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The quasidifferential of a quasidifferentiable function in the sense of Demyanov and Rubinov is not uniquely defined. Xia proposed
the notion of the kernelled quasidifferential, which is expected to be a representative for the equivalence class of quasidifferentials.
Although the kernelled quasidifferential is known to have good algebraic properties and geometric structure, it is still not very
convenient for calculating the kernelled quasidifferentials of −𝑓 and min{𝑓

𝑖
| 𝑖 ∈ a finite index set 𝐼}, where 𝑓 and 𝑓

𝑖
are kernelled

quasidifferentiable functions. In this paper, the notion of adjoint kernelled quasidifferential, which is well-defined for −𝑓 and
min{𝑓

𝑖
| 𝑖 ∈ 𝐼}, is employed as a representative of the equivalence class of quasidifferentials. Some algebraic properties of the

adjoint kernelled quasidifferential are given and the existence of the adjoint kernelled quasidifferential is explored by means of the
minimal quasidifferential and the Demyanov difference of convex sets. Under some condition, a formula of the adjoint kernelled
quasidifferential is presented.

1. Introduction

Quasidifferential calculus, developed by Demyanov and
Rubinov, plays an important role in nonsmooth analysis
and optimization. The class of quasidifferentiable functions
is fairly broad. It contains not only convex, concave, and
differentiable functions but also convex-concave, D.C. (i.e.,
difference of two convex), maximum, and other functions.
In addition, it even includes some functions which are not
locally Lipschitz continuous. Quasidifferentiability can be
employed to study a wide range of theoretical and practical
issues in many fields, such as in mechanics, engineering, and
economics nonsmooth analysis and fuzzy control theory (see,
e.g., [1–13]).

A function 𝑓 defined on an open set O ⊂ 𝑅

𝑛 is called
quasidifferentiable (q.d.) at a point 𝑥 ∈ O, in the sense of
Demyanov and Rubinov [5], if it is directionally differentiable
at 𝑥 and there exist two nonempty convex compact sets
𝜕𝑓(𝑥) and 𝜕𝑓(𝑥) such that the directional derivative can be
represented in the form as

𝑓

󸀠
(𝑥; 𝑑) = max

𝑢∈𝜕𝑓(𝑥)

⟨𝑢, 𝑑⟩ + min
V∈𝜕𝑓(𝑥)

⟨V, 𝑑⟩ , ∀𝑑 ∈ 𝑅

𝑛
, (1)

where ⟨⋅, ⋅⟩ denotes the usual inner product in 𝑅

𝑛. The pair
of sets𝐷𝑓(𝑥) = [𝜕𝑓(𝑥), 𝜕𝑓(𝑥)] is called a quasidifferential of
𝑓 at 𝑥 and 𝜕𝑓(𝑥) and 𝜕𝑓(𝑥) are called a subdifferential and a
superdifferential, respectively.

It is well known that the quasidifferential is not uniquely
defined. Let 𝑌

𝑛
be the set of all nonempty convex compact

sets in 𝑅

𝑛. Denote 𝐴 ± 𝐵 = {𝑎 ± 𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} and
𝜆𝐴 = {𝜆𝑎 | 𝑎 ∈ 𝐴}, where 𝐴, 𝐵 ∈ 𝑌

𝑛
and 𝜆 ≥ 0. Suppose that

[𝑈, 𝑉] is a quasidifferential of𝑓; then, for any𝐴 ∈ 𝑌

𝑛
, the pair

of sets [𝑈+𝐴,𝑉−𝐴] is still a quasidifferential of𝑓. And the set
D𝑓(𝑥) of quasidifferentials of𝑓 at 𝑥 is so large that the whole
space 𝑅𝑛 could be covered by the union of subdifferentials or
superdifferentials; that is,

𝑅

𝑛
= ⋃

𝐷𝑓(𝑥)∈D𝑓(𝑥)

𝜕𝑓 (𝑥) = ⋃

𝐷𝑓(𝑥)∈D𝑓(𝑥)

𝜕𝑓 (𝑥) . (2)

The quasidifferential uniqueness is an essential problem in
quasidifferential calculus, so it is necessary to find a way by
which a quasidifferential, particularly a small quasidifferen-
tial in some sense, as a representative of the equivalence class
of quasidifferentials, can be determined automatically. The
problem was for the first time considered in a discussion
at IIASA, by Demyanov and Xia in 1984 [4]. There were
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many reports and publications mentioning or dealing with
this subject from different points of view (see, for instance,
[9–26], etc.).

Pallaschke et al. [18] introduced the notion of the mini-
mal quasidifferential and proved the existence of equivalent
minimal quasidifferential. [𝑈, 𝑉] ∈ D𝑓(𝑥) is called minimal,
provided that [𝑈

1
, 𝑉

1
] ∈ D𝑓(𝑥) satisfying 𝑈

1
⊂ 𝑈 and

𝑉

1
⊂ 𝑉 implies 𝑈 = 𝑈

1
and 𝑉 = 𝑉

1
. Nevertheless,

the minimal quasidifferential is not uniquely defined either.
Indeed, any translation of a minimal quasidifferential is still
a minimal quasidifferential; in other words, if [𝐴, 𝐵] is a
minimal quasidifferential, then, for any singleton {𝑐}, the pair
of sets [𝐴 + {𝑐}, 𝐵 − {𝑐}] is still a minimal quasidifferential.
For one-dimensional space, equivalent minimal pairs are
uniquely determined up to translations, according to [8].
Grzybowski [15] and Scholtes [22] proved independently
the fact that equivalent minimal quasidifferentials, in the
two-dimensional case, are uniquely determined up to a
translation. For the 𝑛-dimensional case (𝑛 ≥ 3), Grzybowski
[15] gave the first example of two equivalent minimal pairs
in 𝑅

3 which are not related by translations, and, as in [19],
Pallaschke and Unbański indicated that a continuum of
equivalent pairs are not related by translation for different
indices. Some sufficient conditions and both sufficient and
necessary conditions for the minimality of pairs of compact
convex sets were given and some reduction techniques for
the reduction of pairs of compact convex sets via cutting
hyperplanes or excision of compact convex subsets were
proposed according to Pallaschke and Urbański [20, 21].

For the same purpose, Xia [24, 25] introduced the notion
of the kernelled quasidifferential. It was proved that

𝑆 = ⋂

𝐷𝑓(𝑥)∈D𝑓(𝑥)

(𝜕𝑓 (𝑥) + 𝜕𝑓 (𝑥)) ,

𝑆 = ⋂

𝐷𝑓(𝑥)∈D𝑓(𝑥)

(𝜕𝑓 (𝑥) − 𝜕𝑓 (𝑥))

(3)

are nonempty, according to Deng and Gao [14]. 𝑆 and 𝑆

(defined by (3)) are called sub- and super-kernel, respectively,
and [𝑆, 𝑆] is called a quasi-kernel ofD𝑓(𝑥). The quasi-kernel
is said to be a kernelled quasidifferential of 𝑓 at 𝑥 if and
only if the quasi-kernel [𝑆, 𝑆] is a quasidifferential, denoted
by 𝐷

𝑘
𝑓(𝑥) = [𝜕

𝑘
𝑓(𝑥), 𝜕

𝑘
𝑓(𝑥)]. If 𝑓 has a kernelled quasid-

ifferential at 𝑥 ∈ 𝑅

𝑛, then 𝑓 is said to be a kernelled quasid-
ifferentiable function at 𝑥. For the case of one-dimensional
space, the existence of the kernelled quasidifferential was
given by Gao [16]. In the two dimensional case, based on
the translation of minimal quasidifferentials, it was proved
that the kernelled quasidifferential exists for any q.d. function
(see [17]). In the 𝑛-dimensional case (𝑛 ≥ 3), whether the
pair of sets given in (3) is a quasidifferential of 𝑓 at 𝑥 is
still an open problem, some progress has been made in the
last years. Zhang et al. [26] gave a sufficient condition for
a quasi-kernel being a kernelled quasidifferential. In [11],
Gao presented a condition in terms of Demyanov difference,
called g-condition, in which the kernelled quasidifferential
exists. The corresponding subclasses and augmented class
of g-q.d. functions on 𝑅

𝑛 were defined and some more

properties on this class were presented according to Song and
Xia [23].

Although the kernelled quasidifferential is known to have
good algebraic properties and geometric structure (see [25]),
it is still not very convenient for calculating the kernelled
quasidifferentials of−𝑓 andmin{𝑓

𝑖
| 𝑖 ∈ a finite index set 𝐼},

where 𝑓 and 𝑓

𝑖
are kernelled quasidifferentiable functions.

Hence, in this paper, the notion of adjoint kernelled quasidif-
ferential, which is well-defined for −𝑓 and min{𝑓

𝑖
| 𝑖 ∈ 𝐼},

is employed as a representative of the equivalence class of
quasidifferentials. Some algebraic properties of the adjoint
kernelled quasidifferential are given and the existence of the
adjoint kernelled quasidifferential is explored by means of
the minimal quasidifferential and the Demyanov difference
of convex sets. The rest of the paper is organized as follows.
In Section 2, some preliminary definitions and results used
in the paper are provided. In Section 3, definitions of adjoint
kernelled quasidifferential will be introduced and some
operations of adjoint kernelled quasidifferentiable functions
are given. In Section 4, we prove that the adjoint kernelled
quasidifferential exists in one- and two-dimensional cases
and two sufficient conditions for the existence of the adjoint
kernelled quasidifferential in 𝑅

𝑛
(𝑛 ≥ 3) are given. In

Section 5, under some condition, a formula of the adjoint
kernelled quasidifferential is presented.

2. Preliminaries

The support function 𝛿

∗
(⋅ | 𝐶) of a set 𝐶 ∈ 𝑌

𝑛
is defined by

𝛿

∗
(𝑥 | 𝐶) = max

V∈𝐶
⟨V, 𝑥⟩ , ∀𝑥 ∈ 𝑅

𝑛
. (4)

It is well known (see, e.g., [6]) that themapping𝐴 󳨃→ 𝛿

∗
(⋅ | 𝐴)

called the Minkowski duality is one-to-one correspondence
between 𝑌

𝑛
and the set 𝑃

𝑛
of all finite sublinear functions is

defined on 𝑅

𝑛.

Proposition 1. Let 𝐴, 𝐵 ∈ 𝑌

𝑛
; then

𝐴 ⊂ 𝐵 ⇐⇒ 𝛿

∗
(𝑥 | 𝐴) ≤ 𝛿

∗
(𝑥 | 𝐵) , ∀𝑥 ∈ 𝑅

𝑛
. (5)

It is true that 𝛿∗(⋅ | 𝐶) is convex with

𝜕𝛿

∗
(𝑥 | 𝐶) = {𝑢 ∈ 𝐶 | ⟨𝑢, 𝑥⟩ = max

V∈𝐶
⟨V, 𝑥⟩} , (6)

particularly, 𝜕𝛿∗(0 | 𝐶) = 𝐶, where 𝜕 denotes the subdif-
ferential in the sense of convex analysis [27].

For any 𝑑 ∈ 𝑅

𝑛 and 𝐶 ∈ 𝑌

𝑛
, we denote the max-face of 𝐶

with respect to 𝑑 by the formula

𝐶 (𝑑) = {𝑥 ∈ 𝐶 | ⟨𝑑, 𝑥⟩ = 𝛿

∗
(𝑑 | 𝐶)} . (7)

Obviously, the max-face𝐶(𝑑) coincides with the subdifferen-
tial 𝜕𝛿∗(𝑑 | 𝐶). Denote by 𝑁

𝐶
(𝑥) the normal cone to 𝐶 at

𝑥 ∈ 𝐶; that is,

𝑁

𝐶 (𝑥) = {𝑑 ∈ 𝑅

𝑛
| ⟨𝑑, 𝑦 − 𝑥⟩ ≤ 0, ∀𝑦 ∈ 𝐶} . (8)

Proposition 2. Let 𝐶 ∈ 𝑌

𝑛
, for 𝑥 ∈ 𝐶; it holds

𝑥 ∈ 𝐶 (𝑑) ⇐⇒ 𝑑 ∈ 𝑁

𝐶 (𝑥) . (9)
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Proposition 3. Let 𝐶 ∈ 𝑌

𝑛
and 𝑥 ∈ 𝐶. If 𝑑

1
, 𝑑

2
∈ 𝑁

𝐶
(𝑥), then

𝛿

∗
(𝑑

1
+ 𝑑

2
| 𝐶) = 𝛿

∗
(𝑑

1
| 𝐶) + 𝛿

∗
(𝑑

2
| 𝐶) . (10)

Let the function 𝑓 defined on 𝑅

𝑛 be locally Lipschitz
continuous and let 𝐷

𝑓
denote the set where ∇𝑓 exists. The

Clarke subdifferential 𝜕Cl𝑓(𝑥) of 𝑓 at 𝑥 is defined as follows:

𝜕Cl𝑓 (𝑥) = co { lim
𝑥
𝑛
→𝑥

∇𝑓 (𝑥

𝑛
) | 𝑥

𝑛
󳨀→ 𝑥, 𝑥

𝑛
∈ 𝐷

𝑓
} , (11)

where “co” denotes the convex hull. In the convex case, the
Clarke subdifferential coincides with the subdifferential in
the sense of convex analysis [28].

A set 𝑇 ⊂ 𝑅

𝑛 is called of full measure (with respect to 𝑅

𝑛),
if 𝑅𝑛

\𝑇 is a set of measure zero. Let𝐴 ∈ 𝑌

𝑛
and 𝑇

𝐴
= 𝐷

𝛿
∗
(⋅|𝐴)

be the set of all points 𝑥 ∈ 𝑅

𝑛 such that∇𝛿∗(𝑥 | 𝐴) exists.The
set𝑇

𝐴
is of full measure in𝑅

𝑛. Let𝐴, 𝐵 ∈ 𝑌

𝑛
and𝑇 be a subset

of 𝑇
𝐴
∩ 𝑇

𝐵
of full measure; then the set

𝐴

̇

− 𝐵 = cl co {∇𝛿∗ (𝑥 | 𝐴) − ∇𝛿

∗
(𝑥 | 𝐵) | 𝑥 ∈ 𝑇} (12)

is called Demyanov difference of 𝐴 and 𝐵, where “cl” refers
to the closure. This construction was applied implicitly by
Demyanov for the study of connections between the Clarke
subdifferential and the quasidifferential [3]. In general, the
Demyanov difference is smaller than the Minkowski differ-
ence. It is true that

𝐴

̇

− 𝐵 ⊂ 𝐴 − 𝐵. (13)

According to [6], the Demyanov difference can be rewritten
as

𝐴

̇

− 𝐵 = 𝜕Cl (𝛿
∗
(𝑦 | 𝐴) − 𝛿

∗
(𝑦 | 𝐵)) |𝑦=0

. (14)

Define the algebraic operations of addition and multipli-
cation by a real number in 𝑌

2

𝑛
= 𝑌

𝑛
× 𝑌

𝑛
and the equivalence

relation ∼ as follows:

(𝐴, 𝐵) + (𝐶,𝐷) = (𝐴 + 𝐶, 𝐵 + 𝐷) ,

𝑐 (𝐴, 𝐵) = (𝑐𝐴, 𝑐𝐵) , 𝑐 ≥ 0,

𝑐 (𝐴, 𝐵) = (𝑐𝐵, 𝑐𝐴) , 𝑐 < 0,

(𝐴, 𝐵) ∼ (𝐶,𝐷) ⇐⇒ 𝐴 − 𝐷 = 𝐶 − 𝐵,

(15)

where 𝑐 ∈ 𝑅, (𝐴, 𝐵), and (𝐶,𝐷) ∈ 𝑌

2

𝑛
. It is easy to check that

D𝑓(𝑥) ∈ 𝑌

2

𝑛
/

∼
.

Proposition 4. If [𝜕

1
𝑓(𝑥), 𝜕

1
𝑓(𝑥)], [𝜕

2
𝑓(𝑥), 𝜕

2
𝑓(𝑥)] ∈

D𝑓(𝑥), then

𝜕

1
𝑓 (𝑥)

̇

− (−𝜕

1
𝑓 (𝑥)) = 𝜕

2
𝑓 (𝑥)

̇

− (−𝜕

2
𝑓 (𝑥)) . (16)

The main formulas of quasidifferential calculus will be
stated as Proposition 5. Algebraic operations over quasidif-
ferentials are performed as over elements of the space of
compact sets (or what is the same, as over pairs of sets).

Proposition 5. Let Δ

𝑛
(𝑥) denote the set of all functions

defined on an open set O ⊂ 𝑅

𝑛 and quasidifferentiable at a
point 𝑥 ∈ O. Then, the following hold.

(1) If 𝑓
1
, 𝑓

2
∈ Δ

𝑛
(𝑥), 𝑐

1
, 𝑐

2
are real numbers, then 𝑐

1
𝑓

1
+

𝑐

2
𝑓

2
∈ Δ

𝑛
(𝑥), and

𝐷(𝑐

1
𝑓

1
+ 𝑐

2
𝑓

2
) (𝑥) = 𝑐

1
𝐷𝑓

1 (
𝑥) + 𝑐

2
𝐷𝑓

2 (
𝑥) . (17)

Note that, in particular,𝐷(−𝑓(𝑥)) = −𝐷𝑓(𝑥).
(2) Let 𝑓

1
, 𝑓

2
∈ Δ

𝑛
(𝑥). Then, 𝑓

1
⋅ 𝑓

2
∈ Δ

𝑛
(𝑥) and

𝐷(𝑓

1
⋅ 𝑓

2
) (𝑥) = 𝑓

1 (
𝑥)𝐷𝑓

2 (
𝑥) + 𝑓

2 (
𝑥)𝐷𝑓

1 (
𝑥) . (18)

(3) If 𝑓 ∈ Δ

𝑛
(𝑥), 𝑓(𝑥) ̸= 0, then 1/𝑓 is quasidifferentiable

at 𝑥 and

D𝑓

−1
(𝑥) = −𝑓

−2
(𝑥)D𝑓 (𝑥) .

(19)

(4) Let 𝑓
1
, 𝑓

2
, . . . , 𝑓

𝑛
∈ Δ

𝑛
(𝑥) and

𝑔 (𝑦) = max (𝑓
1
(𝑦) , . . . , 𝑓

𝑛
(𝑦)) , ∀𝑦 ∈ O,

ℎ (𝑦) = min (𝑓

1
(𝑦) , . . . , 𝑓

𝑛
(𝑦)) , ∀𝑦 ∈ O.

(20)

Then, 𝑔 ∈ Δ

𝑛
(𝑥), ℎ ∈ Δ

𝑛
(𝑥), and

𝐷𝑔 (𝑥) = [𝜕𝑔 (𝑥) , 𝜕𝑔 (𝑥)] , 𝐷ℎ (𝑥) = [𝜕ℎ (𝑥) , 𝜕ℎ (𝑥)] ,

(21)

where

𝜕𝑔 (𝑥) = co ⋃

𝑘∈𝑅(𝑥)

(𝜕𝑓

𝑘 (
𝑥) − ∑

𝑖∈𝑅(𝑥),𝑖 ̸= 𝑘

𝜕𝑓

𝑖 (
𝑥)) ,

𝜕𝑔 (𝑥) = ∑

𝑘∈𝑅(𝑥)

𝜕𝑓

𝑘 (
𝑥) , 𝜕ℎ (𝑥) = ∑

𝑘∈𝑆(𝑥)

𝜕𝑓

𝑘 (
𝑥) ,

𝜕ℎ (𝑥) = co ⋃

𝑘∈𝑆(𝑥)

(𝜕𝑓

𝑘 (
𝑥) − ∑

𝑖∈𝑆(𝑥),𝑖 ̸= 𝑘

𝜕𝑓

𝑖 (
𝑥)) .

(22)

Here, 𝑅(𝑥) = {𝑖 | 𝑓

𝑖
(𝑥) = 𝑔(𝑥)}, 𝑆(𝑥) = {𝑖 | 𝑓

𝑖
(𝑥) =

ℎ(𝑥)}.

3. Adjoint Kernelled Quasidifferential

The kernelled quasidifferential is known to have good alge-
braic properties (see [25]), but it is still not very convenient
for calculating the kernelled quasidifferentials of −𝑓 and
min{𝑓

𝑖
| 𝑖 ∈ a finite index set 𝐼}, where 𝑓 and 𝑓

𝑖
are

kernelled quasidifferentiable functions. So it is natural and
necessary to explore the pair of sets [𝑆, 𝑆], where 𝑆 is defined
as in (3) and

𝑆 = ⋂

𝐷𝑓(𝑥)∈D𝑓(𝑥)

(𝜕𝑓 (𝑥) − 𝜕𝑓 (𝑥)) . (23)

Obviously, 𝑆 is nonempty and symmetric. Since having the
similar structure to the quasi-kernel ofD𝑓(𝑥), [𝑆, 𝑆] is called
an adjoint quasi-kernel of D𝑓(𝑥), where 𝑆 and 𝑆 are called
adjoint sub-kernel and adjoint super-kernel, respectively. Of
course 𝑆 and 𝑆 are compact convex. This motivates the
introduction of the following notions.
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Definition 6. Let 𝑓 ∈ Δ

𝑛
(𝑥). The adjoint quasi-kernel is said

to be an adjoint kernelled quasidifferential of 𝑓 at 𝑥 if and
only if

[𝑆, 𝑆] ∈ D𝑓 (𝑥) . (24)

If 𝑓 has an adjoint kernelled quasidifferential at 𝑥 ∈ 𝑅

𝑛,
then 𝑓 is said to be an adjoint kernelled quasidifferentiable
function at 𝑥. The adjoint kernel [𝑆, 𝑆] is a quasidifferential,
denoted by𝐷

𝑘
∗𝑓(𝑥) = [𝜕

𝑘
∗𝑓(𝑥), 𝜕𝑘

∗𝑓(𝑥)].

From the definition of quasidifferential and
Proposition 5, the following proposition can be obtained
immediately, which is especially useful in the study of the
operation rules of adjoint kernelled quasidifferential.

Proposition 7. (1) If 𝑓
1
, 𝑓

2
∈ Δ

𝑛
(𝑥), 𝑐

1
, 𝑐
2
∈ 𝑅, then

D (𝑐

1
𝑓

1
+ 𝑐

2
𝑓

2
) (𝑥) = 𝑐

1
D𝑓

1 (
𝑥) + 𝑐

2
D𝑓

2 (
𝑥) . (25)

Note that, in particular,D(−𝑓(𝑥)) = −D𝑓(𝑥).
(2) Let 𝑓

1
, 𝑓

2
∈ Δ

𝑛
(𝑥). Then,

D (𝑓

1
⋅ 𝑓

2
) (𝑥) = 𝑓

1 (
𝑥)D𝑓

2 (
𝑥) + 𝑓

2 (
𝑥)D𝑓

1 (
𝑥) . (26)

(3) If 𝑓 ∈ Δ

𝑛
(𝑥), 𝑓(𝑥) ̸= 0, then

D𝑓

−1
(𝑥) = −𝑓

−2
(𝑥)D𝑓 (𝑥) .

(27)

If the adjoint kernelled quasidifferential exists, some
operation rules of adjoint kernelled quasidifferential are
presented as follows.

Theorem 8. Let Δ

𝑛,𝑘
∗(𝑥) denote the set of all functions in

Δ

𝑛
(𝑥) and having adjoint kernelled quasidifferential at 𝑥.

Then, the following hold.

(1) If 𝑓
1
, 𝑓

2
∈ Δ

𝑛,𝑘
∗(𝑥), then 𝑓

1
+ 𝑓

2
∈ Δ

𝑛,𝑘
∗(𝑥) and

𝐷

𝑘
∗ (𝑓

1
+ 𝑓

2
) (𝑥) = 𝐷

𝑘
∗𝑓

1 (
𝑥) + 𝐷

𝑘
∗𝑓

2 (
𝑥) . (28)

(2) If 𝑓, −𝑓 ∈ Δ

𝑛,𝑘
∗(𝑥), 𝑐 ∈ 𝑅, then 𝑐𝑓 ∈ Δ

𝑛,𝑘
∗(𝑥) and

𝐷

𝑘
∗𝑐𝑓 (𝑥) = |𝑐| 𝐷𝑘

∗ (sign 𝑐) 𝑓 (𝑥) . (29)

(3) If 𝑓
1
, 𝑓

2
, −𝑓

1
, −𝑓

2
∈ Δ

𝑛,𝑘
∗(𝑥), then 𝑓

1
⋅ 𝑓

2
∈ Δ

𝑛,𝑘
∗(𝑥)

and

𝐷

𝑘
∗ (𝑓

1
⋅ 𝑓

2
) (𝑥) =

󵄨

󵄨

󵄨

󵄨

𝑓

1 (
𝑥)

󵄨

󵄨

󵄨

󵄨

𝐷

𝑘
∗ (sign𝑓

1 (
𝑥)) 𝑓2 (

𝑥)

+

󵄨

󵄨

󵄨

󵄨

𝑓

2 (
𝑥)

󵄨

󵄨

󵄨

󵄨

𝐷

𝑘
∗ (sign𝑓

2 (
𝑥)) 𝑓1 (

𝑥) .

(30)

(4) If 𝑓, −𝑓 ∈ Δ

𝑛,𝑘
∗(𝑥), 𝑓(𝑥) ̸= 0, then 1/𝑓 ∈ Δ

𝑛,𝑘
∗(𝑥) and

𝐷

𝑘
∗𝑓

−1
(𝑥) = 𝑓

−2
(𝑥)𝐷𝑘

∗ (−𝑓 (𝑥)) .
(31)

Proof. We will prove only Properties (1) and (2). Properties
(3) and (4) can be proved in an analogous manner.

(1) Since 𝑓
1
, 𝑓

2
∈ Δ

𝑛,𝑘
∗(𝑥), then

⋂

𝐷𝑓
1
(𝑥)∈D𝑓

1
(𝑥)

(𝜕𝑓

1 (
𝑥) − 𝜕𝑓

1 (
𝑥)) = 𝜕

𝑘
∗𝑓1 (

𝑥) ,

⋂

𝐷𝑓
2
(𝑥)∈D𝑓

2
(𝑥)

(𝜕𝑓

2 (
𝑥) − 𝜕𝑓

2 (
𝑥)) = 𝜕

𝑘
∗𝑓2 (

𝑥) .

(32)

From Propositions 5 and 7 and (32), it follows that

⋂

𝐷(𝑓
1
+𝑓
2
)(𝑥)∈D(𝑓

1
+𝑓
2
)(𝑥)

(𝜕 (𝑓

1
+ 𝑓

2
) (𝑥) − 𝜕 (𝑓

1
+ 𝑓

2
) (𝑥))

= ⋂

𝐷𝑓
1
(𝑥)+𝐷𝑓

2
(𝑥)∈D𝑓

1
(𝑥)+D𝑓

2
(𝑥)

(𝜕𝑓

1 (
𝑥) − 𝜕𝑓

1 (
𝑥)

+ 𝜕𝑓

2 (
𝑥) − 𝜕𝑓

2 (
𝑥))

= ⋂

𝐷𝑓
1
(𝑥)∈D𝑓

1
(𝑥)

(𝜕𝑓

1 (
𝑥) − 𝜕𝑓

1 (
𝑥))

+ ⋂

𝐷𝑓
2
(𝑥)∈D𝑓

2
(𝑥)

(𝜕𝑓

2 (
𝑥) − 𝜕𝑓

2 (
𝑥))

= 𝜕

𝑘
∗𝑓1 (

𝑥) + 𝜕

𝑘
∗𝑓2 (

𝑥) .

(33)

By the similar way, we can prove that

⋂

𝐷(𝑓
1
+𝑓
2
)(𝑥)∈D(𝑓

1
+𝑓
2
)(𝑥)

(𝜕 (𝑓

1
+ 𝑓

2
) (𝑥) + 𝜕 (𝑓

1
+ 𝑓

2
) (𝑥))

= 𝜕

𝑘
∗𝑓

1 (
𝑥) + 𝜕

𝑘
∗𝑓

2 (
𝑥) .

(34)

Since [𝜕
𝑘
∗𝑓1

(𝑥) + 𝜕

𝑘
∗𝑓2

(𝑥), 𝜕

𝑘
∗𝑓

1
(𝑥) + 𝜕

𝑘
∗𝑓

2
(𝑥)] ∈ D𝑓

1
(𝑥) +

D𝑓

2
(𝑥) = D(𝑓

1
+ 𝑓

2
)(𝑥), hence, together with (33) and (34),

one has that 𝑓
1
+ 𝑓

2
∈ Δ

𝑛,𝑘
∗(𝑥).

(2) Since 𝑓, −𝑓 ∈ Δ

𝑛,𝑘
∗(𝑥), then, together with Proposi-

tions 5 and 7, one has that

⋂

𝐷𝑐𝑓(𝑥)∈D𝑐𝑓(𝑥)

(𝜕𝑐𝑓 (𝑥) − 𝜕𝑐𝑓 (𝑥))

= ⋂

|𝑐|𝐷(sign 𝑐)𝑓(𝑥)∈|𝑐|D(sign 𝑐)𝑓(𝑥)
|𝑐| (𝜕 (sign 𝑐) 𝑓 (𝑥)

− 𝜕 (sign 𝑐) 𝑓 (𝑥))

= |𝑐| ⋂

𝐷(sign 𝑐)𝑓(𝑥)∈D(sign 𝑐)𝑓(𝑥)
(𝜕𝑓 (𝑥) − 𝜕𝑓 (𝑥))

= |𝑐| 𝜕

𝑘
∗ (sign 𝑐) 𝑓 (𝑥) .

(35)
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Similarly, we can prove that

⋂

𝐷𝑐𝑓(𝑥)∈D𝑐𝑓(𝑥)

(𝜕𝑐𝑓 (𝑥) + 𝜕𝑐𝑓 (𝑥)) = |𝑐| 𝜕𝑘
∗ (sign 𝑐) 𝑓 (𝑥) .

(36)

Combining (35) with (36) leads to

[

[

⋂

𝐷𝑐𝑓(𝑥)∈D𝑐𝑓(𝑥)

(𝜕𝑐𝑓 (𝑥) − 𝜕𝑐𝑓 (𝑥)) ,

⋂

𝐷𝑐𝑓(𝑥)∈D𝑐𝑓(𝑥)

(𝜕𝑐𝑓 (𝑥) + 𝜕𝑐𝑓 (𝑥))

]

]

∈ |𝑐|D (sign 𝑐) 𝑓 (𝑥) = D𝑐𝑓 (𝑥) .

(37)

Hence, 𝑐𝑓 ∈ Δ

𝑛,𝑘
∗(𝑥).

By Δ
𝑛,𝑘

(𝑥)we denote the set of all functions in Δ

𝑛
(𝑥) and

having kernelled quasidifferential at 𝑥. Obviously, one has
that Δ

𝑛,𝑘
(𝑥) ⊂ Δ

𝑛
(𝑥). The adjoint kernelled quasidifferential

is convenient for calculating 𝐷

𝑘
∗ min{𝑓

𝑖
| 𝑖 ∈ 𝐼} and

can calculate the adjoint kernelled quasidifferential of −𝑓

with kernelled quasidifferential, where 𝑓, 𝑓

𝑖
∈ Δ

𝑛,𝑘
(𝑥), 𝑖 ∈

a finite index set 𝐼.

Theorem 9. If 𝑓 ∈ Δ

𝑛,𝑘
(𝑥), then −𝑓 ∈ Δ

𝑛,𝑘
∗(𝑥) and

𝐷

𝑘
∗ (−𝑓) = −𝐷

𝑘
𝑓 (𝑥) . (38)

If 𝑓 ∈ Δ

𝑛,𝑘
∗(𝑥), then −𝑓 ∈ Δ

𝑛,𝑘
(𝑥) and

𝐷

𝑘
(−𝑓) = −𝐷

𝑘
∗𝑓 (𝑥) . (39)

Proof. Since 𝑓 ∈ Δ

𝑛,𝑘
(𝑥), then 𝐷

𝑘
𝑓(𝑥) = [𝜕

𝑘
𝑓(𝑥), 𝜕

𝑘
𝑓(𝑥)] ∈

D𝑓(𝑥), where

𝜕

𝑘
𝑓 (𝑥) = ⋂

𝐷𝑓(𝑥)∈D𝑓(𝑥)

(𝜕𝑓 (𝑥) + 𝜕𝑓 (𝑥)) , (40)

𝜕

𝑘
𝑓 (𝑥) = ⋂

𝐷𝑓(𝑥)∈D𝑓(𝑥)

(𝜕𝑓 (𝑥) − 𝜕𝑓 (𝑥)) . (41)

By Propositions 5 and 7 and (41), we obtain

⋂

𝐷(−𝑓)(𝑥)∈D(−𝑓)(𝑥)

𝜕 (−𝑓) (𝑥) − 𝜕 (−𝑓) (𝑥)

= ⋂

𝐷𝑓(𝑥)∈D𝑓(𝑥)

− (𝜕𝑓 (𝑥) − 𝜕𝑓 (𝑥)) = −𝜕

𝑘
𝑓 (𝑥) .

(42)

From Propositions 5 and 7 and (40), it follows that

⋂

𝐷(−𝑓)(𝑥)∈D(−𝑓)(𝑥)

𝜕 (−𝑓) (𝑥) + 𝜕 (−𝑓) (𝑥)

= ⋂

𝐷𝑓(𝑥)∈D𝑓(𝑥)

− (𝜕𝑓 (𝑥) + 𝜕𝑓 (𝑥)) = −𝜕

𝑘
𝑓 (𝑥) .

(43)

Obviously, [−𝜕
𝑘
𝑓(𝑥), −𝜕

𝑘
𝑓(𝑥)] = −𝐷

𝑘
𝑓(𝑥) ∈ −D𝑓(𝑥) =

D(−𝑓)(𝑥). This fact, together with (42) and (43), implies that

[

[

⋂

𝐷(−𝑓)(𝑥)∈D(−𝑓)(𝑥)

𝜕 (−𝑓) (𝑥) − 𝜕 (−𝑓) (𝑥) ,

⋂

𝐷(−𝑓)(𝑥)∈D(−𝑓)(𝑥)

𝜕 (−𝑓) (𝑥) + 𝜕 (−𝑓) (𝑥)

]

]

∈ D (−𝑓) (𝑥) .

(44)

Then, −𝑓 ∈ Δ

𝑛,𝑘
∗(𝑥) and 𝐷

𝑘
∗(−𝑓)(𝑥) = −𝐷

𝑘
𝑓(𝑥). Similarly,

it can be proved that if 𝑓 ∈ Δ

𝑛,𝑘
∗(𝑥), then −𝑓 ∈ Δ

𝑛,𝑘
(𝑥) and

𝐷

𝑘
(−𝑓) = −𝐷

𝑘
∗𝑓(𝑥). The proof is completed.

Theorem 10. Let 𝑓
1
, 𝑓

2
, . . . , 𝑓

𝑛
∈ Δ

𝑛,𝑘
∗(𝑥) and

𝑓 (𝑦) = min (𝑓

1
(𝑦) , . . . , 𝑓

𝑛
(𝑦)) , ∀𝑦 ∈ O. (45)

Then, 𝑓 ∈ Δ

𝑛,𝑘
∗(𝑥) and𝐷

𝑘
∗𝑓(𝑥) = [𝜕

𝑘
∗𝑓(𝑥), 𝜕𝑘

∗𝑓(𝑥)], where

𝜕

𝑘
∗𝑓 (𝑥) = ∑

𝑖∈𝑆(𝑥)

𝜕

𝑘
∗𝑓𝑖 (

𝑥) ,

𝜕

𝑘
∗𝑓 (𝑥) = co ⋃

𝑖∈𝑆(𝑥)

(𝜕

𝑘
∗𝑓

𝑖 (
𝑥) − ∑

𝑗∈𝑆(𝑥),𝑗 ̸= 𝑖

𝜕

𝑘
∗𝑓𝑗 (

𝑥)) .

(46)

Here, 𝑆(𝑥) = {𝑖 | 𝑓

𝑖
(𝑥) = 𝑓(𝑥)}.

Proof. Since 𝑓
1
, 𝑓

2
, . . . , 𝑓

𝑛
∈ Δ

𝑛,𝑘
∗(𝑥) and 𝑓(𝑦) = min(𝑓

1
(𝑦),

. . . , 𝑓

𝑛
(𝑦)), ∀𝑦 ∈ O, then, according to Propositions 5 and 7,

we have

⋂

𝐷𝑓(𝑥)∈D𝑓(𝑥)

(𝜕𝑓 (𝑥) − 𝜕𝑓 (𝑥))

= ⋂

𝐷𝑓(𝑥)∈D𝑓(𝑥)

( ∑

𝑖∈𝑆(𝑥)

𝜕𝑓

𝑖 (
𝑥) − ∑

𝑖∈𝑆(𝑥)

𝜕𝑓

𝑖 (
𝑥))

= ∑

𝑖∈𝑆(𝑥)

⋂

𝐷𝑓
𝑖
(𝑥)∈D𝑓

𝑖
(𝑥)

(𝜕𝑓

𝑖 (
𝑥) − 𝜕𝑓

𝑖 (
𝑥))

= ∑

𝑖∈𝑆(𝑥)

𝜕

𝑘
∗𝑓𝑖 (

𝑥) .

(47)

Since, for 𝐶
𝑖
∈ 𝑌

𝑛
, 𝑖 ∈ 𝐼, where 𝐼 denotes a finite index set,

one has that

co⋃
𝑖∈𝐼

𝐶

𝑖
= ⋃

𝜆
𝑖
≥0,∑
𝑖∈𝐼

𝜆
𝑖
=1

∑

𝑖∈𝐼

𝜆

𝑖
𝐶

𝑖
, (48)
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where 𝜆

𝑖
∈ 𝑅, 𝑖 ∈ 𝐼. Hence, together with Proposition 5, it

follows that

𝜕𝑓 (𝑥) + 𝜕𝑓 (𝑥)

= ∑

𝑖∈𝑆(𝑥)

𝜕𝑓

𝑖 (
𝑥) + co ⋃

𝑖∈𝑆(𝑥)

(𝜕𝑓

𝑖 (
𝑥) − ∑

𝑗∈𝑆(𝑥),𝑗 ̸= 𝑖

𝜕𝑓

𝑗 (
𝑥))

= ∑

𝑖∈𝑆(𝑥)

𝜕𝑓

𝑖 (
𝑥)

+ ⋃

𝜆
𝑖
≥0,∑
𝑖∈𝑆(𝑥)

𝜆
𝑖
=1

( ∑

𝑖∈𝑆(𝑥)

𝜆

𝑖
(𝜕𝑓

𝑖 (
𝑥) − ∑

𝑗∈𝑆(𝑥)

𝑗 ̸= 𝑖

𝜕𝑓

𝑗 (
𝑥)))

= ⋃

𝜆
𝑖
≥0,∑
𝑖∈𝑆(𝑥)

𝜆
𝑖
=1

∑

𝑖∈𝑆(𝑥)

𝜆

𝑖
(𝜕𝑓

𝑖 (
𝑥) + 𝜕𝑓

𝑖 (
𝑥)

− ∑

𝑗∈𝑆(𝑥)

𝑗 ̸= 𝑖

(𝜕𝑓

𝑗 (
𝑥) − 𝜕𝑓

𝑗 (
𝑥))) .

(49)

By Propositions 5 and 7 and (49), we obtain

⋂

𝐷𝑓(𝑥)∈D𝑓(𝑥)

(𝜕𝑓 (𝑥) + 𝜕𝑓 (𝑥))

= ⋂

𝐷𝑓(𝑥)∈D𝑓(𝑥)

⋃

𝜆
𝑖
≥0,∑
𝑖∈𝑆(𝑥)

𝜆
𝑖
=1

∑

𝑖∈𝑆(𝑥)

𝜆

𝑖
(𝜕𝑓

𝑖 (
𝑥) + 𝜕𝑓

𝑖 (
𝑥) − ∑

𝑗∈𝑆(𝑥)

𝑗 ̸= 𝑖

(𝜕𝑓

𝑗 (
𝑥) − 𝜕𝑓

𝑗 (
𝑥)))

= ⋃

𝜆
𝑖
≥0,∑
𝑖∈𝑆(𝑥)

𝜆
𝑖
=1

∑

𝑖∈S(𝑥)
𝜆

𝑖
( ⋂

𝐷𝑓
𝑖
(𝑥)∈D𝑓

𝑖
(𝑥)

(𝜕𝑓

𝑖 (
𝑥) + 𝜕𝑓

𝑖 (
𝑥)) − ∑

𝑗∈𝑆(𝑥)

𝑗 ̸= 𝑖

⋂

𝐷𝑓
𝑗
(𝑥)∈D𝑓

𝑗
(𝑥)

(𝜕𝑓

𝑗 (
𝑥) − 𝜕𝑓

𝑗 (
𝑥)))

= co ⋃

𝑖∈𝑆(𝑥)

(𝜕

𝑘
∗𝑓

𝑖 (
𝑥) − ∑

𝑗∈𝑆(𝑥),𝑗 ̸= 𝑖

𝜕

𝑘
∗𝑓𝑗 (

𝑥)) .

(50)

Based on Propositions 5 and 7 and (47) and (50), one has that

[

[

⋂

𝐷𝑓(𝑥)∈D𝑓(𝑥)

(𝜕𝑓 (𝑥) − 𝜕𝑓 (𝑥)) ,

⋂

𝐷𝑓(𝑥)∈D𝑓(𝑥)

(𝜕𝑓 (𝑥) + 𝜕𝑓 (𝑥))

]

]

∈ D𝑓 (𝑥) ;

(51)

hence 𝑓 ∈ Δ

𝑛,𝑘
∗(𝑥). The demonstration is completed.

4. Existence of the Adjoint
Kernelled Quasidifferential

In this section, the existence of the adjoint kernelled quasid-
ifferential of a quasidifferentiable function is established. In
one- and two-dimensional cases, we prove that the adjoint
kernelled quasidifferential exists and give its expression by
using of a minimal quasidifferential. We also develop the
existence of the adjoint kernelled quasidifferential for a
quasidifferentiable function on 𝑅

𝑛
(𝑛 ≥ 3) under some

conditions.

Theorem 11. Suppose that 𝑓 ∈ Δ

𝑛
(𝑥), 𝑛 = 1, 2, and

[𝜕

𝑚

0
𝑓(𝑥), 𝜕

𝑚

0
𝑓(𝑥)] is a minimal quasidifferential of 𝑓 at 𝑥.

Then, the relations below hold

𝑆 = 𝜕

𝑚

0
𝑓 (𝑥) − 𝜕

𝑚

0
𝑓 (𝑥) , 𝑆 = 𝜕

𝑚

0
𝑓 (𝑥) + 𝜕

𝑚

0
𝑓 (𝑥) .

(52)

Furthermore, 𝑓 ∈ Δ

𝑛,𝑘
∗(𝑥); that is, [𝑆, 𝑆] ∈ D𝑓(𝑥).

Proof. Let [𝜕𝑓(𝑥), 𝜕𝑓(𝑥)] ∈ D𝑓(𝑥). From the existence
of the minimal quasidifferentials, see [18], it follows that
there exists a minimal quasidifferential of 𝑓 at 𝑥, denoted
by [𝜕

𝑚
𝑓(𝑥), 𝜕

𝑚

𝑓(𝑥)], such that 𝜕𝑚𝑓(𝑥) ⊂ 𝜕𝑓(𝑥), 𝜕

𝑚

𝑓(𝑥) ⊂

𝜕𝑓(𝑥). Consequently,
𝜕

𝑚
𝑓 (𝑥) − 𝜕

𝑚
𝑓 (𝑥) ⊂ 𝜕𝑓 (𝑥) − 𝜕𝑓 (𝑥) , (53a)

𝜕

𝑚
𝑓 (𝑥) + 𝜕

𝑚

𝑓 (𝑥) ⊂ 𝜕𝑓 (𝑥) + 𝜕𝑓 (𝑥) .

(53b)

Note that both [𝜕

𝑚
𝑓(𝑥), 𝜕

𝑚

𝑓(𝑥)] and [𝜕

𝑚

0
𝑓(𝑥), 𝜕

𝑚

0
𝑓(𝑥)] are

the minimal quasidifferentials of 𝑓 at 𝑥. According to the
translation property of the equivalent minimal quasidifferen-
tials in the one- and two-dimensional case, see [15, 18], there
exists 𝑐 ∈ 𝑅

𝑛, 𝑛 = 1, 2, such that the minimal quasidifferential
[𝜕

𝑚
𝑓(𝑥), 𝜕

𝑚

𝑓(𝑥)] can be expressed as

[𝜕

𝑚
𝑓 (𝑥) , 𝜕

𝑚

𝑓 (𝑥)] = [𝜕

𝑚

0
𝑓 (𝑥) + {𝑐} , 𝜕

𝑚

0
𝑓 (𝑥) − {𝑐}] .

(54)



Abstract and Applied Analysis 7

This leads to

𝜕

𝑚
𝑓 (𝑥) − 𝜕

𝑚
𝑓 (𝑥) = 𝜕

𝑚

0
𝑓 (𝑥) − 𝜕

𝑚

0
𝑓 (𝑥) , (55a)

𝜕

𝑚
𝑓 (𝑥) + 𝜕

𝑚

𝑓 (𝑥) = 𝜕

𝑚

0
𝑓 (𝑥) + 𝜕

𝑚

0
𝑓 (𝑥) .

(55b)

It follows from (53a), (53b), (55a), and (55b) that

𝜕

𝑚

0
𝑓 (𝑥) − 𝜕

𝑚

0
𝑓 (𝑥) ⊂ 𝜕𝑓 (𝑥) − 𝜕𝑓 (𝑥) , (56a)

𝜕

𝑚

0
𝑓 (𝑥) + 𝜕

𝑚

0
𝑓 (𝑥) ⊂ 𝜕𝑓 (𝑥) + 𝜕𝑓 (𝑥) .

(56b)

Taking the intersection on the right hands of (56a) and of
(56b) for all quasidifferentials of 𝑓 at 𝑥, we have that

𝜕

𝑚

0
𝑓 (𝑥) − 𝜕

𝑚

0
𝑓 (𝑥) ⊂ 𝑆, (57a)

𝜕

𝑚

0
𝑓 (𝑥) + 𝜕

𝑚

0
𝑓 (𝑥) ⊂ 𝑆.

(57b)

On the other hand, [𝜕𝑚
0
𝑓(𝑥), 𝜕

𝑚

0
𝑓(𝑥)] ∈ D𝑓(𝑥) implies that

𝑆 ⊂ 𝜕

𝑚

0
𝑓 (𝑥) − 𝜕

𝑚

0
𝑓 (𝑥) , (58a)

𝑆 ⊂ 𝜕

𝑚

0
𝑓 (𝑥) + 𝜕

𝑚

0
𝑓 (𝑥) .

(58b)

The relations (57a), (57b), (58a), and (58b) lead to that

𝑆 = 𝜕

𝑚

0
𝑓 (𝑥) − 𝜕

𝑚

0
𝑓 (𝑥) , (59a)

𝑆 = 𝜕

𝑚

0
𝑓 (𝑥) + 𝜕

𝑚

0
𝑓 (𝑥) .

(59b)

Note that [𝜕𝑚
0
𝑓(𝑥), 𝜕

𝑚

0
𝑓(𝑥)] ∈ D𝑓(𝑥) and 𝜕

𝑚

0
𝑓(𝑥) ∈ 𝑌

𝑛
, 𝑛 =

1, 2. Hence,

[𝜕

𝑚

0
𝑓 (𝑥) − 𝜕

𝑚

0
𝑓 (𝑥) , 𝜕

𝑚

0
𝑓 (𝑥) + 𝜕

𝑚

0
𝑓 (𝑥)] ∈ D𝑓 (𝑥) .

(60)

Equations (59a), (59b), and (60) show that [𝑆, 𝑆] ∈ D𝑓(𝑥).
The proof is completed.

The conclusion of Theorem 11 strongly depends upon
the translation of minimal quasidifferentials. Unfortunately,
the minimal quasidifferential is not uniquely determined up
to a translation in 𝑅

𝑛 if 𝑛 ≥ 3 [15]. But. by the tool of
Demyanov difference of compact convex sets, we get the
following interesting result about minimal quasidifferential.

Proposition 12. Suppose that 𝑓 ∈ Δ

𝑛
(𝑥) and there exists a

quasidifferential [𝜕
0
𝑓(𝑥), 𝜕

0
𝑓(𝑥)] ∈ D𝑓(𝑥) such that

𝜕

0
𝑓 (𝑥)

̇

− (−𝜕

0
𝑓 (𝑥)) = 𝜕

0
𝑓 (𝑥) − (−𝜕

0
𝑓 (𝑥)) . (61)

Then [𝜕

0
𝑓(𝑥), 𝜕

0
𝑓(𝑥)] is a minimal quasidifferential of 𝑓 at 𝑥.

Proof. Let [𝜕𝑓(𝑥), 𝜕𝑓(𝑥)] ∈ D𝑓(𝑥) and

𝜕𝑓 (𝑥) ⊂ 𝜕

0
𝑓 (𝑥) , 𝜕𝑓 (𝑥) ⊂ 𝜕

0
𝑓 (𝑥) .

(62)

Obviously, one has

𝜕𝑓 (𝑥) + 𝜕𝑓 (𝑥) ⊂ 𝜕

0
𝑓 (𝑥) + 𝜕

0
𝑓 (𝑥) .

(63)

By Proposition 4 and (61), we obtain

𝜕

0
𝑓 (𝑥) + 𝜕

0
𝑓 (𝑥) = 𝜕

0
𝑓 (𝑥)

̇

− (−𝜕

0
𝑓 (𝑥))

= 𝜕𝑓 (𝑥)

̇

− (−𝜕𝑓 (𝑥)) .

(64)

From (13) and (64), it follows that

𝜕

0
𝑓 (𝑥) + 𝜕

0
𝑓 (𝑥) ⊂ 𝜕𝑓 (𝑥) + 𝜕𝑓 (𝑥) .

(65)

Combining (63) with (65) leads to

𝜕

0
𝑓 (𝑥) + 𝜕

0
𝑓 (𝑥) = 𝜕𝑓 (𝑥) + 𝜕𝑓 (𝑥) .

(66)

According to (62) and (66), we conclude that

𝜕𝑓 (𝑥) = 𝜕

0
𝑓 (𝑥) , 𝜕𝑓 (𝑥) = 𝜕

0
𝑓 (𝑥) .

(67)

Then, by the definition of the minimal quasidifferential,
[𝜕

0
𝑓(𝑥), 𝜕

0
𝑓(𝑥)] is a minimal quasidifferential of 𝑓 at 𝑥.

Inspired by Proposition 12, we present the following
theorem, which gives a sufficient condition for the existence
of the adjoint kernelled quasidifferential in 𝑅

𝑛
(𝑛 ≥ 3).

Theorem 13. Suppose that 𝑓 ∈ Δ

𝑛
(𝑥) and there exists a

quasidifferential [𝜕
0
𝑓(𝑥), 𝜕

0
𝑓(𝑥)] ∈ D𝑓(𝑥) such that

𝜕

0
𝑓 (𝑥)

̇

− (−𝜕

0
𝑓 (𝑥)) = 𝜕

0
𝑓 (𝑥) − (−𝜕

0
𝑓 (𝑥)) . (68)

Then, one has

𝑆 = 𝜕

0
𝑓 (𝑥) − 𝜕

0
𝑓 (𝑥) , (69a)

𝑆 = 𝜕

0
𝑓 (𝑥) + 𝜕

0
𝑓 (𝑥) .

(69b)

Furthermore, [𝑆, 𝑆] ∈ D𝑓(𝑥); that is, 𝑓 ∈ Δ

𝑛,𝑘
∗(𝑥).

Proof. Let [𝜕𝑓(𝑥), 𝜕𝑓(𝑥)] ∈ D𝑓(𝑥). From Proposition 4 and
(68), it follows that

𝜕

0
𝑓 (𝑥) + 𝜕

0
𝑓 (𝑥) = 𝜕

0
𝑓 (𝑥)

̇

− (−𝜕

0
𝑓 (𝑥))

= 𝜕𝑓 (𝑥)

̇

− (−𝜕𝑓 (𝑥)) ⊂ 𝜕𝑓 (𝑥) + 𝜕𝑓 (𝑥) .

(70)

By the definition of the quasidifferential, it is easy to check
that [𝑈, 𝑉] ∈ D𝑓(𝑥) implies [𝑈 − 𝑈,𝑈 + 𝑉] ∈ D𝑓(𝑥).
Therefore, we have [𝜕𝑓(𝑥) − 𝜕𝑓(𝑥), 𝜕𝑓(𝑥) + 𝜕𝑓(𝑥)] ∈ D𝑓(𝑥)

and [𝜕

0
𝑓(𝑥) − 𝜕

0
𝑓(𝑥), 𝜕

0
𝑓(𝑥) + 𝜕

0
𝑓(𝑥)] ∈ D𝑓(𝑥). These give

𝛿

∗
(𝑦 | 𝜕𝑓 (𝑥) − 𝜕𝑓 (𝑥)) − 𝛿

∗
(𝑦 | − (𝜕𝑓 (𝑥) + 𝜕𝑓 (𝑥)))

= 𝛿

∗
(𝑦 | 𝜕

0
𝑓 (𝑥) − 𝜕

0
𝑓 (𝑥))

− 𝛿

∗
(𝑦 | − (𝜕

0
𝑓 (𝑥) + 𝜕

0
𝑓 (𝑥))) , ∀𝑦 ∈ 𝑅

𝑛
.

(71)

By (70) and Proposition 1, we obtain

𝛿

∗
(𝑦 | 𝜕

0
𝑓 (𝑥) + 𝜕

0
𝑓 (𝑥)) ≤ 𝛿

∗
(𝑦 | 𝜕𝑓 (𝑥) + 𝜕𝑓 (𝑥)) ,

∀𝑦 ∈ 𝑅

𝑛
.

(72)
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Evidently, (72) is equivalent to the following:

− 𝛿

∗
(−𝑦 | 𝜕

0
𝑓 (𝑥) + 𝜕

0
𝑓 (𝑥))

≥ −𝛿

∗
(−𝑦 | 𝜕𝑓 (𝑥) + 𝜕𝑓 (𝑥)) , ∀𝑦 ∈ 𝑅

𝑛
.

(73)

Combining (71) with (73) leads to

𝛿

∗
(𝑦 | 𝜕

0
𝑓 (𝑥) − 𝜕

0
𝑓 (𝑥)) ≤ 𝛿

∗
(𝑦 | 𝜕𝑓 (𝑥) − 𝜕𝑓 (𝑥)) ,

∀𝑦 ∈ 𝑅

𝑛
.

(74)

Based on (74) and Proposition 1, one has that

𝜕

0
𝑓 (𝑥) − 𝜕

0
𝑓 (𝑥) ⊂ 𝜕𝑓 (𝑥) − 𝜕𝑓 (𝑥) . (75)

Notice that both (70) and (75) hold for any [𝜕𝑓(𝑥), 𝜕𝑓(𝑥)] ∈

D𝑓(𝑥). Taking the intersection on the right-hand sides of
(70) and of (75), respectively, for all quasidifferentials of 𝑓
at 𝑥, it is obtained that

𝜕

0
𝑓 (𝑥) − 𝜕

0
𝑓 (𝑥) ⊂ 𝑆, (76a)

𝜕

0
𝑓 (𝑥) + 𝜕

0
𝑓 (𝑥) ⊂ 𝑆.

(76b)

On the other hand, [𝜕
0
𝑓(𝑥), 𝜕

0
𝑓(𝑥)] ∈ D𝑓(𝑥) implies

𝑆 ⊂ 𝜕

0
𝑓 (𝑥) − 𝜕

0
𝑓 (𝑥) , (77a)

𝑆 ⊂ 𝜕

0
𝑓 (𝑥) + 𝜕

0
𝑓 (𝑥) .

(77b)

Combining (76a) with (77b) yields (69a). Likewise, (76b)
and (77b) yield (69b). Notice that the relation [𝜕

0
𝑓(𝑥) −

𝜕

0
𝑓(𝑥), 𝜕

0
𝑓(𝑥)+𝜕

0
𝑓(𝑥)] ∈ D𝑓(𝑥) has been claimed.We thus

complete the proof of the theorem.

A decomposition structure of 𝑓󸀠
(𝑥; ⋅) is defined by

𝑓

󸀠
(𝑥; ⋅) = 𝑓

󸀠
(𝑥; ⋅) − 𝑓

󸀠

(𝑥; ⋅) ,
(78)

where 𝑓󸀠
(𝑥; ⋅) and 𝑓

󸀠

(𝑥; ⋅) are defined by

𝑓

󸀠
(𝑥; ⋅) = inf

𝐷𝑓(𝑥)∈D𝑓(𝑥)

𝛿

∗
(⋅ | 𝜕𝑓 (𝑥) − 𝜕𝑓 (𝑥)) ,

𝑓

󸀠

(𝑥; ⋅) = inf
𝐷𝑓(𝑥)∈D𝑓(𝑥)

𝛿

∗
(⋅ | − (𝜕𝑓 (𝑥) + 𝜕𝑓 (𝑥))) ,

(79)

respectively. Generally, 𝑓

󸀠 and 𝑓

󸀠

are positively homoge-
neous, but not sublinear. It is easy to be seen that

𝛿

∗
(⋅ | 𝑆) ≤ 𝑓

󸀠
(𝑥; ⋅) , 𝛿

∗
(⋅ | −𝑆) ≤ 𝑓

󸀠

(𝑥; ⋅) .
(80)

It is easy to be seen that, for any 𝑢 ∈ 𝑆, there exists at least
one sequence {𝑢

𝑖
| 𝑢

𝑖
∈ 𝜕

𝑖
𝑓(𝑥) − 𝜕

𝑖
𝑓(𝑥)} convergent to 𝑢,

where [𝜕
𝑖
𝑓(𝑥), 𝜕

𝑖
𝑓(𝑥)] ∈ D𝑓(𝑥). According to Proposition 2,

if 𝑢 ∈ 𝑆 and 𝑑 ∈ 𝑅

𝑛 such that there exist sequences {𝑢
𝑖
| 𝑢

𝑖
∈

𝜕

𝑖
𝑓(𝑥) − 𝜕

𝑖
𝑓(𝑥)}

∞

𝑖=1
→ 𝑢 and {𝑑

𝑖
| 𝑑

𝑖
∈ 𝑁

𝜕
𝑖
𝑓(𝑥)−𝜕

𝑖
𝑓(𝑥)

(𝑢

𝑖
)} →

𝑑, then 𝑑 ∈ 𝑁

𝑆
(𝑢) and 𝛿

∗
(𝑑 | 𝑆) = 𝑓

󸀠
(𝑥; 𝑑).

The above lines enable us to give the following theorem
which provides a sufficient condition for [𝑆, 𝑆] to be an adjoint
kernelled quasidifferential.

Let F(𝑆, −𝑆) be a shape of (𝑆, −𝑆) that is defined by a
similar way according to [18], such that

cl co ⋃

𝑑∈F(𝑆,−𝑆)

𝑆 (𝑑) = 𝑆, cl co ⋃

𝑑∈F(𝑆,−𝑆)

−𝑆 (𝑑) = −𝑆. (81)

Theorem 14. Let 𝑓 ∈ Δ

𝑛
(𝑥) and suppose that 𝑓

󸀠
(𝑥; ⋅)

and 𝑓

󸀠

(𝑥; ⋅) are continuous with respect to direction, and,
furthermore, there exists a shapeF(𝑆, −𝑆) of (𝑆, −𝑆) such that,
for any 𝑢 ∈ 𝑆 and V ∈ −𝑆, one has that

𝑁

𝑆 (
𝑢) = cone {𝑁

𝑆 (
𝑢) ∩F (𝑆, −𝑆)} ,

𝑁

−𝑆 (
V) = cone {𝑁

−𝑆 (
V) ∩F (𝑆, −𝑆)} ,

(82)

where cone denotes the closed convex conical hull. If, for any
𝑑 ∈ F(𝑆, −𝑆), 𝑢 ∈ 𝑆(𝑑), and V ∈ −𝑆(𝑑), there exist sequences

{𝑢

𝑖
| 𝑢

𝑖
∈ 𝜕

𝑖
𝑓 (𝑥) − 𝜕

𝑖
𝑓 (𝑥)}

∞

𝑖=1
󳨀→ 𝑢, (83)

{V
𝑖
| V

𝑖
∈ − (𝜕

𝑖
𝑓 (𝑥) + 𝜕

𝑖
𝑓 (𝑥))}

∞

𝑖=1
󳨀→ V, (84)

{𝑑

𝑖
| 𝑑

𝑖
∈ 𝑁

𝜕
𝑖
𝑓(𝑥)−𝜕

𝑖
𝑓(𝑥)

(𝑢

𝑖
) ∩ 𝑁

−(𝜕
𝑖
𝑓(𝑥)+𝜕

𝑖
𝑓(𝑥))

(V
𝑖
)} , (85)

such that 𝑑 is one of clusters of {𝑑
𝑖
}

∞

𝑖=1
; then [𝑆, 𝑆] ∈ D𝑓(𝑥),

that is, 𝑓 ∈ Δ

𝑛,𝑘
∗(𝑥).

Proof. Let 𝑑 ∈ 𝑅

𝑛 be an arbitrary nonzero vector. There exist
𝑢 ∈ 𝑆 and V ∈ − 𝑆 such that 𝑑 ∈ 𝑁

𝑆
(𝑢) ∩𝑁

−𝑆
(V). According to

(82), there exists a sequence

𝑑

𝑖
∈ cone {𝑁

𝑆 (
𝑢) ∩F (𝑆, −𝑆)}

∩ cone {𝑁
−𝑆 (

V) ∩F (𝑆, −𝑆)} ,

(86)

𝑖 = 1, 2, . . ., convergent to 𝑑. For each 𝑖, there are two index
sets 𝐽

𝑖
and 𝐽

𝑖
, with finite indices such that

𝑑

𝑖𝑗
∈ 𝑁

𝑆
(𝑢

𝑖
) ∩F (𝑆, −𝑆) , 𝑗 ∈ 𝐽

𝑖
,

𝑑

𝑖𝑗
∈ 𝑁

−𝑆
(V

𝑖
) ∩F (𝑆, −𝑆) , 𝑗 ∈ 𝐽

𝑖
,

𝑑

𝑖
∈ co {𝑑

𝑖𝑗
| 𝑗 ∈ 𝐽

𝑖
} ∩ co {𝑑

𝑖𝑗
| 𝑗 ∈ 𝐽

𝑖
} .

(87)

It follows from (83)–(85) and (87) that, for each 𝑖𝑗, there exist
{𝑑

𝑖𝑗
𝑘

}

∞

𝑘=1
, {𝑑

𝑖𝑗
𝑘

}

∞

𝑘=1
, {𝑢

𝑖𝑗
𝑘

}

∞

𝑘=1
, and {V

𝑖𝑗
𝑘

}

∞

𝑘=1
such that

{𝑢

𝑖𝑗
𝑘

∈ 𝜕

𝑖𝑗
𝑘

𝑓 (𝑥) − 𝜕

𝑖𝑗
𝑘

𝑓 (𝑥)}

∞

𝑘=1
󳨀→ 𝑢

𝑖
,

{V
𝑖𝑗
𝑘

∈ − (𝜕

𝑖𝑗
𝑘

𝑓 (𝑥) + 𝜕

𝑖𝑗
𝑘

𝑓 (𝑥))}

∞

𝑘=1
󳨀→ V

𝑖
,

{𝑑

𝑖𝑗
𝑘

∈ 𝑁

𝜕
𝑖𝑗
𝑘

𝑓(𝑥)−𝜕
𝑖𝑗
𝑘

𝑓(𝑥)
(𝑢

𝑖𝑗
𝑘

)}

∞

𝑘=1

󳨀→ 𝑑

𝑖𝑗
,

𝑗 ∈ 𝐽

𝑖
, 𝑖 = 1, 2, . . . ,

{𝑑

𝑖𝑗
𝑘

∈ 𝑁

−(𝜕
𝑖𝑗
𝑘

𝑓(𝑥)+𝜕
𝑖𝑗
𝑘

𝑓(𝑥))
(V

𝑖𝑗k
)}

∞

𝑘=1

󳨀→ 𝑑

𝑖𝑗
,

𝑗 ∈ 𝐽

𝑖
, 𝑖 = 1, 2, . . . .

(88)
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Since each 𝑑

𝑖
is a convex combination of 𝑑

𝑖𝑗
, 𝑗 ∈ 𝐽

𝑖
, or of 𝑑

𝑖𝑗
,

𝑗 ∈ 𝐽

𝑖
, one has that there are 𝜆

𝑖𝑗
≥ 0 and 𝜆

𝑖𝑗
≥ 0 such that

∑

𝑗∈𝐽
𝑖

𝜆

𝑖𝑗
= 1, ∑

𝑗∈𝐽
𝑖

𝜆

𝑖𝑗
= 1 (89)

satisfying

𝑑

𝑖
= ∑

𝑗∈𝐽
𝑖

𝜆

𝑖𝑗
𝑑

𝑖𝑗
= ∑

𝑗∈𝐽
𝑖

𝜆

𝑖𝑗
𝑑

𝑖𝑗
,

𝛿

∗
(𝑑

𝑖
| 𝑆) = ∑

𝑗∈𝐽
𝑖

𝜆

𝑖𝑗
⟨𝑑

𝑖𝑗
, 𝑢

𝑖
⟩ = ∑

𝑗∈𝐽
𝑖

𝜆

𝑖𝑗
lim
𝑘→∞

⟨𝑑

𝑖𝑗
𝑘

, 𝑢

𝑖𝑗
𝑘

⟩

(90)

from (83) and (84), where 𝑑

𝑖𝑗
𝑘

∈ 𝑁

𝜕
𝑖𝑗
𝑘

𝑓(𝑥)−𝜕
𝑖𝑗
𝑘

𝑓(𝑥)
(𝑢

𝑖𝑗
𝑘

).
Since {𝑢

𝑖𝑗
𝑘

∈ 𝜕

𝑖𝑗
𝑘

𝑓(𝑥) − 𝜕

𝑖𝑗
𝑘

𝑓(𝑥)}

∞

𝑘=1
→ 𝑢

𝑖
, {𝑑

𝑖𝑗
𝑘

∈

𝑁

𝜕
𝑖𝑗
𝑘

𝑓(𝑥)−𝜕
𝑖𝑗
𝑘

𝑓(𝑥)
(𝑢

𝑖𝑗
𝑘

)}

∞

𝑘=1
→ 𝑑

𝑖𝑗
, it follows, from the sufficient

condition for 𝛿∗(𝑑 | 𝑆) = 𝑓

󸀠
(𝑥; 𝑑) given before the theorem,

that

𝛿

∗
(𝑑

𝑖𝑗
| 𝑆) = 𝑓

󸀠
(𝑥; 𝑑

𝑖𝑗
) = lim

𝑘→∞

⟨𝑑

𝑖𝑗
𝑘

, 𝑢

𝑖𝑗
𝑘

⟩ = ⟨𝑑

𝑖𝑗
, 𝑢

𝑖
⟩ .

(91)

Thus, it follows from (91) that

𝛿

∗
(𝑑

𝑖
| 𝑆) = ⟨∑

𝑗∈𝐽
𝑖

𝜆

𝑖𝑗
𝑑

𝑖𝑗
, 𝑢

𝑖
⟩ = 𝑓

󸀠
(𝑥; 𝑑

𝑖
) . (92)

Without loss of generality, assume {𝑑

𝑖
}

∞

𝑖=1
→ 𝑑. Taking the

limit to (92), one has that

𝛿

∗
(𝑑 | 𝑆) = ⟨𝑑, 𝑢⟩ = lim

𝑖→∞

𝑓

󸀠
(𝑥; 𝑑

𝑖
) . (93)

According to the continuity of 𝑓󸀠
(𝑥; ⋅), (93) becomes

𝛿

∗
(𝑑 | 𝑆) = 𝑓

󸀠
(𝑥; 𝑑) . (94)

Similarly, it can be proved that

𝛿

∗
(𝑑 | −𝑆) = 𝑓

󸀠

(𝑥; 𝑑) .

(95)

According to (94) and (95), we conclude

𝑓

󸀠
(𝑥; 𝑑) = 𝑓

󸀠
(𝑥; 𝑑) − 𝑓

󸀠

(𝑥; 𝑑) = 𝛿

∗
(𝑑 | 𝑆) − 𝛿

∗
(𝑑 | −𝑆) .

(96)

Then, by the definition of the quasidifferential, one has
[𝑆, 𝑆] ∈ D𝑓(𝑥), that is, 𝑓 ∈ Δ

𝑛,𝑘
∗(𝑥). The demonstration is

completed.

5. Formula of Representative for
Quasidifferentials

Theorem 13 only gives the existence of the adjoint kernelled
quasidifferential but does not show us how to calculate it. For
the practical purpose, we expect to find a way to calculate a
representative of the equivalent class of quasidifferentials for
a given quasidifferential.Thepresent section is devoted to this
topic.

Lemma 15. Let [𝐴, 𝐵], [𝑈, 𝑉] ∈ D𝑓(𝑥). Then, 𝑈 has the
following form:

𝑈 = (𝐴 − 𝑉)

̇

− (−𝐵) . (97)

Proof. Evidently,

𝛿

∗
(𝑦 | 𝐴) − 𝛿

∗
(𝑦 | −𝐵) = 𝛿

∗
(𝑦 | 𝑈) − 𝛿

∗
(𝑦 | −𝑉) ,

∀𝑦 ∈ 𝑅

𝑛
.

(98)

This leads to

𝛿

∗
(𝑦 | 𝐴 − 𝑉) − 𝛿

∗
(𝑦 | −𝐵) = 𝛿

∗
(𝑦 | 𝑈) , ∀𝑦 ∈ 𝑅

𝑛
.

(99)

Taking the Clarke subdifferential at 𝑦 = 0, (99) becomes

𝜕Cl (𝛿
∗
(𝑦 | 𝐴 − 𝑉) − 𝛿

∗
(𝑦 | −𝐵))

󵄨

󵄨

󵄨

󵄨𝑦=0

= 𝜕Cl (𝛿
∗
(𝑦 | 𝑈))

󵄨

󵄨

󵄨

󵄨𝑦=0
.

(100)

Based on the definition of the Demyanov difference, (100)
yields (𝐴 − 𝑉)

̇

− (−𝐵) = 𝑈; that is, (97) holds.

Theorem 16. Let 𝑓 ∈ Δ

𝑛
(𝑥) and [𝜕𝑓(𝑥), 𝜕𝑓(𝑥)] ∈ D𝑓(𝑥).

If there exists 𝑊 ∈ 𝑌

𝑛
such that [𝑊, 𝜕𝑓(𝑥)

̇

− (−𝜕𝑓(𝑥))] ∈

D𝑓(𝑥), then

𝑊 = {𝜕𝑓 (𝑥) − (𝜕𝑓 (𝑥)

̇

− (−𝜕𝑓 (𝑥)))}

̇

− (−𝜕𝑓 (𝑥)) . (101)

Proof. Setting [𝐴, 𝐵] = [𝜕𝑓(𝑥), 𝜕𝑓(𝑥)] and [𝑈, 𝑉] = [𝑊,

𝜕𝑓(𝑥)

̇

− (−𝜕𝑓(𝑥))] in Lemma 15, we have

𝑊 =(𝐴 − 𝑉)

̇

− (−𝐵) = {𝜕𝑓 (𝑥) − (𝜕𝑓 (𝑥)

̇

− (−𝜕𝑓 (𝑥)))}

̇

− (−𝜕𝑓 (𝑥)) .

(102)

This completes the proof of the theorem.

Theorem 17. Let 𝑓 ∈ Δ

𝑛
(𝑥). If there exists [𝐴, 𝐵] ∈ D𝑓(𝑥)

satisfying𝐴 ̇

− (−𝐵) = 𝐴−(−𝐵), then, for any [𝜕𝑓(𝑥), 𝜕𝑓(𝑥)] ∈
D𝑓(𝑥), the pair of sets

[{𝜕𝑓 (𝑥) − (𝜕𝑓 (𝑥)

̇

− (−𝜕𝑓 (𝑥)))}

̇

− (−𝜕𝑓 (𝑥)) , 𝜕𝑓 (𝑥)

̇

− (−𝜕𝑓 (𝑥))]

(103)

is the adjoint kernelled quasidifferential of 𝑓.

Proof. ByTheorem 13 and Proposition 4,

[𝐴 − 𝐴,𝐴

̇

− (−𝐵)] = [𝐴 − 𝐴, 𝜕𝑓 (𝑥)

̇

− (−𝜕𝑓 (𝑥))] (104)

is the kernelled quasidifferential. According to Theorem 16,
[𝐴 − 𝐴, 𝜕𝑓(𝑥)

̇

− (−𝜕𝑓(𝑥))] ∈ D𝑓(𝑥) leads to

𝐴 − 𝐴 = {𝜕𝑓 (𝑥) − (𝜕𝑓 (𝑥)

̇

− (−𝜕𝑓 (𝑥)))}

̇

− (−𝜕𝑓 (𝑥)) .

(105)

This means that (103) is the kernelled quasidifferential. The
proof is concluded.
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Noticing that the Demyanov difference and the
Minkowski difference of polyhedra are polyhedra, we
have the following corollary.

Corollary 18. Suppose that there exist [𝐴, 𝐵] ∈ D𝑓(𝑥)

satisfying 𝐴

̇

− (−𝐵) = 𝐴 − (−𝐵) and a pair of polyhedra
[𝑈, 𝑉] ∈ D𝑓(𝑥). Then, the kernelled quasidifferential is a pair
of polyhedra.

Based on above two theorems, given a quasidifferen-
tial, the adjoint kernelled quasidifferential can be formu-
lated under some conditions, for instance, the condition in
Theorem 13. In particular, if a polyhedral quasidifferential is
given, the adjoint kernelled quasidifferential can be calculated
because the Demyanov difference of polyhedra can be calcu-
lated (for instance, see [9]).
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