)

𝑀
𝑖
(𝑞
𝑖
) ̈𝑞
𝑖
+ 𝐶
𝑖
(𝑞
𝑖
, ̇𝑞
𝑖
) ̇𝑞
𝑖
+ 𝐻
𝑖
( ̇𝑞
𝑖
) + 𝐺
𝑖
(𝑞
𝑖
) = 𝜏
𝑖
+ 𝛿
𝑖
,

𝑖 = 1, 2, . . . , 𝑛,

(9)

respectively, where 𝑞
𝑖
∈ 𝑅

𝑚
(𝑖 = 0, 1, . . . , 𝑛) is the generalized

configuration coordinate, 𝑀
𝑖
(𝑞
𝑖
) ∈ 𝑅

𝑚×𝑚 is the inertia
matrix, 𝐶

𝑖
(𝑞
𝑖
, ̇𝑞
𝑖
) ∈ 𝑅

𝑚×𝑚 is the Coriolis/centrifugal matrix,
𝐻
𝑖
( ̇𝑞
𝑖
) ∈ 𝑅

𝑚 is the friction term, 𝐺
𝑖
(𝑞
𝑖
) ∈ 𝑅

𝑚 is the vector of
gravitational torques, 𝜏

𝑖
is the vector of control input torques,

and 𝛿
𝑖
represents the input disturbance.The inertia, Coriolis,

friction, and gravity terms are all assumed unknown.
Note that the actuators of the Lagrange systems in (9) are

assumed to be fault-free. They are called the nominal system.
The case with actuator faults will be discussed in this paper.
We will consider two types of actuator faults simultaneously,
namely, the bias fault denoted by 𝑓

𝑖
∈ 𝑅

𝑚 and the loss of
effectiveness of the actuators represented by a multiplicative
matrix 𝜎

𝑖
∈ 𝑅

𝑚×𝑚. Hence, the dynamic model given by (9)
can be rewritten as

𝑀
𝑖
(𝑞
𝑖
) ̈𝑞
𝑖
+ 𝐶
𝑖
(𝑞
𝑖
, ̇𝑞
𝑖
) ̇𝑞
𝑖
+ 𝐻
𝑖
( ̇𝑞
𝑖
) + 𝐺
𝑖
(𝑞
𝑖
) = 𝜎
𝑖
𝜏
𝑖
+ 𝑓
𝑖
+ 𝛿
𝑖
.

(10)

Assumption 2. For the bias fault, 𝑓
𝑖
, there exists a positive

continuous function 𝑘
𝑖
(𝑡) satisfying |𝑓

𝑖𝑗
| ≤ 𝑘

𝑖𝑗
(𝑡) for each

𝑗 ∈ {1, . . . , 𝑚}. The actuator effectiveness matrix 𝜎
𝑖
satisfies

0 < 𝜎
𝑖𝑗

< 𝜎
𝑖𝑗

≤ 1 (𝑗 ∈ {1, . . . , 𝑚}) for some constants 𝜎
𝑖𝑗
.

Assumption 3. The input disturbance 𝛿
𝑖
is bounded; that is,

there exists a fixed bound 𝛿
0
such that ‖𝛿

𝑖
‖ ≤ 𝛿
0
.

Assumption 4. The acceleration of the leader system is
bounded by a positive scalar 𝜇

0
such that ‖ ̈𝑞

0
(𝑡)‖

∞
≤ 𝜇
0
< ∞.

Property 1. The inertia matrix 𝑀
𝑖
(𝑞
𝑖
) is symmetric and

positive definite such that 𝑀
𝑚
𝐼 ≤ 𝑀

𝑖
(𝑞
𝑖
) ≤ 𝑀

𝑀
𝐼 for some

constants 𝑀
𝑚

> 0, 𝑀
𝑀

> 0.

Property 2. The Coriolis/centrifugal matrix can always be
selected so that the matrix (

̇
𝑀
𝑖
(𝑞
𝑖
) − 2𝐶

𝑖
(𝑞
𝑖
, ̇𝑞
𝑖
)) is skew

symmetric. Therefore, 𝑥𝑇( ̇
𝑀
𝑖
(𝑞
𝑖
) − 2𝐶

𝑖
(𝑞
𝑖
, ̇𝑞
𝑖
)) 𝑥 = 0 for all

vectors 𝑥.

The distributed tracking control problem confronted here
is as follows: we need to design the control protocols by using
only local information such that the states of the follower
systems synchronize to the states of the leader system; that
is, one requires 𝑞

𝑖
(𝑡) → 𝑞

0
(𝑡) and ̇𝑞

𝑖
(𝑡) → ̇𝑞

0
(𝑡).

3. Main Results

3.1. Finite-Time Observer Design. In this paper, we focus on
the general case that the information of the leader system is
only available to a portion of the followers. Observer based
control methods are used in this paper; that is, finite-time
observers are used to estimate the leader’s information. We
first design a velocity observer for each follower as follows:

�̇�
𝑖
= −𝛾 sgn

{

{

{

∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑧
𝑖
− 𝑧
𝑗
) + 𝑏
𝑖
(𝑧
𝑖
− ̇𝑞
0
)

}

}

}

,

𝑖 = 1, 2, . . . , 𝑛,

(11)

where 𝛾 > 𝜇
0

> 0 is a positive constant and 𝑧
𝑖
denotes the

estimate of ̇𝑞
0
on the 𝑖th Lagrange system.

Let 𝐷+𝑉(𝑡, 𝑥) be the upper right-hand Dini derivative of
𝑉(𝑡, 𝑥) with respect to 𝑡; that is,

𝐷

+
𝑉 (𝑡, 𝑥) = lim sup

ℎ→0
+

𝑉 (𝑡 + ℎ, 𝑥 (𝑡 + ℎ)) − 𝑉 (𝑡, 𝑥 (𝑡))

ℎ

.

(12)

Lemma 5 (see [25]). Let 𝐼
0
= {1, 2, . . . , 𝑛} and let, for each 𝑖 ∈

𝐼
0
,𝑉
𝑖
(𝑡, 𝑥) : 𝑅×𝑅

𝑚
→ 𝑅 (𝑖 = 1, . . . , 𝑛) be 𝑐1. Define𝑉(𝑡, 𝑥) =

max
𝑖∈𝐼0

𝑉
𝑖
(𝑡, 𝑥). Let 𝐼(𝑡) = {𝑖 ∈ 𝐼

0
: 𝑉
𝑖
(𝑡, 𝑥) = 𝑉(𝑡, 𝑥)} be the

set of indices where the maximum is reached at time 𝑡. Then
𝐷

+
𝑉(𝑡, 𝑥) satisfies 𝐷+𝑉(𝑡, 𝑥) = max

𝑖∈𝐼(𝑡)
̇

𝑉
𝑖
(𝑡, 𝑥).

Lemma6. Let the communication graph𝐺 contain a spanning
tree with the root node being the leader system (8). For the
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observers (11), it holds that 𝑧
𝑖
→ ̇𝑞
0
(𝑡) (𝑖 = 1, . . . , 𝑛) in finite

time. The finite setting time 𝑇
0
satisfies

𝑇
0
≤

max
𝑘
{max
𝑗
(𝑧
𝑗𝑘

(0)) − min
𝑗
(𝑧
𝑗𝑘

(0))}

𝛾 − 𝜇
0

,
(13)

with 𝑘 ∈ {1, . . . , 𝑚} and 𝑗 ∈ {0, 1, . . . , 𝑛}.

Proof. Let 𝑧
0
= ̇𝑞
0
and 𝑎
𝑖0

= 𝑏
𝑖
. Then, (11) can be rewritten as

�̇�
𝑖𝑘

= − 𝛾 sign
{

{

{

𝑛

∑

𝑗=0

𝑎
𝑖𝑗
(𝑧
𝑖𝑘

− 𝑧
𝑗𝑘
)

}

}

}

,

𝑖 = 1, . . . , 𝑛, 𝑘 = 1, . . . , 𝑚.

(14)

Define 𝑒
𝑖𝑘

= 𝑧
𝑖𝑘

− ̇𝑞
0𝑘
. Thus,

̇𝑒
𝑖𝑘

= −𝛾 sign
{

{

{

𝑛

∑

𝑗=0

𝑎
𝑖𝑗
(𝑒
𝑖𝑘

− 𝑒
𝑗𝑘
)

}

}

}

− ̈𝑞
0𝑘
. (15)

Choose the Lyapunov function

𝑉
𝑘
= max
𝑖

{𝑒
𝑖𝑘
} − min
𝑖

{𝑒
𝑖𝑘
} . (16)

It is obvious that 𝑉
𝑘
is a positive definite, Lipschitz continu-

ous, and regular functions. Let𝑁max denote the set of indices
𝑖 for which 𝑒

𝑖𝑘
= max{𝑒

𝑖𝑘
: 𝑖 ∈ {0, 1, . . . , 𝑛}}. Let 𝑁min denote

the set of indices 𝑖 for which 𝑒
𝑖𝑘

= min{𝑒
𝑖𝑘

: 𝑖 ∈ {0, 1, . . . , 𝑛}}.
In light of Lemma 5, one has

𝐷

+
𝑉
𝑘
= max
𝑖∈𝑁max

{ ̇𝑒
𝑖𝑘
} − min
𝑖∈𝑁min

{ ̇𝑒
𝑖𝑘
} . (17)

If 𝐷

+
𝑉
𝑘

= 0, then max
𝑖∈𝑁max

{𝑒
𝑖𝑘
} = min

𝑖∈𝑁min
{𝑒
𝑖𝑘
}; that is,

𝑧
𝑖𝑘

= ̇𝑞
0𝑘
. If 𝐷+𝑉

𝑘
> 0, then 𝑁max ̸= 𝜙 and𝑁min ̸= 𝜙. Since the

communication graph𝐺 contains a spanning tree, theremust
exist a node 𝑙 ∈ {0, 1, . . . , 𝑛}/𝑁max (or 𝑙 ∈ {0, 1, . . . , 𝑛}/𝑁min)
such that a path from 𝑙 to the node in 𝑁max (or the node in
𝑁min) exists; that is,

max
𝑖∈𝑁max

{ ̇𝑒
𝑖𝑘
} = −𝛾 − ̈𝑞

0𝑘
, (18)

or

min
𝑖∈𝑁min

{ ̇𝑒
𝑖𝑘
} = 𝛾 − ̈𝑞

0𝑘
. (19)

Thus,

𝐷

+
𝑉
𝑘
≤ −𝛾 − ̈𝑞

0𝑘
≤ −𝛾 +






̈𝑞
0𝑘






≤ − (𝛾 − 𝜇
0
) . (20)

Integrating both sides of the above equation between the time
𝑡 = 0 and 𝑡 = 𝑇

0
yields

𝑇
0
≤

𝑉
𝑘
(0)

𝛾 − 𝜇
0

≤

max
𝑘
{max
𝑗
(𝑧
𝑗𝑘

(0)) − min
𝑗
(𝑧
𝑗𝑘

(0))}

𝛾 − 𝜇
0

.

(21)

Thus the claim follows.

3.2. Nominal Controller Design for the Fault-Free
Lagrange Systems

Definition 7. The local neighborhood position errors for
subsystem 𝑖 are defined as

𝑠
𝑖
= ∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑞
𝑖
− 𝑞
𝑗
) + 𝑏
𝑖
(𝑞
𝑖
− 𝑞
0
) . (22)

Definition 8 (see [12]). The position and velocity tracking
errors for each Lagrange system are said to be cooperatively
uniformly ultimately bounded if there exist compact sets
Φ
1

∈ 𝑅

𝑚 and Φ
2

∈ 𝑅

𝑚 such that, for all 𝑞
𝑖
(𝑡
0
) ∈ Φ

1

and ̇𝑞
𝑖
(𝑡
0
) ∈ Φ

2
, there exist bounds 𝐵

1
and 𝐵

2
and a time

𝑇(𝐵
1
, 𝐵
2
, 𝑞
𝑖
(𝑡
0
), ̇𝑞
𝑖
(𝑡
0
)) such that ‖𝑞

𝑖
(𝑡) − 𝑞

0
(𝑡)‖ ≤ 𝐵

1
and

‖ ̇𝑞
𝑖
(𝑡) − ̇𝑞

0
(𝑡)‖ ≤ 𝐵

2
for all 𝑡 ≥ 𝑡

0
+ 𝑇.

Define the sliding-mode error

𝑒
𝑖
= ̇𝑞
𝑖
− 𝑧
𝑖
+ 𝑠
𝑖
. (23)

For the follower system 𝑖, the error dynamics are given by

𝑀
𝑖
̇𝑒
𝑖
+ 𝐶
𝑖
𝑒
𝑖
= 𝑀
𝑖
̈𝑞
𝑖
− 𝑀
𝑖
�̇�
𝑖
+ 𝑀
𝑖
̇𝑠
𝑖
+ 𝐶
𝑖
𝑒
𝑖
. (24)

In light of (9), one has

𝑀
𝑖
̇𝑒
𝑖
+ 𝐶
𝑖
𝑒
𝑖
= (𝜏
𝑖
+ 𝛿
𝑖
) + 𝐹
𝑖
(𝑥
𝑖
) − 𝑀

𝑖
�̇�
𝑖
, (25)

where

𝐹
𝑖
(𝑥
𝑖
) = −𝐺

𝑖
− 𝐻
𝑖
− 𝐶
𝑖
̇𝑞
𝑖
+ 𝑀
𝑖
̇𝑠
𝑖
+ 𝐶
𝑖
𝑒
𝑖
. (26)

The function𝐹
𝑖
(𝑥
𝑖
) is unknown. In light of the approximation

property of fuzzy logic systems, there exist weights 𝜃
𝑖
such

that

𝐹
𝑖
(𝑥
𝑖
) = 𝜃

𝑇

𝑖
𝜉
𝑖
(𝑥
𝑖
) + 𝜀
𝑖
. (27)

For further analysis, we need the following assumptions.

Assumption 9. On a compact set Γ, the fuzzy logic system
approximation error 𝜀

𝑖
in (27) is bounded; that is, there exists

a fixed constant bound 𝜀
𝑖0
such that ‖𝜀

𝑖
‖ ≤ 𝜀
𝑖0
.

Assumption 10. There exists a constant 𝜃
𝑖0

such that the
weight matrix 𝜃

𝑖
is bounded by ‖𝜃

𝑖
‖
𝐹
≤ 𝜃
0
, ∀𝑖.

Now we get one of the main results.

Theorem 11. Consider the networked Lagrange systems (8)
and (9). Assume that the directed communication graph 𝐺 has
a spanning tree. Make Assumptions 3–10. Take the distributed
adaptive controller as

𝜏
𝑖
= −𝐾
𝑖
𝑒
𝑖
−

̂
𝜃

𝑇

𝑖
𝜉
𝑖
−

3𝑒
𝑖

4𝜇
𝑖

, (28)

with𝐾
𝑖
= 𝑘
𝑖
𝐼, (𝑘
𝑖
> 0) and 𝜇

𝑖
> 0, and the distributed adaptive

tuning law as
̇

̂
𝜃
𝑖
= 𝛽
𝑖
𝜉
𝑖
𝑒
𝑖

𝑇
− 𝜂
𝑖
̂
𝜃
𝑖

(29)

with 𝛽
𝑖

> 0 and 𝜂
𝑖

> 0. The position and velocity tracking
errors are cooperatively uniformly ultimately bounded (UUB).
The ultimate bounds can be made as small as possible.
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Proof. Consider the candidate Lyapunov function

𝑉 =

1

2

𝑛

∑

𝑖=1

𝑒

𝑇

𝑖
𝑀
𝑖
𝑒
𝑖
+

𝑛

∑

𝑖=1

1

2𝛽
𝑖

tr {̃𝜃𝑇
𝑖

̃
𝜃
𝑖
} , (30)

with ̃
𝜃
𝑖
= 𝜃
𝑖
−

̂
𝜃
𝑖
. Taking the time derivative on both sides of

(30) yields

̇
𝑉 =

𝑛

∑

𝑖=1

(𝑒

𝑇

𝑖
𝑀
𝑖
( ̈𝑞
𝑖
− �̇�
𝑖
+ ̇𝑠
𝑖
) +

1

2

𝑒

𝑇

𝑖
̇

𝑀
𝑖
𝑒
𝑖
)

−

𝑛

∑

𝑖=1

1

𝛽
𝑖

tr {̃𝜃𝑇
𝑖

̇
̂
𝜃
𝑖
} .

(31)

By substituting (9) into (31), we have

̇
𝑉 =

𝑛

∑

𝑖=1

(𝑒

𝑇

𝑖
𝑀
𝑖
(𝑀
𝑖

−1
(𝜏
𝑖
+ 𝛿
𝑖
− 𝐺
𝑖
− 𝐻
𝑖
− 𝐶
𝑖
̇𝑞
𝑖
) − �̇�
𝑖
+ ̇𝑠
𝑖
)

+

1

2

𝑒

𝑇

𝑖
̇

𝑀
𝑖
𝑒
𝑖
) −

𝑛

∑

𝑖=1

1

𝛽
𝑖

tr {̃𝜃𝑇
𝑖

̇
̂
𝜃
𝑖
}

=

𝑛

∑

𝑖=1

(𝑒

𝑇

𝑖
(𝜏
𝑖
+ 𝛿
𝑖
− 𝐺
𝑖
− 𝐻
𝑖
− 𝐶
𝑖
̇𝑞
𝑖
− 𝑀
𝑖
�̇�
𝑖
+ 𝑀
𝑖
̇𝑠
𝑖
)

+

1

2

𝑒

𝑇

𝑖
̇

𝑀
𝑖
𝑒
𝑖
) −

𝑛

∑

𝑖=1

1

𝛽
𝑖

tr {̃𝜃𝑇
𝑖

̇
̂
𝜃
𝑖
} .

(32)

In order to apply Property 2, we first add the term 𝑒

𝑇

𝑖
𝐶
𝑖
𝑒
𝑖
and

then subtract it. Thus

̇
𝑉 =

𝑛

∑

𝑖=1

(𝑒

𝑇

𝑖
(𝜏
𝑖
+ 𝛿
𝑖
− 𝐺
𝑖
− 𝐻
𝑖
− 𝐶
𝑖
̇𝑞
𝑖
− 𝑀
𝑖
�̇�
𝑖
+ 𝑀
𝑖
̇𝑠
𝑖
)

+ 𝑒

𝑇

𝑖
𝐶
𝑖
𝑒
𝑖
) −

𝑛

∑

𝑖=1

1

𝛽
𝑖

tr {̃𝜃𝑇
𝑖

̇
̂
𝜃
𝑖
} .

(33)

Define

𝐹
𝑖
(𝑥
𝑖
) = −𝐺

𝑖
− 𝐻
𝑖
− 𝐶
𝑖
̇𝑞
𝑖
+ 𝑀
𝑖
̇𝑠
𝑖
+ 𝐶
𝑖
𝑒
𝑖
. (34)

According to (27), we have

̇
𝑉 =

𝑛

∑

𝑖=1

𝑒

𝑇

𝑖
(𝜏
𝑖
+ 𝜃

𝑇

𝑖
𝜉
𝑖
(𝑥
𝑖
) + 𝜀
𝑖
+ 𝛿
𝑖
− 𝑀
𝑖
�̇�
𝑖
)

−

𝑛

∑

𝑖=1

1

𝛽
𝑖

tr {̃𝜃𝑇
𝑖

̇
̂
𝜃
𝑖
} .

(35)

In light of Young’s inequality, one has

𝑒

𝑇

𝑖
𝜀
𝑖
+ 𝑒

𝑇

𝑖
𝛿
𝑖
− 𝑒

𝑇

𝑖
𝑀
𝑖
�̇�
𝑖

≤






𝑒
𝑖






(






𝜀
𝑖






+






𝛿
𝑖






+






𝑀
𝑖
�̇�
𝑖






)

≤

3






𝑒
𝑖






2

4𝜇
𝑖

+ 𝜇
𝑖






𝛿
𝑖






2

+ 𝜇
𝑖






𝜀
𝑖






2

+ 𝜇
𝑖






𝑀
𝑖
�̇�
𝑖






2

≤

3






𝑒
𝑖






2

4𝜇
𝑖

+ 𝜇
𝑖
(𝛿

2

𝑖0
+ 𝜀

2

𝑖0
+ 𝑚𝛾

2
𝑀

2

𝑀
) .

(36)

Substituting (28) and (36) into (35) yields

̇
𝑉 ≤

𝑛

∑

𝑖=1

𝑒

𝑇

𝑖
(−𝐾
𝑖
𝑒
𝑖
+

̃
𝜃

𝑇

𝑖
𝜉
𝑖
(𝑥
𝑖
)) −

𝑛

∑

𝑖=1

1

𝛽
𝑖

tr {̃𝜃𝑇
𝑖

̇
̂
𝜃
𝑖
}

+

𝑛

∑

𝑖=1

𝜇
𝑖
(𝛿

2

𝑖0
+ 𝜀

2

𝑖0
+ 𝑚𝛾

2
𝑀

2

𝑀
) .

(37)

From (29), we have

̇
𝑉 ≤ −

𝑛

∑

𝑖=1

𝑒

𝑇

𝑖
𝐾
𝑖
𝑒
𝑖
+

𝑛

∑

𝑖=1

𝜂
𝑖

𝛽
𝑖

tr {̃𝜃𝑇
𝑖

̂
𝜃
𝑖
}

+

𝑛

∑

𝑖=1

𝜇
𝑖
(𝛿

2

𝑖0
+ 𝜀

2

𝑖0
+ 𝑚𝛾

2
𝑀

2

𝑀
) .

(38)

Note that

tr {̃𝜃𝑇
𝑖

̂
𝜃
𝑖
} ≤







̃
𝜃
𝑖





𝐹






𝜃
𝑖




𝐹

−







̃
𝜃
𝑖







2

𝐹
≤ −

1

2

(







̃
𝜃
𝑖







2

𝐹
−






𝜃
𝑖






2

𝐹
) . (39)

Thus,

̇
𝑉 ≤ −

𝑛

∑

𝑖=1

(𝑘
𝑖
𝑒

𝑇

𝑖
𝑒
𝑖
+

𝜂
𝑖

2𝛽
𝑖

tr {̃𝜃𝑇
𝑖

̃
𝜃
𝑖
})

+

𝑛

∑

𝑖=1

(𝜇
𝑖
(𝛿

2

𝑖0
+ 𝜀

2

𝑖0
+ 𝑚𝛾

2
𝑀

2

𝑀
) +

𝜂
𝑖

2𝛽
𝑖






𝜃
𝑖






2

𝐹
) .

(40)

Let 𝑑
0
= ∑

𝑛

𝑖=1
(𝜇
𝑖
(𝛿

2

𝑖0
+ 𝜀

2

𝑖0
+ 𝑚𝛾

2
𝑀

2

𝑀
) + (𝜂
𝑖
/2𝛽
𝑖
)‖𝜃
𝑖
‖

2

𝐹
). Thus,

̇
𝑉 ≤ −

𝑛

∑

𝑖=1

(

𝑘
𝑖

𝑀
𝑚

𝑒

𝑇

𝑖
𝑀
𝑖
𝑒
𝑖
+

𝜂
𝑖

2𝛽
𝑖

tr {̃𝜃𝑇
𝑖

̃
𝜃
𝑖
}) + 𝑑

0
. (41)

Moreover,

̇
𝑉 ≤ −𝑐

0
𝑉 + 𝑑

0
(42)

with 𝑐
0
= min{(2𝑘

𝑖
/𝑀
𝑚
), 𝜂
𝑖
}.

Let 𝑒 = (𝑒

𝑇

1
, 𝑒

𝑇

2
, . . . , 𝑒

𝑇

𝑛
)

𝑇. From (42), one has

‖𝑒‖

2
≤

2𝑉 (0)

𝑀
𝑚

𝑒

−𝑐0𝑡
+

2𝑑
0

𝑀
𝑚
𝑐
0

. (43)

with 𝑀
𝑚
defined in Property 1.

Note that 𝑧
𝑖
= ̇𝑞
0
as 𝑡 > 𝑇

0
. Thus, we have

̇
𝑆 = − ((𝐿 + 𝐵) ⊗ 𝐼

𝑚
) 𝑆 + ((𝐿 + 𝐵) ⊗ 𝐼

𝑚
) 𝑒, 𝑡 > 𝑇

0
, (44)

with 𝑆 = (𝑠

𝑇

1
, 𝑠

𝑇

2
, . . . , 𝑠

𝑇

𝑛
)

𝑇. Since 𝐿 + 𝐵 is a positive stable
matrix, there exists a symmetric positive matrix 𝑃

0
such that

𝑄 = 𝑃
0
(𝐿 + 𝐵) + (𝐿 + 𝐵)

𝑇
𝑃
0
is symmetric positive definite.

Choose the Lyapunov function

𝑉
1
= 𝑆

𝑇
(𝑃
0
⊗ 𝐼
𝑚
) 𝑆. (45)
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The time derivative of 𝑉
1
is

̇
𝑉
1
= 2𝑆

𝑇
(𝑃
0
⊗ 𝐼
𝑚
) (− ((𝐿 + 𝐵) ⊗ 𝐼

𝑚
) 𝑆

+ ((𝐿 + 𝐵) ⊗ 𝐼
𝑚
) 𝑒)

= 𝑆

𝑇
( − (𝑃

0
(𝐿 + 𝐵)) ⊗ 𝐼

𝑚

− ((𝐿 + 𝐵)

𝑇
𝑃
0
) ⊗ 𝐼
𝑚
) 𝑆

+ 2𝑆

𝑇
((𝑃
0
(𝐿 + 𝐵)) ⊗ 𝐼

𝑚
) 𝑒

≤ −𝜆min (𝑄) ‖𝑆‖

2

+ 2 ‖𝑆‖ 𝜎max (𝑃0) 𝜎max (𝐿 + 𝐵) ‖𝑒‖ ;

(46)

̇
𝑉
1
is negative as long as

‖𝑆‖ >

2𝜎max (𝑃0) 𝜎max (𝐿 + 𝐵)

𝜆min (𝑄)

‖𝑒‖ . (47)

In light of the fact that






𝑞
𝑖
− 𝑞
0






≤

‖𝑆‖

𝜎min (𝐿 + 𝐵)

, (48)

we have






𝑞
𝑖
− 𝑞
0






≤

2𝜎max (𝑃0) 𝜎max (𝐿 + 𝐵)

𝜆min (𝑄) 𝜎min (𝐿 + 𝐵)

√

2𝑉 (0)

𝑀
𝑚

𝑒

−𝑐0𝑡
+

2𝑑
0

𝑐
0
𝑀
𝑚

.

(49)

Moreover,





̇𝑞
𝑖
− ̇𝑞
0






≤






𝑒
𝑖






+






𝑠
𝑖






≤ (1 +

2𝜎max (𝑃0) 𝜎max (𝐿 + 𝐵)

𝜆min (𝑄)

)

× √

2𝑉 (0)

𝑀
𝑚

𝑒

−𝑐0𝑡
+

2𝑑
0

𝑐
0
𝑀
𝑚

.

(50)

From (49) and (50), we can see that the position and velocity
tracking errors are cooperatively UUB and the ultimate
bounds can be made as small as possible by appropriately
tuning the design parameters.

Remark 12. Thework in [11] requires that the communication
topologies among the followers are undirected. We extend
these results to the case that the communication graph among
the followers can be a directed graph, which is a more general
case. The works in [22–24] considered the centralized fuzzy
logic systems or the centralized tracking problem. Different
from these works [22–24], we considered the decentralized
systems, where the controller design and the systems analysis
are more involved.

3.3. Fault-Tolerant Controller Design under Actuator Faults.
From the above analysis, the proposed control law in (28)

can guarantee arbitrary small tracking errors for the closed-
loop system with fault-free actuators.This controller is called
the nominal controller and denoted by 𝜏nor(𝑖). To perform
tracking control with actuator faults as defined by (10), an
auxiliary controller 𝜏aux(𝑖) is developed in addition to the
nominal controller 𝜏nor(𝑖), to compensate for the actuator
faults. Consequently, the control input 𝜏

𝑖
to the system shown

in (10) is designed as

𝜏
𝑖
= 𝜏nor(𝑖) + 𝜏aux(𝑖), (51)

where 𝜏nor(𝑖) is given by (28) and the fault-tolerant controller
𝜏aux(𝑖) is synthesized as

𝜏aux(𝑖) = −
(

(

𝑘
𝑖1
tanh (𝑘

𝑖1
𝑒
𝑖1
/𝜍
𝑖1
)

𝜎
𝑖1

...
𝑘
𝑖𝑚
tanh (𝑘

𝑖𝑚
𝑒
𝑖𝑚

/𝜍
𝑖𝑚

)

𝜎
𝑖𝑚

)

)

−
(

(

𝜏nor(𝑖1) tanh (𝜏nor(𝑖1)𝑒𝑖1/𝜐𝑖1)

𝜎
𝑖1

...
𝜏nor(𝑖𝑚) tanh (𝜏nor(𝑖𝑚)𝑒𝑖𝑚/𝜐𝑖𝑚)

𝜎
𝑖𝑚

)

)

,

(52)

with the positive design parameters 𝜍
𝑖𝑗
and 𝜐
𝑖𝑗
, 𝑗 = 1, 2, . . . , 𝑚.

Theorem 13. Consider the networked Lagrange systems with
the bias actuator faults and the partial loss of actuator
effectiveness as defined by (10). Under the control law provided
in (51) and the adaptive law given in (29), the cooperative
tracking errors can be made as small as possible by suitably
tuning the controller parameters.

Proof. Substituting the fault-tolerant controller (51) into (25)
gives

𝑀
𝑖
̇𝑒
𝑖
+ 𝐶
𝑖
𝑒
𝑖
= (𝜎
𝑖
𝜏
𝑖
+ 𝑓
𝑖
+ 𝛿
𝑖
) + 𝐹
𝑖
(𝑥
𝑖
) − 𝑀

𝑖
�̇�
𝑖

= 𝜏nor(𝑖) + 𝜎
𝑖
𝜏aux(𝑖) − 𝜌

𝑖
𝜏nor(𝑖) + 𝑓

𝑖

+ 𝛿
𝑖
+ 𝐹
𝑖
(𝑥
𝑖
) − 𝑀

𝑖
�̇�
𝑖
,

(53)

where 𝜌
𝑖
= 𝐼−𝜎

𝑖
. The inequality 0 ≤ ‖𝜌

𝑖
‖

∞
< 1 always holds.

The candidate Lyapunov function 𝑉 defined in
Theorem 11 is also used here. Substituting (53) into the
time derivative of 𝑉 yields

̇
𝑉 =

𝑛

∑

𝑖=1

(𝑒

𝑇

𝑖
𝑀
𝑖
̇𝑒
𝑖
+ 𝑒

𝑇

𝑖
𝐶
𝑖
𝑒
𝑖
) −

𝑛

∑

𝑖=1

1

𝛽
𝑖

tr {̃𝜃𝑇
𝑖

̇
̂
𝜃
𝑖
}

=

𝑛

∑

𝑖=1

𝑒

𝑇

𝑖
(𝜏nor(𝑖) + 𝜎

𝑖
𝜏aux(𝑖) − 𝜌

𝑖
𝜏nor(𝑖)

+𝑓
𝑖
+ 𝛿
𝑖
+ 𝐹
𝑖
(𝑥
𝑖
) − 𝑀

𝑖
�̇�
𝑖
)

−

𝑛

∑

𝑖=1

1

𝛽
𝑖

tr {̃𝜃𝑇
𝑖

̇
̂
𝜃
𝑖
} .

(54)
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Figure 1: The communication topology.

Applying the same analysis as that of Theorem 11, one has

̇
𝑉 ≤ −𝑐

0
𝑉 + 𝑑

0
+

𝑛

∑

𝑖=1

𝑒

𝑇

𝑖
(𝜎
𝑖
𝜏aux(𝑖) − 𝜌

𝑖
𝜏nor(𝑖) + 𝑓

𝑖
)

≤ −𝑐
0
𝑉 + 𝑑

0

+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑒
𝑖𝑗
(𝜎
𝑖𝑗
𝜏aux(𝑖𝑗) − 𝜌

𝑖𝑗
𝜏nor(𝑖𝑗) + 𝑓

𝑖𝑗
) .

(55)

In light of |𝜌
𝑖𝑗
| < 1 and Assumption 2, we have

̇
𝑉 ≤ −𝑐

0
𝑉 + 𝑑

0
+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑒
𝑖𝑗
𝜎
𝑖𝑗
𝜏aux(𝑖𝑗)

+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1







𝑒
𝑖𝑗













𝜏nor(𝑖𝑗)






+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1







𝑒
𝑖𝑗













𝑘
𝑖𝑗
(𝑡)







.

(56)

Furthermore,

̇
𝑉 ≤ −𝑐

0
𝑉 + 𝑑

0
+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑒
𝑖𝑗
𝜎
𝑖𝑗
𝜏aux(𝑖𝑗)

+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑒
𝑖𝑗
𝜏nor(𝑖𝑗) tanh(

𝑒
𝑖𝑗
𝜏nor(𝑖𝑗)

𝜐
𝑖𝑗

)

+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝜐
𝑖𝑗
+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑒
𝑖𝑗
𝑘
𝑖𝑗
tanh(

𝑒
𝑖𝑗
𝑘
𝑖𝑗

𝜍
𝑖𝑗

)

+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝜍
𝑖𝑗
.

(57)

In light of (52), we have

̇
𝑉 ≤ −𝑐

0
𝑉 + 𝑑

0
+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑒
𝑖𝑗
𝜎
𝑖𝑗

× (−

𝑘
𝑖𝑗
tanh (𝑒

𝑖𝑗
𝑘
𝑖𝑗
/𝜍
𝑖𝑗
)

𝜎
𝑖𝑗

−

𝜏nor(𝑖𝑗) tanh (𝑒
𝑖𝑗
𝜏nor(𝑖𝑗)/𝜐𝑖𝑗)

𝜎
𝑖𝑗

)

+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑒
𝑖𝑗
𝜏nor(𝑖𝑗) tanh(

𝑒
𝑖𝑗
𝜏nor(𝑖𝑗)

𝜐
𝑖𝑗

)

+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝜐
𝑖𝑗
+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑒
𝑖𝑗
𝑘
𝑖𝑗
tanh(

𝑒
𝑖𝑗
𝑘
𝑖𝑗

𝜍
𝑖𝑗

)

+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝜍
𝑖𝑗
.

(58)

In light of Assumption 2, we have

̇
𝑉 ≤ −𝑐

0
𝑉 + 𝑑

0
+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝜐
𝑖𝑗
+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝜍
𝑖𝑗

≤ −𝑐
0
𝑉 + 𝑑

1
,

(59)

with 𝑑
1
= 𝑑
0
+ ∑

𝑛

𝑖=1
∑

𝑚

𝑗=1
𝜍
𝑖𝑗
+ ∑

𝑛

𝑖=1
∑

𝑚

𝑗=1
𝜐
𝑖𝑗
.

Following the same procedure as that of Theorem 11, we
get that the local tracking errors are cooperatively UUB.

Remark 14. The works in [1–12] do not consider the actu-
ator faults. We consider the actuator faults and present a
fault-tolerant control scheme. The proposed fault-tolerant
controller consists of the nominal controller (28) and the
auxiliary controller (52). Different from the works [16–19],
the fault detection and diagnosis mechanism is not required
here. Thus, the proposed algorithm reduces the computation
burden and decreases the response time of the controller.
Compared with the work in [20], the proposed control law
does not use the sign function. It avoids the chattering
phenomenon.

4. Simulation Results

In this section, we present the simulation results to exam-
ine the performance of the proposed control scheme. The
networked systems considered here consist of four standard
two-DOF manipulators interconnected on a directed graph
containing a spanning tree (see Figure 1). The manipulator
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Figure 2: Simulation results with healthy actuators.
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Figure 3: Simulation results with the actuator faults under the nominal controller.
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consists of two serially connected links. The dynamics are
described by (9) with

𝑀
𝑖
(𝑞
𝑖
) = [

𝑝
1
+ 𝑝
2
+ 2𝑝
3
cos (𝑞

𝑖2
) 𝑝
2
+ 𝑝
3
cos (𝑞

𝑖2
)

𝑝
2
+ 𝑝
3
cos (𝑞

𝑖2
) 𝑝

2

] ,

𝐶
𝑖
(𝑞
𝑖
, ̇𝑞
𝑖
) = [

−𝑝
3

̇𝑞
𝑖2
sin (𝑞
𝑖2
) −𝑝
3
( ̇𝑞
𝑖1

+ ̇𝑞
𝑖2
) sin (𝑞

𝑖2
)

−𝑝
3

̇𝑞
𝑖1
sin (𝑞
𝑖2
) 0

] ,

𝐺
𝑖
(𝑞
𝑖
) = [

𝑝
4
𝑔 cos (𝑞

𝑖1
) + 𝑝
5
𝑔 cos (𝑞

𝑖1
+ 𝑞
𝑖2
)

𝑝
5
𝑔 cos (𝑞

𝑖1
+ 𝑞
𝑖2
)

] ,

(60)

where 𝑝 = [𝑝
1
, 𝑝
2
, 𝑝
3
, 𝑝
4
, 𝑝
5
] = [2.9, 0.76, 0.87, 0.34, 0.87].

Assume that the dynamics of the manipulators are
unknown. Fuzzy logic systems are used to approximate the
unknowndynamics. Choose the fuzzymembership functions
as

𝜇
𝐴
1

𝑖

(𝑥
𝑖
) = exp (−(𝑥

𝑖
+ 1)

2

) , 𝜇
𝐴
2

𝑖

(𝑥
𝑖
) = exp (−𝑥

2

𝑖
) ,

𝜇
𝐴
3

𝑖

(𝑥
𝑖
) = exp (−(𝑥

𝑖
− 1)

2

) ,

(61)

where 𝑥
𝑖
is a variable which denotes the position or velocity

of the manipulator.

The design parameters for the controller and adaptive
laws are chosen as 𝐾

𝑖
= [

80 0

0 40
], 𝛽
𝑖

= 500, 𝜂
𝑖

= 0.01,
and 𝜇

𝑖
= 1. The initial conditions are set as 𝑞

𝑖
(0) = [

0

0
],

̇𝑞
𝑖
(0) = [

0

0
], and ̂

𝜃
𝑖
(0) = 0.

Case 1: Healthy Actuators. This case simulates the ideal
situation when no actuator faults occur. Figure 2 provides the
simulation results for the nominal controller (NC) given by
(28). Figures 2(c) and 2(d) show the finite-time convergence
of the velocity observers. Figures 2(a) and 2(b) demonstrate
that the high control precision and an acceptable system
performance have been achieved.

Case 2: Faulty Actuators. This example represents the severe
case in which both the bias faults and the partial loss of
actuator effectiveness occur. Assume that the actuators of the
networked systems undergo a partial loss of effectiveness and
a bias fault at 𝑡 = 10𝑠. Let 𝜎

𝑖
= 0.02, 𝑘

𝑖𝑗
(𝑡) = 2, and

𝜐
𝑖𝑗

= 𝜍
𝑖𝑗

= 0.5 (𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2). In the simulation,
the partial loss coefficient and the bias faults are set as

𝜎
𝑖𝑚

= {

1 𝑡 < 10𝑠

0.15 + 0.1 sin (0.5𝑡) 𝑡 ≥ 10𝑠

(𝑚 = 1, 2) ,

𝑓
𝑖𝑚

= {

0 𝑡 < 10𝑠

1 + 0.5 sin (0.2𝑡) 𝑡 ≥ 10𝑠

(𝑚 = 1, 2) ,

(62)

respectively.
Figures 3 and 4 show the results using the two different

control laws based on the same simulation conditions. From
Figures 3(a) and 3(b), we see that the effects of the actuator
faults propagate to the Lagrangian dynamics and cannot be

compensated by the nominal controllers. Significant degra-
dation of the control performance and system instability after
the faults can be observed. In contrast, Figures 4(a) and 4(b)
show that the FTC controller can achieve the objective of
fault-tolerant control and does succeed in compensating for
the fault simultaneously.

In summary, for the healthy case, the proposed controller
achieves the desired control performance of the closed-loop
Lagrange system. For the cases with actuator faults, the
proposedmethod can compensate for the effects of the faults.
As the faults become more severe, the proposed controller
still guarantees system stability.

5. Conclusion

A distributed fault-tolerant tracking control scheme was
presented for networked uncertain Euler-Lagrange systems
which may experience the bias faults and the partial loss
of actuator effectiveness. Using finite-time observer based
method and Lyapunov analysis we have derived stable adap-
tive protocol which consists of the nominal control input and
the auxiliary control input, where the former achieved the
distributed tracking control of healthy systemswhile the latter
compensated for the effect of actuator faults. The proposed
scheme was suitable for the general directed communication
topology. The simulation results presented in this paper
showed that the control scheme can successfully handle the
model uncertainties and the unknown actuators faults.
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