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This paper concerns time optimal control problems of three different ordinary differential equations in R2. Corresponding to
certain initial data and controls, the solutions of the systems quench at finite time. The goal to control the systems is to minimize
the quenching time.The purpose of this study is to obtain the existence and the Pontryaginmaximumprinciple of optimal controls.
The methods used in this paper adapt to more general and complex ordinary differential control systems with quenching property.
We also wish that our results could be extended to the same issue for parabolic equations.

1. Introduction

In this paper, we study some quenching time optimal control
problems of three different ordinary differential equations in
R2. First of all, some notations will be introduced. We use
‖ ⋅ ‖ and ⟨⋅, ⋅⟩ to stand for the Euclidean norm and the inner
product of R2. For each matrix 𝐷, we use 𝐷

𝑇 and ‖𝐷‖ to
denote its transposition and the operator norm, respectively.
Let 𝐵(⋅) ≜ (

𝑏
11
(⋅) 𝑏
12
(⋅)

𝑏
21
(⋅) 𝑏
22
(⋅)

) be a nontrivial matrix-value function
in the space 𝐿

∞
(0, +∞;R2 × 2). Write 𝑅

+ for [0, +∞). For
each 𝜌

0
> 0 given, we set

U
𝑎𝑑

= {𝑢 : 𝑅
+

󳨀→ R
2
; 𝑢 is Lebesgue measurable,

‖𝑢 (𝑡)‖ ≤ 𝜌
0
for a.e. 𝑡 ∈ 𝑅

+
} .

(1)

Each 𝑢(⋅) ∈ U
𝑎𝑑

can be expressed as 𝑢(⋅) = (𝑢
1
(⋅), 𝑢
2
(⋅))
𝑇. Let

𝑏
1

(⋅, 𝑢 (⋅)) ≜ 𝑏
11

(⋅) 𝑢
1

(⋅) + 𝑏
12

(⋅) 𝑢
2

(⋅) , when 𝑢 (⋅) ∈ U
𝑎𝑑

,

𝑏
2

(⋅, 𝑢 (⋅)) ≜ 𝑏
21

(⋅) 𝑢
1

(⋅) + 𝑏
22

(⋅) 𝑢
2

(⋅) , when 𝑢 (⋅) ∈ U
𝑎𝑑

.

(2)

For each 𝐶
1-function 𝑔 : 𝐸 ⊂ R2 → R2, its derivative will

be written as

(

𝜕𝑔
1

𝜕𝑦
1

𝜕𝑔
2

𝜕𝑦
1

𝜕𝑔
1

𝜕𝑦
2

𝜕𝑔
2

𝜕𝑦
2

) , (3)

where 𝑔 = (𝑔
1
, 𝑔
2
)
𝑇 with 𝑔

𝑖
: 𝐸 ⊂ R2 → R1, 𝑖 = 1, 2.

The controlled systems under consideration are as fol-
lows:

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑓 (𝑦 (𝑡)) + 𝐵 (𝑡) 𝑢 (𝑡) , 𝑡 > 0,

𝑦 (0) = 𝑦
0
.

(4)

Here, 𝑦
0

= (𝑦
0

1
, 𝑦
0

2
)
𝑇

∈ R2, 𝑢(⋅) ∈ U
𝑎𝑑
, and 𝑓 ∈ Λ ≜

{𝑓
(1)

, 𝑓
(2)

, 𝑓
(3)

}, where

(i) 𝑓
(1)

= (𝑓
(1)

1
, 𝑓
(1)

2
)
𝑇

: R2 \ {𝑦 = (𝑦
1
, 𝑦
2
)
𝑇

∈ R2; 𝑦
1

=

1} → R2,𝑓(1)
1

(𝑦) = 𝑦
2
/(1−𝑦

1
), and𝑓

(1)

2
(𝑦) = 𝑦

1
+𝑦
2
;

(ii) 𝑓
(2)

= (𝑓
(2)

1
, 𝑓
(2)

2
)
𝑇

: R2 \ {𝑦 = (𝑦
1
, 𝑦
2
)
𝑇

∈ R2; 𝑦2
1

+

𝑦
2

2
= 1} → R2, 𝑓

(2)

1
(𝑦) = 𝑦

1
/(1 − √𝑦2

1
+ 𝑦2
2
), and

𝑓
(2)

2
(𝑦) = 𝑦

2
/(1 − √𝑦2

1
+ 𝑦2
2
);
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(iii) 𝑓
(3)

= (𝑓
(3)

1
, 𝑓
(3)

2
)
𝑇

: R2 \ {𝑦 = (𝑦
1
, 𝑦
2
)
𝑇

∈ R2; 𝑦
1

=

1 or 𝑦
2

= 1} → R2, 𝑓
(3)

1
(𝑦) = 1/(1 − 𝑦

2
), and

𝑓
(3)

2
(𝑦) = 1/(1 − 𝑦

1
).

Let

𝐾
0

= esssup
𝑠∈𝑅
+

‖𝐵 (𝑠)‖ 𝜌
0
. (5)

Define

𝑆
𝑓
(1)

= {(𝑧
1
, 𝑧
2
) ∈ R
2
; 𝑧
1

∈ (1 −
1

2𝐾
0

, 1) ,

𝑧
2

∈ (𝐾
0

+
1

𝐾
0

− 1, +∞)}

∪ {(𝑧
1
, 𝑧
2
) ∈ R
2
; 𝑧
1

∈ (1, 1 +
1

2𝐾
0

) ,

𝑧
2

∈ (𝐾
0

+ 1, +∞) } ;

𝑆
𝑓
(2)

= {(𝑧
1
, 𝑧
2
) ∈ R
2
; ‖𝑧‖ ∈ (1 −

1

2𝐾
0

+ 1
, 1)}

∪ {(𝑧
1
, 𝑧
2
) ∈ R
2
; ‖𝑧‖ ∈ (1, 1 +

1

2𝐾
0

)} ;

𝑆
𝑓
(3)

= {(𝑧
1
, 𝑧
2
) ∈ R
2
; 𝑧
1

∈ (1 −
𝑒
−3/2

2𝐾
0

, 1) ,

𝑧
2

∈ (1 −
𝑒
−3/2

2𝐾
0

, 1)}

∪ {(𝑧
1
, 𝑧
2
) ∈ R
2
; 𝑧
1

∈ (1, 1 +
𝑒
−3/2

2𝐾
0

) ,

𝑧
2

∈ (1, 1 +
𝑒
−3/2

2𝐾
0

)} .

(6)

Since, for each 𝑓 ∈ Λ, 𝑓 is continuously differential over the
domain 𝑆

𝑓, it is clear that, given𝑓 ∈ Λ, 𝑦0 ∈ 𝑆
𝑓, and 𝑢 ∈ U

𝑎𝑑
,

the controlled system (4) has a unique solution. We denote
this solution by 𝑦(⋅; 𝑓, 𝑦

0
, 𝑢) = (𝑦

1
(⋅; 𝑓, 𝑦

0
, 𝑢), 𝑦
2
(⋅; 𝑓, 𝑦

0
, 𝑢))
𝑇

and write [0, 𝑇max(𝑓, 𝑦
0
, 𝑢)) for its maximal interval of exis-

tence.
It is shown in Section 2 that, given 𝑓 ∈ Λ, 𝑦

0
∈ 𝑆
𝑓, and

𝑢 ∈ U
𝑎𝑑
, there exists a time 𝑇

𝑞
(𝑓, 𝑦
0
, 𝑢) with 𝑇

𝑞
(𝑓, 𝑦
0
, 𝑢) ≤

𝑇max(𝑓, 𝑦
0
, 𝑢) holding the property that

0 < 𝑇
𝑞

(𝑓, 𝑦
0
, 𝑢) < +∞,

lim
𝑡→𝑇
𝑞
(𝑓,𝑦
0
,𝑢)

󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑦 (𝑡; 𝑓, 𝑦

0
, 𝑢))

󵄩󵄩󵄩󵄩󵄩
= +∞,

(7)

󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑦 (𝑡; 𝑓, 𝑦

0
, 𝑢))

󵄩󵄩󵄩󵄩󵄩
< +∞ as 𝑡 ∈ [0, 𝑇

𝑞
(𝑓, 𝑦
0
, 𝑢)) . (8)

We say that the solution 𝑦(⋅; 𝑓, 𝑦
0
, 𝑢) quenches at the finite

time 𝑇
𝑞
(𝑓, 𝑦
0
, 𝑢) and 𝑇

𝑞
(𝑓, 𝑦
0
, 𝑢) is the quenching time of the

solution 𝑦(⋅; 𝑓, 𝑦
0
, 𝑢).

The purpose of this paper is to study the existence and
the Pontryagin maximum principle for the following time
optimal control problems:

min
𝑢∈U
𝑎𝑑

{𝑇
𝑞

(𝑓, 𝑦
0
, 𝑢)} , where 𝑓 ∈ Λ, 𝑦

0
∈ 𝑆
𝑓
. (𝑃)

𝑓

𝑦
0

Because of (7), for each 𝑓 ∈ Λ and 𝑦
0

∈ 𝑆
𝑓, there exists a

number 𝑡
∗
(𝑓, 𝑦
0
) in 𝑅

+ such that

𝑡
∗

(𝑓, 𝑦
0
) = inf
𝑢∈U
𝑎𝑑

𝑇
𝑞

(𝑓, 𝑦
0
, 𝑢) , (9)

which is called the optimal time for the problem (𝑃)
𝑓

𝑦
0
. A con-

trol 𝑢∗(⋅), in the setU
𝑎𝑑

holding the property: 𝑇
𝑞
(𝑓, 𝑦
0
, 𝑢
∗
) =

𝑡
∗
(𝑓, 𝑦
0
), is called an optimal control, while the solution

𝑦(⋅; 𝑓, 𝑦
0
, 𝑢
∗
) is called the optimal state corresponding to 𝑢

∗

for the problem (𝑃)
𝑓

𝑦
0
. We will simply write 𝑦

∗
(⋅) for the

optimal state 𝑦(⋅; 𝑓, 𝑦
0
, 𝑢
∗
).

The main results of this paper are as follows.

Theorem 1. Given 𝑖 ∈ {1, 2, 3} and 𝑦
0

∈ 𝑆
𝑓
(𝑖)

, the problem
(𝑃)
𝑓
(𝑖)

𝑦
0
has optimal controls.

Theorem2. Let 𝑦
0

∈ 𝑆
𝑓
(1)

.Then, Pontryagin’s maximum prin-
ciple holds for the problem (𝑃)

𝑓
(1)

𝑦
0
. Namely, if 𝑡

∗ is the optimal
time, 𝑢

∗ is an optimal control, and 𝑦
∗ is the corresponding

optimal state for the problem (𝑃)
𝑓
(1)

𝑦
0
, then there is a nontrivial

function 𝜓(⋅) in the space 𝐶([0, 𝑡
∗
];R2) satisfying

𝜓 (𝑡) = ∫
𝑡
∗

𝑡

𝑓
(1)

𝑦
(𝑦
∗

(𝜏)) 𝜓 (𝜏) 𝑑𝜏 ∀𝑡 ∈ [0, 𝑡
∗
) ,

𝜓 (𝑡
∗
) = 0,

(10)

max
‖𝑢‖≤𝜌0

⟨𝜓 (𝑡) , 𝐵 (𝑡) 𝑢⟩ = ⟨𝜓 (𝑡) , 𝐵 (𝑡) 𝑢
∗

(𝑡)⟩

𝑓𝑜𝑟 𝑎.𝑒. 𝑡 ∈ [0, 𝑡
∗
] .

(11)

Besides, it holds that

𝑡
∗

≤ (𝑦
0

1
− 1)
2

. (12)

Theorem3. Let 𝑦
0

∈ 𝑆
𝑓
(2)

.Then, Pontryagin’s maximum prin-
ciple holds for the problem (𝑃)

𝑓
(2)

𝑦
0
. Namely, if 𝑡

∗ is the optimal
time, 𝑢

∗ is an optimal control, and 𝑦
∗ is the corresponding

optimal state for the problem (𝑃)
𝑓
(2)

𝑦
0
, then there is a nontrivial

function 𝜓(⋅) in the space 𝐶([0, 𝑡
∗
];R2) satisfying

𝜓 (𝑡) = ∫
𝑡
∗

𝑡

𝑓
(2)

𝑦
(𝑦
∗

(𝜏)) 𝜓 (𝜏) 𝑑𝜏 ∀𝑡 ∈ [0, 𝑡
∗
) ,

𝜓 (𝑡
∗
) = 0,

max
‖𝑢‖≤𝜌

0

⟨𝜓 (𝑡) , 𝐵 (𝑡) 𝑢⟩ = ⟨𝜓 (𝑡) , 𝐵 (𝑡) 𝑢
∗

(𝑡)⟩

𝑓𝑜𝑟 𝑎.𝑒. 𝑡 ∈ [0, 𝑡
∗
] .

(13)
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Besides, it holds that

𝑡
∗

≤
(2𝐾
0

+ 1) (
󵄩󵄩󵄩󵄩󵄩
𝑦
0󵄩󵄩󵄩󵄩󵄩

− 1)
2

2𝐾
0

. (14)

It is worth mentioning that problem (𝑃)
𝑓
(3)

𝑦
0

is more
complicated than the other two problems since the target set
of problem (𝑃)

𝑓
(3)

𝑦
0

is more complicated than the target sets
of the other two problems. Indeed, the target set of problem
(𝑃)
𝑓
(3)

𝑦
0

is {𝑦 ∈ R2; 𝑦
1

= 1 or 𝑦
2

= 1}, while the target sets

for problem (𝑃)
𝑓
(1)

𝑦
0

and problem (𝑃)
𝑓
(2)

𝑦
0

are {𝑦 ∈ R2; 𝑦
1

= 1}

and {𝑦 ∈ R2; ‖𝑦‖ = 1}, respectively. This is why we only
obtain the existence but not Pontryagin’s maximum principle
for problem (𝑃)

𝑓
(3)

𝑦
0
.

The concept of quenching was first introduced by
Kawarada in [1] for a nonlinear parabolic equation; it has
more general sense than blowup. For instance, consider the
equation 𝑑𝑦(𝑡)/𝑑𝑡 = −1/(sin2(𝑦(𝑡)) cos(𝑦(𝑡))), 𝑦(0) = 𝜋/6.
It is obvious that the first quenching time of the solution for
this equation is 1/24 at which sin(𝑦(1/24)) = 0. Then the
solution 𝑦(⋅) can be extended, for instance, until 𝑦(1/12) =

−𝜋/6. Further, the solution 𝑦(⋅) can be extended again until
cos(𝑦(3/8)) = 0; that is, the second quenching time is 3/8.
This differs from the blowup ordinary differential equations,
where the solutions tend to infinity at blowup time.

There have been many literatures concerning the prop-
erties of parabolic differential equations with quenching
behavior (see [1, 2] and references therein). To the best of
our knowledge, the study on quenching time optimal control
problems has not been touched upon. In this paper, we focus
on quenching time optimal control problems for ordinary
differential equations with three particular vector fields 𝑓

(𝑖),
𝑖 = 1, 2, 3, in R2. Indeed, the methods used in this paper
adapt to more general and complex ordinary differential
control systems with quenching property. For instance, we
can use the similar methods we use in this paper to consider
the quenching time optimal problem for system (4), where
𝑓
1
(𝑦) = −1/(sin2𝑦 cos𝑦), 𝑓

2
(𝑦) = 𝑦

1
+ 𝑦
2
(we will give the

details in the following section).We also wish that our results
could be extended to the same issue for parabolic equations.

The differential systems whose solutions have the behav-
ior of quenching arise in the study of chemical reactions.
Quenching phenomena could describe the completion of
a chemical reaction. Using catalysts to make a chemical
reaction complete in the shortest time could be considered an
optimal quenching time problem. It is also significant in the
theory studies of the electric current transient phenomena in
polarized ionic conductors. In certain cases, the quenching
of a solution is desirable. Thus, it could be interesting to
minimize the quenching time with the aid of controls in
certain cases. It deserves to mention that the quenching time
𝑇
𝑞
(𝑓, 𝑦
0
, 𝑢), with some control 𝑢, can really be strictly less

than 𝑇
𝑞
(𝑓, 𝑦
0
, 0). Here is an example. Consider the problem

(𝑃)
𝑓
(2)

𝑦
0
, where 𝑦

0

1
= 3/4, 𝑦

0

2
= 0 and 𝐵(𝑡) = ( 1 0

0 0
) for all 𝑡 ∈ 𝑅

+.

It can be directly checked that 𝑇
𝑞
(𝑓
(2)

, (3/4, 0)
𝑇
, (1, 0)

𝑇
) =

1/32 < 𝑇
𝑞
(𝑓
(2)

, (3/4, 0)
𝑇
, 0) = −1/4 − ln(3/4).

Because of the quenching behavior of solutions to system
(4), the usual methods applied to solve the general optimal
control problems (see, for instance, [3–7]) do not work for
problem (𝑃)

𝑓

𝑦
0
with 𝑓 ∈ Λ and 𝑦

0
∈ 𝑆
𝑓. We approach

our main results by the following steps. First, we show some
invariant properties for solutions of system (4). Next, we
prove that, given 𝑓 ∈ Λ and 𝑦

0
∈ 𝑆
𝑓, the corresponding

solution of system (4) quenches at finite time for each control
𝑢 ∈ U

𝑎𝑑
. Then we give the quenching rate estimate for

solutions of system (4). Furthermore, we obtain the following
property. When a sequence {𝑢

𝑘
} of controls tends to a control

𝑢 in a suitable topology, the solutions 𝑦(⋅; 𝑓, 𝑦
0
, 𝑢
𝑘
) with 𝑘

sufficiently large share a common interval of nonquenching
with the solution 𝑦(⋅; 𝑓, 𝑦

0
, 𝑢). Finally, we use the above-

mentioned results to verify our main theorems.
Since blowup could be regarded as a special quenching

phenomenon, it deserves to mention the paper [8], where
minimal blowup time optimal control problems of ordinary
differential equationswere studied. Inspired by the idea in [8],
we develop new methods in this paper.

The rest of the paper is organized as follows. Section 2
presents some preliminary lemmas which supply some prop-
erties of solutions to controlled system (4). Section 3 proves
the existence of optimal controls for problem (𝑃)

𝑓

𝑦
0
with 𝑓 ∈

Λ and 𝑦
0

∈ 𝑆
𝑓. Section 4 verifies Theorems 2 and 3.

2. Preliminary Lemmas

In this section, we will introduce some properties of solutions
to system (4), which will play important roles to prove our
main results.

2.1. The Existence and Invariant Property. Consider the sys-
tem

𝑑𝜉 (𝑡)

𝑑𝑡
= 𝑓 (𝜉 (𝑡)) + 𝐵 (𝑡) 𝑢 (𝑡) , 𝑡 > 𝑡

0
,

𝜉 (𝑡
0
) = 𝑦
0
.

(15)

Since, for each 𝑓 ∈ Λ, 𝑓 is continuously differential over the
domain 𝑆

𝑓, it is clear that, given 𝑡
0

≥ 0, 𝑓 ∈ Λ, 𝑦
0

∈ 𝑆
𝑓,

and 𝑢 ∈ U
𝑎𝑑
, system (15) has a unique solution. We

denote this solution by 𝜉(⋅; 𝑡
0
, 𝑓, 𝑦
0
, 𝑢) = (𝜉

1
(⋅; 𝑡
0
, 𝑓, 𝑦
0
, 𝑢),

𝜉
2
(⋅; 𝑡
0
, 𝑓, 𝑦
0
, 𝑢))
𝑇 and write [𝑡

0
, 𝑇max(𝑡0, 𝑓, 𝑦

0
, 𝑢)) for its max-

imal interval of existence.
Let 𝑡
0

≥ 0, 𝑦
0

= (𝑦
0

1
, 𝑦
0

2
)
𝑇

∈ 𝑆
𝑓
(1)

and 𝑢 ∈ U
𝑎𝑑
. If 𝑦
0

1
<

1; then, by the continuity of the solution 𝜉(⋅; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢),

we can find a positive number 𝛼 sufficiently small such that
𝜉
1
(𝑡; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) < 1 for all 𝑡 ∈ [𝑡

0
, 𝑡
0

+ 𝛼). Similarly,
if 𝑦
0

1
> 1, we can find a positive number 𝛽 sufficiently

small such that 𝜉
1
(𝑡; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) > 1 for all 𝑡 ∈ [𝑡

0
, 𝑡
0

+

𝛽). Given 𝑡
0

≥ 0, 𝑦
0

= (𝑦
0

1
, 𝑦
0

2
)
𝑇

∈ 𝑆
𝑓
(1)

, and 𝑢 ∈

U
𝑎𝑑
, we will use the notation 𝐼(𝑡

0
, 𝑓
(1)

, 𝑦
0
, 𝑢) to denote such
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a subinterval of the interval [𝑡
0
, 𝑇max(𝑡0, 𝑓

(1)
, 𝑦
0
, 𝑢)). When

𝑦
0

1
< 1, 𝐼(𝑡

0
, 𝑓
(1)

, 𝑦
0
, 𝑢) denotes the maximal time interval

in which 𝜉
1
(𝑡; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) < 1, while, when 𝑦

0

1
> 1,

𝐼(𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) denotes the maximal time interval in which

𝜉
1
(𝑡; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) > 1. By the continuity of the solution

𝜉(⋅; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) again, it is clear from the existence theorem

and the extension theorem of ordinary differential equations
that 𝐼(𝑡

0
, 𝑓
(1)

, 𝑦
0
, 𝑢) is a left closed and right open interval,

whose left end point is 𝑡
0
. Let 1 − 1/(2𝐾

0
) < 𝐾

1
< 1,

1 < 𝐾̃
1

< 1 + 1/(2𝐾
0
), 𝐾
2

> 𝐾
0

+ 1/𝐾
0

− 1, and 𝐾̃
2

> 𝐾
0

+ 1.
We have the following lemma.

Lemma 4. Given 𝑡
0

≥ 0, 𝑦0 ∈ 𝑆
𝑓
(1)

, and 𝑢 ∈ U
𝑎𝑑
, then, for all

𝑡 ∈ 𝐼(𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢),

𝜉
1

(𝑡; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) ≥ 𝐾

1
, 𝜉

2
(𝑡; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) ≥ 𝐾

2
,

𝑎𝑠 𝐾
1

≤ 𝑦
0

1
< 1, 𝑦

0

2
≥ 𝐾
2
;

(16)

𝜉
1

(𝑡; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) ≤ 𝐾̃

1
, 𝜉

2
(𝑡; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) ≥ 𝐾̃

2
,

𝑎𝑠 1 < 𝑦
0

1
≤ 𝐾̃
1
, 𝑦
0

2
≥ 𝐾̃
2
.

(17)

Proof. First, we claim the following property (A). Suppose
that 𝑡
0

≥ 0, 𝑦
0

∈ 𝑆
𝑓
(1)

, with 𝐾
1

≤ 𝑦
0

1
< 1, 𝑦

0

2
≥ 𝐾
2
, and

𝑢 ∈ U
𝑎𝑑
. Then, there is a positive number 𝜂 with [𝑡

0
, 𝑡
0

+

𝜂) ⊂ 𝐼(𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) such that the solution 𝜉(⋅; 𝑡

0
, 𝑓
(1)

, 𝑦
0
, 𝑢)

holds the following inequalities: 𝜉
1
(𝑡; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) ≥ 𝐾

1
and

𝜉
2
(𝑡; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) ≥ 𝐾

2
for all 𝑡 in the interval [𝑡

0
, 𝑡
0

+ 𝜂].
Indeed, since 1 − 1/(2𝐾

0
) < 𝐾

1
≤ 𝑦
0

1
< 1 and

𝑦
0

2
≥ 𝐾
2

> 𝐾
0

+ 1/𝐾
0

− 1, we can use the continuity
of the solution 𝜉(⋅; 𝑡

0
, 𝑓
(1)

, 𝑦
0
, 𝑢) to find a positive constant

𝜂 such that [𝑡
0
, 𝑡
0

+ 𝜂) ⊂ 𝐼(𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢), 1 − 1/(2𝐾

0
) <

𝜉
1
(𝑡; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) < 1, and 𝜉

2
(𝑡; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) > 𝐾

0
+1/𝐾
0
−1

for all 𝑡 ∈ [𝑡
0
, 𝑡
0

+ 𝜂]. Hence, it follows from (15) with 𝑓 =

𝑓
(1), (5), and the inequality 𝐾

0
+ 1/𝐾

0
− 1 ≥ 1 that, for all

𝑡 ∈ [𝑡
0
, 𝑡
0

+ 𝜂],

𝜉
1

(𝑡) − 𝑦
0

1
= ∫
𝑡

𝑡
0

(
𝜉
2

(𝜏)

1 − 𝜉
1

(𝜏)
+ 𝑏
1

(𝜏, 𝑢 (𝜏))) 𝑑𝜏

≥ ∫
𝑡

𝑡
0

(
𝐾
0

+ 1/𝐾
0

− 1

1/ (2𝐾
0
)

− 𝐾
0
) 𝑑𝜏 ≥ 0;

𝜉
2

(𝑡) − 𝑦
0

2
= ∫
𝑡

𝑡
0

(𝜉
1

(𝜏) + 𝜉
2

(𝜏) + 𝑏
2

(𝜏, 𝑢 (𝜏))) 𝑑𝜏

≥ ∫
𝑡

𝑡
0

(1 −
1

2𝐾
0

+
1

𝐾
0

− 1) 𝑑𝜏 ≥ 0.

(18)

Here, we simply write 𝜉(⋅) for the solution 𝜉(⋅; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢).

From the two inequalities mentioned above and the inequal-
ities 𝑦

0

1
≥ 𝐾
1
and 𝑦

0

2
≥ 𝐾
2
, we get the property (A).

Now, we come back to prove the property (16).

By seeking a contradiction, suppose that there exist a time
𝑡
0

≥ 0, initial data 𝑦
0

∈ 𝑆
𝑓
(1)

, a control 𝑢 ∈ U
𝑎𝑑
, and a number

pair (𝐾
1
, 𝐾
2
)with 1−1/(2𝐾

0
) < 𝐾
1

< 1 and𝐾
2

> 𝐾
0
+1/𝐾
0
−1

such that the solution 𝜉(⋅; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) with 𝐾

1
≤ 𝑦
0

1
< 1

and 𝑦
0

2
≥ 𝐾
2
does not satisfy (16). Then we would find a

number 𝑠
0

> 𝑡
0
in the interval 𝐼(𝑡

0
, 𝑓
(1)

, 𝑦
0
, 𝑢) such that

𝜉
1
(𝑠
0
; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) < 𝐾

1
or 𝜉
2
(𝑠
0
; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) < 𝐾

2
. Write

𝑠
1
for inf{𝑡 ∈ [𝑡

0
, 𝑠
0
]; 𝜉
1
(𝑡; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) < 𝐾

1
} and write 𝑠

2

for inf{𝑡 ∈ [𝑡
0
, 𝑠
0
]; 𝜉
2
(𝑡; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) < 𝐾

2
}. We may as well

assume that 𝑠
1

≤ 𝑠
2
. Since 𝜉(⋅; 𝑡

0
, 𝑓
(1)

, 𝑦
0
, 𝑢) is continuous

over 𝐼(𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢), we can use the definition of 𝑠

1
and 𝑠
2

and the inequality 𝑠
1

≤ 𝑠
2
to derive the following properties:

(a) 𝜉
1
(𝑠
1
; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) ≥ 𝐾

1
and (b) corresponding to each

𝛿 with (𝑠
1
, 𝑠
1

+ 𝛿) ⊂ 𝐼(𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢), there exists a number

𝑡
𝛿
in (𝑠
1
, 𝑠
1

+ 𝛿) such that 𝜉
1
(𝑡
𝛿
; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) < 𝐾

1
; (c)

𝜉
2
(𝑡; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) ≥ 𝐾

2
, for each 𝑡 ∈ [𝑡

0
, 𝑠
1
]. Write

𝑧 = 𝜉(𝑠
1
; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢). Then, it follows from the properties

(a), (c), and the definition of the interval 𝐼(𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢)

that 𝐾
1

≤ 𝑧
1

= 𝜉
1
(𝑠
1
; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) < 1 and 𝑧

2
=

𝜉
2
(𝑠
1
; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) ≥ 𝐾

2
. Consider the following system:

𝑑𝜉 (𝑡)

𝑑𝑡
= 𝑓 (𝜉 (𝑡)) + 𝐵 (𝑡) 𝑢 (𝑡) , 𝑡 > 𝑠

1
,

𝜉 (𝑠
1
) = 𝑧.

(19)

Making use of the property (A), we can choose a positive
number 𝛿

0
sufficiently small such that

𝜉
1

(𝑡; 𝑠
1
, 𝑓
(1)

, 𝑧, 𝑢) ≥ 𝐾
1
, 𝜉

2
(𝑡; 𝑠
1
, 𝑓
(1)

, 𝑧, 𝑢) ≥ 𝐾
2

for each 𝑡 ∈ [𝑠
1
, 𝑠
1

+ 𝛿
0
) .

(20)

On the other hand, the function 𝜉(⋅; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) also sat-

isfies the system (19) when 𝑡 ≥ 𝑠
1
. By the uniqueness

of the solution to the system (19), we necessarily have
𝜉(𝑡; 𝑡
0
, 𝑓
(1)

, 𝑦
0
, 𝑢) = 𝜉(𝑡; 𝑠

1
, 𝑓
(1)

, 𝑧, 𝑢) for all 𝑡 ≥ 𝑠
1
. This,

combined with the above-mentioned property (b), implies
the existence of a number 𝑡

𝛿
0

in (𝑠
1
, 𝑠
1

+ 𝛿
0
) such that

𝜉
1
(𝑡
𝛿
0

; 𝑠
1
, 𝑓
(1)

, 𝑧, 𝑢) < 𝐾
1
. This contradicts to (20). Therefore,

we have accomplished the proof of the property (16).
We can use the very similar argument of the proof of (16)

to prove (17) (see [9] for the detailed proofs).

The following two lemmas play important roles in the
proof ofTheorem 1with𝑓 = 𝑓

(2) and𝑓 = 𝑓
(3) andTheorem 3

(see [9] for the detailed proofs).
Let 𝑡
0

≥ 0, 𝑦
0

∈ 𝑆
𝑓
(2)

, and 𝑢 ∈ U
𝑎𝑑
; we will

use the notation 𝐼(𝑡
0
, 𝑓
(2)

, 𝑦
0
, 𝑢) to denote such a subinter-

val of the interval [𝑡
0
, 𝑇max(𝑡0, 𝑓

(2)
, 𝑦
0
, 𝑢)). When ‖𝑦

0
‖ <

1, 𝐼(𝑡
0
, 𝑓
(2)

, 𝑦
0
, 𝑢) denotes the maximal time interval in

which ‖𝜉(𝑡; 𝑡
0
, 𝑓
(2)

, 𝑦
0
, 𝑢)‖ < 1, while, when ‖𝑦

0
‖ > 1,

𝐼(𝑡
0
, 𝑓
(2)

, 𝑦
0
, 𝑢) denotes the maximal time interval in which

‖𝜉(𝑡; 𝑡
0
, 𝑓
(2)

, 𝑦
0
, 𝑢)‖ > 1. It is clear that 𝐼(𝑡

0
, 𝑓
(2)

, 𝑦
0
, 𝑢) is a

left closed and right open interval, whose left end point is 𝑡
0
.

Let 1 − 1/(2𝐾
0

+ 1) < 𝐾
3

< 1 and 1 < 𝐾̃
3

< 1 + 1/(2𝐾
0
).

We have the following lemma.
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Lemma 5. Given 𝑡
0

≥ 0, 𝑦
0

∈ 𝑆
𝑓
(2)

, and 𝑢 ∈ U
𝑎𝑑
, then, for all

𝑡 ∈ 𝐼(𝑡
0
, 𝑓
(2)

, 𝑦
0
, 𝑢),

󵄩󵄩󵄩󵄩󵄩
𝜉 (𝑡; 𝑡
0
, 𝑓
(2)

, 𝑦
0
, 𝑢)

󵄩󵄩󵄩󵄩󵄩
≥ 𝐾
3
, 𝑤ℎ𝑒𝑛 𝐾

3
≤

󵄩󵄩󵄩󵄩󵄩
𝑦
0󵄩󵄩󵄩󵄩󵄩

< 1;

󵄩󵄩󵄩󵄩󵄩
𝜉 (𝑡; 𝑡
0
, 𝑓
(2)

, 𝑦
0
, 𝑢)

󵄩󵄩󵄩󵄩󵄩
≤ 𝐾̃
3
, 𝑤ℎ𝑒𝑛 1 <

󵄩󵄩󵄩󵄩󵄩
𝑦
0󵄩󵄩󵄩󵄩󵄩

≤ 𝐾̃
3
.

(21)

Let 𝑡
0

≥ 0, 𝑦
0

∈ 𝑆
𝑓
(3)

, and 𝑢 ∈ U
𝑎𝑑
; we will use the

notation 𝐼(𝑡
0
, 𝑓
(3)

, 𝑦
0
, 𝑢) to denote such a subinterval of the

interval [𝑡
0
, 𝑇max(𝑡0, 𝑓

(3)
, 𝑦
0
, 𝑢)). When 𝑦

0

1
< 1 and 𝑦

0

2
< 1,

𝐼(𝑡
0
, 𝑓
(3)

, 𝑦
0
, 𝑢) denotes the maximal time interval in which

𝜉
1
(𝑡; 𝑡
0
, 𝑓
(3)

, 𝑦
0
, 𝑢) < 1 and 𝜉

2
(𝑡; 𝑡
0
, 𝑓
(3)

, 𝑦
0
, 𝑢) < 1, while,

when 𝑦
0

1
> 1 and 𝑦

0

2
> 1, 𝐼(𝑡

0
, 𝑓
(3)

, 𝑦
0
, 𝑢) denotes the

maximal time interval in which 𝜉
1
(𝑡; 𝑡
0
, 𝑓
(3)

, 𝑦
0
, 𝑢) > 1 and

𝜉
2
(𝑡; 𝑡
0
, 𝑓
(3)

, 𝑦
0
, 𝑢) > 1. It is clear that 𝐼(𝑡

0
, 𝑓
(3)

, 𝑦
0
, 𝑢) is a left

closed and right open interval, whose left end point is 𝑡
0
. Let

1 − 𝑒
−3/2

/(2𝐾
0
) < 𝐾
4

< 1 and 1 < 𝐾̃
4

< 1 + 𝑒
−3/2

/(2𝐾
0
).

We have the following lemma.

Lemma 6. Given 𝑡
0

≥ 0, 𝑦0 ∈ 𝑆
𝑓
(3)

, and 𝑢 ∈ U
𝑎𝑑
, then, for all

𝑡 ∈ 𝐼(𝑡
0
, 𝑓
(3)

, 𝑦
0
, 𝑢),

𝜉
1

(𝑡; 𝑡
0
, 𝑓
(3)

, 𝑦
0
, 𝑢) ≥ 𝐾

4
, 𝜉

2
(𝑡; 𝑡
0
, 𝑓
(3)

, 𝑦
0
, 𝑢) ≥ 𝐾

4
,

𝑤ℎ𝑒𝑛 𝐾
4

≤ 𝑦
0

1
< 1, 𝐾

4
≤ 𝑦
0

2
< 1;

𝜉
1

(𝑡; 𝑡
0
, 𝑓
(3)

, 𝑦
0
, 𝑢) ≤ 𝐾̃

4
, 𝜉

2
(𝑡; 𝑡
0
, 𝑓
(3)

, 𝑦
0
, 𝑢) ≤ 𝐾̃

4
,

𝑤ℎ𝑒𝑛 1 < 𝑦
0

1
≤ 𝐾̃
4
, 1 < 𝑦

0

2
≤ 𝐾̃
4
.

(22)

2.2. Quenching Property and Estimate of Quenching Rate

Lemma 7. For each 𝑦
0

∈ 𝑆
𝑓
(1)

and each 𝑢 ∈ U
𝑎𝑑
, there exists a

time𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢) in the interval (0, 𝑇max(𝑓

(1)
, 𝑦
0
, 𝑢)] holding

the property that

𝑇
𝑞

(𝑓
(1)

, 𝑦
0
, 𝑢) ≤ (𝑦

0

1
− 1)
2

< +∞, (23)

lim
𝑡→𝑇
𝑞
(𝑓
(1)
,𝑦
0
,𝑢)

𝑦
1

(𝑡; 𝑓
(1)

, 𝑦
0
, 𝑢) = 1,

lim
𝑡→𝑇
𝑞
(𝑓
(1)
,𝑦
0
,𝑢)

󵄩󵄩󵄩󵄩󵄩
𝑓
(1)

(𝑦 (𝑡; 𝑓
(1)

, 𝑦
0
, 𝑢))

󵄩󵄩󵄩󵄩󵄩
= +∞,

(24)

󵄩󵄩󵄩󵄩󵄩
𝑓
(1)

(𝑦 (𝑡; 𝑓
(1)

, 𝑦
0
, 𝑢))

󵄩󵄩󵄩󵄩󵄩
< +∞

𝑎𝑠 𝑡 ∈ [0, 𝑇
𝑞

(𝑓
(1)

, 𝑦
0
, 𝑢)) .

(25)

Moreover, there exists a positive constant 𝐶, independent of
𝑦
0

∈ 𝑆
𝑓
(1)

and 𝑢, such that

1
󵄨󵄨󵄨󵄨1 − 𝑦

1
(𝑡; 𝑓(1), 𝑦0, 𝑢)

󵄨󵄨󵄨󵄨
≤ 𝐶(𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢) − 𝑡)

−2/3

,

𝑡 ∈ [0, 𝑇
𝑞

(𝑓
(1)

, 𝑦
0
, 𝑢)) .

(26)

Proof. Suppose that𝑦
0

∈ 𝑆
𝑓
(1)

and 𝑢 ∈ U
𝑎𝑑
. Let𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢)

be the right end point of the interval 𝐼(0, 𝑓
(1)

, 𝑦
0
, 𝑢). Thus,

𝐼(0, 𝑓
(1)

, 𝑦
0
, 𝑢) = [0, 𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢)) and 𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢) ∈

(0, 𝑇max(𝑓
(1)

, 𝑦
0
, 𝑢)] (see the definition and the property of

𝐼(0, 𝑓
(1)

, 𝑦
0
, 𝑢) on page 3). We will prove Lemma 7 in the

following two cases.

Case 1. 1 − 1/(2𝐾
0
) < 𝑦
0

1
< 1 and 𝑦

0

2
> 𝐾
0

+ 1/𝐾
0

− 1.

Step 1. This is to prove (23) in Case 1.
By property (16) in Lemma 4 and the definition of

𝐼(0, 𝑓
(1)

, 𝑦
0
, 𝑢) and𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢), the solution𝑦(⋅; 𝑓

(1)
, 𝑦
0
, 𝑢)

with 1 − 1/(2𝐾
0
) < 𝑦
0

1
< 1, 𝑦0

2
> 𝐾
0

+ 1/𝐾
0

− 1, and 𝑢 ∈ U
𝑎𝑑

holds the property that, for each 𝑡 ∈ [0, 𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢)),

1 −
1

2𝐾
0

< 𝑦
0

1
≤ 𝑦
1

(𝑡; 𝑓
(1)

, 𝑦
0
, 𝑢) < 1,

𝑦
2

(𝑡; 𝑓
(1)

, 𝑦
0
, 𝑢) ≥ 𝑦

0

2
> 𝐾
0

+
1

𝐾
0

− 1.

(27)

Then, from system (4) with 𝑓 = 𝑓
(1), (5), and the inequality

𝐾
0

+ 1/𝐾
0

− 1 ≥ 1, it holds that

𝑑𝑦
1

(𝑡)

𝑑𝑡
=

𝑦
2

(𝑡)

2 (1 − 𝑦
1

(𝑡))
+

𝑦
2

(𝑡)

2 (1 − 𝑦
1

(𝑡))
+ 𝑏
1

(𝑡, 𝑢 (𝑡))

≥
1

2 (1 − 𝑦
1

(𝑡))
for a.e. 𝑡 ∈ [0, 𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢)) .

(28)

Here and throughout the proof, we simply write 𝑦(⋅) for
𝑦(⋅; 𝑓
(1)

, 𝑦
0
, 𝑢).

Let 𝜒(⋅) be the solution to the following equation:

𝑑𝜒 (𝑡)

𝑑𝑡
=

1

2 (1 − 𝜒 (𝑡))
, 𝑡 > 0,

𝜒 (0) = 𝑦
0

1
,

(29)

from which it is easy to check that

𝜒 (𝑡) < 1, 𝑡 ∈ [0, (𝑦
0

1
− 1)
2

) ,

𝜒 (⋅) quenches at the time (𝑦
0

1
− 1)
2

.

(30)

Furthermore, making use of (28) and (29), we can derive,
from the comparison theorem of ordinary differential equa-
tions, the following inequality:

𝑦
1

(𝑡) ≥ 𝜒 (𝑡) , 𝑡 ∈ [0,min {𝑇
𝑞

(𝑓
(1)

, 𝑦
0
, 𝑢) , (𝑦

0

1
− 1)
2

}) .

(31)

This, combined with (27) and (30), implies (23) in Case 1.

Step 2.This is to prove (24) in Case 1.
Indeed, by (27) and (28), it is clear that 𝑦

1
(⋅) is

monotonously increasing over the interval [0, 𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢)).
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This, combined with (27), implies that lim
𝑡→𝑇
𝑞
(𝑓
(1)
,𝑦
0
,𝑢)

𝑦
1
(𝑡)

exists and lim
𝑡→𝑇
𝑞
(𝑓
(1)
,𝑦
0
,𝑢)

𝑦
1
(𝑡) ≤ 1.

Now, we claim that

lim
𝑡→𝑇
𝑞
(𝑓
(1)
,𝑦
0
,𝑢)

𝑦
1

(𝑡) = 1. (32)

By contradiction, if lim
𝑡→𝑇
𝑞
(𝑓
(1)
,𝑦
0
,𝑢)

𝑦
1
(𝑡) = 𝛽 < 1,

then, by the continuity and the monotonicity of the solution
𝑦
1
(⋅), it holds that 𝑦

1
(𝑡) ≤ 𝛽 for 𝑡 ∈ [0, 𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢)) and

𝑦
1
(𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢)) = 𝛽 < 1. Then, we can extend the solution

𝑦(⋅) and can find an interval [𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢), 𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢) +

𝛿
1
) with 𝛿

1
sufficiently small such that 𝑦

1
(𝑡) < 1 on

the interval [𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢), 𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢) + 𝛿

1
). However,

𝐼(0, 𝑓
(1)

, 𝑦
0
, 𝑢) = [0, 𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢)) and 𝐼(0, 𝑓

(1)
, 𝑦
0
, 𝑢) is the

maximal interval in which 𝑦
1
(𝑡) < 1. This is a contradiction.

Thus, (32) holds.
On the other hand, by (27), it is clear that

󵄩󵄩󵄩󵄩󵄩
𝑓
(1)

(𝑦 (𝑡))
󵄩󵄩󵄩󵄩󵄩

≥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦
2

(𝑡)

1 − 𝑦
1

(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
>

𝐾
0

+ 1/𝐾
0

− 1

1 − 𝑦
1

(𝑡)

≥
1

1 − 𝑦
1

(𝑡)
, 𝑡 ∈ [0, 𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢)) ,

(33)

from which and from (32), it holds that
lim
𝑡→𝑇
𝑞
(𝑓
(1)
,𝑦
0
,𝑢)

‖𝑓
(1)

(𝑦(𝑡))‖ = +∞. This completes the
proof of (24) in Case 1.

Step 3.This is to prove (25) in Case 1.
Since 𝑦

1
(𝑡) < 1 for each 𝑡 ∈ [0, 𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢)) and 𝑦(⋅)

is continuous over the interval [0, 𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢)), we can get

(25) in Case 1.

Step 4. This is to prove (26) in Case 1.
By system (4) with 𝑓 = 𝑓

(1), we conclude from (24), (27),
and (5) that, for each 𝑡 ∈ [0, 𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢)),

−
2

3
∫
𝑇
𝑞
(𝑓
(1)
,𝑦
0
,𝑢)

𝑡

𝑑(1 − 𝑦
1

(𝜏))
3/2

=
2

3
(1 − 𝑦

1
(𝑡))
3/2

= ∫
𝑇
𝑞
(𝑓
(1)
,𝑦
0
,𝑢)

𝑡

(
𝑦
2

(𝜏)

(1 − 𝑦
1

(𝜏))
1/2

+ (1 − 𝑦
1

(𝜏))
1/2

𝑏
1

(𝜏, 𝑢 (𝜏))) 𝑑𝜏

≥ ∫
𝑇
𝑞
(𝑓
(1)
,𝑦
0
,𝑢)

𝑡

(
1

(1 − 1 + 1/2𝐾
0
)
1/2

−
𝐾
0

√2𝐾
0

) 𝑑𝜏

≥ (√2 −
1

√2
) √𝐾

0
(𝑇
𝑞

(𝑓
(1)

, 𝑦
0
, 𝑢) − 𝑡) ,

(34)

which implies (26) in Case 1.

Case 2. 𝑦0 ∈ 𝑆
𝑓
(1)

with 1 < 𝑦
0

1
< 1 + 1/(2𝐾

0
) and 𝑦

0

2
> 𝐾
0

+ 1.
We can use the very similar argument as that of Case 1 to

give a proof of Case 2 (see [9] for the detailed proofs).

Remark 8. Let 𝑦
0

∈ 𝑆
𝑓
(1)

and 𝑢 ∈ U
𝑎𝑑
. Since 𝐼(0, 𝑓

(1)
, 𝑦
0
, 𝑢) =

[0, 𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢)), we can conclude from the definition of

𝐼(0, 𝑓
(1)

, 𝑦
0
, 𝑢) that, for each 𝑡 ∈ [0, 𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢)),

𝑦
1

(𝑡; 𝑓
(1)

, 𝑦
0
, 𝑢) < 1, when 𝑦

0

1
< 1;

𝑦
1

(𝑡; 𝑓
(1)

, 𝑦
0
, 𝑢) > 1, when 𝑦

0

1
> 1.

(35)

The following two lemmas play important roles in the
proof ofTheorem 1with𝑓 = 𝑓

(2) and𝑓 = 𝑓
(3) andTheorem 3

(see [9] for the detailed proofs).

Lemma 9. For each 𝑦
0

∈ 𝑆
𝑓
(2)

and each 𝑢 ∈ U
𝑎𝑑
, there exists a

time𝑇
𝑞
(𝑓
(2)

, 𝑦
0
, 𝑢) in the interval (0, 𝑇max(𝑓

(2)
, 𝑦
0
, 𝑢)] holding

the property that

𝑇
𝑞

(𝑓
(2)

, 𝑦
0
, 𝑢) ≤

(2𝐾
0

+ 1) (
󵄩󵄩󵄩󵄩󵄩
𝑦
0󵄩󵄩󵄩󵄩󵄩

− 1)
2

2𝐾
0

< +∞,

lim
𝑡→𝑇
𝑞
(𝑓
(2)
,𝑦
0
,𝑢)

󵄩󵄩󵄩󵄩󵄩
𝑦 (𝑡; 𝑓

(2)
, 𝑦
0
, 𝑢)

󵄩󵄩󵄩󵄩󵄩
= 1,

lim
𝑡→𝑇
𝑞
(𝑓
(2)
,𝑦
0
,𝑢)

󵄩󵄩󵄩󵄩󵄩
𝑓
(2)

(𝑦 (𝑡; 𝑓
(2)

, 𝑦
0
, 𝑢))

󵄩󵄩󵄩󵄩󵄩
= +∞,

󵄩󵄩󵄩󵄩󵄩
𝑓
(2)

(𝑦 (𝑡; 𝑓
(2)

, 𝑦
0
, 𝑢))

󵄩󵄩󵄩󵄩󵄩
< +∞ 𝑎𝑠 𝑡 ∈ [0, 𝑇

𝑞
(𝑓
(2)

, 𝑦
0
, 𝑢)) .

(36)

Moreover, there exists a positive constant 𝐶, independent of
𝑦
0

∈ 𝑆
𝑓
(2)

and 𝑢, such that

1
󵄨󵄨󵄨󵄨1 −

󵄩󵄩󵄩󵄩𝑦 (𝑡; 𝑓(2), 𝑦0, 𝑢)
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨

≤ 𝐶(𝑇
𝑞

(𝑓
(2)

, 𝑦
0
, 𝑢) − 𝑡)

−2/3

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡 ∈ [0, 𝑇
𝑞

(𝑓
(2)

, 𝑦
0
, 𝑢)) .

(37)

Lemma 10. For each 𝑦
0

∈ 𝑆
𝑓
(3)

and each 𝑢 ∈ U
𝑎𝑑
, there

exists a time𝑇
𝑞
(𝑓
(3)

, 𝑦
0
, 𝑢) in the interval (0, 𝑇max(𝑓

(3)
, 𝑦
0
, 𝑢)]

holding the property that

𝑇
𝑞

(𝑓
(3)

, 𝑦
0
, 𝑢) ≤

1

4𝐾2
0

< +∞,

lim
𝑡→𝑇
𝑞
(𝑓
(3)
,𝑦
0
,𝑢)

𝑦
1

(𝑡; 𝑓
(3)

, 𝑦
0
, 𝑢)

= lim
𝑡→𝑇
𝑞
(𝑓
(3)
,𝑦
0
,𝑢)

𝑦
2

(𝑡; 𝑓
(3)

, 𝑦
0
, 𝑢) = 1,

lim
𝑡→𝑇
𝑞
(𝑓
(3)
,𝑦
0
,𝑢)

󵄩󵄩󵄩󵄩󵄩
𝑓
(3)

(𝑦 (𝑡; 𝑓
(3)

, 𝑦
0
, 𝑢))

󵄩󵄩󵄩󵄩󵄩
= +∞,

󵄩󵄩󵄩󵄩󵄩
𝑓
(3)

(𝑦 (𝑡; 𝑓
(3)

, 𝑦
0
, 𝑢))

󵄩󵄩󵄩󵄩󵄩
< +∞ 𝑎𝑠 𝑡 ∈ [0, 𝑇

𝑞
(𝑓
(3)

, 𝑦
0
, 𝑢)) .

(38)
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Moreover, there exists a positive constant 𝐶 depending on
𝑦
0

∈ 𝑆
𝑓
(3)

, but independent of 𝑢, such that, for each 𝑡 ∈

[0, 𝑇
𝑞
(𝑓
(3)

, 𝑦
0
, 𝑢)),

max{
1

󵄨󵄨󵄨󵄨1 − 𝑦
1

(𝑡; 𝑓(3), 𝑦0, 𝑢)
󵄨󵄨󵄨󵄨
,

1
󵄨󵄨󵄨󵄨1 − 𝑦

2
(𝑡; 𝑓(3), 𝑦0, 𝑢)

󵄨󵄨󵄨󵄨
}

≤ 𝐶(𝑇
𝑞

(𝑓
(3)

, 𝑦
0
, 𝑢) − 𝑡)

−2/3

.

(39)

2.3. Uniform Interval of Nonquenching. Let [0, 𝑇] be a time
interval. Given 𝑓 ∈ Λ, 𝑦

0
∈ 𝑆
𝑓 and 𝑢 ∈ U

𝑎𝑑
, we say that the

solution 𝑦(⋅; 𝑓, 𝑦
0
, 𝑢) does not quench on the interval [0, 𝑇] if

for each 𝑡 ∈ [0, 𝑇] we have
󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑦 (𝑡; 𝑓, 𝑦

0
, 𝑢))

󵄩󵄩󵄩󵄩󵄩
< +∞. (40)

Lemma 11. Suppose that 𝑓 ∈ Λ and [0, 𝑡
1
] is a closed interval.

Assume 𝑦
0

∈ 𝑆
𝑓. Let 𝑢(⋅) and {𝑢

𝑘
(⋅)}
∞

𝑘=1
be an element and a

bounded sequence inU
𝑎𝑑
, respectively. Suppose that

𝑢
𝑘

(𝜏) ⇀ 𝑢 (𝜏) 𝑤𝑒𝑎𝑘𝑙𝑦 𝑠𝑡𝑎𝑟 𝑖𝑛 𝐿
∞

(0, 𝑡
1
;R
2
) (41)

and the solution 𝑦(⋅; 𝑓, 𝑦
0
, 𝑢) does not quench on the interval

[0, 𝑡
1
]. Then there is a natural number 𝑘

0
such that, for each 𝑘

with 𝑘 ≥ 𝑘
0
, the solution 𝑦(⋅; 𝑓, 𝑦

0
, 𝑢
𝑘
) does not quench on the

interval [0, 𝑡
1
].

Using the lemmas we obtained in Sections 2.1 and 2.2, we
can use the similar argument as we used in Lemma 2.2 of [8]
to prove this lemma (see [9] for the detailed proofs.)

3. Existence of Optimal Control

Proof of Theorem 1. In this section, wewill only give the proof
of Theorem 1 in the case, where 𝑦

0
∈ 𝑆
𝑓
(1)

with 1 − 1/(2𝐾
0
) <

𝑦
0

1
< 1 and 𝑦

0

2
> 𝐾
0

+ 1/𝐾
0

− 1. We can use very similar
arguments to prove Theorem 1 in the cases, where 𝑦

0
∈ 𝑆
𝑓
(1)

with 1 < 𝑦
0

1
< 1 + 1/(2𝐾

0
), 𝑦
0

2
> 𝐾
0

+ 1, 𝑦
0

∈ 𝑆
𝑓
(2)

, and
𝑦
0

∈ 𝑆
𝑓
(3)

.
Let 𝑦
0

∈ 𝑆
𝑓
(1)

with 1 − 1/(2𝐾
0
) < 𝑦
0

1
< 1 and 𝑦

0

2
> 𝐾
0

+

1/𝐾
0

− 1. By Lemma 7 and Remark 8, it holds that, for each
𝑢 ∈ U

𝑎𝑑
, 𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢) < +∞. Moreover,

lim
𝑡→𝑇
𝑞
(𝑓
(1)
,𝑦
0
,𝑢)

𝑦
1

(𝑡; 𝑓
(1)

, 𝑦
0
, 𝑢) = 1,

𝑦
1

(𝑡; 𝑓
(1)

, 𝑦
0
, 𝑢) < 1,

𝑡 ∈ [0, 𝑇
𝑞

(𝑓
(1)

, 𝑦
0
, 𝑢)) .

(42)

Thus

𝑡
∗

= inf
𝑢∈U
𝑎𝑑

𝑇
𝑞

(𝑓
(1)

, 𝑦
0
, 𝑢) < +∞. (43)

Then, we can utilize the definitions of 𝑡
∗ to get a sequence

{𝑢
𝑘
(⋅)}
∞

𝑘=1
of controls in the set U

𝑎𝑑
holding the following

properties. (1) Each 𝑡
𝑘

=: 𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢
𝑘
) is a positive

number; (2) 𝑡
1

≥ 𝑡
2

≥ ⋅ ⋅ ⋅ ≥ 𝑡
𝑘

⋅ ⋅ ⋅ ≥ 𝑡
∗ and 𝑡

𝑘
→ 𝑡
∗ as

𝑘 → +∞; (3) lim
𝑡→ 𝑡
𝑘

𝑦
1
(𝑡; 𝑓
(1)

, 𝑦
0
, 𝑢
𝑘
) = 1 for all 𝑘.

For each 𝑘, write 𝑦
𝑘
(⋅) simply for 𝑦(⋅; 𝑓

(1)
, 𝑦
0
, 𝑢
𝑘
). Now,

we will complete the proof by the following two steps.

Step 1.This is to prove 𝑡
∗

> 0.
Indeed, by Lemma 4 and Remark 8, we have

1 −
1

2𝐾
0

< 𝑦
1𝑘

(𝑡) < 1 for each 𝑘 and 𝑡 ∈ [0, 𝑡
𝑘
) . (44)

By system (4) with 𝑓 = 𝑓
(1), it holds that, for each 𝑘,

𝑦
2𝑘

(𝑡) − 𝑦
0

2
= ∫
𝑡

0

(𝑦
1𝑘

(𝜏) + 𝑦
2𝑘

(𝜏)) 𝑑𝜏

+ ∫
𝑡

0

𝑏
2

(𝜏, 𝑢
𝑘

(𝜏)) 𝑑𝜏, 𝑡 ∈ [0, 𝑡
𝑘
) ,

(45)

from which and from (44) and (5), we get that, for each 𝑘,

󵄨󵄨󵄨󵄨𝑦2𝑘 (𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨
𝑦
0

2

󵄨󵄨󵄨󵄨󵄨
+ 𝐶𝑡
𝑘

+ ∫
𝑡

0

󵄨󵄨󵄨󵄨𝑦2𝑘 (𝜏)
󵄨󵄨󵄨󵄨 𝑑𝜏, 𝑡 ∈ [0, 𝑡

𝑘
) . (46)

Here and in what follows, 𝐶 is a positive constant indepen-
dent of 𝑘 and 𝑡, which may be different in different context.
Then, by the property (2) held by sequence {𝑡

𝑘
} andGronwall’s

inequality, we derive, that for each 𝑘,
󵄨󵄨󵄨󵄨𝑦2𝑘 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐶, 𝑡 ∈ [0, 𝑡
𝑘
) . (47)

On the other hand, from system (4) with 𝑓 = 𝑓
(1), (47), (26)

in Lemma 7, and (5), it holds that, for each 𝑘,

󵄨󵄨󵄨󵄨󵄨
𝑦
1𝑘

(𝑡) − 𝑦
0

1

󵄨󵄨󵄨󵄨󵄨
≤ ∫
𝑡
𝑘

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦
2𝑘

(𝜏)

1 − 𝑦
1𝑘

(𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝜏

+ ∫
𝑡
𝑘

0

󵄨󵄨󵄨󵄨𝑏1 (𝜏, 𝑢
𝑘

(𝜏))
󵄨󵄨󵄨󵄨 𝑑𝜏

≤ 𝐶 ∫
𝑡
𝑘

0

(𝑡
𝑘

− 𝜏)
−2/3

𝑑𝜏 + 𝐾
0
𝑡
𝑘

≤ 𝐶(𝑡
𝑘
)
1/3

+ 𝐾
0
𝑡
𝑘
, 𝑡 ∈ [0, 𝑡

𝑘
) .

(48)

If 𝑡
∗

= 0, then, from the property (2) held by sequence {𝑡
𝑘
},

we have the fact that the right side of the above inequality
tends to 0 as 𝑘 → +∞. This, together with the inequalities
(48) and 𝑦

0

1
< 1, implies that we can find a natural number

𝐾
1
and a positive number 𝛽

0
such that 𝑦

1𝐾
1

(𝑡) ≤ 𝑦
0

1
+ 𝛽
0

< 1

for all 𝑡 ∈ [0, 𝑡
𝐾
1

), which contradicts the property (3) held by
sequence {𝑡

𝐾
1

}. This completes the proof of Step 1.

Step 2. This contains the existence of optimal control for the
problem (𝑃)

𝑓
(1)

𝑦
0
.

Fix such a number𝑇 such that𝑇 > 𝑡
∗. It is clear that there

exist a function 𝑢
∗ in 𝐿
∞

((0, 𝑇);R2) and a subsequence of the
sequence {𝑢

𝑘
(⋅)}
∞

𝑘=1
, still denoted in the same way, such that

𝑢
𝑘

⇀ 𝑢
∗ weakly star in 𝐿

∞
(0, 𝑇;R

2
) as 𝑘 󳨀→ +∞.

(49)
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We extend the function 𝑢
∗ by setting it to be zero on the

interval [𝑇, +∞) and denote the extension by 𝑢
∗ again.

Obviously, this extended function 𝑢
∗ is in the setU

𝑎𝑑
.

Now, we will prove that 𝑢
∗ is an optimal control for the

problem (𝑃)
𝑓
(1)

𝑦
0
. We will carry out its proof by the following

two claims.

Claim One. By the definition of 𝑡
∗, it is obvious that the

solution 𝑦(⋅; 𝑓
(1)

, 𝑦
0
, 𝑢
∗
) does not quench at any time in the

interval [0, 𝑡
∗
).

Claim Two. 𝑡
∗

= 𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢
∗
). From the definition of 𝑡

∗, it
holds that 𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢
∗
) ≥ 𝑡
∗. By seeking a contradiction,

suppose that 𝑡
∗

< 𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢
∗
). Then we would find a

number 𝛿
0
with (𝑡

∗
+ 𝛿
0
) < min{𝑇, 𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢
∗
)} such that

the solution 𝑦(⋅; 𝑓
(1)

, 𝑦
0
, 𝑢
∗
) does not quench on the interval

[0, 𝑡
∗

+𝛿
0
].Thus, it follows from (49) and Lemma 11 that there

exists a natural number 𝑘̂ such that, when 𝑘 ≥ 𝑘̂, the solution
𝑦(⋅; 𝑓
(1)

, 𝑦
0
, 𝑢
𝑘
) does not quench on the interval [0, 𝑡

∗
+ 𝛿
0
].

Thus, 𝑡
𝑘

= 𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢
𝑘
) > 𝑡

∗
+ 𝛿
0
, when 𝑘 ≥ 𝑘̂. Now,

according to (26) in Lemma 7, we can easily verify that, for
all 𝑘 ≥ 𝑘̂,

1

1 − 𝑦
1

(𝑡; 𝑓(1), 𝑦0, 𝑢
𝑘
)

≤ 𝐶(𝑡
𝑘

− 𝑡)
−2/3

≤ (
𝛿
0

2
)

−2/3

,

𝑡 ∈ [0, 𝑡
∗

+
𝛿
0

2
] ,

(50)

where 𝐶 is independent of 𝑘. This, together with the property
(2) held by {𝑡

𝑘
}
∞

𝑘=1
, gives a positive constant 𝐶 independent of

𝑘 such that 1/(1 − 𝑦
1
(𝑡
𝑘
; 𝑓
(1)

, 𝑦
0
, 𝑢
𝑘
)) ≤ 𝐶, for all 𝑘 ≥ 𝑘̂. This

contradicts with the property (3) by {𝑡
𝑘
}
∞

𝑘=1
.

Thus, we have completed the proof of Theorem 1.

4. Proof of Pontryagin Maximum Principle

Proof of Theorem 2. Wewill only give the proof ofTheorem 2
in the case, where 𝑦

0
∈ 𝑆
𝑓
(1)

with 1 − 1/(2𝐾
0
) < 𝑦
0

1
< 1 and

𝑦
0

2
> 𝐾
0

+ 1/𝐾
0

− 1. We can use very similar arguments to
prove Theorem 2 in the case, where 𝑦

0
∈ 𝑆
𝑓
(1)

with 1 < 𝑦
0

1
<

1 + 1/(2𝐾
0
) and 𝑦

0

2
> 𝐾
0

+ 1.
Let 𝑦
0

∈ 𝑆
𝑓
(1)

with 1 − 1/(2𝐾
0
) < 𝑦
0

1
< 1 and 𝑦

0

2
> 𝐾
0

+

1/𝐾
0

− 1. We will prove the theorem in a series of steps as
follows.

Step 1. This is to set up a penalty functional and to study the
related properties.

Since the number 𝑡
∗ is the optimal time for the problem

(𝑃)
𝑓
(1)

𝑦
0
, the solution 𝑦(⋅; 𝑓

(1)
, 𝑦
0
, 𝑢), corresponding to each 𝑢

in the set U
𝑎𝑑
, does not quench on [0, 𝑡

∗
− 𝜀], for any 𝜀 ∈

(0, 𝑡
∗
). Moreover, 𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢) ≥ 𝑡

∗ for all 𝑢 ∈ U
𝑎𝑑
. Let 𝑇

∗

be a fixed number such that 𝑇
∗

> 𝑡
∗. Write U[0, 𝑇

∗
] for the

set {𝑢|
[0,𝑇
∗
]
; 𝑢 ∈ U

𝑎𝑑
}. We introduce the Ekeland distance 𝑑

∗

over the setU[0, 𝑇
∗
] by setting

𝑑
∗

(𝑢, V) = meas ({𝑡 ∈ [0, 𝑇
∗
] ; 𝑢 (𝑡) ̸= V (𝑡)})

∀𝑢, V ∈ U
𝑎𝑑

.
(51)

Here and in what follows, meas (𝐸) stands for the Lebesgue
measure of a measurable set 𝐸 in R1. Then (U[0, 𝑇

∗
], 𝑑
∗
)

forms a completed metric space (see [5], page 145). For
each 𝜀 ∈ (0, 𝑡

∗
), we define a penalty functional 𝐽

𝜀
:

(U[0, 𝑇
∗
], 𝑑
∗
) → 𝑅

+ by setting

𝐽
𝜀
(𝑢 (⋅)) =

󵄨󵄨󵄨󵄨󵄨
𝑦
1

(𝑡
∗

− 𝜀; 𝑓
(1)

, 𝑦
0
, 𝑢) − 1

󵄨󵄨󵄨󵄨󵄨

2

2
. (52)

We claim that 𝐽
𝜀
is continuous over the space (U[0, 𝑇

∗
], 𝑑
∗
).

Before moving forward to the proof of this claim, we make
the following observation, which will be often used in what
follows. Since 𝑓

(1)

1
(𝑦) = 𝑦

2
/(1 − 𝑦

1
), 𝑓
(1)

2
(𝑦) = 𝑦

1
+ 𝑦
2
, and

𝑦 = (𝑦
1
, 𝑦
2
)
𝑇

∈ R2 with 𝑦
1

̸= 1, it holds that, for each 𝑦 =

(𝑦
1
, 𝑦
2
)
𝑇

∈ R2 with 𝑦
1

̸= 1,

𝑓
(1)

𝑦
(𝑦) = (

𝑦
2

(1 − 𝑦
1
)
2

1

1

1 − 𝑦
1

1

) . (53)

Now, we come back to prove the above claim. Let V be an
element and let {𝑢

𝑘
(⋅)}
∞

𝑘=1
be a sequence in the spaceU[0, 𝑇

∗
]

such that 𝑑
∗
(𝑢
𝑘
, V) → 0 as 𝑘 → +∞. Then, it is clear that

𝑢
𝑘

→ V strongly in 𝐿
1
((0, 𝑇
∗
);R2) as 𝑘 → +∞. Throughout

this proof, we will write 𝑦(⋅) simply for 𝑦(⋅; 𝑓
(1)

, 𝑦
0
, V) and,

for each 𝑘, we will write 𝑦
𝑘
(⋅) simply for 𝑦(⋅; 𝑓

(1)
, 𝑦
0
, 𝑢
𝑘
); 𝐶 is

a constant independent of 𝑘 and 𝑡, which may be different
in different context. Since 𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢) ≥ 𝑡

∗ for all 𝑢 ∈

U[0, 𝑇
∗
], it holds from the system (4) with 𝑓 = 𝑓

(1) that
󵄨󵄨󵄨󵄨𝑦1𝑘 (𝑡) − 𝑦

1
(𝑡)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦2𝑘 (𝑡) − 𝑦

2
(𝑡)

󵄨󵄨󵄨󵄨

≤ ∫
𝑡

0

(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦
2𝑘

(𝜏)

1 − 𝑦
1𝑘

(𝜏)
−

𝑦
2

(𝜏)

1 − 𝑦
1

(𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨𝑦1𝑘 (𝜏) − 𝑦
1

(𝜏)
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑦2𝑘 (𝜏) − 𝑦

2
(𝜏)

󵄨󵄨󵄨󵄨 ) 𝑑𝜏

+ 𝐶 ∫
𝑡

0

󵄩󵄩󵄩󵄩𝐵 (𝜏) 𝑢
𝑘

(𝜏) − 𝐵 (𝜏) V (𝜏)
󵄩󵄩󵄩󵄩 𝑑𝜏,

𝑡 ∈ [0, 𝑡
∗

− 𝜀] .

(54)

From Lemmas 4 and 7 and Remark 8, we obtain that, for each
𝑡 ∈ [0, 𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, V)),

1 −
1

2𝐾
0

< 𝑦
1

(𝑡) < 1,

1

1 − 𝑦
1

(𝑡)
≤ 𝐶(𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, V) − 𝑡)

−2/3

;

(55)
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for all 𝑘 and for each 𝑡 ∈ [0, 𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢
𝑘
)),

1 −
1

2𝐾
0

< 𝑦
1𝑘

(𝑡) < 1,

1

1 − 𝑦
1𝑘

(𝑡)
≤ 𝐶(𝑇

𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢
𝑘
) − 𝑡)

−2/3

.

(56)

By the property that 𝑇(𝑓
(1)

, 𝑦
0
, 𝑢) ≥ 𝑡

∗ for all 𝑢 ∈ U[0, 𝑇
∗
]

again, (55), and (56), it holds that

1

1 − 𝑦
1

(𝑡)
≤ 𝐶𝜀
−2/3

,
1

1 − 𝑦
1𝑘

(𝑡)
≤ 𝐶𝜀
−2/3

for each 𝑘 and 𝑡 ∈ [0, 𝑡
∗

− 𝜀] .

(57)

On the other hand, because𝑦(⋅) is continuous over [0, 𝑡
∗
−

𝜀], we get |𝑦
1
(𝑡)| ≤ 𝐶 and |𝑦

2
(𝑡)| ≤ 𝐶, 𝑡 ∈ [0, 𝑡

∗
− 𝜀]. This,

together with (54), (55), (56), and (57), implies that, for each
𝑘 and 𝑡 ∈ [0, 𝑡

∗
− 𝜀],

󵄨󵄨󵄨󵄨𝑦1𝑘 (𝑡) − 𝑦
1

(𝑡)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑦2𝑘 (𝑡) − 𝑦
2

(𝑡)
󵄨󵄨󵄨󵄨

≤ 𝐶 ∫
𝑡

0

(
󵄨󵄨󵄨󵄨𝑦1𝑘 (𝜏) − 𝑦

1
(𝜏)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦2𝑘 (𝜏) − 𝑦

2
(𝜏)

󵄨󵄨󵄨󵄨) 𝑑𝜏

+ 𝐶 ∫
𝑡
∗
−𝜀

0

󵄩󵄩󵄩󵄩𝐵 (𝜏) 𝑢
𝑘

(𝜏) − 𝐵 (𝜏) V (𝜏)
󵄩󵄩󵄩󵄩 𝑑𝜏.

(58)

Now, we can apply Gronwall’s inequality to get that, as
𝑘 → +∞,

󵄨󵄨󵄨󵄨𝑦1𝑘 (𝑡) − 𝑦
1

(𝑡)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑦2𝑘 (𝑡) − 𝑦
2

(𝑡)
󵄨󵄨󵄨󵄨 󳨀→ 0

uniformly in 𝑡 ∈ [0, 𝑡
∗

− 𝜀] .
(59)

Hence, we have proved the continuity of the functional 𝐽
𝜀
.

Step 2.This is to apply the Ekeland variational principle.
It is clear that

𝐽
𝜀
(𝑢
∗

(⋅)) =

󵄨󵄨󵄨󵄨󵄨
𝑦
1

(𝑡
∗

− 𝜀; 𝑓
(1)

, 𝑦
0
, 𝑢
∗
) − 1

󵄨󵄨󵄨󵄨󵄨

2

2

=: 𝜎 (𝜀) 󳨀→ 0 as 𝜀 󳨀→ 0
+
,

𝐽
𝜀
(𝑢
∗

(⋅)) ≤ inf
𝑢∈U[0,𝑇∗]

𝐽
𝜀
(𝑢 (⋅)) + 𝜎 (𝜀) for each 𝜀 ∈ (0, 𝑡

∗
) .

(60)

Then, we can utilize Ekeland’s variational principle (see, for
instance, [5], page 136-137) to find a control 𝑢

𝜀
(⋅) ∈ U[0, 𝑇

∗
]

enjoying the following properties:

𝑑
∗

(𝑢
∗
, 𝑢
𝜀
) ≤ √𝜎 (𝜀),

−√𝜎 (𝜀)𝑑
∗

(V, 𝑢𝜀) ≤ 𝐽
𝜀
(V (⋅)) − 𝐽

𝜀
(𝑢
𝜀
(⋅))

∀V (⋅) ∈ U [0, 𝑇
∗
] .

(61)

Let 𝑢(⋅) ∈ U[0, 𝑇
∗
]. By the variant of the Lyapunov

theorem (see, for instance, [5], Chapter 4), we can get,

corresponding to each 𝜌 ∈ (0, 1), a measurable set 𝐸
𝜌,𝜀

in the
interval [0, 𝑇

∗
] such that meas (𝐸

𝜌,𝜀
) = 𝜌𝑇

∗ and

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝐸
𝜌,𝜀
∩[0,𝑡]

𝐵 (𝜏) (𝑢 − 𝑢
𝜀
) (𝜏) 𝑑𝜏 − 𝜌 ∫

𝑡

0

𝐵 (𝜏) (𝑢 − 𝑢
𝜀
) (𝜏) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝜌
2
, 𝑡 ∈ [0, 𝑇

∗
] .

(62)

Now, we construct the following spike function of 𝑢
𝜀 with

respect to 𝑢 by setting

𝑢
𝜀

𝜌
(𝑡) = {

𝑢
𝜀
(𝑡) , 𝑡 ∈ [0, 𝑇

∗
] \ 𝐸
𝜌,𝜀

,

𝑢 (𝑡) , 𝑡 ∈ 𝐸
𝜌,𝜀

.
(63)

It is obvious that the control 𝑢
𝜀

𝜌
(⋅) is in U[0, 𝑇

∗
]. Write

𝑦
𝜀

𝜌
(⋅) and 𝑦

𝜀
(⋅) simply for the solutions 𝑦(⋅; 𝑓

(1)
, 𝑦
0
, 𝑢
𝜀

𝜌
) and

𝑦(⋅; 𝑓
(1)

, 𝑦
0
, 𝑢
𝜀
), respectively. Clearly, they do not quench on

the interval [0, 𝑡
∗

− 𝜀]. Set 𝑧
𝜀

𝜌
(𝑡) = (𝑦

𝜀

𝜌
(𝑡) − 𝑦

𝜀
(𝑡))/𝜌, 𝑡 ∈

[0, 𝑡
∗

− 𝜀]. Then, for each 𝑡 ∈ [0, 𝑡
∗

− 𝜀], it holds that

𝑧
𝜀

𝜌
(𝑡) = ∫

𝑡

0

∫
1

0

[𝑓
(1)

𝑦
(𝑦
𝜀

+ 𝜃 (𝑦
𝜀

𝜌
− 𝑦
𝜀
))]
𝑇

(𝜏) 𝑑𝜃𝑧
𝜀

𝜌
(𝜏) 𝑑𝜏

+ ∫
𝑡

0

𝐵 (𝜏) [𝑢
𝜀

𝜌
(𝜏) − 𝑢

𝜀
(𝜏)]

𝜌
𝑑𝜏.

(64)

Step 3.This is to show the uniform convergence of the family
{𝑧
𝜀

𝜌
(⋅)}
𝜌>0

on the interval [0, 𝑡
∗

− 𝜀] for 𝜌 → 0
+.

It follows from (63) that 𝑑
∗
(𝑢
𝜀

𝜌
, 𝑢
𝜀
) → 0 as 𝜌 → 0

+.
Thus, we can use the same argument in the proof of (59) to
get

𝑦
𝜀

𝜌
(⋅) 󳨀→ 𝑦

𝜀
(⋅) uniformly on [0, 𝑡

∗
− 𝜀] as 𝜌 󳨀→ 0

+
.

(65)

On the other hand, making use of (62) and (63), it holds that,
for all 𝑡 ∈ [0, 𝑡

∗
− 𝜀],

∫
𝑡

0

𝐵 (𝜏) [𝑢
𝜀

𝜌
(𝜏) − 𝑢

𝜀
(𝜏)]

𝜌
𝑑𝜏

= ∫
𝑡

0

𝐵 (𝜏) (𝑢 (𝜏) − 𝑢
𝜀
(𝜏)) 𝑑𝜏 +

󵄩󵄩󵄩󵄩󵄩
𝑟
𝜀

𝜌
(𝑡)

󵄩󵄩󵄩󵄩󵄩

𝜌
.

(66)

Here, the function 𝑟
𝜀

𝜌
(𝑡) has the property ‖𝑟

𝜀

𝜌
(𝑡)‖ ≤ 𝜌

2 for all
𝑡 ∈ [0, 𝑡

∗
− 𝜀].

Let 𝑧
𝜀
(⋅) be the unique solution to the following system:

𝑑𝑧
𝜀
(𝑡)

𝑑𝑡
= [𝑓
(1)

𝑦
(𝑦
𝜀
(𝑡))]
𝑇

𝑧
𝜀
(𝑡) + 𝐵 (𝑡) (𝑢 (𝑡) − 𝑢

𝜀
(𝑡)) ,

𝑡 ∈ [0, 𝑡
∗

− 𝜀] ,

𝑧
𝜀
(0) = 0.

(67)
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Then, by (64) and (67), we get that, for each 𝑡 ∈ [0, 𝑡
∗

− 𝜀],
󵄩󵄩󵄩󵄩󵄩
𝑧
𝜀

𝜌
(𝑡) − 𝑧

𝜀
(𝑡)

󵄩󵄩󵄩󵄩󵄩

≤ ∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
1

0

[𝑓
(1)

𝑦
(𝑦
𝜀

+ 𝜃 (𝑦
𝜀

𝜌
− 𝑦
𝜀
))]
𝑇

(𝜏) 𝑑𝜃

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
(𝑧
𝜀

𝜌
(𝜏) − 𝑧

𝜀
(𝜏))

󵄩󵄩󵄩󵄩󵄩
𝑑𝜏

+ ∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
1

0

[𝑓
(1)

𝑦
(𝑦
𝜀

+ 𝜃 (𝑦
𝜀

𝜌
− 𝑦
𝜀
))]
𝑇

(𝜏) 𝑑𝜃

− [𝑓
(1)

𝑦
(𝑦
𝜀
)]
𝑇

(𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧
𝜀
(𝜏)

󵄩󵄩󵄩󵄩 𝑑𝜏

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝑡

0

𝐵 (𝜏) [𝑢
𝜀

𝜌
(𝜏) − 𝑢

𝜀
(𝜏)]

𝜌
𝑑𝜏

− ∫
𝑡

0

𝐵 (𝜏) (𝑢 (𝜏) − 𝑢
𝜀
(𝜏)) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(68)

Corresponding to each 𝑡 ∈ [0, 𝑡
∗

− 𝜀], write 𝑚
𝜌
(𝑡) for the sum

of the last two terms in the right hand of (68).
Clearly, it follows from (65) and (66) that 𝑚

𝜌
(⋅) → 0

uniformly on [0, 𝑡
∗

− 𝜀] as 𝜌 → 0
+.

Since 𝑦
𝜀
(⋅) is continuous and 1 − 1/(2𝐾

0
) < 𝑦
𝜀

1
(𝑡) < 1 for

all 𝑡 ∈ [0, 𝑡
∗

− 𝜀] (see Lemma 4 and Remark 8), there exists a
constant 𝐶 with 0 < 𝐶 < 1 such that 𝑦

𝜀

1
(𝑡) < 𝐶 for each 𝑡 ∈

[0, 𝑡
∗
−𝜀].Then, it follows from (65) that, when 𝜌 is sufficiently

small, we have 𝑦
𝜀

1𝜌
(𝑡) < 𝐶 for all 𝑡 ∈ [0, 𝑡

∗
− 𝜀]. Hence, when

𝜌 is sufficiently small, it holds that, for each 𝑡 ∈ [0, 𝑡
∗

− 𝜀],

1

1 − {𝑦𝜀
1

(𝑡) + 𝜃 (𝑦𝜀
1𝜌

(𝑡) − 𝑦𝜀
1

(𝑡))}
≤

1

1 − 𝐶
,

1

{1 − [𝑦𝜀
1

(𝑡) + 𝜃 (𝑦𝜀
1𝜌

(𝑡) − 𝑦𝜀
1

(𝑡))]}
2

≤
1

(1 − 𝐶)
2
.

(69)

On the other hand, from the continuity of 𝑦
𝜀
(⋅) and (65), we

get that, when 𝜌 is sufficiently small,
󵄨󵄨󵄨󵄨󵄨
𝑦
𝜀

2
(𝑡) + 𝜃 (𝑦

𝜀

2𝜌
(𝑡) − 𝑦

𝜀

2
(𝑡))

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶, 𝑡 ∈ [0, 𝑡

∗
− 𝜀] . (70)

Here and in what follows, 𝐶 is a constant independent of 𝜌

and 𝑡, which may be different in different context. From the
above inequality, (53), and (69), it follows that, when 𝜌 is
sufficiently small,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
1

0

[𝑓
(1)

𝑦
(𝑦
𝜀

+ 𝜃 (𝑦
𝜀

𝜌
− 𝑦
𝜀
))]
𝑇

(𝜏) 𝑑𝜃

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝐶, 𝑡 ∈ [0, 𝑡

∗
− 𝜀] ,

(71)

from which and from (68), it holds from the Gronwall’s
inequality that, when 𝜌 is sufficiently small,

󵄩󵄩󵄩󵄩󵄩
𝑧
𝜀

𝜌
(𝑡) − 𝑧

𝜀
(𝑡)

󵄩󵄩󵄩󵄩󵄩
≤ 𝑚
𝜌

(𝑡) + 𝐶 ∫
𝑡

0

𝑚
𝜌

(𝜏) 𝑑𝜏, 𝑡 ∈ [0, 𝑡
∗

− 𝜀] .

(72)

Hence, it holds that 𝑧
𝜀

𝜌
(⋅) → 𝑧

𝜀
(⋅) uniformly on [0, 𝑡

∗
− 𝜀] as

𝜌 → 0
+, from which, we obtain that

𝑦
𝜀

𝜌
(𝑡) = 𝑦

𝜀
(𝑡) + 𝜌𝑧

𝜀
(𝑡) + 𝑜 (𝜌) uniformly on [0, 𝑡

∗
− 𝜀] .

(73)

Step 4. This is to get certain necessary conditions for the
control 𝑢

𝜀.
By the second inequality of (61) and according to the

definition of the functional 𝐽
𝜀
, we can easily verify the

following inequality:

−√𝜎 (𝜀)𝑇
∗

≤

󵄨󵄨󵄨󵄨󵄨
𝑦
𝜀

1𝜌
(𝑡
∗

− 𝜀) − 1
󵄨󵄨󵄨󵄨󵄨

2

/2 −
󵄨󵄨󵄨󵄨𝑦
𝜀

1
(𝑡
∗

− 𝜀) − 1
󵄨󵄨󵄨󵄨
2

/2

𝜌
.

(74)

This, together with (65) and (73), implies that

− √𝜎 (𝜀)𝑇
∗

≤
lim
𝜌→0

+ [
󵄨󵄨󵄨󵄨󵄨
𝑦
𝜀

1𝜌
(𝑡
∗

− 𝜀) − 1
󵄨󵄨󵄨󵄨󵄨

2

/2 −
󵄨󵄨󵄨󵄨𝑦
𝜀

1
(𝑡
∗

− 𝜀) − 1
󵄨󵄨󵄨󵄨
2

/2]

𝜌

= (𝑦
𝜀

1
(𝑡
∗

− 𝜀) − 1) 𝑧
𝜀

1
(𝑡
∗

− 𝜀) .

(75)

Let 𝜓
𝜀
(⋅) be the unique solution for the dual system:

𝑑𝜓
𝜀
(𝑡)

𝑑𝑡
= −𝑓
(1)

𝑦
(𝑦
𝜀
(𝑡)) 𝜓
𝜀
(𝑡) , 𝑡 ∈ [0, 𝑡

∗
− 𝜀] ,

𝜓
𝜀

1
(𝑡
∗

− 𝜀) = 1 − 𝑦
𝜀

1
(𝑡
∗

− 𝜀) , 𝜓
𝜀

2
(𝑡
∗

− 𝜀) = 0.

(76)

Then, it follows from (75), (67), and (76) that the following
inequality yields

∫
𝑡
∗
−𝜀

0

⟨𝜓
𝜀
(𝜏) , 𝐵 (𝜏) (𝑢 (𝜏) − 𝑢

𝜀
(𝜏))⟩ 𝑑𝜏 ≤ √𝜎 (𝜀)𝑇

∗
. (77)

Step 5.This is to obtain a uniform estimate for𝜓
𝜀
(⋅)with 𝜀 > 0

sufficiently small.
Since 𝜓

𝜀
(⋅) solves (76), we see that

𝜓
𝜀
(𝑡) = 𝜓

𝜀
(𝑡
∗

− 𝜀) + ∫
𝑡
∗
−𝜀

𝑡

𝑓
(1)

𝑦
(𝑦
𝜀
(𝜏)) 𝜓

𝜀
(𝜏) 𝑑𝜏,

𝑡 ∈ [0, 𝑡
∗

− 𝜀] .

(78)

By Lemma 4 and Remark 8, it holds that

1 −
1

2𝐾
0

< 𝑦
𝜀

1
(𝑡) < 1, 𝑦

𝜀

2
(𝑡) > 𝐾

0
+

1

𝐾
0

− 1 ≥ 1,

𝑡 ∈ [0, 𝑡
∗

− 𝜀] .

(79)
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This, combined with (53), shows that, for each 𝑡 ∈ [0, 𝑡
∗

− 𝜀],
󵄩󵄩󵄩󵄩𝜓
𝜀
(𝑡)

󵄩󵄩󵄩󵄩 ≤ (1 − 𝑦
𝜀

1
(𝑡
∗

− 𝜀))

+ ∫
𝑡
∗
−𝜀

𝑡

󵄩󵄩󵄩󵄩󵄩
𝑓
(1)

𝑦
(𝑦
𝜀
(𝜏))

󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝜓
𝜀
(𝜏)

󵄩󵄩󵄩󵄩 𝑑𝜏

≤ (1 − 𝑦
𝜀

1
(𝑡
∗

− 𝜀))

+ ∫
𝑡
∗
−𝜀

𝑡

(
𝑦
𝜀

2
(𝜏)

(1 − 𝑦𝜀
1

(𝜏))
2

+
1

1 − 𝑦𝜀
1

(𝜏)
+ 2)

×
󵄩󵄩󵄩󵄩𝜓
𝜀
(𝜏)

󵄩󵄩󵄩󵄩 𝑑𝜏.

(80)

Now we can apply the Gronwall’s inequality to get that, for all
𝑡 ∈ [0, 𝑡

∗
− 𝜀],

󵄩󵄩󵄩󵄩𝜓
𝜀
(𝑡)

󵄩󵄩󵄩󵄩

≤ (1 − 𝑦
𝜀

1
(𝑡
∗

− 𝜀))

× exp{∫
𝑡
∗
−𝜀

𝑡

(
𝑦
𝜀

2
(𝜏)

(1 − 𝑦𝜀
1

(𝜏))
2

+
1

1 − 𝑦𝜀
1

(𝜏)
+ 2) 𝑑𝜏} .

(81)

On the other hand, according to the system satisfied by
𝑦
𝜀
(⋅), it follows that, for every 𝑡 ∈ [0, 𝑡

∗
− 𝜀],

∫
𝑡
∗
−𝜀

𝑡

𝑑 (1 − 𝑦
𝜀

1
(𝜏))

1 − 𝑦𝜀
1

(𝜏)
= ln

1 − 𝑦
𝜀

1
(𝑡
∗

− 𝜀)

1 − 𝑦𝜀
1

(𝑡)

= ∫
𝑡
∗
−𝜀

𝑡

−
1

1 − 𝑦𝜀
1

(𝜏)
(

𝑦
𝜀

2
(𝜏)

1 − 𝑦𝜀
1

(𝜏)

+𝑏
1

(𝜏, 𝑢
𝜀
(𝜏)) ) 𝑑𝜏;

(82)

namely, we have the equation as follows:

1 − 𝑦
𝜀

1
(𝑡
∗

− 𝜀) = (1 − 𝑦
𝜀

1
(𝑡))

⋅ exp{∫
𝑡
∗
−𝜀

𝑡

−
𝑦
𝜀

2
(𝜏)

(1 − 𝑦𝜀
1

(𝜏))
2
𝑑𝜏}

⋅ exp{∫
𝑡
∗
−𝜀

𝑡

−𝑏
1

(𝜏, 𝑢
𝜀
(𝜏))

1 − 𝑦𝜀
1

(𝜏)
𝑑𝜏} ,

𝑡 ∈ [0, 𝑡
∗

− 𝜀] .

(83)

Then,making use of the above equation and by (81), we obtain
󵄩󵄩󵄩󵄩𝜓
𝜀
(𝑡)

󵄩󵄩󵄩󵄩

≤ (1 − 𝑦
𝜀

1
(𝑡))

× exp{∫
𝑡
∗
−𝜀

𝑡

(
1

1 − 𝑦𝜀
1

(𝜏)
+ 2 −

𝑏
1

(𝜏, 𝑢
𝜀
(𝜏))

1 − 𝑦𝜀
1

(𝜏)
) 𝑑𝜏} ,

𝑡 ∈ [0, 𝑡
∗

− 𝜀] .

(84)

On the other hand, by Lemma 7 and the inequality
𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢
𝜀
) ≥ 𝑡
∗, we get

1

1 − 𝑦𝜀
1

(𝑡)
≤ 𝐶(𝑡

∗
− 𝑡)
−2/3 for each 𝑡 ∈ [0, 𝑡

∗
− 𝜀] , (85)

where 𝐶 is independent of 𝜀 ∈ (0, 𝑡
∗
) and 𝑡. This, together

with (84) and (5), implies that
󵄩󵄩󵄩󵄩𝜓
𝜀
(𝑡)

󵄩󵄩󵄩󵄩 ≤ 𝐶
1

(1 − 𝑦
𝜀

1
(𝑡)) , 𝑡 ∈ [0, 𝑡

∗
− 𝜀] , (86)

where 𝐶
1
is independent of 𝜀 ∈ (0, 𝑡

∗
) and 𝑡.

Step 6.This contains the convergence of a subsequence of the
family {𝜓

𝜀
(⋅)}
𝜀>0

.
First of all, corresponding to each 𝜀 ∈ (0, 𝑡

∗
), we extend

the function 𝜓
𝜀
(⋅) by setting 𝜓

𝜀

1
(⋅) to be 1 − 𝑦

𝜀

1
(𝑡
∗

− 𝜀) on
(𝑡
∗

− 𝜀, 𝑡
∗
] and setting 𝜓

𝜀

2
(⋅) to be 0 on (𝑡

∗
− 𝜀, 𝑡
∗
] and denote

the extended function by 𝜓
𝜀
(⋅) again. Clearly, this extended

function is continuous on [0, 𝑡
∗
].

Now, we take a sequence {𝛿
𝑚

}
∞

𝑚=1
of numbers from the

interval (0, 𝑡
∗
) such that (i) lim

𝑚→+∞
𝛿
𝑚

= 0 and (ii) 𝛿
1

>

𝛿
2

> ⋅ ⋅ ⋅ . Corresponding to the number 𝛿
1
, we can take a

sequence {𝜀
𝑛
}
∞

𝑛=1
from the set {𝜀}

0<𝜀<𝑡
∗ such that lim

𝑛→+∞
𝜀
𝑛

=

0 and [0, 𝑡
∗

− 𝛿
1
] ⊂ [0, 𝑡

∗
− 𝜀
𝑛
] for all 𝑛 = 1, 2, . . ..

By (79), the sequence {1−𝑦
𝜀
𝑛

1
(⋅)}
∞

𝑛=1
is uniformly bounded

on the interval [0, 𝑡
∗

− 𝛿
1
]. This, together with (86), implies

that {𝜓
𝜀
𝑛(⋅)}
∞

𝑛=1
is uniformly bounded on [0, 𝑡

∗
− 𝛿
1
].

On the other hand, by system (4) with 𝑓 = 𝑓
(1), we can

use the similar argument we used to prove (47) to conclude
that

󵄨󵄨󵄨󵄨𝑦
𝜀
𝑛

2
(𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐶, 𝑡 ∈ [0, 𝑡
∗

− 𝛿
1
] , (87)

where 𝐶 is independent of 𝑛 and 𝑡.
Next, we will prove that the sequence {𝜓

𝜀
𝑛(⋅)}
∞

𝑛=1
is

equicontinuous on [0, 𝑡
∗

− 𝛿
1
].

Indeed, for each 𝑠
1
and 𝑠
2
in the interval [0, 𝑡

∗
− 𝛿
1
] with

𝑠
1

< 𝑠
2
, it follows from (76), (53), and (86) that

󵄨󵄨󵄨󵄨𝜓
𝜀
𝑛 (𝑠
1
) − 𝜓
𝜀
𝑛 (𝑠
2
)
󵄨󵄨󵄨󵄨

≤ ∫
𝑠
2

𝑠
1

󵄩󵄩󵄩󵄩󵄩
𝑓
(1)

𝑦
(𝑦
𝜀
𝑛 (𝑡))

󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝜓
𝜀
𝑛 (𝑡)

󵄩󵄩󵄩󵄩 𝑑𝑡

≤ 𝐶
1

∫
𝑠
2

𝑠
1

(
𝑦
𝜀
𝑛

2
(𝑡)

(1 − 𝑦
𝜀
𝑛

1
(𝑡))
2

+
1

1 − 𝑦
𝜀
𝑛

1
(𝑡)

+ 2) (1 − 𝑦
𝜀
𝑛

1
(𝑡)) 𝑑𝑡,

(88)

from which and from (79), (85), and (87), it holds that

󵄨󵄨󵄨󵄨𝜓
𝜀
𝑛 (𝑠
1
) − 𝜓
𝜀
𝑛 (𝑠
2
)
󵄨󵄨󵄨󵄨 ≤ 𝐶 ∫

𝑠
2

𝑠
1

(
1

1 − 𝑦
𝜀
𝑛

1
(𝑡)

+ 1) 𝑑𝑡

≤ 𝐶 ∫
𝑠
2

𝑠
1

(𝑡
∗

− 𝑡)
−2/3

𝑑𝑡 + 𝐶 (𝑠
2

− 𝑠
1
)

≤ 𝐶 [(𝑡
∗

− 𝑠
1
)
1/3

− (𝑡
∗

− 𝑠
2
)
1/3

]

+ 𝐶 (𝑠
2

− 𝑠
1
) ,

(89)
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where 𝐶 is independent of 𝑛, 𝑠
1
, and 𝑠

2
. This implies that the

sequence {𝜓
𝜀
𝑛(⋅)}
∞

𝑛=1
is equicontinuous on [0, 𝑡

∗
− 𝛿
1
]. Hence,

we can utilize the Arzela-Ascoli theorem and the standard
diagonal argument to see that there exists a subsequence
{𝜓
𝜀
𝑛,𝑛(⋅)}which is uniformly convergent on [0, 𝑡

∗
−𝛿] for each

𝛿 ∈ (0, 𝑡
∗
).

Let 𝜓(𝑡) = lim
𝑛→+∞

𝜓
𝜀
𝑛,𝑛(𝑡), 𝑡 ∈ [0, 𝑡

∗
). Then it holds that

𝜓
𝜀
𝑛,𝑛 (⋅) 󳨀→ 𝜓 (⋅) uniformly on [0, 𝑡

∗
− 𝛿]

as 𝑛 󳨀→ +∞, for each 𝛿 ∈ (0, 𝑡
∗
) .

(90)

Step 7.This is to extend the function𝜓 over the interval [0, 𝑡
∗
].

Since all solutions, 𝑦
𝜀
𝑛,𝑛(⋅), 𝑛 = 1, 2, . . ., do not quench

on every interval [0, 𝑡
∗

− 𝛿] with 𝛿 ∈ (0, 𝑡
∗
) and

lim
𝑛→+∞

𝑑
∗
(𝑢
𝜀
𝑛,𝑛 , 𝑢
∗
) = 0, we can use the same arguments

in the proof of (59) to get

𝑦
𝜀
𝑛,𝑛 (⋅) 󳨀→ 𝑦

∗
(⋅) uniformly on [0, 𝑡

∗
− 𝛿]

as 𝑛 󳨀→ +∞, for each 𝛿 ∈ (0, 𝑡
∗
) .

(91)

This, together with (86) and (90), yields the following
inequality:

󵄩󵄩󵄩󵄩𝜓 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝐶
1

(1 − 𝑦
∗

1
(𝑡)) ∀𝑡 ∈ [0, 𝑡

∗
) . (92)

Since the constant 𝐶
1
is independent of 𝑡, it holds that

0 ≤ lim
𝑡→ 𝑡
∗

󵄩󵄩󵄩󵄩𝜓 (𝑡)
󵄩󵄩󵄩󵄩 ≤ lim
𝑡→ 𝑡
∗

𝐶
1

(1 − 𝑦
∗

1
(𝑡)) . (93)

On the other hand, because 𝑡
∗

= 𝑇
𝑞
(𝑓
(1)

, 𝑦
0
, 𝑢
∗
), we conclude

from Lemma 7 that lim
𝑡→ 𝑡
∗𝑦
∗

1
(𝑡) = 1, from which and from

(93), we obtain that lim
𝑡→ 𝑡
∗𝜓(𝑡) = 0. Now, we extend the

function 𝜓(⋅) by setting it to be zero at the time 𝑡
∗ and still

denote the extension by 𝜓(⋅). Clearly, this extended function
𝜓(⋅) is continuous on the interval [0, 𝑡

∗
] and has the property

𝜓(𝑡
∗
) = 0.

Step 8.This is to verify that the function𝜓(⋅) solves the system
(10).

Clearly, the function𝜓
𝜀
𝑛,𝑛(⋅) holds the following property:

𝜓
𝜀
𝑛,𝑛 (𝑡) = 𝜓

𝜀
𝑛,𝑛 (𝑡
∗

− 𝜀
𝑛,𝑛

)

+ ∫
𝑡
∗
−𝜀
𝑛,𝑛

𝑡

𝑓
(1)

𝑦
(𝑦
𝜀
𝑛,𝑛 (𝜏)) 𝜓

𝜀
𝑛,𝑛 (𝜏) 𝑑𝜏,

𝑡 ∈ [0, 𝑡
∗

− 𝜀
𝑛,𝑛

] ,

(94)

where𝜓
𝜀
𝑛,𝑛

1
(𝑡
∗
−𝜀
𝑛,𝑛

) = 1−𝑦
𝜀
𝑛,𝑛

1
(𝑡
∗
−𝜀
𝑛,𝑛

) and𝜓
𝜀
𝑛,𝑛

2
(𝑡
∗
−𝜀
𝑛,𝑛

) = 0.
We first claim that

1

1 − 𝑦
𝜀
𝑛,𝑛

1
(𝑡∗ − 𝜀

𝑛,𝑛
)

󳨀→ +∞,

or equivalently, 𝜓𝜀𝑛,𝑛 (𝑡∗ − 𝜀
𝑛,𝑛

) 󳨀→ 0 as 𝑛 󳨀→ +∞.

(95)

If (95) were not true, then there would exist a positive
constant 𝛽 such that

1

1 − 𝑦
𝜀
𝑛,𝑛

1
(𝑡∗ − 𝜀

𝑛,𝑛
)

≤ 𝛽 for infinitely many 𝑛. (96)

On the other hand, we take a number 𝛾
1
with 1 − 1/(2𝐾

0
) <

𝛾
1

< 1 and 1/(1 − 𝛾
1
) > 𝛽. Because lim

𝑡→ 𝑡
∗𝑦
∗

1
(𝑡) = 1, we can

find a number 𝛿 ∈ (0, 𝑡
∗
) such that 𝑦

∗

1
(𝑡
∗

− 𝛿) > 𝛾
1
. Since

lim
𝑛→+∞

𝜀
𝑛,𝑛

= 0, there is a natural number 𝑁
1
such that

(𝑡
∗

− 𝜀
𝑛,𝑛

) > (𝑡
∗

− 𝛿) ∀𝑛 ≥ 𝑁
1
. (97)

Now, we can utilize Lemma 4 to get

1

1 − 𝑦
𝜀
𝑛,𝑛

1
(𝑡∗ − 𝜀

𝑛,𝑛
)

≥
1

1 − 𝛾
1

> 𝛽 ∀𝑛 ≥ 𝑁
1
, (98)

which contradicts with (96). Therefore, we have proved (95).
Next, we claim that

lim
𝑛→+∞

∫
𝑡
∗
−𝜀
𝑛,𝑛

𝑡

𝑓
(1)

𝑦
(𝑦
𝜀
𝑛,𝑛 (𝜏)) 𝜓

𝜀
𝑛,𝑛 (𝜏) 𝑑𝜏

= ∫
𝑡
∗

𝑡

𝑓
(1)

𝑦
(𝑦
∗

(𝜏)) 𝜓 (𝜏) 𝑑𝜏, 𝑡 ∈ [0, 𝑡
∗
) .

(99)

Corresponding to each 𝑛, we define a function𝐹
𝑛
(⋅) by setting

𝐹
𝑛

(𝑡) = {
𝑓
(1)

𝑦
(𝑦
𝜀
𝑛,𝑛 (𝑡)) 𝜓

𝜀
𝑛,𝑛 (𝑡) , 𝑡 ∈ [0, 𝑡

∗
− 𝜀
𝑛,𝑛

] ,

0, 𝑡 ∈ (𝑡
∗

− 𝜀
𝑛,𝑛

, 𝑡
∗
] .

(100)

It is clear that all functions, 𝐹
𝑛
(⋅), 𝑛 = 1, 2, . . ., are measurable

on the interval [0, 𝑡
∗
]. We will first give an estimate on the

sequence {‖𝐹
𝑛
(⋅)‖}
∞

𝑛=1
. Let 𝑡 ∈ [0, 𝑡

∗
]. In the case that 𝑛 is such

that 𝑡 ∈ [0, 𝑡
∗

−𝜀
𝑛,𝑛

], by (53), (79), (85), (86), and (87), we have
the following estimate:

󵄩󵄩󵄩󵄩𝐹
𝑛

(𝑡)
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝑓
(1)

𝑦
(𝑦
𝜀
𝑛,𝑛 (𝑡)) 𝜓

𝜀
𝑛,𝑛 (𝑡)

󵄩󵄩󵄩󵄩󵄩

≤ 𝐶 (

󵄨󵄨󵄨󵄨󵄨
𝑦
𝜀
𝑛,𝑛

2
(𝑡)

󵄨󵄨󵄨󵄨󵄨

(1 − 𝑦
𝜀
𝑛,𝑛

1
(𝑡))
2

+
1

1 − 𝑦
𝜀
𝑛,𝑛

1
(𝑡)

+ 2)

× (1 − 𝑦
𝜀
𝑛,𝑛

1
(𝑡)) ≤ 𝐶 + 𝐶(𝑡

∗
− 𝑡)
−2/3

,

𝑡 ∈ [0, 𝑡
∗

− 𝜀
𝑛,𝑛

] ,

(101)

where 𝐶 is independent of 𝑛 and 𝑡.
On the other hand, if 𝑛 is such that 𝑡 ∈ (𝑡

∗
− 𝜀
𝑛,𝑛

, 𝑡
∗
], then

𝐹
𝑛
(𝑡) = 0. This, together with (101), implies that

󵄩󵄩󵄩󵄩𝐹
𝑛

(𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝐶 + 𝐶(𝑡

∗
− 𝑡)
−2/3

, ∀𝑡 ∈ [0, 𝑡
∗
] ,

∀𝑛 = 1, 2, . . . .
(102)

Then, we are going to show that the sequence {𝐹
𝑛
(𝑡)}
∞

𝑛=1
is

convergent for each 𝑡 ∈ [0, 𝑡
∗
). Indeed, corresponding to

each 𝑡 ∈ [0, 𝑡
∗
), there exists a natural number 𝑁

2
such that

𝑡 ∈ [0, 𝑡
∗

− 𝜀
𝑛,𝑛

] when 𝑛 ≥ 𝑁
2
. Then, by (90), (91), and (102),

we can apply Lebesgue dominated convergence theorem to
get

lim
𝑛→+∞

∫
𝑡
∗

𝑡

𝐹
𝑛

(𝜏) 𝑑𝜏 = ∫
𝑡
∗

𝑡

𝑓
(1)

𝑦
(𝑦
∗

(𝜏)) 𝜓 (𝜏) 𝑑𝜏,

for each 𝑡 ∈ [0, 𝑡
∗
) ,

(103)

from which, (99) follows immediately.
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Now, let 𝑠 ∈ [0, 𝑡
∗
). Clearly, it holds that 𝑠 ∈ [0, 𝑡

∗
− 𝜀
𝑛,𝑛

)

for 𝑛 sufficiently large. Thus, making use of (95) and (99), we
can pass to the limit for 𝑛 → +∞ in (94), where 𝑡 = 𝑠, to get

𝜓 (𝑠) = ∫
𝑡
∗

𝑠

𝑓
(1)

𝑦
(𝑦
∗

(𝜏)) 𝜓 (𝜏) 𝑑𝜏. (104)

Since 𝑠 can be arbitrarily taken from [0, 𝑡
∗
) in the above

equation, we already hold the first equation of (10). On the
other hand, we proved that 𝜓(𝑡

∗
) = 0 in the end of Step 7.

Hence, the function 𝜓(⋅) solves the system (10).

Step 9.This is to prove (11).
We can use the similar argument we used in the proof of

Step 9 of Theorem 1.2 in [8] to prove (11).

Step 10.This is to show the nontriviality of the function 𝜓(⋅).
By the equations satisfied by 𝑦

𝜀
𝑛,𝑛(⋅) and 𝜓

𝜀
𝑛,𝑛(⋅), respec-

tively, we see that, for each 𝑡 ∈ [0, 𝑡
∗

− 𝜀
𝑛,𝑛

],

∫
𝑡
∗
−𝜀
𝑛,𝑛

𝑡

𝑑

𝑑𝜏
(

𝜓
𝜀
𝑛,𝑛

1
(𝜏)

1 − 𝑦
𝜀
𝑛,𝑛

1
(𝜏)

) 𝑑𝜏

= ∫
𝑡
∗
−𝜀
𝑛,𝑛

𝑡

−𝜓
𝜀
𝑛,𝑛

2
(𝜏)

1 − 𝑦
𝜀
𝑛,𝑛

1
(𝜏)

𝑑𝜏

+ ∫
𝑡
∗
−𝜀
𝑛,𝑛

𝑡

𝜓
𝜀
𝑛,𝑛

1
(𝜏)

(1 − 𝑦
𝜀
𝑛,𝑛

1
(𝜏))
2
𝑏
1

(𝜏, 𝑢
𝜀
𝑛,𝑛 (𝜏)) 𝑑𝜏.

(105)

Because {𝜓
𝜀
𝑛,𝑛

1
(𝑡
∗

−𝜀
𝑛,𝑛

)}/{1−𝑦
𝜀
𝑛,𝑛

1
(𝑡−𝜀
𝑛,𝑛

)} = 1, it follows from
(105) that, for each 𝑡 ∈ [0, 𝑡

∗
− 𝜀
𝑛,𝑛

],

1 −
𝜓
𝜀
𝑛,𝑛

1
(𝑡)

1 − 𝑦
𝜀
𝑛,𝑛

1
(𝑡)

= ∫
𝑡
∗
−𝜀
𝑛,𝑛

𝑡

−𝜓
𝜀
𝑛,𝑛

2
(𝜏)

1 − 𝑦
𝜀
𝑛,𝑛

1
(𝜏)

𝑑𝜏

+ ∫
𝑡
∗
−𝜀
𝑛,𝑛

𝑡

𝜓
𝜀
𝑛,𝑛

1
(𝜏)

(1 − 𝑦
𝜀
𝑛,𝑛

1
(𝜏))
2

× 𝑏
1

(𝜏, 𝑢
𝜀
𝑛,𝑛 (𝜏)) 𝑑𝜏.

(106)

By (86), we can make use of the very similar arguments as
those in the proof of (99) to verify that

lim
𝑛→+∞

(∫
𝑡
∗
−𝜀
𝑛,𝑛

𝑡

−𝜓
𝜀
𝑛,𝑛

2
(𝜏)

1 − 𝑦
𝜀
𝑛,𝑛

1
(𝜏)

𝑑𝜏

+ ∫
𝑡
∗
−𝜀
𝑛,𝑛

𝑡

𝜓
𝜀
𝑛,𝑛

1
(𝜏)

(1 − 𝑦
𝜀
𝑛,𝑛

1
(𝜏))
2
𝑏
1

(𝜏, 𝑢
𝜀
𝑛,𝑛 (𝜏)) 𝑑𝜏)

= ∫
𝑡
∗

𝑡

−𝜓
2

(𝜏)

1 − 𝑦∗
1

(𝜏)
𝑑𝜏 + ∫

𝑡
∗

𝑡

𝜓
1

(𝜏)

(1 − 𝑦∗
1

(𝜏))
2
𝑏
1

(𝜏, 𝑢
∗

(𝜏)) 𝑑𝜏,

for each 𝑡 ∈ [0, 𝑡
∗
) ,

(107)

which, together with (90), (91), and (106), implies that, for
each 𝑡 ∈ [0, 𝑡

∗
),

1 −
𝜓
1

(𝑡)

1 − 𝑦∗
1

(𝑡)
= ∫
𝑡
∗

𝑡

−𝜓
2

(𝜏)

1 − 𝑦∗
1

(𝜏)
𝑑𝜏

+ ∫
𝑡
∗

𝑡

𝜓
1

(𝜏)

(1 − 𝑦∗
1

(𝜏))
2
𝑏
1

(𝜏, 𝑢
∗

(𝜏)) 𝑑𝜏.

(108)

This shows that the function 𝜓(⋅) is not trivial.

Step 11.This is to prove (12).
Indeed, by (23) in Lemma 7, (12) holds.
Thus, we complete the proof of Theorem 2 in the case,

where 𝑦
0

∈ 𝑆
𝑓
(1)

with 1 − 1/(2𝐾
0
) < 𝑦

0

1
< 1 and 𝑦

0

2
>

𝐾
0

+ 1/𝐾
0

− 1.
We can use similar arguments in the proof of Theorem 2

to proveTheorem 3 (see [9] for the detailed proofs).
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