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We solve the second-order linear differential equation called the k-hypergeometric differential equation by using Frobenius method
around all its regular singularities. At each singularity, we find 8 solutions corresponding to the different cases for parameters and

modified our solutions accordingly.

1. Introduction

In 1769, Euler [1] formed the hypergeometric differential
equation of the form

zl-2)w +[c-(@a+b+1)z]w —abw =0 1)

which has three regular singular points: 0, 1, and oco. The
hypergeometric differential equation is a prototype: every
ordinary differential equation of second-order with at most
three regular singular points can be brought to the hypergeo-
metric differential equation by means of a suitable change of
variables.

The solutions of hypergeometric differential equation
include many of the most interesting special functions of
mathematical physics. Solutions to the hypergeometric dif-
ferential equation are built out of the hypergeometric series.
The solution of Euler’s hypergeometric differential equation
is called hypergeometric function or Gaussian function ,F,
introduced by Gauss [2].

The equation has two linearly independent solutions at
each of the three regular singular points 0, 1, and co. Kummer
[3] derived a set of 6 distinct solutions of hypergeometric
differential equation. These include the hypergeometric func-
tion of Gauss and all of them could be expressed in terms of
Gauss’s function. For more details on Kummer’s 24 solutions,
see [4].

Recently, Diaz et al. [5-7] have introduced Pochhammer
k-symbol. They have introduced k-gamma and k-beta func-
tions and proved a number of their properties. They have also
studied k-zeta functions and k-hypergeometric functions

based on Pochhammer k-symbols for factorial functions. In
2010, Kokologiannaki [8] and Krasniqi [9] followed the work
of Diaz et al. and obtained some important results for the
k-beta, k-gamma, k-hypergeometric, and k-zeta functions.
Also, Krasniqi [10] gave a limit for the k-gamma and k-beta
functions. In 2012, Mubeen and Habibullah [11, 12] intro-
duced a variant of fractional integrals to be called k-fractional
integral which was based on k-gamma function and gave its
application. They also introduced an integral representation
of some generalized confluent k-hypergeometric functions
and k-hypergeometric functions by using the properties of
Pochhammer k-symbols, k-gamma, and k-beta functions.
Furthermore, in 2013, Mubeen [13] defined a second-order
linear k-hypergeometric differential equation

kz(1-kz)w" +[c-(a+b+ k) kz]w' —abw =0 (2)

having one solution in the form of k-hypergeometric function
F
24 Lk

2. Basic Concepts

Special functions are particular mathematical functions
which have more or less established names and notations
due to their importance in mathematical analysis, functional
analysis, physics, or other applications. The solutions of
hypergeometric differential equation include many of the
most interesting special functions of mathematical physics.
Solutions to the hypergeometric differential equation are built
out of the hypergeometric series.
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Definition 1. The Pochhammer k-symbol (a),, ;. is defined as
(@ =ala+k)(@a+2k)---(a+(n-1)k) (3)
and, for a #0, (a)y; = 1, where k > 0.

Definition 2. The k-hypergeometric functions with three
parameters a, b, ¢, two parameters a, b in the numerator and
one parameter ¢ in the denominator, are defined by

0 b n
2F1,k ((a,k),(b,k);(c,k);z) = ZMZ_

= ©p n

(4)

for all a,b,¢c, c#0,-1,-2,-3,...,]z| < 1, where (a),; =
(a)a+k)a+2k)---(a+ (n—1)k); (a)g; = 1and k > 0.

Definition 3. In mathematics, the method of Frobenius [14],
named after Ferdinand George Frobenius, is a method to
find an infinite series solution for a second-order ordinary
differential equation of the form

P, (z) w' + P, (z) w + Py(z)w=0 (5)

about the regular singular point z,. After dividing this
equation by P,(z), we obtain a differential equation of the
form

Py (z)

+——w=0 (6)

//+P1(Z) ! _
P, (2)

P, (2)

which is not solvable with regular power series methods if
either P,(z)/P,(z) or Py(z)/P,(z) is not analytic at z = z,.
The Frobenius method enables us to obtain a power series
solution to such a differential equation, provided that P,(z)
and Py(z) are themselves analytic at z, or, being analytic
elsewhere, both their limits at z,, exist.

3. The Solutions of the k-Hypergeometric
Differential Equation

In this section, we solve the following ordinary linear second-
order k-hypergeometric differential equation defined by
Mubeen [13]

kz(l-kz)w" +[c-(a+b+k)kz]lw —abw=0 (7)

using Frobenius method. We usually use this method for
complicated ordinary differential equations. This method is
used to find an infinite series solution for a second-order
ordinary differential equation about regular singular points
of that equation. We prove that this equation has three regular
singular points, namely, at z = 0 and z = 1/k and around oo,
and then we will be able to consider a solution in the form of
a series.

As this is a second-order differential equation, we must
have two linearly independent solutions. The problem how-
ever will be that our assumed solutions may or may not be
independent or worse may not be defined (depending on the
values of the parameters of the equation). This is why we study
the different cases for parameters and modify our assumed
solutions accordingly.
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3.1. Solution at z=0. Let

Py (z) = —ab,
P (z)=c—-(a+b+k)kz, (8)
P, (z) = kz (1 - kz).

Then P,(0) = 0 and P,(1/k) = 0.
Hence, z = 0 and z = 1/k are singular points.
Let us start with z = 0.
To see if it is regular, we study the following limits:

(-2)P @ _

i (z-0)(c-(a+b+k)kz) ¢
P, (z) z—0 -

kz (1 - kz) K

z—2z

(z-0)*(-ab) _

lim (- ZO)ZPO @ = lim
P, (2) z—-0 kz(1-kz)

z—> 2z,

)

Hence, both limits exist and z = 0 is a regular singular point.
Therefore, we assume the solution of the form

(o)

w=Ydz"" (10)

n=0

(11)

By substituting these into the k-hypergeometric differential
equation (7), we get

kidn (n+B) (n+p—1)2"F"
‘kzidn (n+p)(n+p-1)2"F
¥ Ci)dn (n+ B) 2" )
_ (a+b+k)k§dn (n+ )25

n=0

- abOZO:dnz"Jrﬁ =0.

n=0
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In order to simplify this equation, we need all powers of z to
be the same, equal to n+ 3 — 1, the smallest power. Hence, we
switch the indices as follows:

kidn (n+B)(n+p-1)"F"

- szdn,l (n+p-1)(n+p-2)"F"

n=1

+ cidn (n+p)z"F! (13)

n=0

~@+b+kkyd, (n+p-1)"F"

n=1

- abZaln,lz"*ﬁ*1 =0

n=1

Thus isolating the first terms of the sums starting from 0, we
get

do (kB (B~-1)+cp) 2
+ kidn (n+p)(n+p-1)z"F"

- kzidn,l (n+B-1)(n+p-2)"F"

(14)

+ chn (n+p) 2"+
n=1

~@+b+k)kYd,  (n+p-1)"F"

n=1

- achin_lszrﬁ_1 =0

n=1

Now, from the linear independence of all powers of z, that is,
of the functions 1, z, z%, and so forth, the coefficients of z”
vanish for all . Hence, from the first term, we have

dy (kB(B-1)+cB)=0 (15)

which is the indicial equation.
Since d,, # 0, we have

kB(B-1)+cB=0. (16)
Hence, the solutions of the above indicial equation are given
below:

Bi=0. P=1-7
1= 0 2= T

Also, from the rest of the terms, we have

(n+p)[k(n+B-1)+cld,

=[K(n+p-1)(n+B-2) (18)

+@+b+k)k(n+p-1)+abld,,.

17)

Hence, we get the following recurrence relation:

(atk(ntB-1)(brk(n+p-1))
b T A P er ki o))

forn > 1.

Let us now simplify this relation by giving d,, in terms of
d, instead of d,,_,
From the recurrence relation, we have the following:

(a+ IBk)n,k(b + ﬂk)n,k

(19)

d, = (20)
(C + ﬂk)n,k(ﬁ + 1)n 0
forn > 1.
Hence, our assumed solution takes the form
(a+ ﬁk)n b+ ﬁk) 2B
0 Z : (21)

e (¢ + BK),. (B+1),

3.2. Analysis of the Solutions in terms of the Difference
“(c/k) — 17 of the Two Roots. Now, we study the solutions
corresponding to the different cases for the expression f3; —
B, = (c/k) — 1 (this reduces to studying the nature of the
parameter c/k whether it is an integer or not).

Case 1 (“c/k” not an integer). Let c/k be not an integer. Then

w; = w|ﬁ:0, o
22
w, = wlﬁ:l—(c/k)'

Since
© @+ k), (b+ k), P
= (et ph),,  (B+1),

therefore, we have

w=d, R (23)

© (@), (D) 2"
=d,
“ ZO e (D),

= dO 2F1,k (((1, k) > (br k) 5 (C) k) ;Z) 5

Z v @+ (1= (c/k) k)1 (b + (1 = (c/k)) K),, x
0 (c+ (1= (c/k)) k), (24)

n+1-(c/k)

x 2
(2= (c/k)),
= dozli(dk) 2k
x((a+k-c¢k),(b+k-

¢ k); 2k —c,k);2).

Hence
w= A’w1 + B’wz. (25)
Let
Aldy=A

, (26)
B'd, = B.



Then
w = A,F; ((ak),(b,k);(c,k);2)

1-(c/k)

+ Bz 2F1x 27)
X((a+k-ck),(b+k—-ck); 2k —-c,k);z2).
Case 2 (“c/k=1” (i.e.,, c = k)). Let c = k. Then
w; = w|go. (28)
Since we have
- (a+ k), (b+Bk),, z*F
w= °Z C+pR, B+, P
using ¢ = k, we get
(a+ k), (b+Bk),, z*F
. 30
03 9, @,
Hence,
< (@), (), 2"
=d,
;) By (1), (31)
= do 2F1,k ((d, k) P (b’ k) 5 (k> k) 5 Z) N
W, = ow (32)
> 3Bl
To calculate this derivative, let
M- (a+ k), k(b + /)’k)nk
(B, (B+1),
(33)
_ (a+ ﬁk)n)k(b + ﬁk)n)k
kn (B +1)
Then
k) .(b+ Bk
In (Mn) _ (‘1 +p )n,k( +2/3 )n,k
k(1)
=In(a+ /3k)n’k +In(b+ [3k)n,k -2K"In(B+1),.
(34)
Since
In(a + k),
=In[(a+pk)(a+(B+1)k)---(a+(B+n-1)k)]
n—1
= Zln(a+(ﬁ+j)k),
i=0
] (35)
therefore
n—1
In(M,) = > [In(a+(B+j)k)+In(b+(B+j)k)
j=0 (36)

=2K"In(1+B+j)].
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Differentiating both sides of the equation with respect to f3,

we get
oM, (a+pk), (b+Bk),,
op k(B +1)]
y Zl k. k%
Slat(B+i)k b+(B+j)k 1+P+j
(37)
Since
w= dozﬁZan", (38)
n=0
therefore
Z(a+ﬁk nk b+ﬁk)nk
o k()
k
1
|:nz+z<a+([3+] K br(Bri)k
B 2k" S
L+pB+] '
(39)
For 8 = 0, we get
- (a)nk(b)nk
= 4. ki nk
°ZO (),
k
[lnz+z<a+]k b jk (40)
B 2k" z"
1+j )| (D),
Hence,
w=Cuw, +Duw, (41)
Let
] =G,
(42)
D'd, =
Then
w = C,F ;((a,k), (b k); (kk);z)
(a)nk
+D
nzo (k)nk
n-1 n n
k k 2k z
1 —
X [ nzr Z(a+]k b+ jk 1+j>] (1),
(43)
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Case 3 (“c/k” an integer and “c/k # 17). Here, we discuss the
further two cases:

(1) “(c/k) <12 Let (c/k) < 1. Then from the recurrence relation
(a+(n+B-1)k)(b+(n+p- 1)k)d
" (n+pB)(c+(n+p-1)k) b

we see that, when 8 = 0 (the smaller root), d;
Thus, we must make the substitution

dy=9go (B~ Bk (45)

where f; is the root for which our solution is infinite.
Therefore, we take

d (44)

—(c/k) — OQ.

dy = goPk (46)

and our assumed solution in equation (29) takes the new form

© (Bk) (a + /Sk)nk(b + p’k)nk "
2y 2

(47)
n=0 (C+ﬁk)nk(ﬁ+ 1)
Then
Wy = wg|/3=o‘ (48)
As we can see, all terms before
(BF) (@ + BR) 1 _(cjig (b + BR) 1 _cpuy i R (49)

(B+ 1)1—(c/k)(c + ﬁk)l-(c/k),k

vanish because of the Sk in the numerator.
Starting from this term, however, the Sk in the numerator
vanishes. To see this, note that

(c+ BK) (e jipi = (c+ k) (c+ (B+1)k)---(Bk).  (50)
Hence, our assumed solution takes the form

_ 9 - (@) (D) 2

(O ek net i) DB ei)-1k )
Now
owg
w, = ﬁ ﬁ:l—(c/k)' (52)
To calculate this derivative, let
v B 0 B,

" (B 1), (et PR,

Then following the method in the previous case c¢/k = 1, we
get

oM, k
B - [_+Z<a+(/3+1)k b+ (B+ )k

1 k )
_ﬁ+1+j_c+(/3+j)k '
(54)

5
Since
w, = g2 Y M,2", (55)
n=0
therefore
a Z(/Sk) a+ﬁk)nk(b+ﬁk)nk
n=0 ﬁ+1) (C+ﬁk)nk
1 j=n— 1(
Inz + +
;) a+(B+j)k
Lk
b+(B+j)k
B 1
B+1+]
c+(B+j)k '
(56)
At B =1 - (c/k), we get
w, = gy (k—c) 2"~
& k- b+k-
% z (61 + C)n,k( + C)n,k
=0 (2k _C)n,k
1
X [ nz+ P
k - -
i Z<a+k—c )+ jk (57)
N 1
b+k-c)+ jk
1
(2k —¢) + jk
1\
)k )| n
Hence
w=E'w, + F'w,. (58)
Let
E,go =E,
(59)

!
Fg,=F.



E (S (a)j,k(b)j,k Zj
w=-——— e =
©)—(ermok j=1-(c/k) (k)i emy-1x (1)

+ F(k—c)z7Cm
S(a+k-

<)

n=0

C)n,k(b + k - C)n,k
(2k — C)n,k

x | lnz+ k
k-c

Z’((a+k—c)+]k

1
Tork—o+jk

1
C (k-o)+ jk

w3

(ii) “(c/k) > 1”. Let (c/k) > 1. Then, from the recurrence
relation

_ (a+(B+n-1)k)(b+(B+n-1)k)
" (n+B)(c+(B+n-1)k)

we see that, when 3 = 1 - (c/k) (the smaller root), d(./5)-; —
00. Thus, we must make the substitution

dy=g0(B- Bk (62)

where f3; is the root for which our solution is infinite.
Hence we take

d

d,,, (6]

do:go<ﬁ+£_1>k (63)
and our assumed solution takes the new form

s & (B + (/) ~ 1K) (a-+ BR) (b4 R,
=] (B+1),,(c +Bk), 1

(64)
Then
wy = w

A - (65)

As we can see, all terms before

((B+(c/k)=1)k)(a+ ﬁk)(c/k) 1k(b + [;k)(c/k) Lk (c/k)-1
(B+ 1)(c/k) ((c+ ﬂk)(c/k) Lk

(66)

vanish because of the “ + (¢/k) — 17 in the numerator.
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Starting from this term, however, the “f + (¢/k) — 1” in
the numerator vanishes. To see this, note that

(/3+1)(c/k)—1:(ﬁ+l)(ﬁ+2)“'<ﬁ+£_l)- (67)

Hence, our solution takes the form

9o Z ~(clk) = (a +k— C)n,k(b +k- C)n,k z"
w, = .
! (Zk C)(c/k)—Z,k n=(c/k)-1 (k)n+1—(C/k)»k (l)n
(68)
Now
awg 69)
w, = — 69
AT

To calculate this derivative, let

((B+ (c/k) =1)k) (a + Bk), (b + Bk), (70)

" (ﬁ+ l)n(c+ﬁk)n)k
Then following the method in the previous case (c/k) < 1, we
get
oM, [ 1
=M, | —
B B+ (c/k)-1

n—1 k k
+Z(a+(/§+j)k+b+([3+j)k

j=0

1 k )]
B+1+j c+(B+j)k/)]|’
a Z © ((B+(c/k)-1)k)(a+ ﬁk)n,k(b + ﬁk)n,k
P (B+1),(c+Pk),

1
X |:lnz+—ﬁ+(c/k)—l

n—1 k k
+§(a+w+ﬂk+b+w+ﬁk

o k ) "
B+1+j c+(B+j)k z
(71)
At =0, we get
b
w, = go(c—k) Z Y DO
n=0 ()nk
x[lnz+
c—
(72)

n—-1 k k
+Z(:)<a+jk+b+jk

j
Lk )]Z_”
1+j c+jk/|n’
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Hence
w=G'w, + Hw,. (73)
Let
G,go =G,
(74)
H'g, = H.
Then
w G 1-(c/k)

(2k = ) (¢/k)-2k

®  (a+ k—c)]-,k(b+ k—c)]-’k

X
j=(ETR-1 () jar-(e/ioe
2
X — +H(c-k)
)
< (@), (D), k
X o TR
n=0 (C)n,k (75)
x| lnz+ k
c—k
+n—1< k N k
o \a+jk b+ jk
1k ) z
1+j c+jk/|n’

3.3. Solution at z=1/k. Let us now study the singular point
z=1/k.
To see if it is regular, we study the following limits:

(z-2y) P (2)

z—2z P, (2)
. (z=-QQ/k)(c-(a+b+k)kz)
= lim
z—1/k kz (1 - kz)
(76)
_c—(a+b+k)
S —

(-2 RG)

i E-Q/R) (ab)
PZ (2) z—1/k ’

kz (1 - kz)

z—> 2z,
As both limits exist, therefore z = 1/k is a regular singular

point.
Now instead of assuming a solution in the form

(&) 1 n+[3
w= Zdn<z - —) : 77)
n=0 k

we will try to express the solutions of this case in terms of the
solutions for the point z = 0. We proceed as follows.

We have the k-hypergeometric differential equation of the
form

kz(1-kz)w' +[c-(a+b+ k) kz]w —abw=0. (78)
Let y = (1/k) — z. Then

dw_d_wd_y_ dw

dz _dydz__E_ “

f_w_i(d_w>_i(_d_w)_i<_d_w)d_y 79)
dz2  dz\dz) dz\ dy) dy\ dy/dz
_dzu)

2

dy?

Hence, k-hypergeometric differential equation (7) takes the
form

ky(1-ky)w+[a+b—c+k—-(a+b+k)ky]w 0)
80

—abw = 0.

Since y = (1/k) — z, the solution of the k-hypergeometric
differential equation at z = 1/k is the same as the solution for
this equation at y = 0. But the solution at y = 0 is identical
to the solution we obtained for the point z = 0 if we replace ¢
bya+b-c+k.

Hence, to get the solutions, we just make the substitution
in the previous results.

Note also that, for z = 0,

/31 =0,
(81)
c
=1--.
Hence in our case,
B =0,
c—-a-b (82)
B=

3.4. Analysis of the Solutions in terms of the Difference
“(c—a-b)/k” of the Two Roots. Let us now find out the
solutions. In the following we replace each y by (1/k) - z.

Case1(“(c—a-b)/k” notan integer). Let (c—a—b)/k be not
an integer. Then

w=A,F,, ((a,k),(b,k);(a+b—c+k,k);% =
1 (c—a-b)/k
+B<E —Z>

X oFy (- ak) e bR)s(c—a-br ks -2).
(83)



Case2 (“(c—a-b)/k=0"). Let (c—a—-0b)/k =0. Then

w=CyF ((a,k),(b,k);(k,k);% —z)

(a)n k(b)nk
+D
% (k) i

X [ln<%—z> (84)

+Zl< k kK _2k">
] a+jk b+jk 1+j

(k2"

n!

Case 3 (“(c—a—-b)/k” an integer and “(c—a—-b)/k #0”). Here,
we discuss further two cases:

(i) “(c—a—-b)/k >0 Let (c—a—b)/k > 0. Then

B E
(@+b-c+k)apyrk

= (a)n,k(b)n,k ((l/k) - Z)n
e ok Fnsarv-omr - Dy

X

1 (c—a-b)/k
+F(c—a—b)x<z—z>

B a)n,k(c B b)n,k

(c
X,;) (c—a-b+k),;

X ln<l—z>+ k
k c—a-b

(85)

1
+kz<(c—a)+]k (c-b)+ jk

1
C(c-a-b+k)+jk

1 )] (k) -2)"

S (1+j)k nl
(ii) “c—a—-Db)/k <0 Let (c —a —b)/k < 0. Then
G 1 (c—a-b)/k
T (c-a-b+ k) (a+b-c)/h)-1k <% B z)

X (c=a),1(c=b),x

n=(arbeof) Ent((e-a-byik
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. (/k) -z)"

o +H(a+b-¢)

« i (a)n,k(b)n,k

=(a+b-—c+k),

x[ln(l—z)+ k
k at+b-c

~( k k
+jzo<a+jk+b+jk

N k )]
1+j (a+b-c+k)+jk

((1/k) - 2)"
X o .
(86)

3.5. Solution Around “co”. Finally we study the singularity as

z — 00. Since we cannot study this directly, therefore we

let z = 1/ks; then the solution of the equation as z — ©o is

identical to the solution of the modified equation when s = 0.
We have the k-hypergeometric differential equation

kz(1-kz)w” +[c-(a+b+k)kz]w' —abw =0,

dw dwds _ kzd_w

S = —kszw', 87
dz  dsdz ds (87)

2
% =K (253w' + s4w") .

Hence the k-hypergeometric differential equation (7) takes
the new form

k2(53—sz)w"+k[(2k—c)52+(a+b—k)s]w'—abw:O.

(88)
Let
Py(s) = —ab
P (s)=k[@k-0)s" +(@a+b-k)s], (89)
Py(s) = K (5 - 5).

Here, we only study the solutions when s = 0. As we can see
that this is a singular point because P,(0) = 0
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Let us now see that s = 0 is a regular singular point, for
this

(S_SO)PI(S)
m— 0/ 1>

S5 PZ(S)
(s-=0)k[2k-c)s*+(a+b-k)s]
= 2(3_ 2
0 k* (s3 - s?) (90)
_k-a-b
=
(=)o) _ | (s=0)(-ab) _
s=s Py(s) S0 k2(sP-s2)

As both limits exist, therefore s = 0 is a regular singular point.
Thus, we assume the solution of the form

w = Zdns"w (91)

n=0

with dy #0.
Hence, we set the following:

w = Zd" (n+B)s™F,

n=0

- (92)
w = Zdn (n+B)(n+p- 1)s"+‘872.

By substituting these into the modified k-hypergeometric
differential equation (88), we get

(9]

kZZdn (n+p) (n+p—1)s"F

n=0

- kzidn (n+p)(n+p-1)s"*

+k(2k-¢) idn (n+ p)s™ (93)

n=0

+k(@a+b-k) idn(mﬁ)s"*ﬁ

n=0

- abozo:dns”ﬁ = 0.

n=0

In order to simplify this equation, we need all powers of s to
be the same, equal to n + f, the smallest power. Hence, we
switch the indices as follows:

00

Y d,  (n+B-1)(n+p-2) sHP

n=1

—kZZdn(m/s) (n+p—1)s"F

+k(2k-¢) Ozozdn,l (n+p-1)s"F  (94)

n=1

+k(a+b-k) OZO:dn(n+ﬁ)s"+ﬁ

n=0

- abidns’”ﬁ = 0.

n=0

Thus, by isolating the first terms of the sums starting from 0,
we get

dy [-K*B(B-1) +k(a+b-k)p-ab]s’

+ kzidn,l (n+p-1)(n+p-2)s"*F

—kZOZO:d,, (n+p)(n+p-1)s"*
n=1
0 (95)
+hkQk-c)Yd, (n+p-1)s""
n=1

+k(a+b—k)§dn(n+ﬁ)s"+l3

n=1

- abidns"”; =0.

n=1
Now from the linear independence of all powers of s, that is,

of the functions 1, s, s%, and so forth, the coefficients of s”
vanish for all . Hence, from the first term, we have

dy [-K’B(B-1)+k(a+b-k)B-ab] =0 (96)

which is the indicial equation.
Since d, # 0, we have

K*B(B-1)+k(a+b-k)f—ab=0. (97)

Hence, we get two solutions of this indicial equation:

ﬁlz

(98)

)
\S)
|
P ull Al RN
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Also, from the rest of the terms we have
(K (n+B-1)(n+p-2)
+k@k-c)(n+p-1)|d,,
+ [k (n+B) (n+B-1)
+k(a+b-k)(n+p)-abld,=0.

(99)

Hence, we get the recurrence relation of the following form:

k -c)k -1
_ Gep-9keepy
(k(n+p)-a)(k(n+p)-b)
forn > 1.
Let us now simplify this relation by giving d,, in terms of
d, instead of d,,_,.
From the recurrence relation, we have
k k(B+1)-c
dn _ ( ﬁ)n,k( (ﬁ ) )n,k do (101)
(k(B+1)-a),, (k(B+1)-b),,
forn > 1.

Hence, our assumed solution in equation (91) takes the
form

R PR R P

n=0 (k (ﬁ + 1) - a)n,k(k (ﬁ + 1) - b)n,k
(102)

w=d,

3.6. Analysis of the Solutions in terms of the Difference
“(a/k)—(b/k)” of the Two Roots. Now, we study the solutions
corresponding to the different cases for the expression f3; —
B, = (a/k) — (b/k) (this reduces to studying the nature of the
parameter (a/k) — (b/k) whether it is an integer or not).

Case 1 (“(a/k) — (b/k)” not an integer). Let (a/k) — (b/k) be
not an integer. Then

w; = wll;=a/k, (103)
W, = w|/3=b/k'

Since
S G G L W
Sk(B+1)-a), (k(B+1)-b),,

therefore, we have

w = d, (104)

_ay (@), a+k—c), 1
=d.(k (a/k) n, ,
w1 0( Z) r;) (Cl + k _ b)n,k (kzz)n(l)n
= dy(kz)"

w, = dy(kz)" P

X 2F1,k((b,k),(b+k—c,k);(b+k_a’k);é)
(105)
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Hence
w=A'w, + Bw,. (106)
Let
Ald, = A,
) (107)
B'd, = B.
Then

w = Akz) P
X 2F1J<<(“’k)’(“+k—C,k);(a+k—b,k);é)
+ Blkz)"®
X 2F1,k<(b,k),(b+k—c,k);(b+k_a’k);é)'
(108)

Case 2 (“(a/k) — (b/k) = 0”). Let (a/k) — (b/k) = 0. Then

wy = wlﬁ:u/k- (109)
Also, we have
00 (kﬁ)nk(k (B+ 1)_C)nk B
=d : : "o
N O;;)(k(l”1)—a)n,k(k(ﬁ+1)—b)n,ks (o)
which can be written as
_ % (B(B1-(c/h)), "
RN ey e
Since we have (a/k) = (b/k), therefore
X 1-(c/k
1 =dg B)(pr1-tel 2))”5’”‘*. (112)
= (B+1- (a/k))n
At B = a/k,
w, = dy(kz)" P
1
X 3F 1 ((a, k), (a+k—c,k)s (kK @) -
w el aiu
? aﬁ pB=alk

To calculate this derivative, let

(B)u(B+1=(c/k)),

M, = ,
"B - (@) )
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and then we get

oM, _ (B),(B+1-(c/k),
B (B+1-(alk);

X”Zl[ 1 1
LB+ B+1-(c/k)+
_;]
B+1-(alk)+jl’

ﬁi (B),(B+1=(c/k)),
= (B+1-(a/k)]

ow
% = dOS

x |1 +nzl< 1 1
s Brj Brl-(c/k)+]

2 n
_ﬁ+1—(a/k)+j>ls‘
(115)

For 8 = a/k, we get

w, = do(kz)" @

N "Z": (@) (a+k—c)

n=0 kn(k)n,k
X [m (kz)™"
n—1
k k 2
+];)<a+jk " a+k—-c+jk - 1+j>:|
« (kz)~
n!
(116)
Hence
w= C'w1 + D'wz. 17)
Let
! )= c,
(118)
D'dy=D

1
Then
w = C(kz)~ (a/k)z(a)nk](;(';;)kk ik (kj‘” + D(kz)" @/
" E(Q)n,k](ci(';)t,; Onk
x [m (kz)™!
</ k k 2
+j;)<a+jk i a+k-c+jk - 1+j>]

. k)™

n!
(119)

Case 3 (“(a/k) — (b/k)” an integer and “(a/k) — (b/k) #0”).
Here, we have further two cases:

(i) “(a/k) — (b/k) > 07 Let (a/k) — (b/k) > 0.

Then, from the recurrence relation
(k(l’l+ﬁ) —C)(k(n+ﬁ_ 1))
= i
n (k (n + ‘B) - a) (k (1’! + /3) _ b) n— (120)

we see that, when B = b/k (the smaller root), d(, k- —
00. Thus, we must make the substitution

do=go (B~ Bk (121)

where f3; is the root for which our solution is infinite.
Hence we take

dy = g, (ﬁ—%)k (122)

and our assumed solution in equation (110) takes the new
form

Z ((ﬁ (b/k)) k) ( (ﬁ + 1) - C)n,k(ﬁk)n,k Sn
= (k(B+1) )n,k(k B+ 1)_b)n,k .

(123)
Then

w =w

ol g (124)

As we can see, all terms before

((B = (®/K)) k) (BE) sy o0k (B + 1) = €) ayig-opmok
(K (B+1) =) upy- ok (B+1) =) iy ook

S(all-(b/k)

(125)

vanish because of the (8 — (b/k)) in the numerator.
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Starting from this term, however, the (8 — (b/k)) in the
numerator vanishes. To see this, note that

(5+1-3)
k J (ak)-w/x)

b (126)
1-= 2= ) B=-=).
~(er-)(se2-7)(63)
Hence, our solution takes the form
9o
w, =
L0+ k - Q) -1k
y & (), k(b +k—c)yp "
n=(a/l)—( k"+(b/k) @R (1)1 o)y (D
(127)
_ 9o
(b +k = a)a/i)-w/i)-1,k
()b + k=) (kz)™
n=ajioory Fnewmo-@me  Dn
Now
awg (128)
W, = — . 128
’ a:B B=alk
To calculate this derivative, let
—(b/k)) k +1-(c/k
_(B-CRRELE =),

" (B+1-(a/k),(B+1-(b/k),

and then we get

oM 1
n_ M
B [ﬁ—(b/k)

n—-1 1 1
+jzo<ﬁ+1—(c/k)+j+/3+j

1
CB+1-(afk)+j

‘/m-ib/km)]’

Z(ﬁ (b/k)) k(B), (B +1 = (c/k)),
(B+1-(a/k)),(B+1-(b/k)),

X [lns+ ;
B - (b/k)

c 1 1
+Z‘)<ﬁ+jJr[3+1—(c/k)+j

1
CB+1-(alk)+j

Frem))
(130)
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At 3 = a/k, we get

a/kz S(a-b)(a),a+k—c)
(@+k =),y (k) i

n=0

a—

X [lns+

S k
Z<a+]k a+k-c+ jk
B k 1 )]s"
atk-b+jk 1+ '
(131)

Replacing s by (kz)™",

X(a-b k-
o=t 50~ Ot

n=0

we get w, in terms of z:

X [ln (kz)™' + p
a—

n—1
k k
+Z<a+jk +a+k—c+jk

Jj=0
1 k >]
1+j a+k-b+jk
(kz)™
(k)n,k ‘
(132)
Let
w=E'w, + F'w,. (133)
Let
E'g,=E
,go (134)
Fgy=F
Then
w= E
(b +k = a)a/i)-w/i)-1,k
D) (b+k—0)pp (kz)™

n=(a/k)—(b/k) (k)n+(b/k)f(a/k),k (l)n

+ Flkz) (u/k)z(a b)(;air,;(a; kk— )k
n=0 m,

1 -1
x[n(kz) +a—b

n-1
k k
+jz_(:)(a+jk +a+k—c+jk

SRy )
1+j a+k-b+jk
(kz)™
G
(135)
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(ii) “(a/k) — (b/k) < 07 Let (a/k) — (b/k) < 0.
Then, from the symmetry of the situation here, we see that

w = G
(@+k =) )-(ajr)-1k

(a)n,k(a +k- C)n,k (kz)_n
n=(b/k)—(a/k) (k)n+(a/k)—(b/k),k (1)71

Gy 0§ 0D Oy

n=0

X [ln (kz)™' + b k

n-1 k k
+;)<b+jk+b+k—c+jk

1 k >]
1+j b+k-a+jk
(kz)™
(k)n,k.

X

(136)

4. Conclusion

In this research work, we derived the k-hypergeometric
differential equation. Also, we obtained 24 solutions of k-
hypergeometric differential equation around all its regular
singular points by using Frobenius method. So, we conclude
that, if k — 1, we obtain Euler’s hypergeometric differential
equation. Similarly, by letting k — 1, we find 24 solutions
of hypergeometric differential equation around all its regular
singular points.
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